初一数学提优试卷
人教版七年级初一数学下学期第八章 二元一次方程组单元达标测试提优卷试卷
人教版七年级初一数学下学期第八章 二元一次方程组单元达标测试提优卷试卷一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .253.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩4.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-5.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-46.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( ) A .1B .-16C .16D .-17.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ). A . 6.32.2x y =⎧⎨=⎩B .8.31.2x y =⎧⎨=⎩C .9.30.2x y =⎧⎨=⎩D .10.32.2x y =⎧⎨=⎩8.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( ) A .7385y x y x =-⎧⎨=+⎩B .7385y x y x=+⎧⎨+=⎩C .7385x yx y+=⎧⎨-=⎩D .7385y x y x =+⎧⎨=+⎩9.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱( ) A .128元 B .130元 C .150 元 D .160元 10.若二元一次方程3x ﹣y =﹣7,x+3y =1,y =kx+9有公共解,则k 的取值为( )A .3B .﹣3C .﹣4D .4二、填空题11.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.12.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.13.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 14.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.15.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 16.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.17.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.18.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =, 所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 22.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.23.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.()1若商场同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下商场的进货方案;()2若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择哪种进货方案;()3若商场准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.26.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设每块巧克力的质量为x克,每块果冻的质量为y克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答【详解】设每块巧克力的质量为x克,每块果冻的质量为y克,由题意得3250x yx y=+=⎧⎨⎩,解得2030xy==⎧⎨⎩,即一块巧克力的质量是20g.故选A.【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键2.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.3.A解析:A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生x人,小学在校生y人,则30008%11%300010% x yx y+=⎧⎨+=⨯⎩故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程4.D解析:D【分析】分别根据行列式的定义计算可得结论.【详解】A、3113D-==3×3-(-1)×1=10,计算正确,不符合题意;B、D x=1×3-(-1)×7=10,计算正确,不符合题意;C、方程组的解:x=102011010y==,=2,计算正确,不符合题意.D、D y=3×7-1×1=20,计算错误,符合题意;故选:D.【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.B解析:B【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.6.C解析:C【分析】首先根据绝对值和偶次方的非负性求出x ,y 的值,然后代入2y x 中计算即可. 【详解】解:∵()229310-++++=x y x y ,∴290310x y x y -+=⎧⎨++=⎩,解得:41x y =-=⎧⎨⎩, 所以,22(4)16yx =-=, 故选:C . 【点睛】本题主要考查了非负数的性质,即偶次方和绝对值的性质,熟练掌握相关性质是解答此题的关键.7.A解析:A 【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】 ∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.8.A解析:A 【解析】分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.详解:根据题意可得:7385y x y x =-⎧⎨=+⎩. 故选:A.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.9.C解析:C 【解析】设甲每件x 元,乙每件y 元,丙每件z 元,根据题意可列方程组:①+②得: 4x +4y +4z =600等号两边同除以4,得: x +y +z =150所以购甲、乙、丙三种商品各一件共需150元钱. 故选C.10.D解析:D 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得:21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =. 故选:D . 【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.二、填空题11.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.12.14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解析:14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩,28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.13.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.15.34%【分析】由题意得出A 型、B 型、C 型三种型号产品利润率分别为20%,30%,45%,设A 型、B 型、C 型三种型号产品原来的成本为a ,A 产品原销量为x ,B 产品原销量为y ,C 产品原销量为z ,由题意解析:34%【分析】由题意得出A 型、B 型、C 型三种型号产品利润率分别为20%,30%,45%,设A 型、B 型、C 型三种型号产品原来的成本为a ,A 产品原销量为x ,B 产品原销量为y ,C 产品原销量为z ,由题意列出方程组,解得13x z y z⎧=⎪⎨⎪=⎩;第二个季度A 产品成本为(1+25%)a =54a ,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.16.﹣7【分析】由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即可得出关于b的一元一次方程,解之即可得出b值;在表三中设42为第x 行y列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a的一元一次方程,解之即可得出a值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.17.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x+4y=81∴499yx=-,∵x,y均为正整数,∴y是9的倍数,∴59xy=⎧⎨=⎩,118xy=⎧⎨=⎩,∴这列数的个数n=x+y为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.18.48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可. 【详解】设选信息技术的有x人,选解析:48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意得:()()()()()1858824a x x ya x y x x⎧++=+⎪⎨++--+=⎪⎩①②,②可变形为:(a-1)(x+8)=24+x-y③,①+③,得2a(x+8)=24+6x+4y,即a=12328x yx+++;①-③,得x+3y=20.∵x、y都是正整数,∴171xy=⎧⎨=⎩或142xy=⎧⎨=⎩或113xy=⎧⎨=⎩或84xy=⎧⎨=⎩或55xy=⎧⎨=⎩或26xy=⎧⎨=⎩当171xy=⎧⎨=⎩、142xy=⎧⎨=⎩、113xy=⎧⎨=⎩、84xy=⎧⎨=⎩、55xy=⎧⎨=⎩,a=12328x yx+++都不是整数,不合题意.当26xy=⎧⎨=⎩时,a=12328x yx+++=3.∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,由于每名学生都填了调査表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人).故答案为48【点睛】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.19.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 【点睛】 本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.20.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.三、解答题21.(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数. 22.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解;(3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.23.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,则有5x+7y+10z=346,y=2z .易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245z x -=. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14。
2020学苏教版初一数学第四章《一元一次方程》综合提优练习(含答案)
1第四章《一元一次方程》综合提优练习第四章《一元一次方程》综合提优练习一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+32.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3B .4C .5D .63.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( )A .7000=2(5000+x )B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =155.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2068.某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288B .296C .312D .3209.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯80丙杯丙杯 100A .5.4B .5.7C .7.2D .7.510.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:2911.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元B .4818元C .4817元D .4816元12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距两地相距 千米.千米.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置元.学校添置台电脑时,两种方案的费用相同.台电脑时,两种方案的费用相同. 16.A 、B 、C 三地依次在同一直线上,B ,C 两地相距560千米,甲、乙两车分别从B ,C 两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程. 18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = .20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .21.科学考察队的一辆越野车需要穿越650千米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点P ,越野车装满油从起点A 出发,到储油点P 时从车中取出部分油放进P 储油点,然后返回出发点A ,加满油后再开往P ,到P 储油点时取出储存的所有油放在车上,储油点时取出储存的所有油放在车上,再到达终点.再到达终点.用队长想出的方法,这辆越野车穿越这片沙漠的最大距离是片沙漠的最大距离是 千米.千米.22.已知a ,b 为定值,关于x 的方程1,无论k 为何值,它的解总是1,则a+b= . 三.解答题三.解答题23.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?元,那么这两种奖品分别购买了多少件? (2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?总花费最少?24.中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑.玄机奥妙谁参透?大意是说:牧羊人赶着一群羊去寻找草长得茂盛的地方放牧,有一个过路人牵着1只肥羊从后面跟了上来,他对牧羊人说你赶的这群羊大概有100只吧?牧羊人答道:如果这一群羊加上1倍,再加上原来羊群的一半,再加上原来羊群的一半,又加上原来这群羊的又加上原来这群羊的四分之一,连你牵着的这只肥羊也算进去,连你牵着的这只肥羊也算进去,才刚好满才刚好满100只.你知道牧羊人放牧的这群羊一共有多少只吗?共有多少只吗?25.在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如表所示的数据:出如表所示的数据:功率功率使用寿命使用寿命 价格价格 普通白炽灯普通白炽灯 100瓦(即0.1千瓦)千瓦) 2000小时小时 3元/盏 优质节能灯优质节能灯20瓦(即0.02千瓦)千瓦)4000小时小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.元. (注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)电费)如:若选用一盏普通白炽灯照明1000小时,那么它的费用为1000×0.1×0.5+3=53(元),请解决以下问题:请解决以下问题:(1)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的代数式分别表示用一盘白炽灯的费用y1(元)和一盏节能灯的费用y2(元):(2)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等?)在白炽灯的使用寿命内,照明多少小时时,使用这两种灯的费用相等? (3)如果计划照明4000小时,购买哪一种灯更省钱?请你通过计算说明理由.小时,购买哪一种灯更省钱?请你通过计算说明理由.26.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了一个鱼塘,经过一年多的精心养殖,经过一年多的精心养殖,今年今年10月份从鱼塘里捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10月份收入52000元,元,(1)今年10月份从鱼塘里捕捞草鱼和花鲢各多少千克?月份从鱼塘里捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12月份再次从鱼塘里捕捞.捕捞数量和销售价格上,草鱼数量比10月份减少了2a 千克,销售价格不变;花鲢数量比10月份减少了a%,销售价格比10月份减少了,该贫困户在10月份和12月份两次捕捞中共收入了94040元,真正达到了脱贫致富,求a 的值.的值.27.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.本词典. (1)每个书包和每本词典的价格各是多少元?)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?28.育才中学组织七年级师生去春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,则少租一辆,且余15个座位.个座位. (1)求参加春游的师生总人数;)求参加春游的师生总人数;(2)已知一辆45座客车的租金每天250元,一辆60座客车的租金每天300元,问单租哪种客车省钱?种客车省钱?(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?(只写出租车方案即可)可)一.选择题一.选择题1.书架上,第一层的数量是第二层书的数量x 的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是(本.依上述情形,所列关系式成立的是( )A .2x x+3B .2x (x+8)+3C .2x ﹣8x+3D .2x ﹣8(x+8)+3【解答】D【解析】由题意知,第一层书的数量为2x 本,则可得到方程2x ﹣8(x+8)+3.故选D .2.小明和小亮两人在长为50m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步的速度为5m/s ,小亮跑步的速度为4m/s ,则起跑后60s 内,两人相遇的次数为(次数为( ) A .3 B .4C .5D .6【解答】C【解析】设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:有:(V 甲+V 乙)t =2S ,则t ,则x =60,解得:x =5.4,∵x 是正整数,且只能取整,是正整数,且只能取整, ∴x =5. 故选C .3.小石家的脐橙成熟了!小石家的脐橙成熟了!今年甲脐橙园有脐橙今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从乙脐橙园运脐橙x 千克到甲脐橙园,则可列方程为(千克到甲脐橙园,则可列方程为( ) A .7000=2(5000+x ) B .7000﹣x =2×5000C .7000﹣x =2(5000+x )D .7000+x =2(5000﹣x )【解答】D【解析】设从乙脐橙园运脐橙x 千克到甲脐橙园,千克到甲脐橙园, 则7000+x =2(5000﹣x ). 故选D .4.