离心机“喘振”的原因和解决方法

合集下载

离心机喘振的解决方法

离心机喘振的解决方法

离心机喘振的解决方法
离心机是工业中常用的设备之一,但在使用中会出现一些问题,其中之一就是喘振现象。

喘振会造成设备的振动、噪音、甚至损坏,因此需要采取措施进行解决。

喘振的原因:
1.离心机叶轮或转子的不平衡或变形等问题。

2.系统的不稳定性,例如管道系统的质量不好或者管道的设计不合理,会导致气流过程中的不稳定。

3.离心机进口与出口之间的压力差异,有时候管道系统可能会堵塞导致压差增大。

解决方法:
1.增加离心机的支撑或是减小转子质量,使叶轮达到平衡状态,避免因叶轮不平衡造成的喘振。

2.管道系统质量要好,设计要合理,必要时可以加装阀门、减小管道长度、增加管道直径等方式来减少气体流动过程中的摩擦因素。

3.设置进口和出口通道,加强进出口的管道,减少管道堵塞的可能,降
低压力差。

4.调整离心机的工作条件,如调整叶轮转速、减少进口流量等方式来避免喘振。

5.安装机器振动监测仪器,及时监测离心机的工作情况,发现问题及时处理。

总之,离心机喘振是一种不可避免的现象,但是采取措施可以有效地解决喘振问题,避免设备运转中的故障和损害。

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。

喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。

本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。

离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。

在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。

而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。

气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。

喘振产生的原因喘振是目前离心式压缩机容易发生的通病。

离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。

该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。

另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。

曲线表明随着温度的升高,压缩机易进入喘振区。

图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。

离心机的喘振

离心机的喘振

离心机的喘振
离心式压缩机发生喘振的原因是:进口压力或流量突然(瞬间)降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口
的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致机出口压力降低.但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于机出口压力时,气体又向系统管网流动.如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象.
要预防、解决压缩机的喘振现象,有以下几个办法:
1、根据压缩机性能曲线,找出喘振点。

一般工业应用,可取允许的最低工况点即可。

2、在压缩机的进口安装温度、流量监视仪表,出口安装压力监视仪表,一旦出现喘振及时报警。

3、生产中若必须减小压缩机的流量,可在压缩机出口设旁通回路,让气体放空或经降压后仍回进气管。

4、在小流量下运行时,可降低压缩机的转速,使得压缩机流量减小时不致进入喘振状态。

5、在前级或各级中设置叶片转动机构,以调节叶片角度,使流量减小时冲角不致过大,从而使叶道中不出现太大的分离区,以避免喘振的出现。

这种方法可应用在轴流式压缩机上。

6、机出口应设有防喘振线。

设定值可设为最低允许工况点。

一旦机进口流量压力低至最低允许工况点,防喘振线可自动打开,使机出口气体流回进口。

离心冷水机组喘震现象的原因及避免方法

离心冷水机组喘震现象的原因及避免方法

离心冷水机组喘震现象的原因及避免方法满负荷不会出现喘震,原因是离心叶片能把气体以高速甩出,变成高温高压的气体。

如果是在低负荷下,吸入的气体过少,不足以将稀少的气体以同样的速度甩出去就造成喘震。

解决的方法,螺杆+离心满负荷!!冷凝压力高也要喘的。

负荷太小也要喘。

主要压比太大造成。

降低冷却水温度。

加装热气旁同、变频调速控制喘震概念:离心式压缩机出口的气体从冷凝器倒流返回叶轮,高温气体来回倒流产生撞击现象。

喘震危害:造成周期性地增大噪声和震动,高温气体来回倒流还引起壳体和轴承温度的升温。

损坏压缩机甚至整套制冷装置。

产生喘震的原因:冷凝压力过高或吸气压力过低。

负荷过小时,也会产生喘震,这就需要反喘震调节,旁通调节法是一种措施。

从压缩机的出口引出一部分气体,不经过冷凝器直接流入压缩机的入气管,这样,可减少蒸发器的制冷剂流量,以减少制冷量,又不会使压缩机的排气量过小,从而防止喘震的发生。

机组运行时,一般冷负荷不低于满负荷的25%,就能避免喘震。

“从压缩机的出口引出一部分气体,不经过冷凝器直接流入压缩机的戏入管,这样,可减少蒸发器的制冷剂流量,以减少制冷量”是增加了蒸发器的热负荷,蒸发压力会升高,打开导流叶片防止喘震。

离心式压缩机和涡旋式压缩机及活塞式压缩机等不同,虽然能够压缩大流量的气体,但是通过压缩取得的压力上升值的上限被限制,如果超过这个上限值压缩,压缩的气体逆流入叶轮内,顺流和逆流反复进行产生很大的震动和噪音现象,我们称之为喘振现象。

