小学奥数计算要点知识点整理汇总及典型例题讲解

合集下载

(新)小学数学奥数34个解答公式+30类对应经典题型汇总附解析

(新)小学数学奥数34个解答公式+30类对应经典题型汇总附解析

34+30 1、和差倍问题:2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4、植树问题:5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7、牛吃草问题:基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

[荐]小学奥数核心公式及经典例题详解

[荐]小学奥数核心公式及经典例题详解

小学奥数核心公式及经典例题详解1.鸡兔同笼问题【含义】这是古典的算术问题。

已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。

已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】第一鸡兔同笼问题:①假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)②假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:①假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)②假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)140-80=60(只)60÷6=10(只)鸵鸟:70-10=60(只)。

例3:李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。

鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。

把1只鸡和1只兔子看做一组,共有6条腿。

前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。

例4:一次数学考试,只有20道题。

做对一题加5分,做错一题倒扣3分(不做算错)。

小学1-6年级奥数难点解析,附34个必考公式

小学1-6年级奥数难点解析,附34个必考公式

现在,越来越多的家长希望孩子学习奥数。

奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。

今天,搜集整理了1-6年级奥数学习重点和部分例题,相信一定可以帮到各位家长。

一年级奥数一年级的孩子刚刚踏入小学。

不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。

学习重点难点解析:巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。

如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。

另外,计算与速算是各种后续问题学习的基础。

学好数学,首先就要过计算这关。

认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。

通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。

学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。

在华数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。

枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。

数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使华数学习更加系统。

二年级奥数二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习奥数不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打下坚实的基础。

对于二年级的学生家长来说,激发孩子对华数的兴趣是最主要的。

学习重点难点解析:计算要过关:对于二年级学生的奥数学习来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。

小学奥数。通项归纳 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数。通项归纳 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数。

通项归纳精选练习例题含答案解析(附知识点拨及考点)例1:求1+2+4+8+16+32+64+128+256+512+1024的和。

解析:方法一:令a=1+2+4+8+。

+1024,则2a=2+4+8+16+。

+1024+2048,两式相减,得a=2048-1=2047.方法二:找规律计算得到1024×2-1=2047.答案:2047例2:在一列数:1/3,5/7,9/11,13/15,17/19,21/23中,从哪一个数开始,1与每个数之差都小于1/1000?解析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要1-从n=1000开始,即从2n-1/2n+1开始,满足条件2n-1/2n+1-1999.5,所以从第n=1000开始满足条件。

答案:2n-1/2n+1,n=1000例3:计算:1+1/11+1/111+1/1111+。

+1/.解析:先找通项公式an=1/(10^n-1),原式=1/10+1/110+1/1110+。

+1/xxxxxxx,先通项归纳:an=1/(10^n-1),原式=1/10(1+1/11+1/111+。

+1/),用等比数列求和公式得到原式=175/264.答案:175/264巩固:计算:1+3/2+5/6+7/12+。

+111/2016.解析:先通项归纳:an=(2n-1)/(n(n+1)),原式=1+3/2+5/6+。

+111/2016=1/1+2/4+3/6+。

+56/2016,化简得原式=1/1+1/2+1/3+。

+1/96,用调和级数求和公式得到原式=111/64.答案:111/64.例4】将原式化简:frac{1\cdot2}{1\cdot2\cdot3}\cdot\frac{2\cdot3}{2\cdot3\cdo t4}\cdot\frac{3\cdot4}{3\cdot4\cdot5}\cdots\frac{6\cdot7}{6\cdot7\cdot8}$$frac{1}{3\cdot4}\cdot\frac{2}{4\cdot5}\cdot\frac{3}{5\cdot6 }\cdots\frac{6}{8\cdot9}$$frac{1}{3}\cdot\frac{1}{5}\cdot\frac{1}{7}\cdot\frac{6}{9\c dot4}$$frac{2}{315}$$例5】将原式化简:frac{n^2+1}{2n(n+1)}$$frac{1}{n(n+1)}+\frac{1}{2n}-\frac{1}{2(n+1)}$$巩固】计算:frac{(1+\frac{1}{2})(1+\frac{1}{4})\cdots(1+\frac{1}{2^{1 0}})-1}{\frac{1}{2}\cdot\frac{3}{2}\cdots\frac{2^{10}-1}{2^{10}-2}}$$frac{\frac{3}{2}\cdot\frac{5}{4}\cdots\frac{1025}{1024}}{\ frac{1}{2}\cdot\frac{3}{2}\cdots\frac{1023}{1022}}-1$$ frac{1025}{2^{10}}-1$$frac{513}{512}$$例6】计算:$\frac{1+2}{2}+\frac{2+3}{3}+\frac{3+4}{4}+\cdots+\frac{50+1 }{50}$解析】利用通项公式$a_n=\frac{n+(n+1)}{n}=2-\frac{1}{n}$,则原式$=\sum\limits_{k=1}^{50}a_k=\sum\limits_{k=1}^{50}\left(2-\frac{1}{k}\right)$,将其拆开,得到原式$=50\cdot 2-\sum\limits_{k=1}^{50}\frac{1}{k}$。