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是(方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 【解答】B【解析】设这种服装每件的成本价是x 元,由题意得:元,由题意得: 0.8×(1+40%)x ﹣x =15 故选B .5.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x 天完成这项工程,则可以列的方程是(天完成这项工程,则可以列的方程是( )A .B .C .D .【解答】C【解析】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:为:.故选C .6.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为(零件,则根据题意可得的方程为( ) A .12x =62(23﹣x )B .3×12x =2×23(62﹣x )C .2×12x =3×23(62﹣x )D .23(62﹣x )=12x【解答】C【解析】设应分配x 人生产甲种零件,人生产甲种零件, 12x ×2=23(62﹣x )×3, 故选C .7.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是(则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .206【解答】D【解析】由题意,设T 字框内处于中间且靠上方的数为2n ﹣1, 则框内该数左边的数为2n ﹣3,右边的为2n+1,下面的数为2n ﹣1+10, ∴T 字框内四个数的和为:字框内四个数的和为:2n ﹣3+2n ﹣1+2n+1+2n ﹣1+10=8n+6. 故T 字框内四个数的和为:8n+6.A 、由题意,令框住的四个数的和为22,则有:,则有: 8n+6=22,解得n =2.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;B 、由题意,令框住的四个数的和为70,则有:,则有: 8n+6=70,解得n =8.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;C 、由题意,令框住的四个数的和为182,则有:,则有: 8n+6=182,解得n =22.符合题意..符合题意. 故本选项不符合题意;故本选项不符合题意;D 、由题意,令框住的四个数的和为206,则有:,则有: 8n+6=206,解得n =25.由于数2n ﹣1=49,排在数表的第5行的最右边,它不能处于T 字框内中间且靠上方的数,所以不符合题意.所以不符合题意.故框住的四个数的和不能等于206. 故本选项符合题意;故本选项符合题意; 故选D .8. 某超市在“元旦”活动期间,推出如下购物优惠方案:某超市在“元旦”活动期间,推出如下购物优惠方案: ①一次性购物在100元(不含100元)以内,不享受优惠;元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)元)以内,一律享受九折优惠;以内,一律享受九折优惠; ③一次性购物在350元(含350元)以上,一律享受八折优惠;元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款(则小敏至少需付款( )元)元 A .288 B .296 C .312 D .320【解答】C【解析】设第一次购物购买商品的价格为x 元,第二次购物购买商品的价格为y 元,元, 当0<x <100时,x =90; 当100≤x <350时,0.9x =90, 解得:x =100; ∵0.9y =270, ∴y =300.∴0.8(x+y )=312或320. 所以至少需要付312元.元. 故选C .9. 桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?(高度变为多少公分?( )底面积(平方公分)底面积(平方公分) 甲杯甲杯 60 乙杯乙杯 80 丙杯丙杯 100A .5.4B .5.7C .7.2D .7.5【解答】C【解析】设后来甲、乙、丙三杯内水的高度为3x 、4x 、5x , 根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x , 解得:x =2.4,则甲杯内水的高度变为3×2.4=7.2(公分). 故选C .10.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =(=( )A .5:3B .7:5C .23:14D .47:29【解答】D【解析】设灰色长方形的长上摆5x 个小正方形,宽上摆3x 个小正方形,个小正方形, 2(5x+3x )+4=148 x =95x =45,3x =27, AD =45+2=47, AB =27+2=29,.故选D .11.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约( ) A .4819元 B .4818元C .4817元D .4816元【解答】C【解析】设每年应还x 元,则根据题意可知:元,则根据题意可知:50000×(1+0.05)15=x ×(1+0.05)14+x ×(1+0.05)13+…+x . 用计算器得出:x =4817 故选C .12.某企业接到为地震灾区生产活动房的任务,某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,此企业拥有九个生产车间,此企业拥有九个生产车间,现在每个车间原现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人 B .10人C .12人D .14人【解答】C【解析】设每个车间原有成品a 件,每个车间每天生产b 件产品,根据检验速度相同得:件产品,根据检验速度相同得:,解得a =4b ;则A 组每名检验员每天检验的成品数为:2(a+2b )÷(2×8)=12b ÷16b .那么B 组检验员的人数为:5(a+5b )÷(b )÷5=45b b ÷5=12(人). 故选C . 二.填空题二.填空题13.某商品在进价的基础上加价80%再打八折销售,可获利润44元,则该商品的进价为元,则该商品的进价为 元.元. 【解答】100【解析】设这件商品的进价为x 元,元, x (1+80%)×0.8=x+44,解得,x=100,即这件商品的进价为100元,元,故答案为100.14.甲乙两车分别从A,B两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车在相遇后又行驶了2小时到达B地后休整了半小时,然后调头并保持原速与乙车同向行驶,千米.千米.两地相距经过一段时间后两车同时到达C地.则A,C两地相距【解答】360)千米,【解析】设乙车每小时行驶x千米,则甲车每小时行驶(x+20)千米,由题意得:3x=2(x+20),解得:x=40,则x+20=60,千米,即乙车每小时行驶40千米,则甲车每小时行驶60千米,∴A,B两地的距离为:3×60+3×40=300(千米),设两车相遇后经过y小时到达C地,地,由题意得:60(y﹣2.5)=40(y+3),解得:y=13.5,∴B,C两地的距离为:60(13.5﹣2.5)=660(千米),∴A,C两地的距离为:660﹣300=360(千米);故答案为360.15.某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置台电脑时,两种方案的费用相同.元.学校添置 台电脑时,两种方案的费用相同.【解答】3台电脑,【解析】设学校添置x台电脑,由题意,得7000x=6000x+3000,解得x=3,答:当学校添置3台电脑时,两种方案的费用相同;台电脑时,两种方案的费用相同;故答案为3.16.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C 地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A 地,则A ,B 两地相距两地相距 千米.千米. 【解答】760【解析】设乙车的平均速度是x 千米/时,则时,则4(x )=560.解得x =60即乙车的平均速度是60千米/时.时.设甲车从C 地到A 地需要t 小时,则乙车从C 地到A 地需要(t+7)小时,则)小时,则 80(1+10%)t =60(7+t ) 解得t =15.所以60(7+t )﹣560=760(千米)(千米) 故答案为760.17.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,若设前年的产值为x 万元,由题意可列方程万元,由题意可列方程 . 【解答】550【解析】设前年的产值是x 万元,则去年的产值是1.5x 万元,今年的产值是3x 万元,依题意有意有x+1.5x+3x =550.故答案为x+1.5x+3x =550.18.“十一”“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时,经过 小时能相遇.小时能相遇. 【解答】2【解析】设经过t 小时相遇,则小时相遇,则 20t =15t+10, 解方程得:t =2,所以两人经过两个小时后相遇.所以两人经过两个小时后相遇. 故答案为2.19.九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x 公里,应付给司机21元,则x = . 【解答】12【解析】因为21>7, 所以x >2.由题意知,7+1.4(x ﹣2)=21 解得x =12.故答案为12.20.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,正方形的边开始移动,甲点依顺时针方向环行,甲点依顺时针方向环行,甲点依顺时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的若乙的速度是甲的速度的3倍,则它们第2018次相遇在边次相遇在边 .【解答】DC【解析】正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:份,由题意知:①第一次相遇甲乙行的路程和为8,甲行的路程为82,乙行的路程为8﹣2=6,在AD 边相遇;边相遇;②第二次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在DC 边相遇;边相遇;③第三次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,在CB 边相遇;边相遇;④第四次相遇甲乙行的路程和为16,甲行的路程为164,乙行的路程为16﹣4=12,。
初一数学提优训练101120
初一数学提优训练(101120)姓名一、选择题1. 如果方程12-=+x a x 的解是4-=x ,那么a 的值等于( ) A .3 .5 C2.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( ) A 、6折 B 、7折 C 、8折 D 、9折3.为了解决药品价格过高的问题,决定大幅度降低药品的价格,其中将原价a 元的某种常用药降价40﹪,则降价后此药价格为( )A 、4.0a 元 B 、6.0a元 C 、 60﹪a 元 D 、 40﹪a 元 4. 有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式: ①40m +10=43m -1;②1014043n n ++=;③1014043n n --=;④40m +10=43m +1.其中符合题意的是…………………………………………………………………………A 、①、②B 、②、④C 、①、③D 、③、④5.母亲26岁结婚.第二年生了儿子,若干年后,母亲的年龄是儿子的3倍.此时母亲的年龄为( )A 、39岁B 、42岁C 、45岁D 、48岁 6.一个数的31与2的差等于这个数的一半.这个数是( ) A 、12 B 、–12 C 、18 D 、–18、B 两地相距240千米,火车按原来的速度行驶需要4时,火车提速后,速度比原来加快30%,那么提速后只需要( ) A 、1033时 B 、1313时 C 、1034时 D 、1314时 8.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为( ) A 、180元 B 、元 C 、180元或元 D 、180元或200元 二、填空题 9. 单项式1265215+n my x y x 与是同类项,则n m -=10.写出一个满足下列条件的一元一次方程:①某个未知数的系数是-2;②方程的解是5;这样的方程是11.如图,宽为50 cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 12. 欢欢的生日在8月份.在今年的8月份日历上,欢欢生日那天的上、下、左、右4个日期的和为76,那么欢欢的生日是该月的 号.13.某工厂预计今年比去年增产15﹪,达到年产量60万吨,设去年的年产量为x 万吨,则可列方程 ;14.甲、乙两辆汽车从相隔400米的两站同时同向出发,经过2小时后,甲车追上乙车,若甲车的速度是a 千米/时,则乙车的速度是 ;15.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加了16.千米,只需5小时即可到达.甲乙两地的路程是 ; 17.规定a b c d的计算方法是:a cb d=ad -bc .若11+1 2x x - =2,则x 的值是 .18.按如图样式在日历上用一个斜框框出三个数,若三个数和为42,则这三天中的第一天是这个月的 号. 三、解答题 19. 解方程(1)25364x x --=-1 (2)31(1)22x x ⎡⎤--⎢⎥⎣⎦=2(x -1)20.解关于x 的方程:b (a +x )-a =(2b +1)x +ab (a ≠0).日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30(第18题图)21.某小商店购进数学用具50件,每件成本为元,现以每件1元的价格销售,问这家商店至少销售多少件数学用具,销售收入才能超过成本?22.爱因斯坦说过,提出一个问题比解决一个问题更重要.请你根据方程2x×3+3x=400设计一道应用题,要求问题情景内容与我们的日常生活、学习有关,并给出解答过程.23.小明的爸爸三年前为小明存了一份 3000元的教育储蓄.今年到期时取出,得本利和为3243元.请你帮小明算一算这种储蓄的年利率.24. 某种商品因换季准备打折出售,如按定价的五折出售,将赔20元;如按定价的八折出售,将赚40元,求这种商品的定价及成本。
苏教版初一数学上册周末提优练习(含解析)
七年级数学周末提优练习1.小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是〔〕A. 0B. - 10C. -25D. 502 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合〔〕3 .同学们都知道,15 - 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1=.〔2〕找出所有符合条件的整数x,使得k+5l+h -2l=7成立,这样的整数是.〔3〕对于任何有理数%, Lr-31+k - 61的最小值是.〔4〕对于任何有理数x, lx- ll+Lt-21+k+ll的最小值是,此时x的值是.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞标示澳门而积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,那么这个和为.5 .符号“G 〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (i) =2, G (工)=4, G (1) =6, G (工)=8,… 2 3 4 5利用以上规律计算:G (2021) -G (―1―) -2021= 2021------------ 6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单 位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳 第2021次落下时,落点处离原点的距离是 个单位.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离:即lxl=lx -01,也就是说,卜1表示在数轴上数x 与数0对应点之间的距离:这个结论可以推广为M -.5表示在数轴上xi, 也对应点之间的距离:例1.kl=2,求x 的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x 的值为-2和2.例2.k-11=2,求x 的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x 的值为3和-1.仿照阅读材料的解法,求以下各式中x 的值.(1) Lr-2I=3(2) lx+ll=4.8 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离;即Ld=k-0l ;这个结论 可以推广为M-X2I 表示在数轴上数也对应点之间的距离.绝对值的几何意义在解题 中有着广泛的应用:nMuMmMx “9luNullntt 35:31>:>|11 M;aM:“r44 UIN 二・eMA«■二他例1:解方程3=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的x对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图(25-1)可以看出x=3:同理,假设x对应点在-1的左边,可得x=-2.所以原方程的解是x=3或工・=-2.例3:解不等式在数轴上找出k- 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25-2〕, 在-2的左边或在4的右边的x值就满足k - 11>3,所以k - 1>3的解为xV - 2或x>4. 参考阅读材料,解答以下问题:〔1〕方程卜+31=5的解为;〔2〕方程k - 2021l+Lx+ll=2021 的解为:〔3〕假设Lt+4l+k-3l2U,求x的取值范围.图1 图29 .根据给出的数轴及条件,解答下面的问题:-6 -5 -4「-2 -1 0-12~3 4 5〔1〕点A,B,.表示的数分别为1,一旦,-3观察数轴,与点A的距离为3的点2表示的数是,B, C两点之间的距离为:〔2〕假设将数轴折叠,使得A点与.点重合,那么与3点重合的点表示的数是;假设此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M 点与N点也恰好重合,那么M, N两点表示的数分别是:时, N:〔3〕假设数轴上P,.两点间的距离为小〔P在.左侧〕,表示数〃的点到尸,.两点的距离相等,那么将数轴折叠,使得尸点与.点重合时,P,.两点表示的数分别为:P, Q〔用含〃?,n的式子表示这两个数〕.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:加?〕依先后次序记录如下:+9, -3, -5, +4, -8, +6, -3, -6, -4, + 10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?在一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?11 .从一批机器零件毛坯中取出10件,称的质量如下〔单位:/〕:205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这10 件毛坯的总质量.x 7 x>012 .阅读以下材料:lxl=・0, x=0 ,即当x>0时,-x, x<0 用这个结论可以解决下面问题:13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售;方式②:一次购物满200元送60元现金.试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置:方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置:方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅计算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案. 〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式①方式② 根据上表计算的结果,你能总结出商品的购置规律吗?14 .:CaXb 〕 2=a 2Xb 2. 〔aXb 〕 3=a 3Xb\ 〔aXb 〕 4=t/4xM,〔l 〕用特例验证上述等式是否成立,〔取“=1, /7=-2〕 〔2〕通过上述验证,猜一猜:〔“X 〃〕,〔M,=,归纳得出:〔〃Xb 〕 〃=〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔“X 〃〕〞 应用上述等式计算:〔-L 〕 2.19义42叫15.