电阻脉冲功率计算和参考的详细资料

合集下载

LDO与PWM设计资料整理

LDO与PWM设计资料整理

1.定义:LDO:LOW DROPOUT VOLTAGE,低压差线性稳压器,仅能在降压中应用。

输出电压必需小于输入电压。

PWM:脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。

2.LDO与DC/DC优缺点LDO:优点:稳定性好,负载响应快。

输出纹波小。

缺点:效率低,输入输出的电压差不能太大。

负载不能太大,目前最大的LDO为5A(但要保证5A的输出还有很多的限制条件)。

PWM开关电源:优点:输入电压范围较宽, 高效率,高输出电流,低静态电流。

缺点:负载响应比LDO差,输出纹波比LDO大,成本相对较高。

3.工作原理LDO:右图为串联线性电源的主要组成部分,其电压调整单元采用有源器件并串联在输入电源和负载之间,负反馈环路决定调整单元的导通程度,以维持输出电压稳定。

负反馈环路的核心是一个高增益的运算放大器,称作电压误差放大器,用它来对输出电压和稳定的基准电压之间作比较,当有误差存在时,电压误差放大器的增益将误差电压放大很多倍,放大后的误差电压直接控制串联调整单元的导通电阻,从而维持额定的输出电压。

电压误差放大器对输出变化的响应速度和输出电压的控制精度取决于误差放大器的反馈环补偿设计。

负反馈补偿的大小由分压电阻和接到电压误差放大器负输入端与输出端之间的电阻大小决定。

DC/DC开关电源:开关电源采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

如右图所示,其中DC/DC变换器进行功率变换,是开关电源的核心部分,反馈回路检测其输出电压,并与基准电压比较,其误差电压通过误差放大器放大及控制脉宽调制电路,再经过驱动电路控制半导体开关的通断时间比,从而调整输出电压的大小。

浪涌抑制电阻阻值及功率的选择

浪涌抑制电阻阻值及功率的选择

浪涌抑制电阻阻值及功率的选择大功率电源,输入浪涌抑制电路一般都选择功率电阻+继电器的方式,电阻给电容充电后利用继电器短路电阻,那么电阻阻值及功率如何根据后级电流来选择?今天有套系统本来准备发货的,包装前上电试验一下,结果没工作,拆开看电阻已经炸裂了,换电阻再试验又没有问题,郁闷了,电阻的阻值及功率如何计算?greendot查看完整内容这个问题可以用仿真来探究一下,R=1K ,C=1000μF,Vac=220Vrms电压和电流波形如下:头0.5秒的:0-2秒内,平均功率15.2W,能量30.4J0-5 ,6.94W,34.7J0-10,3.55W,35.5J0-20,1.78W,35.6J至于电阻选多大功率,由王版决定。

•回复楼主••1楼•1155050•| 本网技工 (180) | 发消息 | 查看最佳答案•2011-09-26 13:43这个电阻换成压敏电阻是不是合适点?•回复1楼••2楼•YTDFWANGWEI•| 总工程师 (12447) | 发消息 | 查看最佳答案•2011-09-26 15:044KW,这个功率等级好象没有压敏电阻吧.•回复2楼••3楼•晶纲禅诗•| 副总工程师 (7208) | 发消息 | 查看最佳答案•2011-09-26 23:44这方面王工还是缺少经验一般这个功率电阻要选“特殊”的规格品种,但似乎国内并不好找,要选耐冲击型的,有点类似“延迟保险丝”的特性。

买不到时,可选高电阻率、大截面积的电阻丝自己绕制。

实在无奈时,可以增大功率电阻的阻值与功率,并延长继电器的吸合等待时间来改善。

•回复3楼••4楼•1155050•| 本网技工 (180) | 发消息 | 查看最佳答案•2011-09-27 08:12分析的到位,大虾级别•回复4楼••5楼•YTDFWANGWEI•| 总工程师 (12447) | 发消息 | 查看最佳答案•2011-09-27 08:25耐冲击的,我们常用的应该是线绕电阻吧?如果用电阻丝自己绕,批产这玩意也不好弄啊,我现在就是不知道应该如何选择这个功率电阻的阻值与功率.•回复5楼••6楼•3608727•| 工程师 (513) | 发消息 | 查看最佳答案•2011-09-27 10:03现在用在这个地方的电阻有很多厂家在做不是简单的线绕电阻具体材质名字我忘了一般要看功率的阻值和功率大小选择要根据你前面的保险丝以及电阻的最大冲击电流来选择的电阻的规格书上都有讲到的•回复6楼••7楼•xiaodeping•| 本网技工 (102) | 发消息 | 查看最佳答案•2011-09-27 11:37用热敏阻吧,不知道你这是多大电流和最大承受浪涌电流是多大。