小学奥数最常见22个知识详解,附公式及例题

小学奥数最常见22个知识详解,附公式及例题

小学奥数最常见22个知识详解,附公式及例题!今天,我们分享小学阶段的二十多种数学题型归类总结,家长快快为孩子收藏,一起学习吧! 总22个知识内容,本文包含第12—第22个知识;查看前11个知识点,请点击:①小学奥数最常见22个知识详解,附公式及例题!归一问题归总问题和差问题和倍问题差倍问题倍比问题相遇问题追及问题植树问题年龄问题行船问题火车过桥时钟问题盈亏问题工程问题牛吃草鸡兔同笼商品利润存款利率溶液浓度列方程错中求解12题型十二:火车过桥问题【含义】这是与列车行驶有关的问题,解答时注意列车车身的长度。

【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速【解题思路】利用数量关系及其变式求解。

【例】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。

这列火车长多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

先求火车三分钟行多少米——900×3=2700(米)再求火车长度——2700-2400=300(米)综合算式:900×3-2400=300(米)13题型十三:时钟问题【含义】研究钟面上时针与分针的关系问题,如两针重合、两针垂直、两针成一线、两针呈夹角等。

【数量关系】分针的速度是时针的12倍。

二者的速度差为11/12。

【解题思路】变通为“追及问题”或者“差倍问题”求解。

【例】从时针指向4点开始,再经过多少分钟时针正好与分针重合。

解:根据数量关系,每分钟分针比时针多走(1-1/12)=11/12格。

4点整时,时针在前,分针在后,两针相距20格。

所以分针追上时针的时间为20÷(1-1/12)≈22分14题型十四:盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或者两次都有余,或者两次都不足的问题。

【数量关系】一盈一亏,则有:参加分配总人数=(盈+亏)÷分配差两次都盈或两次都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路】分清是哪种盈亏问题,直接套用公式。

小学奥数知识点梳理

小学奥数知识点梳理

小学奥数知识点梳理一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数3.估算求某式的整数部分:扩缩法4.比较大小①通分a.通分母b.通分子②跟中介比③利用倒数性质5.定义新运算6.特殊数列求和二、数论1.奇偶性问题奇丁可一偶^奇X可一^奇奇+偶=奇奇X偶-偶偶十偶-偶偶X偶-偶2.位值原则3.数的整除特征:2末尾是0、2、4、6、83各数位上数字的和是3的倍数5末尾是0或59各数位上数字的和是9的倍数11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25末两位数是4(或25)的倍数8和125末三位数是8(或125)的倍数7、11、13末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果cla、clb,那么cl(ab)。

②如果bcla,那么bla,cla。

③如果bla,cla,且(b,c)=1,那么bcla。

④如果clb,bla,那么cla.⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法一般地,如果a是整数,b是整数(b0),那么一定有另外两个整数q和r,0r<b,使得a=bxq+r当r=0时,我们称a能被b整除。

当r0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为ab=qr,0r<ba=bxq+r6.唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n=plxp2x...xpk7.约数个数与约数和定理设自然数n的质因子分解式如n=plxp2x...xpk那么:n的约数个数:d(n)=(a1+1)(a2+1).…(ak+1)n的所有约数和:(1+1+1+p1)(1+2+2+p2)(1+k+k+pk)8.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为三b(modm)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数作为数学学习的拓展和深化,对于培养孩子的逻辑思维和解题能力有着重要的作用。

以下是对小学阶段奥数常见知识点的汇总。

一、计算类1、速算与巧算这部分主要涉及到一些运算技巧,比如乘法分配律、结合律、交换律,加法交换律和结合律等。

通过对这些运算定律的灵活运用,可以快速准确地计算出结果。

例如:25×32×125 = 25×(4×8)×125 =(25×4)×(8×125)=100×1000 = 1000002、等差数列等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