商人小周于上周日买进某农产品10000 每斤2.4元,进入批发市场后共占5个摊位, 〔1〕己知如6是有理数,前嘀的值,〔2〕.、〃是有理数,当而cHO 时,〔3〕“、b 、c 是有理数,"Hc=0,求育土亩的值・…求皆嘀畤的值• 付款金额〔元〕628638 648 768 778 788-^=^=1:当 xVO 时,每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期—四五与前一天的价格涨跌情况〔元〕+0.3-0.1+0.25+0.2-0.5当天的交易量〔斤〕25002000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?QQ一、^月 J ~ O 1 5^ 17 .阅读下面材料:点A、8在数轴上分别表示有理数〃、b, A、8两点之间的距离表示为L48I.当A、8两点中有一点在原点时,不妨设点儿在原点,如图1所示,\AB\ = \OB\=\b\ =1“ - 〃1:当A、8两点都不在原点时.〔1〕如图 2 所示,点A、5 都在原点右边,\AB\=\OB\ - \OA\=\b\ - la\=b - a=\a - bh 〔2〕如图 3 所示,点A、3 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= h - Z?l;〔3〕如图 4 所示,点A、8在原点两边,\AB\=\OBMOA\=\b\+kA=a+〔 -//〕=\a - b\. 综上所述,数轴上A、B两点之间的距离表示为= 根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是: 〔2〕数轴上表示x和-3的两点A、B之间的距离是,如果IABI=2,那么X为.〔3〕当代数式k+11+lx- 21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为,相应的x的取值范围是.18 .数学实验室:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为A3,在数轴上4、8两点之间的距离利用数形结合思想答复以下问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和-4的两点之间的距离是.②数轴上表示x和-3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③假设x表示一个有理数,那么lx - ll+k+41的最小值=.④假设x表示一个有理数,且lx+ll+k-3l=4,那么满足条件的所有整数x的是.⑤假设x表示一个有理数,当x为,式子k+21+k - 31+卜-41有最小值为.4 . 4 一答案与解析1 .小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是( )A. 0B. - 10C. -25D. 50【分析】取向右为正方向,那么向左为负,利用有理数的加减法可得结果.【解答】解:由题意得,1 - 2+3 - 4+5 - 6+…49 - 50=25X ( - 1) = - 25,应选:C.【点评】此题主要考查了正负数,数轴和有理数的加减法,理解正负数的意义是解答此题的关键.2 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合( )【分析】据圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么根据规律即可解答.【解答】解:圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么与圆周上的0重合的数是-2, -6, - 10-,即-(-2+4/?),同理与3重合的数是:-(-1+4/?),与2重合的数是-4%与1重合的数是-(1+4〞),其中〃是正整数.而- 2021= - ( - 1+4X505),・•・数轴上的数-2021将与圆周上的数字3重合.应选:O.【点评】此题综合考查了数轴、循环的有关知识,关键是把数和点对应起来,也就是把22“数〞和“形〞结合起来.3.同学们都知道,15- 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1= 7 ,〔2〕找出所有符合条件的整数必使得k+5l+h -2l=7成立,这样的整数是-5, -4,- 3. - 2, - 1, 0, 1, 2 ,〔3〕对于任何有理数%, Lr-31+k - 61的最小值是3 .〔4〕对于任何有理数x, LLll+Lr-21+k+ll的最小值是3 ,此时x的值是1 .【分析】〔1〕直接去括号,再根据去绝对值的方法去绝对值就可以了.〔2〕要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算, 最后确定x 的值.〔3〕根据〔2〕方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值, 最后讨论得出最小值.〔4〕要使k- 21+Lr+ll的值最小,x的值只要取-1到2之间〔包括-1、2〕的任意一个数,要使Lr- II的值最小,x应取1,显然当x=l时能同时满足要求,把x=l代入原式计算即可得到最小值.【解答】解:〔1〕原式=15+21=7,故答案为:7:〔2〕令x+5=0 或x - 2=0 时,那么x=-5 或x=2当xV -5时,...-〔x+5〕 - 〔x-2〕 =7,-x - 5 - x+2=7,x=5〔范围内不成立〕;当-5WxW2 时,-•.〔A+5〕-〔A - 2〕 =7,x+5 - x+2=7,7=7,.*.x= - 5, - 4» - 3» - 2, - 1, 0, 1, 2:二(A+5) + (x-2) =7,2Y =4,x=2 (范围内不成立);,综上所述,符合条件的整数x 有:-5, -4, -3, -2, - 1, 0, 1, 2: 故答案为:-5, -4, -3, -2, - 1, 0, 1, 2(3)当 xV3 时,k-3l+h -6l=9-2x>3,当 3WxW6 时,Lr-3l+k-6l=3, 当 x>6 时,k-3l+k-6l=2x-9>3,,k-3l+Lr-6l 的最小值是3,故答案为:3:(4)当 7WxW2 时,Lx -21+lx+ll 的值最小为 3,当尸1时,k- 11的值最小为0,,当 x=l 时,k- ll+k-21+Lr+ll 的最小值是 3, 故答案为:3, 1.【点评】此题考查了绝对值,两点间的距离,理解绝对值的几何意义是解题的关犍.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简 史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞 标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每 条对角线10个数之和均相等,那么这个和为505.【分析】根据得:百子回归图是由1, 2, 3…,100无重复排列而成,先计算总和: 又由于一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和=10. 【解答】解:1〜100的总和为:(1+100)乂 100=5050,»MI«〞M,» ■AilMavsieHM 〞2一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050・10=505,故答案为:505.【点评】此题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1 开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.5 .符号“G〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (工)=2, G (工)=4, G (1)=6, G (1)=8, •••2 3 4 5利用以上规律计算:G (2021) -G(」一)- 2021= - 2021 .2021 ----------------【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前而括号中的数的2倍减1, (2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G (2021) -G(―^) - 2021=2021X2- 1 - (2021- 1) X2-2021= 2021-2021.【点评】找到正确的规律是解答此题的关键.6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2021次落下时,落点处离原点的距离是一1010个单位.【分析】根据题意可以直接写出前几次落点在数轴上对应的数据,从而可以发现变化的规律,从而可以解答此题.【解答】解:设向右为正,向左为负,所以1+ (-2) +3 (-4) +-+2021+ (-2021) +2021=[1+(-2) ]+[3(-4) ]+ -+[2021+ (-2021) ]+2021=-1009+2021=1010那么第2021次落点在数轴上对应的数是1010,故答案为:1010.【点评】此题考查数字的变化类、数轴,解答此题的关键是明确题意,发现数字的变化规律.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即lxl=Lr -01,也就是说,卜1表示在数轴上数x与数0对应点之间的距离:这个结论可以推广为M--切表示在数轴上XI,X2对应点之间的距离:例1.Ld=2,求x的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x的值为-2和2.例2.k-11=2,求x的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x的值为3和-1.仿照阅读材料的解法,求以下各式中x的值.(1)1A--21=3(2)I A+1I=4.【分析】〔1〕由例2可知在数轴上与2的距离为3点的对应数为5和-1;〔2〕由例2可知在数轴上与-1的距离为4点的对应数为3和-5.【解答】解:〔1〕在数轴上与2的距离为3点的对应数为5和-1,即x的值为5和一1.〔2〕在数轴上与-1的距离为4点的对应数为3和-5,即x的值为3和-5【点评】此题考查了在数轴上表示点与点的距离,同时考查了学生的阅读理解水平.8.阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即Ld=k-OI;这个结论可以推广为M表示在数轴上数xi,电对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程hl=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的%对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图〔25-1〕可以看出x=3;同理,假设x对应点在- 1的左边,可得x=-2.所以原方程的解是x=3或x=-2.例3:解不等式lx-ll>3.在数轴上找出k - 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25 - 2〕, 22在-2的左边或在4的右边的x值就满足Lr - 11>3,所以k - 11>3的解为xV - 2或x>4.参考阅读材料,解答以下问题:〔1〕方程lx+31 = 5的解为x=2或x= - 8 ;〔2〕方程Lr - 2021l+h+ll=2021 的解为x=-2 或x=2O18 ;〔3〕假设3+4l+k-3l2U,求〉的取值范围.图L 图2【分析】〔1〕根据例1的方法,求出方程的解即可;〔2〕根据例2的方法,求出方程的解即可:〔3〕根据例3的方法,求出x的范围即可.【解答】解:〔1〕方程Lr+3I=5的解为x=2或x= - 8:故答案为:.*=2或x=8:〔2〕方程k-2021l+lx+ll=2021 的解为%= -2 或x=2021:故答案为:x= -2或尸2021:〔3〕・.・k+4l+k - 31表示的几何意义是在数轴上分别与-4和3的点的距离之和,而-4与3之间的距离为7,当x在-4和3时之间,不存在x,使k+41+k-31>11成立,当x在3的右边时,如下图,易知当x>5时,满足lx+4l+k-3l,ll,当x在-4的左边时,如下图,易知当xW-6时,满足k+41+k-31211,所以x的取值范围是或xW -6._____ z------ ----------- n ---- □——------- ►-6 -4 0 3 〕【点评】此题考查了含绝对值的一元一次方程,弄清题意是解此题的关键.9.根据给出的数轴及条件,解答下面的问题:।। 1 q % ।।। 4 ।।।।〕-6 -5 -4 -3 -2 -1 0~12~~3~~4 5〔1〕点A, B, C表示的数分别为1,-互,-3观察数轴,与点A的距离为3的点2表示的数是一4或-2 , B,.两点之间的距离为_1_:2〔2〕假设将数轴折卷,使得A点与C点重合,那么与5点重合的点表示的数是_1_:假设2此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M点与N点也恰好重合,那么M, N两点表示的数分别是:M - lOOS.S ?N 1006.5〔3〕假设数轴上P,.两点间的距离为小〔尸在.左侧〕,表示数〃的点到P,.两点的距离相等,那么将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:尸〃-典,Q〃但〔用含帆,〃的式子表示这两个数〕.一二【分析】〔1〕分点在A的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可:〔2〕 A点与.点重合,得出对称点位-1,然后根据两点之间的距离列式计算即可得解: 〔3〕根据〔2〕的计算方法,然后分别列式计算即可得解.【解答】解:〔1〕点A的距离为3的点表示的数是1+3=4或1-3=-2:B, C两点之间的距离为一$-〔-3〕 =1:2 2〔2〕 8点重合的点表示的数是:〔-$〕]=!:2 2M= - 1 - - 1OO8.5, 〃= - 1006.5:2 2〔3〕尸=〃-四,.=〃目.2 2故答案为:4或-2,工:工,- 1008.5, 1006.5;史,〃目.2 2 2 2【点评】此题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:依先后次序记录如卜:+9, -3, - 5, +4» - 8, +6, -3, - 6, - 4, +10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?住一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?【分析】〔1〕求出记录数据之和,即可作出判断:〔2〕求出各数据绝对值之和,乘以3.5即可得到结果.【解答】解:〔1〕根据题意得:+9-3-5+4-8+6-3-6-4+10=0,那么将最后一名乘客送到目的地,出租车在一中:〔2〕根据题意得:〔9+3+5+4+8+6+3+6+4+10〕 X3.5=58X3.5 = 203 〔元〕,那么司机一个下午的营业额是203元.【点评】此题考查了正数与负数,弄清题中的数据是解此题的关键.11 .从一批机器零件毛坯中取出10件,称的质量如下(单位:#):205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这丘件毛坯的 总质量.【分析】(1)直接相加求出即可;(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.再计算即可.【解答】解:(1) 205+200+185+206+214+195+192+218+187+215=2021 (g)(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.5+0+ ( - 15) +6+14+ ( -5) + ( -8) +18+ ( - 13) +15 =5- 15+6+14-5-8+18- 13+15 = 5+6+14+18+15- 15-5-8-13 = 58-41=17(Q,200X10+17=2021 (g).答:这10件毛坯的总质量是2021g.【点评】此题主要考查有理数的混合运算,掌握混合运算的顺序是解题的关键.Xj x>012 .阅读以下材料:lxl= 0, x=0 ,即当x>0时,击了二「当XV0时,居二一1. 』X <01x1 X图 r用这个结论可以解决下面问题:(2).、〃是有理数,当而cHO 时,(3)“、b 、c 是有理数,"Hc=0,【分析】(1)分3种情况讨论即可求解:(2)分4种情况讨论即可求解;(3)根据得到"+c=-b, 〃+b=-c,八 氏c 两正一负,进一步计算即可求解.(1) 己知如〃是有理数,留神W0时,求前嘀的值,…求皆啮嘀的值.【解答】解:〔I 〕小〃是有理数,当帅W0时,〔2〕己知4, b, C 是有理数,当"cWO 时,①aVO, b<0, cVO, -Ar+ + R = - 1 - 1 - 1= - 3: 周 |bT |c| ②a>0, b>3 c>0,书-*^^-=1 + 1+1=3:|a| Ib| |c|故-f3r + J I + |G =± ]或±3;周 411cl(3) 〞,b, c 是有理数,a+b+c=O, "cVO,贝lj Hc= - a, a+c= - b, a+b= - c, a. b 、c 两正一负,a _bc _ i i i _ iM --N -¥T故答案为:±2或0; ±1或±3; - 1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法那么是解此题的关键.13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售; 方式②:一次购物满200元送60元现金. 试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置: 方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置: 方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅冲算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案.①aVO, b<0. ②a>0, b>0. 俞喻= 俞喻=-1 - 1= -2:1 + 1=2:=-1 - 1+1= - 1: =-1+1 + 1 = 1.③a 、b 异号,Ic|Icl c ③a 、b 、c 两负一正,④“、b 、c 两正一负,〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式① 方式②根据上表计算的结果,你能总结出商品的购置规律吗?【分析】〔1〕根据各种方案列式计算后再根据运算结果选择方案:〔2〕方式①直接乘以0.75,方式②有几个200就减掉几个60,【解答】解:〔1〕付款:方案一:〔628+788〕 X0.75=1062元; 方案二:628X0.75+788 - 3X60=471+608=1079 元; 方案三:628 - 3 X 60+788 X 0.75=448+591 = 1039 元; 方案四:628 - 3X60+788 - 3X60=448+608=1056 元. 所以选择方案三付款省钱.〔2〕正确填写下表:规律:商品标价接近600元的按促销方式②购置,标价接近800元的按促销方式①购买.或标价大于600元且小于720元按促销方式②购置,标价大于720元且小于800元 按促销方式①购置.〔其它表述正确,或能将两种购物方式抽象概括成一次函数并能正确解答的均可给分〕 【点评】此题信息量比拟大,读懂题意,仔细审题,不难求出答案.14 .:(aXb) 2=a 2Xh 2. CuXb) 3=a^Xb\ (aX 〃)4=a 4X//,〔1〕用特例验证上述等式是否成立,〔取.=1, b=-2〕〔2〕通过上述验证,猜一猜:〔aXb 〕 * J 00//00 ,归纳得出:〔</XZ >〕/r = g n h n : 〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔aXb 〕 〃付款金额〔元〕628638 648 768 778 788分别计算后填入即可.付款金额 628 638 648 768 778 788〔元〕 商品标价 〔元〕 方式①方式② 471 478.5 486 576 583.5 591448 458 468 588 598 608应用上述等式计算:〔-[〕20,9X 42°,9.【分析】〔1〕分别令4=1,a=-2 代入〔〞X〃〕2=〃2乂//、〔"X〃〕3=t?X//、〔</ X /?〕4 = ,『X〃4进行计算即可;〔2〕根据〔1〕中的各数的值找出规律即可解答:〔3〕根据〔2〕中的规律计算出所求代数式的值即可.