LED限流电阻大小计算

LED限流电阻大小计算

LED应用中LED电路的形式及电阻的计算一、关于LED光源应用的简介:LED照明行业是一个新兴的行业,它以其独特的优点深受人们的青睐。

如今在光电工程中,提高光效,节约能源和高可靠性已经成为人们共同追求的目的。

我们在讨论和使用LED光源时,都会想到LED的寿命长、节约能源、亮度高等特点。

也正是因为如此LED光源才倍受欢迎。

LED光源虽有以上优点,去卩并不如人们所说的那么神奇。

只有给其配上合适、高效的LED电源、合理的电路设计、完善的防静电措施、正确的安装工艺才能充分发挥和利用LED光源的以上优点。

下面我就LED光源在工程应用中的一些常识做简单的介绍,供大家参考。

二、LED寿命的理解LED的使用寿命,一般认为在理想状态下有10万小时。

实际在使用过程中其光强会随使用时间的推移逐渐衰减,即电能转化为光能的效率逐渐降低。

我们能真正使用的有效光强范围应在其衰减到初始光强的70%以上时,寿命是否可以定义为光效逐渐降低至70%的时间段。

目前还没有明确的国家标准用来衡量。

而且LED的使用寿命与其芯片的质量和封装技术、工艺直接相关,据某LED封装厂的试验数据有些芯片在20mA条件下连续点亮4000 小时后其光亮度衰减已达50%。

但是随着技术、工艺的提高,光衰时间越来越缓慢,即寿命也越长。

三、LED的节能及可靠性LED是电流控制元件,通过流过的电流,直接将电能转变为光能,故也称光电转换器。

因其不存在摩擦损耗和机械损耗,所以在节能方面比一般的光源的效率高,但是LED光源并不能像一般的普通光源一样可以直接使用电网电压,它必须配置一个电压转换装置,提供满足其额定的电压、电流,才能正常使用,即LED专用电源。

但是各种不同的LED电源其性能和转换效率各不相同,所以选择合适、高效的LED专用电源,才能真正体现LED光源高效特性。

因为低效率的LED电源本身就需要消耗大量电能,在配合LED的使用过程中根本就体现不出LED的高效节能特性。

如何彻底读懂并理解MOSFET的Datasheet

如何彻底读懂并理解MOSFET的Datasheet

如何彻底读懂并理解MOSFET的Datasheet(注:以下意功率MOS为例说明)所有功率MOS制造⼚商都会提供每种型号产品的详细说明书。

说明书⽤来说明各种产品的性能。

这对于在不同⼚商之间选择相同规格的器件很有⽤。

在⼀些情况下,不同⼚商所提供的参数所依据的条件可能有微妙的区别,尤其在⼀些⾮重要参数例如切换时间。

另外,数据说明书所包含的信息不⼀定和应⽤相关联。

因此在使⽤说明书和选择相同规格的器件时需要特别当⼼以及要对数据的解释有确切的了解。

本⽂以BUK553- 100A为例, 这是⼀种100V逻辑电平MOS 管。

功率MOS数据说明书所包含的信息数据说明书⼀般由以下⼋个部分组成:*快速参考数据*极限值*热阻*静态特性*动态特性*反向⼆极管极限值及特性*雪崩极限值*图形数据下⾯叙述每⼀部分:快速参考数据这些数据作为迅速选择的参考。