由于震动会对机械产生不良影响,因此必须避免喘振现象。

一般情况下,冷水温度愈低冷却水温度愈高所必须的压力上升值也越大,就愈容易产生喘振。

冷水机设计在规格值的温度条件下不会产生喘振现象,冷却水稍微高过规格值也不会产生喘振。

但是,如果运行时冷却水温度高出规格值很多,传热管有污垢传热性能不好的场合,容易产生喘振现象。

因此,必须确保冷水机在冷却水规格值以下运行,定期清洗传热管。

另外,根据制冷负荷入口控制阀(入口导向阀)开闭的场合喘振产生的频率根据阀的开度大小而异,部分负荷时容易产生喘振现象。

自动脱帽离心机出现喘振现象的原因分析

自动脱帽离心机出现喘振现象的原因分析

自动脱帽离心机出现喘振现象的原因分析自动脱帽离心机是一种常用的实验室设备,用于离心分离样品。

在使用过程中,有时会出现喘振现象,即离心机在高速旋转时会出现颤动、震动等不正常现象,影响离心效果和使用寿命。

本文将对自动脱帽离心机出现喘振现象的原因进行分析。

原因一:离心管内液体不平衡离心机出现喘振现象的原因之一是离心管内液体不平衡。

在离心过程中,离心管内的液体应该均匀分布,如果存在液面高低不平的情况,就会发生喘振。

解决该问题的方法是在放液体时要注意离心管是不是放平,液面是否均匀分布。

原因二:离心管与旋转轴的不垂直另一个导致喘振现象的原因是离心管与旋转轴的不垂直。

离心机的旋转平稳性与离心管的旋转轴是否与旋转轴正交密切相关。

若两者不正交,离心力矩的变化就会产生扭矩,从而导致喘振。

解决该问题的方法是调整离心管的安装位置,以使其与旋转轴垂直。

原因三:离心转子故障离心转子是离心机的重要部件。

如果离心转子出现问题,比如未安装好或受损,就会导致喘振。

解决该问题的方法是检查离心转子是否与机身接触良好,是否磨损或破损,如有损坏应更换。

原因四:离心机角度不稳定离心机在使用时如果放置角度不稳定,就会发生喘振。

解决该问题的方法是在放置离心机时要确保其放平或者使用调平装置,保证角度稳定。

原因五:离心盖或控制模块故障离心盖是离心机的重要部件,它保证了离心作业环境的密封性和安全性。

如果离心盖未关闭好或损坏,就会产生喘振。

控制模块也是离心机的重要组成部分,若存在问题就会导致离心机不稳定。

解决该问题的方法是检查离心盖是否安放好或者更换错误的控制模块。

结论自动脱帽离心机是实验室中常用的分离设备之一,在日常使用中可能会遇到喘振现象。

通过对离心管液体、离心管与旋转轴的不垂直、离心转子故障、离心机角度不稳定、离心盖或控制模块故障等多种原因的分析,我们可以找到解决问题的方法,使离心机能够正常工作并提高工作效率,保证实验结果的准确性。

离心泵喘振的原因及处理方法

离心泵喘振的原因及处理方法

离心泵喘振的原因及处理方法
一、离心泵喘振原因分析
1、水泵自动排气阀未能及时将泵内的空气排掉;
2、水泵入口流道偏小,造成水泵入口流速过大,使之在水泵入口处发生旋涡现象;
3、在水泵叶轮进口处有局部的粗糙度过大;
4、水泵进口管道处有不规则且可以移动的杂物,入口截面无规律地变化,造成水泵入口流速过高,导致水泵发生汽蚀;
5、水泵出口管道结合处密封性不好,导致水泵排气阀排量不足。

喘振会导致水泵整个系统中的压力和流量发生变化,当水泵发生空化时,这种现象就称之为“空化喘振”,即使扬程、流量曲线是负斜率时,空化喘振也会发生,例如低比转速离心泵性能曲线存在驼峰时,在不稳定工况下就有可能导致喘振。

二、离心泵喘振消除方法
1、检查水泵自动排气阀是否灵活、可靠;
2、解决由于水泵进口流量偏小,入口流速过大,在水泵入口处产生旋涡的问题;
3、检查水泵叶轮、壳体是否有缺损;
4、检查水泵进口处及附近是否有可移动的异物;
5、检查水泵出口管道结合处是否有泄露;
6、在启动水泵时,要保证水泵进口处的液面高度;
7、在选用驼峰曲线时,应充分考虑水泵管路计划使水泵设备工作点落在安稳操作区,建议水泵不要在不安稳的小流量区域内工作。