【解答】解:〔1〕令“=1, b= -2,那么:[IX 〔 -2〕 ]2=12X 〔 -2〕 2=4, [IX 〔 -2〕 ]3=13X 〔 -2〕3= -8, [IX 〔 -2〕 ]4 = 14X 〔 -2〕4=16,故〔“X.〕"=/〃:〔2〕由⑴ 可猜测:〔aXb〕100=«,00b100,归纳得出:〔“X〃〕"=1%〞:〔3〕由〔2〕中的规律可知,〔-±〕2021X42021 4=[〔-i〕 X4]20214=〔7〕2021=-1.【点评】此题考查数字的变化规律,从简单到复杂,从特殊到一般,探寻规律得出答案即可.15 .商人小周于上周日买进某农产品10000斤,每斤2.4元,进入批发市场后共占5个摊位, 每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期四五与前一天的价格涨跌情况〔元〕+0.3 -0.1+0.25+0.2-0.5当天的交易量〔斤〕2500 2000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.【分析】〔1〕根据价格的涨跌情况即可作出判断:〔2〕计算出每天的价格即可作出判断:〔3〕根据售价-进价-摊位费用=收益,即可进行计算.【解答】解:〔1〕 2.7+0.3-0.1+0.25+0.2=3.35 元:〔2〕星期一的价格是:2.7+03 = 3.0 7C;星期二的价格是:3.0-0.1 =2.9元:星期三的价格是:2.9+0.25=3.15元:星期四是:3.15+0.2=3.35元:星期五是:3.35 - 0.5 = 2.85元.因而本周内该农产品的最高价格为每斤3.35元,最低价格为每斤2.85元:〔3〕列式:〔2500X3 - 5X20〕 + 〔2000X2.9-4X20〕 + 〔3OOOX3.15-3X2O〕 + 〔1500 X3.35 - 2X20〕+ 〔1000X2.85 -20〕 - 10000X2.4 =7400+5720+9390+4985+2830 - 24000 = 30325 - 24000 =6325 〔元〕.答:小周在本周的买卖中共赚了6325元钱.【点评】解题关键是理解''正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?【分析】〔1〕根据左减右加的计算规律,计算得出答案即可;〔2〕分〃为奇数和偶数得出数轴上的对应点即可;〔3〕利用得出的规律列方程求得答案即可.【解答】解:〔1〕第5次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4=6:第6次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4 - 3 = 3:〔2〕当〃为偶数时,第〃次跳动后落在数轴上的点对应的数是反:2当〃为奇数时,第,,次跳动后落在数轴上的点对应的数是旦工4=纪工;2 2〔3〕由21=100, 2解得:〃 = 200:由过工=1002解得:〃=193.答:电子跳蚤Q经过193次或200次跳动后落在数轴上的点对应数100.【点评】此题考查了数轴及图形的变化规律,要注意数轴上点的移动规律是“左减右加〞.把数和点对应起来,也就是把“数〞和“形〞结合起来,二者互相补充,相辅相成, 把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.阅读下面材料:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为L4BI.当A、8两点中有一点在原点时,不妨设点A在原点,如图1所示,\AB\ = \OB\=\b\ = 当A、B两点都不在原点时.〔1〕如图 2 所示,点A、8 都在原点右边,\AB\=\OB\ - \OA\=\b\ - \a\=b - a=\a - bh 〔2〕如图 3 所示,点A、B 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= \ci - bl:〔3〕如图 4 所示,点A、5 在原点两边,lAB\=\OB\+\OA\=lb\+\al=a+〔- h〕 =\a - b\.综上所述,数轴上A、8两点之间的距离表示为= 乩根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是3 ,数轴上表示1和-3的两点之间的距离是4 :〔2〕数轴上表示x和-3的两点A、8之间的距离是k+31 ,如果A8I=2,那么x为-1 或-5 .〔3〕当代数式k+ll+k-21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为3.相应的x的取值范闱是..0网」、.勾b。
七年级初一数学下学期第六章 实数单元提优专项训练试题
七年级初一数学下学期第六章 实数单元提优专项训练试题一、选择题1.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( ) A .4040 B .4038 C .0 D .40422.计算:122019(1)(1)(1)-+-++-的值是( ) A .1- B .1 C .2019 D .2019-3.在下列各数322 2,3,8, , ,36,0.10100100013π--⋯⋯ (两个1之间,依次增加1个0),其中无理数有( )A .6个B .5个C .4个D .3个4.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10 5.下列各式中,正确的是( )A .±916=±34B .±916=34;C .±916=±38D .916=±34 6.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12B .22+C .221D .221 7.下列各组数的大小比较正确的是( )A 56B 3πC .5.329D . 3.1->﹣3.1 8.33x y ,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定9.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个10.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3 B .3 C .﹣33 D .33二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 15.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.18.若x <0323x x ____________.19.若x 、y 分别是811-2x -y 的值为________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.观察下列解题过程:计算231001555...5+++++解:设231001555...5S =+++++①则23410155555....5S =+++++②由-②①得101451S =-101514S -∴= 即10123100511555 (54)-+++++= 用学到的方法计算:2320191222...2+++++24.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,080b +-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.阅读下面的文字,解答问题:2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12<2212的小数部分.请解答下列问题:(121_______,小数部分是_________;(2)7的小数部分为15a ,b ,求7a b +(3)已知:100110x y +=+,其中x 是整数,且01y <<,求11024x y +-的平方根。
苏科版2012年七年级数学暑期强化提优专题(6)
ADEB CABCDEABCD2012年七年级暑期强化提优专题(6)图形的全等一、选择题1.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有乙D .只有丙 2.能判定△ABC ≌△A’B’C’的条件是( ) A .AB =A’B’,AC =A’C’,∠C =∠C’ B .AB =A’B’,∠A =∠A’,BC =B’C’ C .AC =A’C’,∠A =∠A’,BC =B’C’ D .AC =A’C’,∠C =∠C’,BC =B’C’ 3.如图,AB =AD ,BC =CD ,则全等三角形共有( ) A .1对 B .2对 C .3对 D .4对4.如图,AD=BC ,AC=BD ,则下列结论中,不正确的是( ) A .OA=OB B .CO=DO C .∠C =∠D D .∠AOB=∠C +∠D 5.如图,Rt ABC △沿直角边BC 所在的直线向右平移得到DEF △,下列结论中错误的是( ) A .ABC DEF △≌△ B .90DEF ∠=C .AC DF =D .EC CF =二、填空题6.如图,AB ∥FC ,DE =EF ,AB =15,CF =8,则BD = . 7.△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC 长 .第6题 第7题 第8题 第9题 第10题8.如图,AB=AD ,∠BAD=∠CAE ,添加一个条件使△ABC ≌△ADE,则需添加的条件是____________. B C DE AA D BO C 第3题 第4题第5题 A D B C E FAD EBCF AB CDEFEDCB(2)若以“ASA”为依据,缺条件________________;(3)若以“AAS”为依据,缺条件_____________________. 10.如图,如果AD 是BC 边上的高,又是∠BAC 的平分线,那么△ABD ≌△ACD,其根据是_________;如果AD 是BC 边上的高,且AB =AC,那么△ABD ≌△ACD,其根据是_____ ;如果AD 是BC 边上的高,且是BC 边上的中线,那么△ABD ≌△ACD,其根据是_____ .11.如图,六根木条钉成一个六边形框架ABCDEF ,要使框架稳固且不活动,至少还需要添 根木条.三、解答题12. 如图,OP 是MON ∠的平分线,请你利用该图形,用三角板和圆规画一对以OP 所在直线为对称轴的全等三角形,并标注字母. 你画的是△ ≌△ ,依据是 .13.已知B C =∠∠,AB=AC,那么 AD=AE 吗?并说明理由.14.如图,已知AB DC =,AC DB =,图中哪2个角相等?并说明理由.15. 如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED=.那么AC 与CD 相等吗?并说明理由.CA B C D EA CE D BN P M OA DCE BE16.如图1、图2,AC ⊥BC ,AD ⊥DE ,BE ⊥DE ,垂足分别为C 、D 、E ,AC =BC . (1)在图1中,若AD =2,BE =5,则DE 的长为多少?请说明理由.(2)在图2中,若AD =5,BE =2,则DE17. 如图,在四边形ABCD 中,AB AD =,BC DC =,E 为线段AC 上的一动点(不与A 重合),在E 移动过程中BE 和DE 是否相等?若相等,请写出证明过程;若不相等,请说明理由.18. CD 经过B C A ∠顶点C 的一条直线,C A C B =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,①如图1,若90BCA ∠= ,90α∠=,则BE CF ;②如图2,若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想: .CB A BC E F DD A B CEF A DF C E B(图1) (图2) (图3) 图1 图219. 如图,△ABC和△ADC都是每边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由.(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.(4)若点E、F在射线BA、射线AD上继续运动下去,(1)小题中的结论还成立吗?(直接写出结论,不必说明理由)AEB C DF参考答案一、选择题二、填空题 6. 7 7.45cm8.答案不唯一,如B D =∠∠9.BC =DC ,A E =∠∠,ACB ECD =∠∠ 10.ASA ,HL ,SAS 11. 2 12.略13.由ASA 得△ABE ≌△ACD ,再得AD =AE 14.由SSS 得△ABC ≌△DCB ,再得角等15.由AB ED ∥得B E =∠∠,再由SAS 得△ABC ≌△ECD ,再得AC =CD 16. (1)先证△ACD ≌△CBE ,因此DE =CD +CE =BE +AD =7 (2)317. 在E 移动过程中BE 和DE 相等. 先证△ACD ≌△ACB ,再证△ADE ≌△ABE 或△CDE ≌△CBE 。
初一数学提优训练100910
初一数学提优训练(100910)班级 姓名一、填空题(每空1分,共25分)1. 若把95分的成绩记作+15分,那么62分的成绩记作 ,这样记分时,某学生的成绩记作+5分,他的实际成绩是 。
2. 到原点的距离等于5个单位长度的点表示的数是 ,到原点的距离不大于3个单位长度的整数点表示的数是 .3. 在东西走向的公路上,乙在甲的东边3km 处,丙距乙5km ,则丙在甲的 处。
4. 把下列各数填在相应的大括号里。
73-, -1, 0, +6, -, 54, 10%, ……, 4 正数集合:{ …} 负数集合:{ …} 自然数集合:{ …} 分数集合:{ …} 非负整数集合:{ …} 非正数集合:{ …}5. 在数轴上点A 表示-7,点B 、C 表示的数的绝对值相等,符号相反,且点B 与点A 之间的距离是2,则点C 表示的数是___________.6. 用“<”“=”或“>”号填空+|-5|_____-|-4| -(+5) _____-[-|-5|]7. 一个数的绝对值是6,那么这个数是 .8.在32-的绝对值与23-的相反数之间的整数是 . 9.绝对值等于本身的数是 .相反数等于本身的数是 ,绝对值最小的负整数是 , 绝对值最小的有理数是 .10. 若a+1与-5互为相反数,则a=_________.11.若|a |=4,|b |=2,且a <b ,则a+b= _________.12.绝对值不大于的所有整数的和为_________.13.观察1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52……,则猜想:1+3+5+…+(2n+1)= .(n 为正整数)14.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负): (+4,-8),(-5,6),(-3,2),(1,-7),则车上还有________人.15.下面四个三角形内的数有共同的规律,请找出这个规律,确定A 为_________二、选择题(每题3分,共18分)16. 课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义。
初一数学提优训练题
初一数学提优训练题一、高斯算法及其应用1.1+2+3+……+8+9+10=2.1+2+3+……51+52+……+99+100=3.2+4+6+……50+52+……+98+100=4.5+10+15+……+50+55+……+95+100=二、有趣的数字问题1、把你的生日写下来,如1956、4、3,排成一个数195643,再将它倒着写一遍如346591,然后用大的减小的,346591-195643=150948,再将它各位数字相加,如1+5+0+9+4+8=27,若结果是两位数,再加起来,如2+7=9。
最终会得到什么呢?2、有趣的身份证号码某人的身份证号码为320621************,则此人出生于_______年思考:(1)观察11月的日历,每一行上相邻的3个数之间有什么关系?(2)如果设其中的一个数为х,那么其他两个数怎样表示?你是怎样设未知数的?(3)根据你所设的未知数x,列出方程,求出这三天分别是几号。
(3数之和等于60)(4)如果小明说出的和是75,小明能求出这3天分别是几号吗?为什么?(5)如果小明说出的和是21,小明能求出这3天分别是几号吗?为什么?4、车轮为什么做成圆的?5、(2010.衡阳)如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由10个基础图形组成……则第5个图案由_______个基础图形组成.3.小凡在计算时发现,11×11=121,111×111=12321,1111×1111=1234321,他从中发现了一个规律?你能根据他所发现的规律很快地写出111111111×111111111=_ __.2.小怡家的冰箱冷藏室温度是3℃,冷冻室的温度是-1℃,则冷藏室温度比冷冻室温度高_______℃.3.某种药品的说明书上,贴有如下图所示的标签,一次服用这种药品的剂量范围是_______~_______ mg.4.学校食堂出售两种厚度一样但大小不同的面饼,小饼直径20cm,售价5角;大饼直径40cm,售价1元.你更愿意买_______饼.8.同学们,在本学期,星期六、星期天除外,我们每天上一节数学课,每节课45分钟,以18周计算,请你猜一下,我们本学期上数学课的总时间折算成天,大约为 ( )A.3天 B.6天 C.9天 D.10天以上10.蜗牛从树根沿着树干往上爬,白天爬上4米,夜间滑下3米,那么高10米的树,蜗牛爬到树顶要( )A.7天 B.8天 C.9天 D.10天。
苏科版2012年七年级数学暑期强化提优专题(16)
2012年七年级暑期强化提优专题(16)强化检测一、选择题 (本大题共8小题,每小题2分,共16分) 1.下列计算正确的是( )A .a a a 1243=⋅B .1243a a a =⋅C .1243)(a a =-D .623a a a ÷=2.如图,下列条件中,不能判定l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 3.下列运算中,正确的是( )A .()222a b a b +=+ B .()2222x y x xy y --=++ C .()()2326x x x +-=-D .()()22a b a b a b --+=-4.从编号为1到10的10张卡片中任取1张,所得编号是偶数的概率是( )A .101B .31 C .21 D .515.若xy y x b a b a 35527+--与是同类项,则( )A .⎩⎨⎧-=-=12y xB .⎩⎨⎧-==12y xC .⎩⎨⎧=-=12y xD .⎩⎨⎧==12y x 6.如图,在一个长方形花园ABCD 中,若AB =a ,AD =b ,花园中建有一条长方形道路LMPQ 及一条平行四边形道路RSKT ,若LM =RS =c ,则长方形花园中除道路外可绿化部分的面积为( ) A .2c ac ab bc +-+- B .ac bc ab a -++2 C .2b ac ab bc ++-D .ab a bc b -+-227.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D 1、C 1的位置,若65EFB =∠°,则1AED ∠等于( )A .65ºB .55ºC .57.5ºD .50º8.若代数式2346x x -+的值为15,则6342+-x x 的值为( )A .12B .15C .27D .9二、填空题 (本大题共10小题,每小题2分,共20分)9.遗传物质脱氧核糖核酸(DNA)的分子直径为0.00000023cm ,用科学记数法表示为 cm . 10.已知3)1(42+-=-y x ,将y 用x 的代数式表示为y = .11.下列3个事件:①异号两数相加,和为负数;②异号两数相乘,积为正数;③异号两数相除,商为负数。
七年级初一数学第二学期第八章 二元一次方程组单元 期末复习提优专项训练