包括器件的关键参数,这样⼯程师就能迅速判断它是否为合适的器件。

在所包括的五个参数中,最重要的是漏源电压 VDS是和开启状态下的漏源阻抗RDS( ON) 。

VDS是器件在断开状态下漏极和源极所能承受的最⼤电压。

RDS( ON) 是器件在给定栅源电压以及25 ? C的结温这两个条件下最⼤的开启阻抗 ( RDS( ON) 由温度所决定,见其静态特性部分) 。

这两个参数可以说明器件最关键的性能。

漏极电流值 ( I D) 和总耗散功率都在这部分给出。

这些数据必须认真对待因为在实际应⽤中数据说明书的给定的条件很难达到(见极限值部分)。

在⼤多数应⽤中,可⽤的dc电流要⽐快速参考说明中提供的值要低。

限于所⽤的散热装置,⼤多数⼯程师所能接受的典型功率消耗要⼩于20W( 对于单独器件) 。

结温 ( TJ ) 通常给出的是150℃或者175℃。

器件内部温度不建议超过这个值。

极限值这个表格给出六个参数的绝对最⼤值。

器件可以在此值运⾏但是不能超出这个值,⼀旦超出将会对器件发⽣损坏。

漏源电压和漏栅电压有同样的值。

DCDC培训资料2

DCDC培训资料2

要点二
详细描述
DC/DC转换器控制原理是通过调节开关的占空比,将 输入电压变换成所需的输出电压。控制策略包括电压模 式控制和电流模式控制两种主要方式,其中电压模式控 制具有简单、响应速度快等优点,但存在负载效应和输 出电压交叉调整率的问题;电流模式控制则可以消除负 载效应,提高系统性能,但电路实现较为复杂。
感谢您的观看
THANKS
技术发展趋势及市场前景分析
高可靠性及长寿命
DC/DC转换器在许多重要领域都有应用, 如航空航天、工业控制、数据中心等。这些 领域对DC/DC产品的可靠性和寿命要求非 常高。因此,提高DC/DC产品的可靠性和 寿命是未来发展的重要方向之一。
智能化及数字化
随着数字化时代的到来,智能化和数字化成 为了电子设备的重要特征。DC/DC转换器
系统集成与测试
将DC/DC转换器与其他电路 集成,并进行性能测试和验证 。
设计输入和输出参数的确定
输入电压范围
根据应用需求,确定DC/DC转换器的输入 电压范围。
负载特性
根据应用需求,确定DC/DC转换器的负载 特性,如阻性负载、感性负载等。
输出电压和电流
根据应用需求,确定DC/DC转换器的输出 电压和电流。
数字控制技术
数字控制技术是实现高效能转换的关键技术之一。未来,研究数字控制技术将会成为 DC/DC转换器发展的重要方向之一。通过引入先进的数字信号处理和控制算法,实现更精 确的控制和更优化的运行,提高设备的性能和可靠性。
智能化及数字化技术
智能化和数字化技术将会成为DC/DC转换器未来发展的重要方向之一。通过引入人工智能 、机器学习等技术手段,实现设备的自主控制和智能管理,提高设备的智能化程度和自动 化水平。

电工电子技术完整课件全套课件

电工电子技术完整课件全套课件

02
数字电子技术基础
数字信号与数字电路概述
1 2
数字信号的特点与分类 介绍数字信号的基本概念、特点,以及常见的数 字信号分类,如二进制、多进制等。
数字电路的基本组成与工作原理 阐述数字电路的基本组成元素,包括逻辑门、触 发器等,以及它们的工作原理和逻辑功能。
3
数字电路的分析与设计方法 介绍数字电路的分析方法和设计步骤,包括逻辑 代数、卡诺图化简、逻辑函数的表示方法等。
比例运算、加法运算、减法运算和积分运算等。
集成运算放大器的非线性应用
03
阐述集成运算放大器在非线性电路中的应用,如电压比
较器、方波发生器等。
直流稳压电源设计
整流电路
介绍整流电路的工作原理和主要 类型,包括半波整流、全波整流
和桥式整流等。
滤波电路
详细讲解滤波电路的作用和主要 类型,包括电容滤波、电感滤波
包括传递函数、频率特性、根轨迹法等。
经典控制理论在自动控制系统设计中的应用
包括PID控制器设计、超前校正和滞后校正等。
经典控制理论的局限性 对于复杂系统难以建立精确的数学模型,难以实现最优控制等。
现代控制理论在复杂系统建模和仿真中的应用
现代控制理论的基本概念和原理
包括状态空间法、最优控制、鲁棒控制等。
现代控制理论在复杂系统建模和仿真中的应用
包括系统辨识、状态估计、最优控制设计等。
现代控制理论的优点
能够处理多输入多输出系统,能够实现最优控制和鲁棒控制等。
智能控制方法简介
01
智能控制的基本概念和原理
包括模糊控制、神经网络控制、遗传算法等。
02
智能控制方法的应用
包括机器人控制、智能家居控制、智能交通控制等。

电子电路中电阻电容器件降额规范

电子电路中电阻电容器件降额规范

电子电路中电阻电容等器件降额规范电阻器降额规范稳态功率与瞬态功率稳态功率功率降额是在相应的工作温度下的降额,即是在元件符合曲线所规定环境温度下的功率的进一步降额,采用P=V²/R公式进行计算。

为了保证电阻器的正常工作,各种型号的电阻厂家都通过试验确定了相应的降功率曲线,因此在使用过程中,必须严格按照降功率曲线使用电阻器。

当环境温度定于额定温度时(T<Ts)可以施加60%额定功率,不需要考虑温度降额。

当环境温度高于额定温度的时候,需要考虑温度降额,应该进一步降额功耗使用,P=PR(0.6+(Ts-T)/(Tmax-Ts))PR是额定功耗;T是环境温度;Tmax是零功耗时最高环境温度。