17喘振发生的原因及解决方案

17喘振发生的原因及解决方案
制逻辑提供信号,使其减少导流叶片的开度。
c随着冷负荷的继续下降,来自压缩机的转速信号继继关闭导流叶片,并提高电动机的转速。工作原理如
下图所示。
喘振会带来的后果:
1) 使压缩机的性能显著恶化,气体参数(压力、排量)产生大幅度脉动
2) 噪声加大。
3) 大大加剧整个机组的振动,喘振使用压缩机的转子和定子的元件经受交变的动应力,压力失调引起强
烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等,叶轮动应力加大;
4) 电流发生脉动;
凝器中的压力下降到等于压缩出口压力为止。这时压缩机又开始向冷凝器送气,压缩机恢复正常工作。但
当冷凝器中的压力也恢复到原来的压力时,压缩机的流量又减小,压缩机出口压力又下降,气体又产生倒
流,如此周而复始,产生周期性的气流振荡现象。
喘振是压缩机一种不稳定的运行状态,压缩机周期性的发生间断的吼响声,整个机组出现强烈的热气排到蒸发器,降低压比,同时提高排气量,从而避免喘振的发生。
2)变频防喘振措施
VSD是Varialbe Speed Drives的简称,译为变频驱动装置,通过调节电动机的转速和优化压缩机导流叶片
的位置,使机组在各种工况下,尤其是部分负荷情况下,始终保持最佳效率。
喘振发生的原因及解决方案
1、喘振的原因
离心机组运行在部分负荷时,压缩机导叶开度减小,制冷剂的流量变得很小,压缩机流道中出现严重的
气体脱流,压缩抽的出口压力突然下降。由于压缩机和冷凝器联通工作,而冷凝器中气体的压力并不同时
降低,于是冷凝器中的气体压力反大于压缩机出口外的压力,造成冷凝器中的气体倒流回压缩机,直至冷
VSD控制的基本参数是是冷水出水温度实际值与设定值的温差。

离心式压缩机喘振分析及消除措施

离心式压缩机喘振分析及消除措施

离心式压缩机喘振分析及消除措施喘振是倒流和供气的循环交替形成,如果发生喘振,将会对机组造成破坏,影响正常运行,有着危害性,要弄清喘振发生的原因,并研究消险喘振现象的措施,以提高离心式压缩机的工作性能,降低喘振带来的危害,是一项重要任务。

标签:离心式压缩机;喘振现象;危害;消除措施前言:离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。

在工业生产上,离心压缩机的安全性能起重要作用。

但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。

一、离心式压缩机的喘振现象根據流体力学理论,当离心式压缩机的操作工况与设计工况偏离时,气体的流量就会减少,进而进入叶轮的气流的方向就会发生变化。

当气体的流量减少到低于最小流量值时,天然气流在叶片进口处与叶片发生冲击效应较大,在气流的连续性和叶轮的连续旋转下,这种边界层分离的现象就会扩大,直至整个流道,在叶道中形成气流漩涡,从而形成“旋转脱离”或“旋转失速”。

当发生旋转脱离时,气流在叶道中不能顺利的通过去,造成机体的出口压力大于进口压力,排气管内较高压力的气体便倒流回来。

瞬时,使叶轮又达到了正常压力值,从而又恢复了正常工作,因此就会把倒流回来的气体压出去。

这样的重复现象,使机体发出“哮喘”声,这种现象叫做压缩机的“喘振”。

二、喘振的危害由于在发生喘振现象时气流有强烈的脉动以及其脉动的周期性,会产生有周期性的震荡,这样会使压缩机内部压力、流量等参数极其不稳定,有大幅度的波动,破坏了压缩机工作的稳定性。