七年级初一数学第二学期第八章 二元一次方程组单元 期末复习提优专项训练一、选择题1.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( )A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x y x y +=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩ 2.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x a y b=⎧⎨=⎩是哪一个方程的解( ) A .34x y += B .34x y -= C .439x y -= D .439x y +=3.方程组5213310x y x y +=⎧⎨-=⎩的解是( ) A .31x y =⎧⎨=-⎩ B .13x y =-⎧⎨=⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩ 4.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元5.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c-+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩6.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .257.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩ 8.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =- B .1a = C .23a = D .32a = 9.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .6910.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A . ;B .;C .;D .二、填空题11.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.12.若m 满足关系式35223x y m x y m +--++-199199x y x y =--⋅-+,则m =________.13.方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.14.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.15.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.16.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A、B两种文学书籍若干本,用去6138元.其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.17.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.若(x﹣y+3)2+=0,则x+y的值为______.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:运行区间大人票价学生票出发站终点站一等座二等座二等座泉州福州65(元)54(元)40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.22.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN=43BM ,求m 和n 值.23.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩. (1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由.24.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值, }min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组: }}1{,?{?3{39,311?4max x x y min x x y -=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可.【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-,如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.D解析:D【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x a y b =⎧⎨=⎩分别代入四个选项即可. 【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩, 当31x y =⎧⎨=-⎩时, 30x y +=,A 选项错误;36x y -=,B 选项错误;4315x y -=,C 选项错误;439x y +=,D 选项正确;故选D【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.3.A解析:A【分析】利用代入消元法即可求解.【详解】解:5213310x y x y +=⎧⎨-=⎩①②, 由②得:310y x =-③,把③代入②可得:()5231013x x +-=,解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩, 故选:A .【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.4.C解析:C【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值.【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意得53523544x y x y +⎧⎨+⎩==, 解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5.B解析:B【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by c ax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(), ∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩, ∴142x y +=⎧⎨=⎩, 即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B.【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 6.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728x y x y +=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.7.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x 尺,绳子长为y 尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C .【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.8.B解析:B【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=,∴1a =;故选:B .【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.9.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.10.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 二、填空题11.15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩,化简得30(1)2(2)501542(3) a b cc abx a b c-+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b=6a(4),把(2)和(4)都代入(3)得,300ax=15a+24a+6a,∴x=15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.12.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.13.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.14.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.15.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.16.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 17.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.18.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.19.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.20.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩,解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题21.(1)购买一等票为 195m ; 购买二等票为162m ;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.22.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,13 22 =-n m;(3)4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩.【解析】【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n32m-+=;(3)由已知可得|m+3|=|n﹣1|,n﹣m43=|m+3|,分情况求解即可.【详解】(1)MN=n﹣m.故答案为:n﹣m;(2)分三种情况讨论:①M是A、N的中点,∴n+(-3)=2m,∴n=2m+3;②A是M、N点中点时,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中点时,-3+m=2n,∴n32m-+=;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.23.(1)第三象限;(2)见解析;(3)见解析【解析】【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OAB B S AB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论;【详解】(1)∵a 没有平方根,∴a <0,∴点A 在第三象限;(2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b a c a =+⎧⎨=⎩∵点B 坐标为(b ,c )∴点B 坐标为(2+a ,a )∵点A 的坐标为(a ,a )∴AB =|2+a-a|=2,AB 与x 轴平行 ∴11|y |2||||22OAB B SAB a a =⨯⨯=⨯⨯= ∵△OAB 的面积大于5而小于8,∴5||8a << 解得:58a <<或85a -<<-(3) ∵AB ∥x 轴又∵MN ∥AB∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2 ∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.24.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y+++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩, 所以正方形有16个,六边形有12个;(3)据题意,350t s +=,据题意,t s ≥,且,s t 均为整数,因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组.详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩. 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。
初一数学有理数提优练习
初一数学有理数提优练习一、选择题1.若有理数a 、b 、c 在数轴上的位置如图所示,则将-a 、-b 、c 按从小到大的顺序排列为()A .-b<c<-aB .-b<-a<cC .-a<c<-bD .-a<-b<c2.若()2210a b ++-=,那么代数式(a+b)2009的值是() A .2009B .-2009C .1D .-13.将正整数按如图所示的位置顺序排列:根据排列规律,则2009应在()A .A 处B .B 处C .C 处D .D 处4.计算(-2)2009+3×(-2)2008的值为() A .-22008B .22008C .(-2)2009D .5×22008 5.计算机中常用的十六进制是逢16进l 的计数制,采用数字0~9和字母A ~F 共16个计数符号。
这些符号与十进制数的对应关系如下表:例如,用十六进制表示:E+F=1D ,则A ×B=()A .B0B .1AC .5FD .6E6.“*”表示一种运算符号,其意义是:a*b=2a-b,如果x*(1*3)=2,那么x等于()A.1B.12C.32D.27.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是()A.0B.2 C.4D88.某种品牌的同一种洗衣粉有A,B,C三种袋装包装,每袋分别装有400克,300克,200克洗衣粉,售价分别为3.5元,2.8元,1.9元.A,B,C三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元,0.6元,0.5元,厂家销售A,B,C三种包装的洗衣粉各1200千克,获得利润最大的是() A.A种包装的洗衣粉B.B种包装的洗衣粉C.C种包装的洗衣粉D.三种包装的都相同9.小明做了这样一道计算题:︱(一3)+■︱,其中“■”表示被墨水污染看不到的一个数,他分析了后边的答案得知该题的计算结果为6,那么“■”表示的应该是()A.3B.一3C.9D.一3或910.若ab≠o,则a ba b不可能是()A.0B.1 C.2D.-211.如图,数轴上A、B、C、D四点对应的有理数分别是整数a、b、c、d,且有c-2a=8,则原点应是()A.A点B.B点C.C点D.D点12.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则与点C 所表示的数最接近的整数是()A.一1B.0C.1D.213.下列说法正确的是()A、如果a>b,那么2a>2bB、如果2a>2b,那么a>bC、如果|a|>|b|,那么2a>2bD、如果a>b,那么|a|>|b|14.四个互不相等的整数a、b、c、d,如果abcd=9,那么a+b+c+d=()A,0 B,8 C,4 D,不能确定10.小王用计算机设计一个程序,输入和输出的数据如下表:那么输入8时,输出的数据是()A.861B.863C.865D.867二、填空题1.表2是从表l中截取的一部分,则a=__________.表1表22.现有四个有理数2、6、7、8,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.请你写出一个符合条件的算式:______________________.3.如图是一个数值转换机的示意图,当输入的值为0时,输出的值为________.4.如图,在2010年3月的月历上,任意圈出一个由3个数组成的竖列,如果它们的和为36,那么其中最小的数是2010年3月_________号.5.如图,是一个简单的数值计算程序,当输入的x 的值为5,则输出的结果为______.6.2002年北京国际数学家大会会标如图所示,它由4个相同的直角三角形拼成,直角边长如果是4和7,则大正方形的面积是________.7.定义:a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是()11112=--.已知113a =-,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依次类推,则a 2009=_________.8.探索规律:13=3,个位数字是3;23=9,个位数字是9;33=27,个位数字是7;43=81,个位数字是53243=,个位数字是3;63729=,个位数字是9.…,那么,73的个位数字是,203的个位数字是.9.如图所示,图中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数是.10.一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是一1℃,小莉此时在山脚测得温度是5℃,已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是米.11.用“★”定义新运算:对于任意有理数a 、b 都有a ★b=b 2+1,例如7★4=42+1=17,那么m ★(m ★2)=__________.12.用“→”定义新运算,对于任意实数a 、b ,都有a →b=b 2+1,例如,7→4=42+1=17,那么5→3=_______;当m 为实数时,m →(m →2)=_________.13.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41;;;……;第2010个数是.14、规定图形表示运算a –b+c,图形表示运算-+.wx-zy则+=______(直接写出答案).三、解答题1.甲数的绝对值是乙数绝对值的2倍,在数轴上甲、乙两数在原点的同侧,并且对应两点的距离等于10,求这两个数.2.已知2a-+(b+1)4=0,求(a+b)(a2-ab+b2)的值. 3.(12分)同学们都知道,()52--表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.试探索:(1)()52--=___________.(2)找出所有符合条件的整数x,使527++-=成立.x x(3)由以上探索猜想,对于任何有理数x,36-+-是否有最小x x值?如果有,写出最小值;如果没有,说明理由.4.如果a>0,b<0,且a b<,试比较a,b,—a,—b的大小5.观察下列各等式:1=121+3=221+3+5=321+3+5+7=42(1)通过观察你能猜想出反映规律的一般结论吗?(2)你能运用上述规律求1+3+5+7+…+2009的值吗?6.(8分)我们知道322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯…… (1)猜想:13+23+33+…+(n -1)3+n 3=14×()2×()2. (2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.7、若,0)2(12=-+-xy x 求:+++++++)2)(2(1)1)(1(11y x y x xy ……1(2008)(2008)x y +++的值。
人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题难题提优专项训练
人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题难题提优专项训练一、选择题1.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-=2.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23 C .16-D .163.若二元一次方程组,3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为( ) A .3B .5C .7D .94.把方程23x y -=改写成用含x 的式子表示y 的形式( ) A .23y x =-B .23y x =+C .1322x y =+ D .132x y =+ 5.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩6.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =7.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩8.《九章算术》是我国东汉初年编订的一部数学经典著作。
初一数学《整式乘法与因式分解》提优测试卷 含答案
a
a
14.因式分解: a 2 a 1 =__________________. 4
15.如果 x 2 mx 16 是一个完全平方式,则 m=______. 16.因式分解: m2 11n mn 11m =___________________. 17.因式分解: 9 a 2 b 2 2ab =_____________________. 18.因式分解: x 2 4x 12 =_________________.