要掌握等差数列的通项公式、求和公式等。

通项公式:an = a1 +(n 1)d (其中 a1 为首项,d 为公差,n 为项数)求和公式:Sn = n(a1 + an)÷23、分数计算包括分数的加减乘除运算,以及通分、约分等操作。

需要熟练掌握分数的基本性质,将复杂的分数计算化简。

二、数论类1、整除问题了解能被 2、3、4、5、6、8、9 等数整除的特征。

例如:能被 2 整除的数的个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

2、质数与合数质数是指一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数。

合数则是指除了能被 1 和本身整除外,还能被其他数(0 除外)整除的自然数。

要知道常见的质数和合数,以及如何判断一个数是质数还是合数。

3、余数问题包括有余数的除法运算,以及利用余数解决问题。

三、图形类1、平面图形(1)三角形:三角形的内角和是 180 度,掌握三角形的面积公式(面积=底×高÷2),以及不同类型三角形(等边三角形、等腰三角形、直角三角形)的特点。

(2)四边形:包括平行四边形、长方形、正方形、梯形等。

要了解它们的周长和面积计算方法。

(3)圆形:掌握圆的周长(C =2πr 或 C =πd)和面积(S =πr²)公式。

小学奥数 分数的除法 知识点+例题+练习 (分类全面)

小学奥数 分数的除法 知识点+例题+练习 (分类全面)
5、 89 的倒数与56 的积是多少?
6、 100的倒数的19倍 是多少?
知识点2、分数的除法
分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
先约分再计算。只有在乘号的两边或连乘时才能约分。注:0不能做除数。
例如:
例1、计算
÷4= ÷3= = ÷0.4=
= 14÷ = ÷ = ÷ =
1÷ = ÷ = ÷ = × =
教学内容
分数的除法
教学目标
掌握分数的除法
重点
分数的除法
难点
分数的除法
教学准备
纸、笔




课堂精讲
知识点1、倒数
(一)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例2、计算
÷ ÷ ( + )÷ ÷ 0.2×
例3、解方程
x = 15 x÷ = x÷ =18
3.计算(能简算的要简算)
知识点3、混合运算
(1)运算顺序:先乘除后加减,有括号的先算括号里面的。只有加减法或只有乘除法从左往右依此计算。
(2)运算定律:
加法:加法交换律 a+b=b+a
加法结合律 a+b+c=a+(b+c)
7、 真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
例题:
1、( )的两个数叫做互为倒数。
2、 的倒数是( ) 的倒数是( )
3、 23 的倒数是( ),7的倒数是( ),4 的倒数是( ),7 的倒数是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数计算要点知识点整理汇总及典型例题讲解速算与巧算一、加减法中的巧算:1、加补数法两个自然数相加,如果它们的和恰好是整十、整百、整千……那么就称其中的一个数为另一个数的“补数”,这两个数称为互补。

在加减法的运算中,如果有两个加数互为补数,那么可以先求出它们的和,使计算迅速简便;如果题中没有互补的加数,那么可以设法分出互补的加数,以便凑成整十、整百、整千……的数。

2、去括号和添括号的法则在只有加减的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+c+d)=a-b-c-da-(b-c)=a-b+c如:100+(10+20+30)=100+10+20+30=160100-(10+20+30)=100-10-20-30=40100-(30-10)=100-30+10=803、找“基准数”法在算式中的加减运算中,当所有数都接近某个数时,可以将这个数作为基数,然后把每个数都看作是基数,计算,并且算出每个数与基数的差值,最后从结果中减去或加上这些差值。

4、分组凑整法先把能凑成整十或整百(包括0)的数结合在一起,再把它们各自的结果数相加。

5、位值原理法当遇到复杂的加减运算时,可以将每个数按位值分解,使具有相同位值的优先加减,最后将各个位值运算的结果合并起来,使运算简化。

6、带“符号”搬家如325+46-125+54=325-125+46+54=(325-125)+(46+54)=200+100=300。

二、乘法中的巧算:1、两数的乘积是整十、整百、整千,要先乘。

为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=10002、拆并法在乘除法的计算问题中,观察题目,将其中的部分数拆分,从而能够使用相应的乘除法分配率、结合率等等。