在喘振时,叶片会发生强烈的振动,叶轮的应力大大增加,会产生很大的噪声,不利于工人工作的同时,也会产生一定的安全隐患。

喘振现象发生时会引起压缩机内部各种部件的摩擦与碰撞,如果喘振现象发生时间过长,就会使压缩机的轴弯曲变形,更加严重的时候就会发生轴振动过大,把叶轮碰坏的现象。

喘振原因及常用解决办法

喘振原因及常用解决办法

喘振是透平式压缩机也叫叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动;离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害离心式压缩机发生喘振时,典型现象有:1压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;2压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4机器产生强烈的振动,同时发出异常的气流噪声; 5离心机在极端部分负荷、冷却有问题时会发生目前来说解决喘振常用的方法:①在压气机上增加放气活门,使多余的气体能够排出;②使用可调节式叶片;③确保压气机足够流量;喘振的内部原因当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离;此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧;气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常;但是,当将倒灌进来的气体压出时,由于流量缺少补给,随后再次重复上述现象;这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,管网有周期性振荡振幅大频率低并伴有周期性吼叫声,压缩机振动强烈机壳轴承均有强烈振动并发出强烈的周期性的气流声,由于振动强烈轴承液体润滑条件会遭到破坏,轴瓦会烧坏转子与定子会产生摩擦碰撞密封元件将严重破坏;离心式压缩机在生产运行过程中有时会突然产生强烈振动气体介质的流量和压力也出现大幅度脉动并伴有周期性沉闷的呼叫声以及气流波动在管网中引起的呼哧呼哧的强噪声这种现象通称为压缩机的喘振工况,压缩机不能在喘振工况长时间运行一旦压缩机进入喘振工况操作人员应立即采取调节措施降低出口压力或增加入口流量使压缩机工况点脱离喘振区实现压缩机的稳定运行;从上述分析可以看出喘振不仅与叶轮流道中气体的旋转脱离有关而且与管网容量有密切关系管网容量愈大喘振的振幅也愈大,振频愈低管网容量愈小则喘振的振幅就小喘振频率愈高这就是喘振的内部原因;。

如何应对离心机振喘问题原因篇 离心机解决方案

如何应对离心机振喘问题原因篇 离心机解决方案

如何应对离心机振喘问题原因篇离心机解决方案振喘,有人将其比方为人群中常见的哮喘疾病。

当仪器设备发生振喘问题时,则会表现为低频率、高振幅的振荡。

在离心机中,高速冷冻离心机和超高速冷冻离心机显现喘振的几率较大,严重时,还有可能损坏离心机转子等配件。

就此,我整理了离心机发生振喘问题的常见原因。

原因一:蒸发器蒸发温度太低当蒸发器蒸发温度过低时,使离心机制冷量负荷减小,从而引发球阀开启度过小,造成蒸发压力过低导致仪器发生振喘。

原因二:冷凝器积垢开式循环的冷却水系统较为简单积垢,由此引发导致传热热阻增大,换热效果变差,使得冷凝温度上升或蒸发温度降低。

原因三:冷却塔冷却水循环量不足这一情况简单导致进水温度过高,引发冷凝压力过高等问题。

原因四:制冷系统中存在空气离心机运行时,其蒸发器与低压管路都应当处于真空状态,而通过连接处渗入的空气,又属于不凝性气体,绝热指数很高。

当空气聚集于冷凝器上部时,便会引发离心机喘振问题。

原因五:关机时未关小导叶角度或未降低离心机排气口压力当离心机停机时,由于增压蓦地消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,简单喘振。

离心机认真操作规程离心机是利用离心力使得需要被分别的不同物质得到加速从而分别的机器。

紧要分为沉降式离心机和过滤式离心机两大类。

沉降式离心机的紧要原理是通过转子高速旋转产生的强大的离心力,加快混合液中不同比重成分(固相或液相)的沉降速度,把样品中不同沉降系数和浮力密度的物质分别开。

过滤式离心机的紧要原理是通过高速运转的离心转鼓产生的离心力(搭配适当的滤材),将固液混合液中的液相加速甩出转鼓,而将固相留在转鼓内,达到分别固体和液体的效果,或者俗称脱水的效果。

离心机认真操作规程:1、离心样品密度要一样,离试管口保持3mm处。

2、密度相同、配平、管壁干燥的离心管对称状态置入挂篮内,拧紧对应的是试管盖,悬挂到对应的挂篮上上,空挂篮也要悬挂,为了使转子水平受力均匀,否则运行中会显现断轴的严重试验室事故。

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法

离心泵喘振的原因及解决方法一、离心泵喘振的原因1.轴向不平衡:离心泵的转子轴向不平衡是最常见的原因之一、转子轴向不平衡主要表现为泵的振动频率与叶轮的转速相等,并且振动频率较高。

2.动静脉动的相互作用:当泵的进口流速较低,特别是在小流量和高扬程的工况下,会发生动静脉动的相互作用,从而引起泵腔内的压力变化,导致离心泵喘振。

3.气液两相流过程中的喘振:在一些工况下,如气体液体混输过程中,液体在离心力的作用下往外移动,而气体则往内运动。

当两相流速达到一定值时,会出现气液两相流相互干涉的现象,进而引起离心泵喘振。

4.叶轮与封水系统的不匹配:封水系统对离心泵的运行非常重要,当封水系统的适配性不合理时,如低压封水系统与高压封水系统不匹配,会导致泵体产生振动和喘振。

5.液力喘振:液力喘振是指由于液体在流动过程中产生的涡流紊乱,使得离心泵产生涡旋振动。

液力喘振是一种自激振荡,其频率与泵的工况有关。

二、离心泵喘振的解决方法1.检查并平衡转子轴向:对于转子轴向不平衡,可以使用动平衡仪进行检测和校正。

通过调整转轴位置,使转子在运转过程中保持平衡。

2.优化动静脉动的相互作用:针对动静脉动相互作用引起的喘振问题,可以通过改变进口流道结构、增大进口流速或采用消除泡沫和空气的措施来优化系统的流态,减少动静脉动的相互作用。