2.下列各式中,可分解因式的只有(
).
(A) x 2 y 2 (B) x 2 y 3 (C) ma nb (D) x 2 y 2
3.把 (x a)3 (a x)2 分解因式的结果为(
).
(A) (x a)2 (x a 1)
(B) (x a)2 (x a 1)
(C) (x a)2 (x a)
19.若16 x n (2 x)(2 x)(4 x 2 ), 则 n 的值为
.
20.若100x 2 kxy 49 y 2 能分解为 (10x 7 y)2 ,则 k 的值为
.
三.分解下列因式:(每题 3 分,共 30 分)
21. x 2 (m 2) 9 y 2 (2 m)
22. a 2 1 6ab 9b2
(B) x 2 (x y) y 2 (x y)
(C) (x y)(x y)2
(D) (x y)2 (x y)
6.下列各多项式中能用平方差公式因式分解的有(
).
(1) a 2 b 2 ;(2) 2x 2 4 y 2 ; (3) x 2 4 y 2 ; (4) (m)2 (n)2 ;
(D) (a x)2 (x a 1)
4. a 4 b 4和a 2 b 2 的公因式是(
初一下数学提优题
初一学生数学提优的题目
1.已知一个三角形的两边分别为3和8,求第三边的取值范围。
2.有一个两位数,十位数字是个位数字的2倍。
如果把这两个数字的位置对调,那么所得的新数比原数小27。
求这个两位数。
3.已知a、b、c是三角形的三边长,化简:∣b+c−a∣+∣b−c−a∣。
4.某班学生去旅游,如果每辆汽车坐45人,则有15人没座位;如果每辆汽车坐60人,则恰有一辆汽车空着。
求该班学生人数和汽车辆数。
5.一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间。
隧道的顶上有一盏灯,垂直向下发光,灯
光照在火车上的时间是10秒。
根据以上数据,你能否求出火车的长度?火车的速度是多少?。
苏教版初一数学上册 国庆提优练习(含答案)
七年级数学国庆提优练习1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.2.找出以如图形变化的规律,则第2019个图形中黑色正方形的数量是()A.2019B.3027C.3028D.30293.如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B…的顺序循环运动,则第2019步到达()A.C B.G C.F D.D4.如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形…….依此规律.第⑦个图案中有()个三角形.A.19B.21C.22D.255.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由()个▲组成.A.30B.31C.32D.336.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055B.6056C.6057D.60587.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3个黑色菱形纸片,第②个图中有5个黑色菱形纸片,第③个图中有7个黑色菱形纸片,…按此规律排列下去,第20个图中黑色菱形纸片的张数为()A.38B.39C.40D.418.观察下列一组图形中点的个数,其中第一个图共有4个点,第2个图中共有10个点,第三个图中共有19个点,……,按此规律第100个图中共有点的个数是()A.15000B.15001C.15151D.15129.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,则第20幅图中的“”的个数为()A.420B.440C.460D.48010.将正整数按如图所示的位置顺序排列:根据排列规律,则2017应在()A.A处B.B处C.C处D.D处11.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32019的末位数是()A.1B.3C.7D.912.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32019﹣1的个位数字是()A.2B.8C.6D.013.已知m≥2,n≥2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,最大的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个14.定义:a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是=﹣,﹣的差倒数是=.已知a1=2,a2是a1的差倒数,a3是a2的差倒数.a4是a3的差倒数,…,依此类推,则a10=,若S n=a1+a2+…+a n,则S2018=15.如图,将一串有理数按下列规律排列,回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2019个数是正数还是负数?排在对应于A、B、C、D中的什么位置?16.探索规律:观察下面由组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请计算1+3+5+7+9+11=;(2)请计算1+3+5+7+9+…+19=;(3)请计算1+3+5+7+9+…+(2n﹣1)=;(3)请用上述规律计算:21+23+25+ (99)17.仔细阅读下面的例题,找出其中规律,并解决问题:例:求1+2+22+23+24+…+22017的值.解:令S=1+2+22+23+24+ (22017)则2S=2+22+23+24+25+ (22018)所以2S﹣S=22018﹣1,即S=22018﹣1,所以1+2+22+23+24+…+22017=22018﹣1仿照以上推理过程,计算下列式子的值:①1+5+52+53+54+…+5100②1﹣3+32﹣33+34﹣35+…+3201918.满足|ab|+|a-b|-1=0的整数对(a,b)共有()个.A.4个B.5个C.6个D.7个19.已知(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,求x+2y+3z的最大值和最小值.20.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买需付款__________元(用含x的式子表示);若该客户按方案②购买需付款____________元(用含x的式子表示);(2)若x=50时,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)当x=50时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.答案与解析1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.找出以如图形变化的规律,则第2019个图形中黑色正方形的数量是()A.2019B.3027C.3028D.3029【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解答】解:∵当n为偶数时第n个图形中黑色正方形的数量为n+个;当n为奇数时第n个图形中黑色正方形的数量为n+个,∴当n=2019时,黑色正方形的个数为2019+1010=3029个.故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.3.如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B…的顺序循环运动,则第2019步到达()A.C B.G C.F D.D【分析】根据物体的运动规律可知:每8步一个循环,结合2019=8×252+3可知第2019步和第3步到达同一点,进而即可得出结论.【解答】解:根据物体的运动规律可知:每8步一个循环,∵2019=8×252+3,∴第2019步到达D点.故选:D.【点评】本题考查了规律型:图形的变化类,根据物体的运动规律找出每8步一个循环是解题的关键.4.如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形…….依此规律.第⑦个图案中有()个三角形.A.19B.21C.22D.25【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n个图案有(3n+1)个三角形,代入n=7即可求得答案.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.当n=7时,3n+1=22,故选:C.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由()个▲组成.A.30B.31C.32D.33【分析】仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.【解答】解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;当n=10时,3n+1=3×10+1=31,故选B.故选:B.【点评】考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055B.6056C.6057D.6058【分析】设第n个图形有a n个〇(n为正整数),观察图形,根据各图形中〇的个数的变化可找出“a n=1+3n(n为正整数)”,再代入a=2019即可得出结论.【解答】解:设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=6058.故选:D.【点评】本题考查了规律型:图形的变化类,根据各图形中〇的个数的变化找出变化规律“a n=1+3n(n为正整数)”是解题的关键.7.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3个黑色菱形纸片,第②个图中有5个黑色菱形纸片,第③个图中有7个黑色菱形纸片,…按此规律排列下去,第20个图中黑色菱形纸片的张数为()A.38B.39C.40D.41【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第20个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第20个图形有3+2×19=41(个),故选:D.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8.观察下列一组图形中点的个数,其中第一个图共有4个点,第2个图中共有10个点,第三个图中共有19个点,……,按此规律第100个图中共有点的个数是()A.15000B.15001C.15151D.1512【分析】设第n个图中共有点的个数为a n个,观察图形找出部分a n点的个数,根据数的变化找出变化规律“a n=+1”,此题得解.【解答】解:设第n个图中共有点的个数为a n个,观察图形可得:a1=4=1+3,a2=10=1+3+6,a3=19=1+3+6+9,…,∴a n=1+3+6+…+3n=+1.当n=100时,=15151故选:C.【点评】本题考查了规律型中得图形的变化类,根据图形中点的个数的变化找出变化规律“a n=+1”是解题的关键.9.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,则第20幅图中的“”的个数为()A.420B.440C.460D.480【分析】由点的分布情况得出a n=n(n+2),据此求解可得.【解答】解:由图知a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2),当n=20时,a6=20×22=440,故选:B.【点评】本题主要考查图形的变化类,解题的关键是得出a n=n(n+2).10.将正整数按如图所示的位置顺序排列:根据排列规律,则2017应在()A.A处B.B处C.C处D.D处【分析】除数字1外,每4个数一循环,然后用2016除以4得到504,于是可判断2017应在D处.【解答】解:2017﹣1=2016,2016÷4=504,所以2017应在D处.故选:D.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.11.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32019的末位数是()A.1B.3C.7D.9【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2019÷4,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,…,∴个位数字分别为3、9、7、1依次循环,∵2019÷4=504…3,∴32019的个位数字与循环组的第3个数的个位数字相同,是7.故选:C.【点评】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.12.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32019﹣1的个位数字是()A.2B.8C.6D.0【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2019除以4看得出的余数确定个位数字即可.【解答】解:∵2019÷4=504…3,∴32019﹣1的个位数字是6,故选:C.【点评】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.13.已知m≥2,n≥2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么下列四个叙述中正确的有()①在25的“分解”中,最大的数是11.②在43的“分解”中,最小的数是13.③若m3的“分解”中最小的数是23,则m=5.④若3n的“分解”中最小的数是79,则n=5.A.1个B.2个C.3个D.4个【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,由此规律进一步分析探讨得出正确的答案.【解答】解:①在25的“分解”中,最大的数是25﹣1+1=17,所以此叙述不正确;②在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43,所以此叙述正确;③若m等于5,由53“分解”的最小数是2,1,则其余四个数为23,25,27,29,31,所以此叙述错误;④若3n的“分解”中最小的数是3n﹣1﹣2=79,则n=5,所以此叙述正确.故正确的有②④.故选:B.【点评】考查学生观察分析问题的能力,由观察可知底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂.由此可以依次判断.14.定义:a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是=﹣,﹣的差倒数是=.已知a1=2,a2是a1的差倒数,a3是a2的差倒数.a4是a3的差倒数,…,依此类推,则a10=2,若S n=a1+a2+…+a n,则S2018=1009【分析】求出数列的前4项,继而得出数列的循环周期,然后求解可得.【解答】解:∵a1=2,a2===﹣1、a3===、a4===2、……∴这列数每3个数为一周期循环,∵10÷3=3…1,∴a10=a1=2,2018÷3=672……2,∴S2018=672×(2﹣1+)+2﹣1=1009,故答案为:2、1009.【点评】本题主要考查数字的变化规律,解决此类问题时通常需要确定数列与序数的关系或者数列的循环周期等,此题得出这列数每3个数为一周期循环是解题的关键.15.如图,将一串有理数按下列规律排列,回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2019个数是正数还是负数?排在对应于A、B、C、D中的什么位置?【分析】(1)根据A是向上箭头的上方对应的数解答;(2)根据箭头的方向与所对应的数的正、负情况解答;(3)根据4个数为一个循环组依次循环,用2017除以4,根据余数的情况确定所对应的位置即可.