瞬态功耗不同厂家,电阻脉冲功耗和稳态功率的转换曲线不同,具体应用时,要查询转换缺陷,将瞬态功率转换为稳态功率,然后在此基础上降额。

厂家额定环境温度为70℃,低于这个温度的时候,直接按照60%进行降额。

当超过这个温度的时候,额定曲线是一个斜线。

降额曲线也按照,最大温度的降额为121℃,然后绘制一条红色的斜线,按照斜线进行降额。

瞬态降额只要时间足够短,电阻可以承受比额定功率大得多的瞬态功率。

要参考厂家资料中的最高过负荷电压参数,再在此基础上降额。

瞬态功耗,又要按照单脉冲和多脉冲,分别进行讨论和分析。

单脉冲:多脉冲:1、合成型电阻器1.1 概述合成型电阻器件体积小,过负荷能力强,但它们的阻值稳定性差,热和电流噪声大,电压与温度系数较大。

合成型电阻器的主要降额参数是环境温度、功率和电压。

1.2 应用指南a) 合成型电阻为负温度和负电压系数,易于烧坏。

因此限制其电压是必须的。

b) 在潮湿环境下使用的合成型电阻器,不宜过度降额。

否则潮气不能挥发将可能使电阻器变质失效。

c) 热点温度过高可能导致合成型电阻器内部的电阻材料永久性损伤。

d) 为保证电路长期工作的可靠性,电路设计应允许合成型电阻器有±15%的阻值容差。

电工电子技术全套PPT课件

电工电子技术全套PPT课件

进行检测。
技能培训和考核标准
培训内容
包括电工电子技术基础知识、实验操作规范、仪器仪表使用等。
培训方式
采用理论授课与实验操作相结合的方式,注重实践能力的培养。
考核标准
要求学员能够熟练掌握实验操作技能,独立完成实验任务,并具备一定的分析问题和解决 问题的能力。同时,还需遵守实验室规章制度,确保实验安全。
稳压电路
保持输出电压稳定,常 用串联型稳压电路和开 关型稳压电路。
逆变器和斩波器工作原理
逆变器
将直流电转换为交流电,常用PWM控制技术实现输出电压和 频率的调节。
斩波器
将直流电转换为另一电压等级的直流电,通过控制开关管的 通断时间实现输出电压的调节。
变频器调速系统应用
变频器
将固定频率的交流电转换为可调频率的交流电,实现对电 机的无级调速。
同步发电机基本结构
介绍定子、转子和励磁系统等部分,以及各部分在发电机运行中 的作用。
同步发电机工作原理
阐述电磁感应定律和同步转速概念,以及发电机在空载和负载状态 下的工作原理。
同步发电机并网运行条件
分析并网前电压、频率和相位等参数的调整方法,以及并网后功率 和电流的分配原则。
拖动系统稳定性和调速方法
原理
基于晶体管的开关特性实现逻辑运算。
应用
用于组合逻辑电路的设计和实现,如编码器、译 码器、数据选择器等。
组合逻辑设计方法
组合逻辑电路
由逻辑门电路组成的,无记忆功能的电路。
设计方法
根据实际需求,选择合适的逻辑门电路进行组合,实现特定的逻 辑功能。
设计步骤
分析需求、列写真值表、化简逻辑表达式、画出逻辑电路图、验 证设计结果等。
03

压敏电阻的选择及计算

压敏电阻的选择及计算

压敏电阻选择方法及计算尺有所短、寸有所长压敏电阻的选择1、压敏电阻的命名;我国规定压敏电阻用“MY”表示.。

J为家用、后缀字母W-稳压 G-过压 P高频电路 L-防雷 H -灭弧 Z-消噪 B-补偿 C-消磁 N-高性能或高可靠。

2、压敏电阻虽然能吸收很大的浪涌量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。

3、选用压敏电阻时一般选择标称压敏电压(VIma)和通流容量两个参数 1)压敏电压;即击穿电压或阀值电压指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻时测得的电压值,其产品电压范围可从10-9000v不等,可根据需要正确选用。

一般Vima=1.5Vp=2.2VAC(vp是电路额定电流的峰值,VAC是额定交流电压的有效值。

)Zno(氧化锌)压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命,如家电用额定电压是220v则;vima=1.5vp=1.5×根号2×220=467v;因此vima值可选;vima=2.2VAC=2.2×220=484v;可在470-484v之间选择。

2)通流容量;指最大脉冲电流的峰值是在环境温度25c°在时规定的冲击电流波形和冲击次数而言,压敏电阻的变化不超过10%时的最大脉冲电流值。

压敏电阻的选择与使用2008年12月26日星期五 09:11 引用压敏电阻的选择与使用压敏电阻的测量:压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。