3.控制气液两相流:针对气液两相流引起的喘振问题,可以通过调整输送流量和改变流道结构来控制两相流的速度,从而减少喘振的可能性。

4.优化封水系统:封水系统的适配性非常重要,应根据泵的工况选择合适的封水系统,并确保封水系统的压力和流量匹配稳定,避免封水系统不匹配引起的喘振问题。

5.设计合理的阻振器:在离心泵的设计和安装中,可以采用一些阻振措施,如设置阻振器、减振装置等,对泵的振动进行控制。

综上所述,离心泵喘振的原因有很多,涉及到流体力学、结构力学和系统设计等多个方面。

针对不同的原因,需要采取相应的解决方法,以降低离心泵喘振的发生概率,确保泵的正常运行和使用寿命。

离心机喘振原因有哪些及工作原理

离心机喘振原因有哪些及工作原理

离心机喘振原因有哪些及工作原理离心机喘振原因有哪些?在低负荷状态下,离心机都共有一个喘振问题。

那么离心机喘振原因有哪些?如何解决呢?1、冷凝器积垢冷凝器换热管内表水质积垢(开式循环的冷却水系统最简单积垢),而导致传热热阻增大,换热效果降低,使冷凝温度上升或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力上升而导致离心机喘振发生。

解决方法:清除传热面的污垢和清洗冷却塔。

2、制冷系统有空气当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极简单渗入空气,另外空气属不凝性气体,绝热指数很高,为 1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度上升,而导致离心机喘振发生。

解决方法:离心机接受K11制冷剂时,一般液体温度超过28℃时,表明系统中有空气存在。

排出方法:启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。

3、冷却塔冷却水循环量不足,进水温度过高由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。

解决方法:进行反喘振调整。

当能量调整大幅度削减时,造成吸气量不足,即蒸气不能均匀流入叶轮,导致排气压力陡然下降,压缩机处于不稳定工作区,而发生喘振。

为了防止喘振,可将一部分被压缩后的蒸气,由排气管旁通到蒸发器,不但可防喘振。

而且对离心机启动时也有益:削减蒸气密度和启动时的压力,可减小启动功率。

4、蒸发器蒸发温度过低由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。

解决方法:检查蒸发压力过低原因,制冷剂不足添加制冷剂,制冷量负荷小,关闭能量调整叶片。

5、关机时未关小导叶角度和降低离心机排气口压力当离心机停机时,由于增压蓦地消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,简单喘振。

解决方法:停离心机时应注意主电机有无反转现象,并尽可能关小导叶角度,降低离心机排气口压力。

离心式冷水机组喘振的原因与解决方法(附案例)

离心式冷水机组喘振的原因与解决方法(附案例)

离心式冷水机组喘振的原因与解决方法(附案例)制冷压缩机在工作过程中,当入叶轮的气体流量小于机组该工况下的最小流量(即喘振流量)限时,冷凝器制冷剂气体会倒流至压缩机,当压缩机的出口压力大于冷凝压力时,压缩机又开始排出气体,气流会在系统中产生周期性的振荡,具体体现在机组会作周期性大幅度的振动,这种现象工程上称之为喘振。

喘振是速度型离心式压缩机的固有特性。

因此对于任何一台压缩机,当排量小到某一极限点时就会发生该现象。

冷水机组是否在喘振点附近运行,主要取决于机组的运行工况。

在什么状态发生喘振只有通过对机器的试验,即不断减少其流量,才可以测出具体的喘振点。

由于压缩机叶轮流道内气体流量的减少,按照压缩机的特性曲线,其运行的工况点引向高压缩比方向。

这时气流方向的改变在叶轮入口产生较大的正冲角,使得叶轮叶片上的非工作面产生严重的气流“脱离现象”,气动损失增大,叶轮出口处产生负压区,引起冷凝器上部或蜗壳内原有的正压气流沿压降方向“倒灌”,退回叶轮内,使叶轮流道内的混合流量增大,叶轮恢复正常工作。

如此时压缩机工况点仍未脱离喘振点(区),又将出现上述气流的“倒灌”。

气流这种周期性的往返脉动,正是压缩机喘振的根本原因。

喘振是离心式压缩机的运行工况在小流量、高压比区域中所产生的一种不稳定的运行状态。

压缩机喘振时,将出现气流周期性振荡现象。

喘振带给压缩机严重的破坏,会导致下列严重后果:1)使压缩机的性能显著恶化,气体参数(压力、排量)产生大幅度脉动。

2)噪声加大。

3)大大加剧整个机组的振动。

喘振使压缩机的转子和定子的元件经受交变的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

4)电流发生脉动。

5)小制冷量机组的脉动频率比大型机组高,但振幅小。

不同于一般的机械振动,在压缩机出口产生气流的反复倒灌、吐出、来回撞击,使得主电机交替出现满载和空载,电流表指针或压缩机出口压力表指针产生大幅度无规律的强烈抖摆和跳动。

离心式压缩机喘振发生的机理、原因及预防措施!