【解答】解:(1)A是向上箭头的上方对应的数,与4的符号相同,在A处的数是正数;(2)观察不难发现,向下箭头的上边的数是负数,下方是正数,向上箭头的下方是负数,上方是正数,所以,B和D的位置是负数;(3)∵2019÷4=504…3,∴第2019个数排在C的位置,是负数.【点评】本题是对数字变化规律的考查,仔细观察图形,从箭头方向向下和向上两种情况对应的数的正负情况考虑求解是解题的关键.16.探索规律:观察下面由组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请计算1+3+5+7+9+11=36;(2)请计算1+3+5+7+9+…+19=100;(3)请计算1+3+5+7+9+…+(2n﹣1)=n2;(3)请用上述规律计算:21+23+25+ (99)【分析】(1)(2)(3)根据已知得出连续奇数的和等于数字个数的平方,得出答案即可;(4)利用以上已知条件得出21+23+25+…+99=(1+3+5+…+97+99)﹣(1+3+5+…+19),利用得出规律求出即可.【解答】解:(1)1+3+5+7+9+11=62=36;(2)1+3+5+7+9+…+19=102=100;(3)1+3+5+7+9+…+(2n﹣1)=n2;(3)21+23+25+…+99=(1+3+5+...+97+99)﹣(1+3+5+ (19)=502﹣102=2500﹣100=2400.【点评】此题主要考查了数字变化规律,通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目的难点.17.(仔细阅读下面的例题,找出其中规律,并解决问题:例:求1+2+22+23+24+…+22017的值.解:令S=1+2+22+23+24+ (22017)则2S=2+22+23+24+25+ (22018)所以2S﹣S=22018﹣1,即S=22018﹣1,所以1+2+22+23+24+…+22017=22018﹣1仿照以上推理过程,计算下列式子的值:①1+5+52+53+54+…+5100②1﹣3+32﹣33+34﹣35+…+32019【分析】①根据题目中的例子可以解答本题;②根据题目中的例子和本题的式子的特点可以解答本题.【解答】解:①令S=1+5+52+53+54+ (5100)则5S=5+52+53+54+…+5100+5101,∴5S﹣S=5101﹣1,∴4S=5101﹣1,∴S=,即1+5+52+53+54+…+5100=;②令S=1﹣3+32﹣33+34﹣35+ (32019)则3S=3﹣32+33﹣34+35﹣36+ (32020)∴S+3S=1+32020,∴4S=1+32020,∴2020134S+=,即1﹣3+32﹣33+34﹣35+ (32019)2020 134+.【点评】本题考查数字的变化类,有理数的混合运算,解答本题的关键是明确题目中的式子的特点,求出相应的结果.18.满足|ab|+|a-b|-1=0的整数对(a,b)共有()个.A.4个B.5个C.6个D.7个【解答】解:∵|ab|+|a-b|=1,∴0≤|ab|≤1,0≤|a-b|≤1,∵a,b是整数,∴|ab|=0,|a-b|=1或|a-b|=0,|ab|=1①当|ab|=0,|a-b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,-1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(-1,0),②当|a-b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=-1,b=-1,∴整数对(a,b)为(1,1)或(-1,-1),即:满足|ab|+|a-b|=1的所有整数对(a,b)为(0,1)或(0,-1)或(1,0)或(-1,0)或(1,1)或(-1,-1).∴满足|ab|+|a-b|-1=0的整数对(a,b)共有6个.故选:C.19.已知(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,求x+2y+3z的最大值和最小值.【分析】直接利用绝对值的性质得出:|x+1|+|x-2|≥3,|y-2|+|y+1|≥3,|z-3|+|z+1|≥4,进而利用已知得出答案.【解答】解:∵|x+1|+|x-2|≥3,|y-2|+|y+1|≥3,|z-3|+|z+1|≥4,∴(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)≥36,∵(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,∴|x+1|+|x-2|=3,|y-2|+|y+1|=3,|z-3|+|z+1|=4,∴-1≤x≤2,-1≤y≤2,-1≤z≤3,∴-1≤x≤2,-2≤2y≤4,-3≤3z≤9,∴-6≤x+2y+3z≤15,故最大值15,最小值-6.【点评】此题主要考查了绝对值,正确得出x,y,z的取值范围是解题关键.20.解:(1)1500+50x,2400+40x,故答案为:1500+50x;2400+40x;(2)当x=50,按方案①购买所需费用=1500+50×50=4000(元);按方案②购买所需费用═2400+40×50=4400(元),所以按方案①购买较为合算;(3)先按方案①购买夹克30件,再按方案②购买T恤20件更为省钱.理由如下:先按方案①购买夹克30件所需费用=3000,按方案②购买T恤20件的费用=50×80%×20=800,所以总费用为3000+800=3800(元),小于4400元,所以此种购买方案更为省钱.。
山东省滕州市鲍沟中学2019-2020学年度周末尖子生培养七年级数学提优试题(2019年11月28日)(无答案)
山东省滕州市鲍沟中学2019-2020学年度周末尖子生培养七年级数学提优试题(2019年11月28日)一、单选题1.在方程①,②,③,④,⑤,⑥中,是一元一次方程的有()A.①③④ B. ③④⑥ C. ②③⑥ D. ②④⑤⑥2.关于x的方程,处被墨水盖住了,已知方程的解为,那么处的数字是()A.2 B. 3 C. 4 D. 63.解方程,去分母正确的是()A.B.C.D.4.解方程,步骤如下:①去括号,得;②移项,得;③合并同类项,得;④方程两边同时除以6,得.其中,开始出错的一步是()A.①B.②C.③D.④5.若与是同类项,则m,n的值分别为()A.2,-1 B.-2,1 C.-1,2 D.-2,-16.某商场将商品按进货价提高后标价,若按标价的八折销售可获利40元,设该商品的进货价为元,根据题意列方程为()A.B.C.D.7.下列说法正确的是()A.等式两边都除以a,得B.等式两边都除以,得C.等式两边都除以a,得D.等式两边都除以2,得8.在我们身边有一些股民,在每一次的股票交易中或盈利或亏损.某股民将甲,乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1500元,但亏损20%,该股民在这次交易中是( ) A.盈利125元B.亏损125元C.不赔不赚D.亏损625元9.若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是( )A.甲B.乙C.同时到达D.无法确定10.商店将某种商品按进货价提高100%后,又以八折售出,售价为80元,则这种商品的进价是()A.100元B.80元C.60元D.50元11.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在()边上.A.AD B.DC C.BC D.AB12.如图,对a,b,c三种物体的质量判断正确的是( )A.a<c B.a<b C.a>c D.b<c二、填空题未13.若是关于的方程的解,则____.14.若某商品提价又降价后的售价为150元,那么商品原售价是______.15.小明做了这样一道计算题:,其中“”表示被墨水污染看不到的个数,他分析了后边的答案得知该题的计算结果为5,那么“”表示的应该是__________.16.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,一共打45场比赛.设有个球队参赛,根据题意,所列方程为____________.17.若关于的方程是一元一次方程,则_____.18.如果方程3x-4=2(x-1)与关于x的方程3a+2=4(x+a) -2a的解相同,则(a-3)2的值为___.三、解答题19.解方程(1)(2)20.我们定义一种新的运算“⊗”,并且规定:a⊗b=a2﹣2b.例如:2⊗3=22﹣2×3=﹣2,2⊗(﹣a)=22﹣2(﹣a)=4+2a.请完成以下问题:(1)求(﹣3)⊗2的值;(2)若3⊗(﹣x)=2⊗x,求x的值.21.已知方程的解与方程的解相同,求代数式a2-3的值.22.某市场对顾客实行优惠,规定:若一次购物不超过200元,则不给折扣;若一次购物超过200元,但不超过500元,按标价给予九折优惠;若一次购物超过500元,其中500元按上述九折优惠之外,超过500元的部分按八折优惠,某人两次购物分别付款169元和441元.(1)第1次和第2次购买的商品分别标价多少元?(2)若将第1次和第2次合起来去购买同样价值的商品,则他可节约多少元?(3)张女士分两次从该市场购买了标价共为490元的商品,若她获得的优惠比合起来一次购买同样标价的商品获得的优惠少8元,又知她第一次购买的商品标价较高,请求出张女士第一次购买商品花费了多少元吗?。
苏州市六区2024-2025学年第一学期初一数学阳光调研试卷及解析
2024-2025学年苏州市初一数学阳光测评卷一、选择题(本大题共10小题,每小题2分,共20分).1.-3的倒数是()A.3B.13C.-3D.-132.下列各数中,比-2小的数是()A.-3B.-1C.0D.53.单项式-2a 2的系数、次数分别是()A.2,2B.-2,2C.2,3D.-2,34.2024年9月10日下午,全球首个商用三折叠屏手机HUAWEIMateXT 非凡大师正式发布.手机还未正式上市时,就吸引了众多市民好奇的目光,自9月7日开启预订,9月20日10:08全面开售.截至9月10日19时45分,华为商城显示,预约人数已突破4350000,并且还在快速增长.数据4350000用科学记数法可表示为()A.435×104B.43.5×105C.4.35×106D.0.435×1075.七年级(3)班男生有x 人,比女生少2人,则这个班女生人数是()A.x -2B.x +2C.2x -2D.2x +26.下列各组数中,两数互为相反数的是()A.-(+2)与+(-2)B.-(-3)与|-3|C.-52与(-5)2D.-43与(-4)37.小慧用计算器计算735÷15,她误操作输入了735÷5.若想得到正确结果,则小慧接下来应输入()A.×3B.÷3C.×10D.÷108.如图,在正方形网格中,点A ,B 分别用数对(2,1),(7,1)表示,在图中确定点C ,连接AB ,BC ,CA ,得到以A 为直角顶点的等腰直角三角形,则表示点C 的数对是()A.(2,5)B.(2,6)C.(7,5)D.(7,6)9.一个正方体的表面展开图如图所示,将其折叠成正方体时,与点A 重合的是()A.点BB.点CC.点DD.点E012345678987654321AB(第8题图)A BCDE(第9题图)(第4题图)10.思格尔系数是家庭食品支出占家庭消费总支出的百分比,它反映了一个家庭生活水平的高低.小慧家平均每月水电气支出600元,文化消费支出1200元,结合以下信息,小慧家属于()A.富裕家庭B.小康家庭C.温饱家庭D.贫困家庭二、填空题(本大题共8小题,每小题2分,共16分).11.若一个负整数比-3.1大,则这个负整数可以是.(只需写出一个符合要求的负整数即可)12.一个不透明的盒子中装有红、蓝两种颜色的小球若干个(小球除颜色外,其余均相同).小慧随机从盒中摸球,每次摸出1个球,记录颜色后放回,共30次,其中摸出红球8次,蓝球22次.根据数据推测,盒子里球可能多一些.(填“红”或“蓝”)13.小慧在某平台上按“八五折”的优惠价格购买了4张《志愿军:存亡之战》电影票,若每张电影票的原价是50元,则小慧需支付元.14.如图,数轴上点A ,B 分别表示有理数a ,b ,则a +b20.(填“>”“<”或“=”)15.如图,在长为a ,宽为b 的长方形ABCD 中,E 为边CD 上一点,则图中阴影部分的两个三角形的面积之和为.(用含a ,b 的代数式表示)16.若x -3y +2=0,则5-2x 与6y -1的和的值为.17.B ,K ,M ,G ,T 是计算机存储容量的常用单位,其关系为1K =210B =1024B ,1M =210K =1024K ,1G =210M =1024M ,1T =210G =1024G .1部超高清电影约占存储空间300G ,一个2T 移动硬盘最多可以存储部这样的超高消电影.18.如图,图①中有1个三角形,在图①中的三角形内部(不含边界)取一点,连接该点与三角形的3个顶点得到图②,图②中共有4个三角形.若在图②中的一个小三角形内部(不含边界)取一点,连接该点与该小三角形的3个顶点得到图③.在虚线框中画出图③,图③中共有个三角形.(写出所有可能的值)食品赡养老人16%水电气10%文化消费其他8%服饰10%(第10题图)家庭类型恩格尔系数富裕家庭小于40%小康家庭40%-50%温饱家庭50%-60%贫困家庭大于60%ABC D abE(第15题图)abA B (第14题图)三、解答题(本大题共9小题,共64分)19.(本题满分5分)计算:56÷14+13 ×710.20.(本题满分5分)计算:(-6)2×-34+79-|2+(-5)|.21.(本题满分6分)先化简,再求值:2a 2-12ab -3-23ab +a 2 +a 2,其中a =3,b =-12.22.(本题满分6分)为满足21世纪中国的粮食需求,农业部于1996年提出超级杂交水稻培育计划.经过努力,1998年项目亩产量约800公斤,之后不断刷新水稻亩产量高度,到2016年,该项目亩产量约1500公斤.与1998年相比,2016年亩产量提高了百分之几?①②③(第18题图)如图,用若干个棱长为1厘米的小正方体搭成一个立体图形.(1)在正方形网格中画出这个立体图形从上往下看到的图形;(2)求这个立体图形的体积与表面积.24.(本题满分8分)某打车软件计价内容含起步价(不超过3公里部分的里程费用)、里程费(超出3公里部分的里程费用)和时长费三部分,计价标准如下:(1)张阿姨17:00用这款软件打车回家,里程为5公里,用时15分钟,求张阿姨需要支付的车费;(2)李叔叔8:00用这款软件打车去相距2.8公里的单位,共支付车费14.5元,求李叔叔乘车的时长.25.(本题满分8分)狮山文化广场数字跑道是苏州高新区充分利用数字化创新技术,深度结合狮山区域优美的自然环境与历史文化真赋打造的数字化全民健身场景.数字跑道的外围一圈近似圆形,环绕狮山,全长约2.5km ,将狮山的一景一色串联起来,奔跑或健走的同时还能一览狮山美景.国庆期间,小慧与妈妈沿狮山文化广场外田圆形跑道健走,已知小慧的速度为每分钟80米,妈妈的速度为每分钟100米.(1)若小慧与妈妈同时从起终点(0km/2.5km )处出发,均按逆时针方向而行,当妈妈行走至2km 处时,请列式计算并判断此时小意是否已走过1.5km 处.(2)若小慧与妈妈同时从起/终点(0km/2.5km )处出发,妈妈按逆时针方向而行,小慧按顺时针方向而行,两人相约在1.5km 处汇合,请通过计算说明小慧和妈妈谁先到达1.5km 处,先到达多少分钟?(第23题图)时段起步价里程费单价时长费单价5:00-7:009:00-23:009.00元1.50元/公里0.40元/分钟其他时段10.00元 2.50元/公里0.45元/分钟2km 0km/2.5km0.5km1km1.5km(第25题图)【阅读与理解】能被2整除的整数是偶数,不能被2整除的整数是奇数.偶数可以用2n表示,奇数可以用2n+ 1表示,其中n为整数.我们可以用说理的方法说明任意一个偶数与一个奇数的和为奇数,解答过程如下:解:设任意一个偶数为2m,一个奇数为2n+1,其中m,n为整数,则它们的和为2m+2n+1=2(m+n)+1.因为m,n为整数,所以m+n为整数.所以2(m+n)+1为奇数,即任意一个偶数与一个奇数的和为奇数.【迁移与应用】仿照上面的方法,试说明三个连续奇数的和为奇数,且能被3整除.27.(本题满分10分)设m为有理数,数轴上点A表示有理数a,给出以下两个定义:定义T(A,m)为点A向右移动m个单位长度后得到的点;定义P(A2m)为数轴上的一点从原点出发向右移动am个单位长度后得到的点.(说明:向右移动负数个单位长度表示向左移动正数个单位长度.