压敏电阻在电路中,常用于电源过压保护和稳压。

测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损。

压敏电阻标称参数压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。

ANSI C62.33-1982 压敏电阻浪涌保护器标准

ANSI C62.33-1982  压敏电阻浪涌保护器标准

ANSI/IEEE C62.33-1982(IEEE 1988年重定)(ANSI 1989年重定)美国国家标准关于浪涌保护器压敏电阻IEEE标准测试规范发起者浪涌保护器委员会IEEE电源工程协会1981年9月17日批准1988年3月10日重定1994年3月17日重定IEEE 标准版1983年7月1日批准1988年3月10日重定美国国家标准机构——————版权所有1982年条款页数1. 范围 (1)1.1 (1)1.2 (1)1.3 (1)1.4 (1)2.在定义压敏电阻里术语和字母符号的描述2.1额定参数值 (2)2.2 描述 (2)2.3 基本描述 (3)3.工作条件 (5)3.1 正常工作条件 (5)3.2 非正常工作条件 (6)4. 标准设计测试程序 (7)4.1 标准设计测试标准………………………………………………………………… ..74.2 统计程序 (7)4.3 测试标准 (7)4.4 限制电压测试(V c)(见Fig3) (7)4.5 额定峰值单次脉冲瞬时电流测试(I tm)(见图4) (8)4.6 寿命额定脉冲电流测试(见图3) (8)4.7 额定有效值电压测试(V m(ac))(见图5),额定直流电压测试(V m(dc)) (10)4.8 直流功耗电流测试(I D)(见图6) (10)4.9 标称压敏电压测试(V N(dc))和(V N(ac))(见图6) (11)4.10 额定循环峰值电压测试(Vpm)(见图5) (12)4.11 电容测试 (12)4.12 交流功耗功率(P d) (12)5.失效模式 (12)短路电路失效模式 (12)降级失效模式 (13)高限制电压失效模式 (13)“失效-安全”工作 (13)6.其他参数 (13)额定瞬变能量 (14)额定瞬时平均功率泄放(P t(A V)m) (14)电压过冲击(V os)(见图8) (15)响应时间,过冲持续时间(见图8) (15)7.参考书目 (15)1.总则1.1这个标准适用于浪涌保护应用系统的压敏电阻,该系统具有从直流到频率420Hz、电压小于等于1000V rms,或者1200V dc。

脉冲功率技术基础-6-2(传输线)

脉冲功率技术基础-6-2(传输线)

脉冲成形网络(PFN)
1、波传输过程分析
Blumlein line 等效电路
Blumlein Line
1. 同轴型Blumlein
2Z0
“强光一号”装置照片
图2-5 “闪光二号”加速器照片
(0.9~1.47MV、720~1000kA、
70~80ns)
传输线发生器
感应电压加法器组成的高功率脉冲装置
测验题
Zl=Z0, 传输线外皮充电,当开关合闸后,分析并 画出负载上电压波形。
Stacked Transmission Line-1
2、多线段倍压变换器
3、Spiral line:阿基米德螺旋倍压器
4、传输线变压器
传输线变压器等效电路
传输线变压器优点
泄漏电感小; 无铁心,重量轻; 响应ห้องสมุดไป่ตู้率高; 制作简单。
(3)理想开关接通两段充电传输线
课后作业!
(4)入射波先进入电阻,再进入传输线 和入射波先进入传输线,再进入电阻的区别?
单传输线型脉冲形成线电路图
波的多次折射与反射
Vi=vs=VsZ0/(Rs +Z0)
等值集中参数定理
结论:电感、电容影响折射波陡度,不影响最大幅值
Blumlein Line
传输线
传输线
传输线分布参数
传输线方程推导


波的折射和反射
波的折射和反射
波的折射和反射
阶跃电压入射波作用:末端开路
直流阶跃电压入射:末端短路
课后思考题
几种传输线连接的特殊情况
(1)电磁波在两段传输线连接点的折、反射
(2)充电传输线通过理想开关向另一传输线放电
脉冲功率技术基础6脉冲压缩与成形技术脉冲压缩与成形技术磁开关传输线传输线传输线分布参数传输线方程推导波的折射和反射波的折射和反射波的折射和反射阶跃电压入射波作用

MOS管参数详解及驱动电阻选择

MOS管参数详解及驱动电阻选择

MOS管参数解释MOS管介绍在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。

MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。

这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

在MOS),MOSMOSNMOSPMOS然PMOSMOS不管是M OSMOSMOS管驱动MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。

但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。

对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。

选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。

而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大(4V或10V其他电压,看手册)。

如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。

很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

Mosfet参数含义说明Features:Vds:DS击穿电压.当Vgs=0V时,MOS的DS所能承受的最大电压Rds(on):DS的导通电阻.当Vgs=10V时,MOS的DS之间的电阻Id:最大DS电流.会随温度的升高而降低Vgs: 最大GS电压.一般为:-20V~+20VIdm: 最大脉冲DS电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系Pd: 最大耗散功率Tj:Tstg:Iar:Ear:Eas:BVdss:Idss:Igss:gfs:Qg:Qgs:Qgd:Tr:Tf:Ciss:Coss:Crss:二是MOS管C4是由U GSMOS管输入电容(Ciss )、跨接电容(Crss)、输出电容(Coss)和栅源电容、栅漏电容、漏源电容间的关系如下:3MOS管的开通过程开始减小,图4是存储电荷高或低的两种二极管电流、电压波形。