离心式压缩机喘振发生的机理、原因及预防措施!

离⼼式压缩机喘振发⽣的机理、原因及预防措施!⼀、喘振发⽣的机理当离⼼式压缩机的操作⼯况发⽣变动并偏离设计⼯况时,如果⽓体流量减少则进⼊叶轮或扩压器流道的⽓流⽅向就会发⽣变化。

当流量减少到⼀定程度,由于叶轮的连续旋转和⽓流的连续性,使这种边界层分离现象扩⼤到整个流道,⽽且由于⽓流分离沿着叶轮旋转的反⽅向扩展,从⽽使叶道中形成⽓流漩涡,再从叶轮外圆折回到叶轮内圆,此现象称为⽓流旋离,⼜称旋转失速。

发⽣旋转脱离时叶道中的⽓流通不过去,级的压⼒也突然下降,排⽓管内较⾼压⼒的⽓体便倒流回级⾥来。

瞬间,倒流回级中的⽓体就补充了级流量的不⾜,使叶轮⼜恢复了正常⼯作,从⽽从新把倒流回来的⽓体压出去。

这样⼜使级中流量减少,于是压⼒⼜突然下降,级后的压⼒⽓体⼜倒流回级中来,如此周⽽复始,在系统中产⽣了周期性的⽓体振荡现象,这种现象称为“喘振”。

⼆、喘振发⽣的原因1、流量图1 不同转速下出⼝压⼒与流量的关系每台离⼼式压缩机在不同转速n下都对应着⼀条出⼝压⼒P与流量Q之间的曲线,如图1所⽰。

随着流量的减少,压缩机的出⼝压⼒逐渐增⼤,当达到该转速下最⼤出⼝压⼒时,机组进⼊喘振区,压缩机出⼝压⼒开始减⼩,流量也随之减⼩,压缩机发⽣喘振。

从曲线上看,流量减⼩是发⽣喘振的根本原因,在实际⽣产中尽量避免压缩机在⼩流量的⼯况下运⾏。

2、⽓体相对分⼦质量图2 不同相对分⼦质量时的性能离⼼压缩机在相同转速、不同相对分⼦质量下恒压进⾏的曲线,从曲线中可以看出,在恒压运⾏条件下,当相对分⼦质量M=20的⽓体发⽣喘振时,相对分⼦质量为M=25和M=28的⽓体运⾏点还远离喘振区。

因此,在恒压运⾏⼯况下,相对分⼦质量越⼩,越容易发⽣喘振。

3、⼊⼝压⼒图3 不同⼊⼝压⼒时的性能压缩机的⼊⼝压⼒P1>P2>P3,在压缩机恒压的运⾏⼯况下,⼊⼝压⼒越低,压缩机越容易发⽣喘振,这也是⼊⼝过滤器压差增⼤时,要及时更换滤⽹的原因。

4、⼊⼝温度图4 不同⼊⼝温度时的性能恒压恒转速下进⾏的离⼼式压缩机在不同⼊⼝⽓体温度时的进⾏曲线,从曲线上可以看出在恒压运⾏⼯况下,⽓体⼊⼝温度越⾼,越容易发⽣喘振。

离心式压缩机喘振原理

离心式压缩机喘振原理

离心式压缩机喘振原理喘振的原因通常可以归结为以下几种情况:1.气体流量与压缩比不匹配:当压缩机的工作点离开了设计范围,即气体流量和压缩比的匹配不合理时,就会发生喘振。