例如,向右移动-2个单位长度表示向左移动2个单位长度)(1)①若点A表示有理数-2,则T(A,5)表示的有理数是;②若点A,B分别表示有理数-2,1.5,则P(A,3)与P(B,-2)之间的距离为.(2)如图,点A,B分别表示有理数-3,2.①若T(A,m)与P(A,m)到原点的距离相等,求有理数m;②试说明T(A,2m)与P(B,m)之间的距离为定值,并求出这一定值.A B-32(第27题图)2024-2025学年苏州市初一数学阳光测评卷参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分).1.-3的倒数是()A.3B.13C.-3D.-13【解析】倒数,在数学上是指与某数(x )相乘的积为1的数,记为1x.【答案】D2.下列各数中,比-2小的数是()A.-3B.-1C.0D.5【答案】A3.单项式-2a 2的系数、次数分别是()A.2,2B.-2,2C.2,3D.-2,3【答案】B4.2024年9月10日下午,全球首个商用三折叠屏手机HUAWEIMateXT 非凡大师正式发布.手机还未正式上市时,就吸引了众多市民好奇的目光,自9月7日开启预订,9月20日10:08全面开售.截至9月10日19时45分,华为商城显示,预约人数已突破4350000,并且还在快速增长.数据4350000用科学记数法可表示为()A.435×104B.43.5×105C.4.35×106D.0.435×1075.七年级(3)班男生有x 人,比女生少2人,则这个班女生人数是()A.x -2B.x +2C.2x -2D.2x +2【答案】B6.下列各组数中,两数互为相反数的是()A.-(+2)与+(-2)B.-(-3)与|-3|C.-52与(-5)2D.-43与(-4)3【答案】C7.小慧用计算器计算735÷15,她误操作输入了735÷5.若想得到正确结果,则小慧接下来应输入()A.×3B.÷3C.×10D.÷10【答案】C8.如图,在正方形网格中,点A ,B 分别用数对(2,1),(7,1)表示,在图中确定点C ,连接AB ,BC ,CA ,得到以A012345678987654321AB(第8题图)A BCDE(第9题图)(第4题图)为直角顶点的等腰直角三角形,则表示点C 的数对是()A.(2,5)B.(2,6)C.(7,5)D.(7,6)【答案】B9.一个正方体的表面展开图如图所示,将其折叠成正方体时,与点A 重合的是()A.点BB.点CC.点DD.点E【答案】C10.思格尔系数是家庭食品支出占家庭消费总支出的百分比,它反映了一个家庭生活水平的高低.小慧家平均每月水电气支出600元,文化消费支出1200元,结合以下信息,小慧家属于()A.富裕家庭B.小康家庭C.温饱家庭D.贫困家庭【答案】A二、填空题(本大题共8小题,每小题2分,共16分).11.若一个负整数比-3.1大,则这个负整数可以是.(只需写出一个符合要求的负整数即可)【答案】-212.一个不透明的盒子中装有红、蓝两种颜色的小球若干个(小球除颜色外,其余均相同).小慧随机从盒中摸球,每次摸出1个球,记录颜色后放回,共30次,其中摸出红球8次,蓝球22次.根据数据推测,盒子里球可能多一些.(填“红”或“蓝”)【答案】蓝13.小慧在某平台上按“八五折”的优惠价格购买了4张《志愿军:存亡之战》电影票,若每张电影票的原价是50元,则小慧需支付元.【解析】解:4×50×0.85=170元【答案】170元14.如图,数轴上点A ,B 分别表示有理数a ,b ,则a +b20.(填“>”“<”或“=”)【答案】<食品赡养老人16%水电气10%文化消费其他8%服饰10%(第10题图)家庭类型恩格尔系数富裕家庭小于40%小康家庭40%-50%温饱家庭50%-60%贫困家庭大于60%ABC D abE(第15题图)abA B (第14题图)15.如图,在长为a ,宽为b 的长方形ABCD 中,E 为边CD 上一点,则图中阴影部分的两个三角形的面积之和为.(用含a ,b 的代数式表示)【答案】12ab16.若x -3y +2=0,则5-2x 与6y -1的和的值为.【解析】解:5-2x +6y -1=-2x +6y +4=-2(x +3y )+4=4+4=8【答案】817.B ,K ,M ,G ,T 是计算机存储容量的常用单位,其关系为1K =210B =1024B ,1M =210K =1024K ,1G =210M =1024M ,1T =210G =1024G .1部超高清电影约占存储空间300G ,一个2T 移动硬盘最多可以存储部这样的超高消电影.【解析】解:2T=2048G ,2048÷300=6∙∙∙248【答案】618.如图,图①中有1个三角形,在图①中的三角形内部(不含边界)取一点,连接该点与三角形的3个顶点得到图②,图②中共有4个三角形.若在图②中的一个小三角形内部(不含边界)取一点,连接该点与该小三角形的3个顶点得到图③.在虚线框中画出图③,图③中共有个三角形.(写出所有可能的值)【解析】解:如图所示;【答案】7或9三、解答题(本大题共9小题,共64分)19.(本题满分5分)计算:56÷14+13 ×710.【解析】解:原式=56÷712×710=56×127×710=120.(本题满分5分)计算:(-6)2×-34+79-|2+(-5)|.【解析】解:原式=36×(-34+79)-3=-27+28-3=-2①②③(第18题图)先化简,再求值:2a 2-12ab -3-23ab +a 2 +a 2,其中a =3,b =-12.【解析】解:原式=2a 2-ab +2ab -3a 2+a2=ab将a =3,b =-12代入ab 得3×(-12)=-3222.(本题满分6分)为满足21世纪中国的粮食需求,农业部于1996年提出超级杂交水稻培育计划.经过努力,1998年项目亩产量约800公斤,之后不断刷新水稻亩产量高度,到2016年,该项目亩产量约1500公斤.与1998年相比,2016年亩产量提高了百分之几?【解析】解:(1500-800)÷800=87.5%答:2016年亩产量提高了87.5%.23.(本题满分8分)如图,用若干个棱长为1厘米的小正方体搭成一个立体图形.(1)在正方形网格中画出这个立体图形从上往下看到的图形;(2)求这个立体图形的体积与表面积.【解析】解:(1)如图所示(2)体积:5cm 3,表面积:(4+4+3)×2=22cm 224.(本题满分8分)某打车软件计价内容含起步价(不超过3公里部分的里程费用)、里程费(超出3公里部分的里程费用)和时长费三部分,计价标准如下:(1)张阿姨17:00用这款软件打车回家,里程为5公里,用时15分钟,求张阿姨需要支付的车费;(2)李叔叔8:00用这款软件打车去相距2.8公里的单位,共支付车费14.5元,求李叔叔乘车的时长.【解析】解:(1)9+2×1.5+0.4×15=18(元)(2)(14.5-10)÷0.45=10(分钟)(第23题图)时段起步价里程费单价时长费单价5:00-7:009:00-23:009.00元1.50元/公里0.40元/分钟其他时段10.00元 2.50元/公里0.45元/分钟狮山文化广场数字跑道是苏州高新区充分利用数字化创新技术,深度结合狮山区域优美的自然环境与历史文化真赋打造的数字化全民健身场景.数字跑道的外围一圈近似圆形,环绕狮山,全长约2.5km ,将狮山的一景一色串联起来,奔跑或健走的同时还能一览狮山美景.国庆期间,小慧与妈妈沿狮山文化广场外田圆形跑道健走,已知小慧的速度为每分钟80米,妈妈的速度为每分钟100米.(1)若小慧与妈妈同时从起终点(0km/2.5km )处出发,均按逆时针方向而行,当妈妈行走至2km 处时,请列式计算并判断此时小意是否已走过1.5km 处.(2)若小慧与妈妈同时从起/终点(0km/2.5km )处出发,妈妈按逆时针方向而行,小慧按顺时针方向而行,两人相约在1.5km 处汇合,请通过计算说明小慧和妈妈谁先到达1.5km 处,先到达多少分钟?【解析】解:(1)2km =2000m2000÷100×80=1600m =1.6km 1.6km >1.5km则:已走过(2)1km =1000m ,1000÷80=12.5m /min 1.5km =1500m ,1500÷100=15m /min 15-12.5=2.5min 答:小慧先到达2.5分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学提优试卷(3)
1、粗蜡烛和细蜡烛的长度一样,粗蜡烛可以燃烧5小时,细蜡烛可以燃烧4小时.如果同时点燃这两支蜡烛,过了一段时间后,剩下的粗蜡烛比细蜡烛长3倍,问这两支蜡烛已点燃了多长时间?
2.(2009年重庆)某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.
3、全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源,已成为一项十分紧迫的任务.某地区沙漠原有面积是100万公顷,为了解该地区沙漠面积的变化情况,进行连续3年的观察,并将每年年底的观察结果记录如下表.根据这些数据描点、连线,汇成曲线图,发现成直线状.预计该地区沙漠的面积将继续按此趋势扩大. (1)如果不采取任何措施, 那么到第m 年底,该地区沙 漠的面积将变成为__万公顷.
(2)如果第五年底后,采取植树造林措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区沙漠的面积能减少到95万公顷?
4、一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人。
一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过,此时,自己前面还有36人等待通过(假定先到的先过,王老师过道口的时间忽略不计)通过道口后还需7分钟到达学校.
(1)此时,若绕道而行,要15分钟到达学校.从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校? (2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序时间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前了6分钟通过道口,问维持秩序的时间是多少?
5、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
6、仔细阅读下列材料,然后解答问题.
某商场在促销期间规定:商场内所有商品按标价的80%出售.同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额a (元)200≤a <400
400≤a <500
500≤a <700
700≤a <900 …
观察时间x 该地区沙漠比原有面积增加数y 第一年 0.2万公顷 第二年 0.4万公顷 第三年 0.6万公顷
根据上述促销方法,顾客在商场内购物可以获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×80%=360元,获得的优惠额为450×(1-80%)+30=120元.设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价. (1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到3
1
的优惠率?
7、(2009丽水市)如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为1
2
的正三角形纸
板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的2
1
)后,得图③,④,…,记第n (n ≥3) 块纸板的周长为P n ,则P n -P n-1= ▲ .
8、某供电公司分时电价执行时段分为峰、谷两个时段,峰段为7:00~21:00,14小时,谷段为21:00~次日7:00,10小时.峰段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家12月份实用峰段电量40千瓦时, 谷段电量60千瓦时,按分时电价付费38.2元. (1)问小明该月支付的峰段、谷段电价每千瓦时各为多少元?
(2)如不使用分时电价结算, 12月份小明家将多支付电费多少元?
9、陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交帐说:“我买了两种书,共105本,单价分别为
8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.” (1)王老师为什么说他搞错了?试用方程的知识给予解释.
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本。
但笔记本的单价已模糊不清,只能辩认出应为小于8元的整数,笔记本的单价可能为多少元?
答案:
…
① ② ③
1、分析:题中“剩下的粗蜡烛比细蜡烛长3倍”这句话反映了题目含义的关键,故可作为相等关系.但要注意“长2倍”不同于“是3倍”,即剩余的粗蜡烛长=4×剩余的细蜡烛的长.
2、分析:根据题意,可以画出示意图(如下图),从示意图中找出问题的等量关系:“上午9时甲、乙二人路程和+54=上午11时甲、乙二人路程和-54=AB.
餐厅就可供2y 3、分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小
名学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐。
根据题意,得2(1680-2y)+y=2280,解得y=360(元)。
所以1680-2y=960(名)。
答略。
(2)因为9605360255205300
⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
点拨:第⑴问属于直接列方程解决实际问题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.
5、解:(1)100+0.2m;
(2)设到第x年底该地区沙漠面积能减少到95万公顷,依题意底方程
100+0.2x-0.8(x-5)=95.
解得,x=15.
即到第15年后该地区沙漠的面积能减少到95万公顷.
6、分析:运用学过的方程知识解决这一日常生活中的实际问题是本题考查的重点,其关键仍是审清题意找准等量关系.
解:(1)∵36
3
+7=19>15, ∴王老师应选绕道去学校
(2)设维持秩序的时间为t分钟.由题意得:36
3
-(t+
(363)
9
t
-
),解得:t=3
答:维持秩序的时间为3分钟
7、分析:根据利润=售价-进价与售价=标价×折扣率这两个相等关系,以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.
8、解:设该工艺品每件的进价是x元,标价是(45+x)元.根据题意,得8(45+x)×0.85-8x=(45+x-35)×12-12x,解得x=155(元)。
所以45+x=200(元)。
解(1)消费金额为1 000×80%=800(元),优惠额为1 000×(1-80%)+130=330(元),优惠率为330÷000=33%.
(2)设购买标价为x元的商品可以得到1
3
的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与
640元之间.①当400≤a<500时,500≤x<625,由题意,得0.2x+60=1
3
x,解得x=450.但450<500,不合题意,故舍去;
②当500≤a<640时,625≤x<800,由题意,得0.2x+100=1
3
x,解得x=750.而625≤750<800,符合题意.
答:购买标价为750元的商品可以得到1
3
的优惠率.
27、解:设单价为8元的课外书为x本,得
8x+12(105-x)=1500-418,解之得x=44.5(不合题意)
所以陈老师肯定搞错了……………(4分)
(2)设单价为8元的课外书为y本,笔记本的单价为a元,根据题意得
8y+12(105-y)=1500-418-a 解之得178+a=4y………(6分)
因为a,y都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于8的整数所以a可能为2,4,6,
当a=2时y=45符合题意;
当a=4时,y=45.5不符合题意
当a=6时,y=46符合题意;
所以笔记本的单价可能为2元或6元.……….(8分)。