绕线耐脉冲电阻-概念解析以及定义

绕线耐脉冲电阻-概念解析以及定义

绕线耐脉冲电阻-概述说明以及解释1.引言1.1 概述绕线耐脉冲电阻是一种特殊的电子元件,被广泛应用于电气和电子系统中。

它的设计和制造旨在为电路提供稳定的电阻,同时能够承受高频脉冲信号的冲击。

由于电子设备中常常存在电流脉冲或高频信号的传输和处理,绕线耐脉冲电阻的应用变得尤为重要。

绕线耐脉冲电阻的设计结构特别注重其内部的绕线方式。

通常,它的电阻元件由精密绝缘材料包裹,并通过金属导线绕成线圈状。

这种特殊的绕线结构能够有效减少电感和电容的影响,从而提供更加稳定和准确的电阻值。

此外,绕线耐脉冲电阻的线圈还经过专门处理,使其在高频脉冲信号下能够保持优异的电阻特性。

绕线耐脉冲电阻的应用领域非常广泛。

在电子设备中,它通常被用于抑制电流脉冲和噪声干扰,以保证电路的正常工作。

同时,在通信系统中,绕线耐脉冲电阻也被用于限制高频信号的干扰和保护电路元件。

此外,它还可以用于测量设备和功率控制系统等领域,以提供精确和可靠的电阻数值。

绕线耐脉冲电阻的优势不仅在于其可靠性和稳定性,还在于其可定制化的特性。

根据不同的应用需求,可以调整绕线耐脉冲电阻的电阻值、功率容量和尺寸规格等参数。

这使得绕线耐脉冲电阻能够适应各种复杂和多样化的电路设计。

总之,绕线耐脉冲电阻在现代电子技术领域中发挥着重要作用。

其特殊的绕线结构和稳定的电阻特性使其成为电路设计中不可或缺的元件。

通过适当选择和应用绕线耐脉冲电阻,可以有效提高电子设备的性能和可靠性。

1.2 文章结构文章结构部分的内容如下:文章结构:本文主要分为引言、正文和结论三部分。

引言部分:在引言部分,首先对绕线耐脉冲电阻进行了概述,介绍了该技术的基本原理和应用领域。

其次,对文章的结构进行了简要说明,明确了每个部分的内容及其重要性。

最后,明确了本文的宗旨,即深入探究绕线耐脉冲电阻的性能和应用,为相关领域的研究和开发提供参考。

正文部分:正文主要包括三个要点,分别是第一个要点、第二个要点和第三个要点。

第一个要点:在第一个要点中,将详细介绍绕线耐脉冲电阻的工作原理和基本结构。

RCD尖峰脉冲吸收电路参数计算举例

RCD尖峰脉冲吸收电路参数计算举例

RCD尖峰脉冲吸收电路参数计算举例1、开关变压器初级线圈漏感Ls的计算反激式开关变压器的漏感一般都比较大,漏感与初级线圈电感之比,大多数都在2~5%之间。

漏感的大小主要与变压器初、次级线圈的绕法、铁芯和骨架的结构,以及气隙大小等参数有关,还与磁通密度取值的大小有关,因为磁通密度取得越大,导磁率就会越小,漏感相对也要增大。

漏感小于2%或大于15%的开关变压器,其结构一般都比较特殊。

开关变压器初级线圈电感量的大小,主要与开关电源的工作频率有关,还与工作电压和输出功率的大小有关。

一般输出功率越大,工作频率就越低,电感量相应也要增大;而工作电压越高,电感量也越大。

开关变压器初级线圈的电感L和漏感Ls的大小可以用仪表直接测量,一般工作频率为30~50kHz,工作电压为AC110V~220V的开关变压器,其初级线圈的电感量大约为:300~1000微亨,漏感大约为:10~100微亨;计算时,可按3~6%的比例来取值进行估算。

例如:L=1000uH,则可取 Ls = 30~60uH。

2、尖峰脉冲吸收电容器容量的计算要计算尖峰脉冲吸收电容器容量,首先要计算流过变压器初级线圈电流的最大值。

计算流过变压器初级线圈的最大电流Im可根据开关电源的最大输入功率Pm来估算。

电流Im可根据开关电源的最大输入功率Pm来估算。

根据(26)式,当输出功率一定时,输入电压在一定的范围内,流过变压器初级线圈的最大电流Im和输出电压Uo基本是稳定的;变压器初、次级线圈反激输出电压的半波平均值也基本是稳定的,与输入电压的大小无关,但对应不同的输入电压必须对应不同的占空比,参看(41)、(42)式。

当流过开关变压器初级线圈的最大电流确定之后,尖峰脉冲吸收电容器容量以及电容充电时电压增量的数值就可以按(33)~(36)式进行计算。

大多数反激式开关电源的最大输出功率都在100W以下,因为用于反激式开关电源功率损耗大于10W的电源开关管种类很少,如需要较大的输出功率,一般都选用半桥式或全桥式双激式开关电源。