一般来说,离心式压缩机的设计工况是在特定的气体流量和压缩比范围内进行的。

如果超过了这个范围,就容易发生喘振。

2.气体不稳定性:一些气体在不同的压缩比下会发生热力学不稳定性,即存在压力和温度的波动现象。

这些波动将通过反馈回路进一步放大,导致压缩机发生振动。

3.系统堵塞或阻塞:如果系统中存在堵塞或阻塞,气体流动将受到限制,从而使得压缩机无法正常工作。

此时,压缩机可能会试图通过提高流量来克服这个问题,导致喘振的发生。

为了解决喘振问题,可以采取以下措施:1.优化设计:在离心式压缩机的设计过程中,应该充分考虑气体流动和压缩比的匹配。

通过合理的设计,可以最大程度地减少喘振的风险。

2.增加稳定性:通过改变压缩机的结构和控制策略,可以提高其工作的稳定性。

例如,在压缩机的出口增加脉动消除器,可以降低气体流动的不稳定性。

3.检测和控制:监测离心式压缩机的运行状态,及时发现异常振动和声音。

通过自动控制系统对压缩机进行调节,可以避免喘振的出现。

4.维护和保养:定期检查和维护压缩机,确保其正常运行。

及时清理系统中的污垢和堵塞物,以保证气体流动的畅通。

综上所述,离心式压缩机的喘振是由多种原因引起的,包括气体流量与压缩比不匹配、气体不稳定性以及系统堵塞或阻塞等。

为了解决喘振问题,可以通过优化设计、增加稳定性、检测和控制、维护和保养等方式进行。

这些措施可以提高压缩机的工作效率和稳定性,延长设备的使用寿命。

离心机喘振分析

离心机喘振分析

原因:冷凝压力上升或蒸发压力低下造成吐出侧冷剂气体逆流故障现象:压缩机电流出现明显波动,非变频工况时,机组声音突然减小。

故障判断:主电动机起动结束后,过了5分钟,开始检测主电动机电流。

检测开始后,时刻对当前的主电动机电流值和0.1秒(可调)前的主电动机电流值进行比较,从检测出主电动机电流值的振幅(上升、下降)起,5秒钟(可调)内进行电流振幅比(上升电流值/下降电流值)的演算。

电流振幅比为1.060(可调)以上,判断为喘振,计喘振次数为1次。

检测出喘振后120秒(可调)内,发生3次(固定值)时,为故障停机(ER0062:喘振)。

ER0062 喘振低压头喘振(额定电流40%~50%间1min内波动3次以上)高压头喘振 (额定电流50%~60%间1min内波动3次以上)离心机喘振原因分析及解决办法:离心机喘振是离心机的杀手,高速冷冻离心机和超高速冷冻离心机出现喘振的几率比较大,严重时会损坏离心机转子等配件,下面我们就来分析下离心机喘振的原因和解决方方:离心机喘振原因1.冷凝器积垢:冷凝器换热管内表水质积垢(开式循环的冷却水系统最容易积垢),而导致传热热阻增大,换热效果降低,使冷凝温度升高或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力升高而导致离心机喘振发生。

2.制冷系统有空气:当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极容易渗入空气,另外空气属不凝性气体,绝热指数很高,为1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度升高,而导致离心机喘振发生。

3.冷却塔冷却水循环量不足,进水温度过高等。

由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。

4.蒸发器蒸发温度过低:由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。

5.关机时未关小导叶角度和降低离心机排气口压力。

当离心机停机时,由于增压突然消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,容易喘振。

离心机显现喘振现象的原因分析 离心机解决方案

离心机显现喘振现象的原因分析 离心机解决方案

离心机显现喘振现象的原因分析离心机解决方案离心机自问世以来,因经低速、调整、超速的变迁,其进展紧要体现在离心设备的离心技术两方面,它们二者是相辅相成的。

从转速方面来看,台式离心机基本属于低速、高速离心机的范畴,所以它具有低速和高速离心机的技术特点。

台式离心机的结构紧要是由电机驱动系统、制冷系统、机械系统、转头和系统掌控等几部分构成,与落地式离心机相比,只不过是尺寸和容量要小一点。

目前来讲,通过台式离心的进展已经模糊了低速、高速、微量和大容量离心机的界线,浩繁的转为科研人员供应相当广泛的应用范围,成为科学试验室机型。

一般来说,试验室用的离心机zui常显现的故障就是喘振现象。

离心机显现喘振现象是离心机的杀手。

对于高速冷冻离心机和超高速冷冻离心机显现喘振的几率比较大,假如喘振的严重时,还会损坏离心机离子等配件。

那么,为什么离心机会显现喘振呢?一方面,可能是由于冷凝器积垢,一旦冷凝器结垢,就会导致传热阻力增大,换热效果降低,这样就使冷凝温度上升或蒸发温度降低。

另外,假如水质没有经过处理或维护不到位,也一样会造成换热管内表面沉淀沙土、杂质、藻类等物,进而造成冷凝压力上升而导致离心机喘振发生。

另一方面,那可能是制冷系统有空气,当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极简单渗入空气,另外,空气属不凝性气体,绝热的指数是很高的,大约在1:4,所以当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度上升,也会导致离心机显现喘振现现象。