ATT7022中文资料

ATT7022中文资料
CF1 CF2
RESET
通讯模块 LCD显示模块 EEPROM
OSCO
OSCI
RESET
第 8 页 共 32 页

珠海炬力集成电路设计有限公司
Actions Semiconductor Co., Ltd.
第二部分 系统功能 §2.1 电源监控电路 AVCC ATT7022 片内包含一个电源监控电路,连 5V 续对模拟电源(AVcc)进行监控。当电源电压 4V 低于 4V±5%时,芯片将被复位。这有利于电 路上电和掉电时芯片的正确启动和正常工作。 电源监控电路被安排在延时和滤波环节中, 这 0V 在最大程度上防止了由电源噪声引发的错误。 如图所示。为保证芯片正常工作应对电源去 内部复位 耦,使 AVcc 的波动不超过 5V±5%。
wwwactionscomcn32校表寄存器定义1校表寄存器定义地址标识符功能描述复位值0x010x02iregion1相位补偿区域设置10x0000000x03iregion2相位补偿区域设置20x0000000x04iregion3相位补偿区域设置30x0000000x05iregion4相位补偿区域设置40x0000000x06pgaina0相功率增益00x0000000x07pgainb0相功率增益00x0000000x08pgainc0相功率增益00x0000000x09pgaina1相功率增益10x0000000x0apgainb1相功率增益10x0000000x0bpgainc1相功率增益10x0000000x0cphsrega0相区域0相位校正0x0000000x0dphsrega1相区域1相位校正0x0000000x0ephsrega2相区域2相位校正0x0000000x0fphsrega3相区域3相位校正0x0000000x10phsrega4相区域4相位校正0x0000000x11phsregb0相区域0相位校正0x0000000x12phsregb1相区域1相位校正0x0000000x13phsregb2相区域2相位校正0x0000000x14phsregb3相区域3相位校正0x0000000x15phsregb4相区域4相位校正0x0000000x16phsregc0相区域0相位校正0x0000000x17phsregc1相区域1相位校正0x0000000x18phsregc2相区域2相位校正0x0000000x19phsregc3相区域3相位校正0x0000000x1aphsregc4相区域4相位校正0x0000000x1bugaina相电压校正0x0000000x1cugainb相电压校正0x0000000x1dugainc相电压校正0x0000000x1eiregchg比差补偿区域设置0x0000000x1fistartup启动电流0x0000000x20hfconst高频脉冲输出设置0x0000100x21保留为以后扩展用

预充电线路电阻设计选型实例

预充电线路电阻设计选型实例

• 134•在变频器,汽车电控系统,电机控制器,电池管理系统等等电子设备内,直流母线上必须设计预充电电路,以吸收脉冲电流保护线路。

而此设计的原理为:在直流母线上存在大电容的电路内,电容并联在电源两端,在瞬间上电时,电容两端没有电荷,只有很低的残留电压,上电时电压不能突变,而电流会发生突变,相当于电容直接短路,从而导致电路的短路。

如果此时没有预充电线路的参与,短路的大电流会对桥堆芯片等其他元件造成不可逆损伤,导致元件失效。

所以,预充电电路的存在,吸收了上电瞬间的短路能量,限制了上电短路电流,保护了其他元件。

那么,在预充电电路中,根据充放电时序周期及电压电容大小,作为吸收脉冲使用的电阻又如何选型呢?接着,我们看以下预充电电路内电阻设计选型的实例。

以下为客户设计的预充电线路:项目:预充电电路内电阻试验验证策划应用耐久性需求:(1)将试验电阻、恒压源等按照图1进行连接;(2)恒压源U =420V ;DUT 为试验电阻;Rd 为放电电阻(确保1S 内电容放电完成);S 1、S 2为开关;(3)S 1、S 2开关时序如图2所示;t 1=200ms ;t 2=1S ;5000个循环;(4)在预充电阻表面记录温升;针对以上客户要求,我们设计了该预充电电路电阻的设计选型及验证。

1 电阻设计选型的思路及步骤根据以上电路要求,我们得到以下信息:母线输入为420VDC 电压,母线电容值1000uF ,DUT 电阻充电时序为:通200ms ,断1s ,循环次数连续脉冲5000次,电阻体温升需要低于300℃,测试后电阻外壳无开裂现象,电阻阻值变化率小于5%。