另外,假如冷却塔冷却水循环量不足,进水温度过高等,都可能导致离心机显现喘振现象。

同时,还有很多可能,比如蒸发器蒸发温度过低,或关机时没有把小导叶角度和降低离心机排气口压力,这都可能引起离心机喘振。

所以,一旦离心机显现喘振现象,确定要先找准原因,再对症下药,万不可盲目认为是哪一方面的原因,否则可能会个的损坏离心机。

高速冷冻离心机常见故障处理高速冷冻离心机仪器的故障分为必定性故障和偶然性故障。

离心式鼓风机喘振原因分析及对策

离心式鼓风机喘振原因分析及对策

离心式鼓风机喘振原因分析及对策离心式鼓风机喘振原因分析及对策1喘振1.1喘振产生的原因在鼓风机运转过程中,当流量不断减少到最小值Qmin(喘振工况)时,进入叶栅的气流发生分离,在分离区沿着叶轮旋转方向并以比叶轮旋转角速度小的速度移动。

当旋转脱离扩散到整个通道,会使鼓风机出口压力突然大幅下降,而管网中压力并未马上减低,于是管网中的气体压力就大于鼓风机出口处的压力,管网中的气体倒流向鼓风机,直到管网中的压力下降至低于鼓风机出口压力才停止。

接着,鼓风机开始向管网供气,将倒流的气体压出去,使机内流量减少,压力再次突然下降,管网中的气体重新倒流至风机内,如此周而复始,在整个系统中产生周期性的低频高振幅的压力脉动及气流振荡现象,并发出很大的声响,机器产生剧烈振动,以致无法工作,这就产生了喘振。

1.2影响喘振的主要因素①转速离心式压缩机转速变化时,其性能曲线也将随之改变。

当转速提高时,压缩机叶轮对气体所做的功将增大,在相同的容积流量下,气体的压力也增大,性能曲线上移。

反之,转速降低则使性能曲线下移。

随着转速的增加,喘振界限向大流量区移动。

②管网特性离心式鼓风机的工作点是鼓风机性能曲线与管网特性曲线的交点,只要其中一条曲线发生变化(如将鼓风机出口阀关小),工作点就会改变。

管网阻力增大,其特性曲线将变陡,致使工作点向小流量方向移动。

③进气状态在实际生产中,进气压力过低、背压过高、进(排)气量忽然减少、进气温度过高、鼓风机转速忽然降低、机械故障、进口风道过滤网堵塞、生物池污泥浓度过高、曝气头堵塞、喘振报警装置失灵等都会引起鼓风机喘振。

2喘振的判断及消除2.1喘振现象的判断①鼓风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也会发生很大的波动。

②鼓风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。

③鼓风机发出“呼噜、呼噜”的声音,使噪声剧增。

④风量、风压、电流、振动、噪声均发生周期性的明显变化。

离心压缩机异常振动、异常噪音、喘振原因与处理方法

离心压缩机异常振动、异常噪音、喘振原因与处理方法
离心压缩机异常振动、异常噪音、喘振原因与处理方法
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心机“喘振”的原因和解决方法
高速冷冻离心机和超高速冷冻离心机出现“喘振”的几率比较大,严重时会损坏离心机转子等重要配件。

这一现象,被离心机专家形象地喻为离心机“杀手”。

下面就让小编为我们来分析下离心机“喘振”的原因和解决方法,以避免各客户厂家购买离心机后,出现“喘振”现象,减少损失。

离心机喘振原因
1.冷凝器积垢:冷凝器换热管内表水质积垢(开式循环的冷却水系统最容易积垢),而导致传热热阻增大,换热效果降低,使冷凝温度升高或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力升高而导致离心机喘振发生。

2.制冷系统有空气:当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极容易渗入空气,另外空气属不凝性气体,绝热指数很高,为1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度升高,而导致离心机喘振发生。

3.冷却塔冷却水循环量不足,进水温度过高等。

由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。

4.蒸发器蒸发温度过低:由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。

5.关机时未关小导叶角度和降低离心机排气口压力。

当离心机停机时,由于增压突然消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,容易喘振。

离心机喘振排除
1.冷凝器结垢:清除传热面的污垢和清洗冷却塔。

2.系统中空气排除:离心机采用K11制冷剂时,一般液体温度超过28℃时,表明系统中有空气存在。

排除方法:启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。

3.启动后发生喘振:进行反喘振调节。

当能量调节大幅度减少时,造成吸气量不足,即蒸气不能均匀流入叶轮,导致排气压力陡然下降,压缩机处于不稳定工作区,而发生喘振。

为了防止喘振,可将一部分被压缩后的蒸气,由排气管旁通到蒸发器,不但可防喘振.而且对离心机启动时也有益:减少蒸气密度和启动时的压力,可减小启动功率。

4.蒸发压力过低:检查蒸发压力过低原因,制冷剂不足添加制冷剂,制冷量负荷小,关闭能量调节叶片。

5.停机时喘振:停离心机时应注意主电机有无反转现象,并尽可能关小导叶角度,降低离心机排气口压力。

离心机操作过程中,应保持冷凝压力和蒸发压力的稳定,使离心机制冷量高于喘振点对应制冷量,以防喘振发生
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。

相关文档
最新文档