在预充电电路内,电阻选型时我们需要按照两种脉冲情况来参考设计,即线路内单一脉冲能量冲击和多次循环脉冲能量冲击的情况。

在单一脉冲能量冲击的情况下,因为在极短的时间内,线路中能量集中释放,这些脉冲能量必须瞬间通过电阻吸收,所以电阻必须有很强的抗脉冲能力。

此项可以通过计算得出量化数据,首先根据线路测试条件计算得到电阻的阻值,再通过参考电阻功率曲线得到电阻功率等等电阻性能参数。

脉冲功率器件RSD热阻的计算与研究

脉冲功率器件RSD热阻的计算与研究

脉冲功率器件RSD热阻的计算与研究尚超【摘要】热阻是半导体功率器件的基本特征和重要参数。

本文首次提出RSD热阻的计算,根据RSD热阻网络模型,引入加热、测量电流合二为一的方法计算RSD 的热阻,最终得到RSD的热阻值为0.3℃/W。

较小的热阻可使RSD应用于重频脉冲功率领域而不发生热失效。

实验得到了500Hz频率下RSD的开通特性,RSD运行时间为20s,以保证器件达到热平衡。

波形显示RSD重复开通特性良好,通过对电流电压积分得到RSD消耗的功率约为8W。

据此,可得到RSD在1.2kV峰值电压下运行20s时的结温为60.8℃(RSD运行频率为500Hz)。

结果表明RSD是理想的脉冲功率开关,其工作频率可大幅提高。

%Thermal resistance is a basic characteristic and important parameter for semiconductor power device. The calcula- tion to thermal resistance of RSD is brought forward for the first time in this paper. Based on the network model of thermal resistance, a method of combining the measuring and heating current is introduced to calculate the thermal resistance of RSD. The thermal resistance of 0. 3℃/W is obtained by experiment and calculation, and the result shows that the thermal resist- ance of RSD is small, which can make RSD applied in the pulse power field of repetitive frequency. The turn--on characteris- tic of RSD is obtained under a frequency of 500Hz. The operating time of RSD is 20s to ensure RSD reach the heat balance, and the waveform shows that the characteristic of repetitive frequency of RSD is good. The power dissipation on RSD is 8W by integrating current and voltage waveform, so the junctiontemperature of RSD is 60. 8℃ with the frequency of 500Hz un- der the voltage of 1.2kV operating for 20s. These results show that RSD is an ideal pulsed power switch, and its operation frequency can be increased largely.【期刊名称】《潍坊学院学报》【年(卷),期】2012(012)004【总页数】5页(P1-4,30)【关键词】RSD;热阻;功率器件;结温;壳温【作者】尚超【作者单位】潍坊学院,山东潍坊261061【正文语种】中文【中图分类】TN782发热及温度分布的均匀性,对半导体功率器件参数的稳定性、品质的可靠性以及器件、整片集成电路乃至整机和系统的寿命都有不可忽视甚至是决定性的影响[1-3]。

LED限流电阻的大小计算

LED限流电阻的大小计算

五、LED连接电路的常见形式L串联」这种电路需要电源提供较高的电压口V 总二各 LED 的VF 之和二VF1+VF2+VF3+VF4,E +VF NI总二单颗LED的IF值2,并联」这种电路需要电源能提供较高的电流.V总二单颗LED的VF值I 总二各 LED 的 IF 之和二IF 1+IF2+IF3+IF4” +IFN3,串联/并联组合a,在实际运用中,负载常采用通过串并联形成的LED阵列;b、将LED连接成串联/并联组合的形式,可大幅减低因少数LED的VF不一致造成的影响;囱¥c、阵列形式或LED个数变化,限流电阻也应相应变化|d、串联/并联组合的形式会使输出电流随输入电压和环境温度等因素而发生的变化更加显著;4,为了能有效控制电路中的电流,须在电路中配置适当的限流电阻. R= (V输入电压-VLED总电压)/I (流过限流电阻的电流) 限流电阻的作用主要是控制LED的电流,使电压更平滑,并使各并联支路的亮度更均匀。

限流电阻阻值大效果较好,但是限流电阻的取值也不能太大,否则会增加电能的损耗及元件温度升高。

六、电源的分类及特性1、按驱动方式可分为两大类:(1)恒流式:a、恒流驱动电路输出的电流是恒定的,而输出的直流电压却随着负载阻值的大小不同在一定范围内变化,负载阻值小,输出电压就低,负载阻值越大,输出电压也就越高;b、恒流电路不怕负载短路,但严禁负载完全开路;c、恒流驱动电路驱动LED是较为理想的,但相对而言价格较高;d、应注意所使用最大承受电流及电压值,它限制了LED的使用数量;(2)稳压式:a、当稳压电路中的各项参数确定以后,输出的电压是固定的,而输出的电流却随着负载的增减而变化;b、稳压电路不怕负载开路,但严禁负载完全短路口c、以稳压驱动电路驱动LED,每串需要加上合适的电阻方可使每串LED显示亮度平均;d、亮度会受整流而来的电压变化影响。

2、按电路结构方式分类(1)电阻、电容降压方式:通过电容降压,在闪动使用时,由于充放电的作用,通过LED的瞬间电流极大,容易损坏芯片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档