3、特殊因数的巧算下面介绍几种特殊巧算的方法:1、一个数与99相乘,先在这个数后添00,再减去此数。

例:3×99=297=300-3。

2、两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1。

例:12×11=?,49×11=?。

分析:方法是:两边一拉,中间相加,满十进1。

3、三位数与11相乘的速算方法同样可以概括为“两边拉,中间加”。

注意中间是相邻位相加。

例:4、两位数与101相乘,积是把这个两位数连续写两遍。

例:巧算两位数与101相乘:101×43=?101×89=?可得上述结论。

5、三位数与1001相乘,积是把这个三位数连续写两遍。

例:巧算三位数与1001相乘:1001×132=?1001×436=?可得上述结论。

6、被乘数与乘数的十位数字相同、个位数字互补,这类式子我们称为“头相同、尾互补”型。

被乘数与乘数的十位数字互补、个位数字相同,这类式子我们称为“头互补、尾相同”型。

对于计算这两类题目,有非常简捷的速算方法,分别称为“同补”速算法和“补同”速算法。

“同补”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×(头+1)”。

“补同”速算法简单地说就是:积的末两位是“尾×尾”,前面是“头×头+尾”。

三、除法中的巧算:1、在除法中,利用商不变的性质巧算在除法里,被除数和除数同时扩大或缩小相同的倍数(零除外),商不变。

这就叫商不变的性质。

商不变的性质是进行除法简便运算的依据,也是今后学习小数乘除法,分数、比的基本性质等知识的基础,我们要学会根据商不变的性质,用简便方法计算被除数和除数末尾有零的除法,即当被除数和除数末尾都有0的时候,可以运用商不变的性质,使被除数和除数末尾都去掉相同个数的0,可以使计算简便。

2、在乘除混合运算中,乘数和除数都可以带符号“搬家”。

如864×27÷54=864÷54×27=16×27=432。

3、当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。

4、在乘除混合运算中的“去括号”或“添括号”的方法:如果“括号”前面是乘号,,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,填括号的方法与去括号类似。

即a×(b÷c)=a×b÷c从左往右看是去括号,a÷(b×c)=a÷b÷c从右往左看是添括号,a÷(b÷c)=a÷b×c如:1320×500÷250=1320×(500÷250)=1320×2=26404000÷125÷8=4000÷(125×8)=4000÷1000=45600÷(28÷6)=5600÷28×6=200×6=1200。

数列与数阵数字谜比较和估算定义新运算我们学过的常用运算有:+、-、×、÷等。

如:2+3=52×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际上是对应法则不同。

可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算。

当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应。

只要符合这个要求,不同的法则就是不同的运算。

定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

正确理解定义的运算符号的意义。

注意事项:(1)新的运算不一定符合运算规律,特别注意运算顺序。

(2)每个新定义的运算符号只能在本题中使用。

计算综合在计算问题中,可能涉及到四则运算、速算与巧算、数列计算、定义新运算及比较与估算等多个知识点的综合运用。

分数和小数的互换分数转化成小数的一般方法:用分数的分子除以分数的分母,除不尽的一般保留三位小数。

分数转化为有限小数的判断方法:(1)不是最简分数的,要先把它约成最简分数。

(2)能化成有限小数的分母中只含有质因数2和5;(3)如果分母中含有2和5以外的质因数,就不能化成有限小数。

分数转化成循环小数的判断方法:(1)一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。

(2)一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。

小数转化成分数的一般方法:小数化成分数时,原来有几位小数,就在1后面写几个0作分母,原来的小数去掉小数点作分子。

注意约分的要约分。

循环小数化分数的公式:;;;,……循环小数化分数的规则:循环小数所化成的分数的分母由9和0组成,分母中9的个数与循环小数的循环节的位数相同,9后面的0的个数与循环小数小数点后不循环的位数相同;分子则是小数点后不循环的部分与第一个循环节所组成的多位数与不循环部分组成的多位数的差。

如果这样所得的分数不是最简分数,还需要将其化简。

繁分数的计算1、繁分数的定义:分子和分母中还含有分数或四则混合运算的分数叫做繁分数,通常无法应用运算定律和运算性质进行计算,因此繁分数的运算过程就是化简的过程,要分别对分子和分母逐步进行运算,其间需要扎实的基本功:概念清楚,运算迅速正确,而且还需要探索和掌握一些灵活的解题方法,化“繁”为“简”。

繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。

主分线比其他分数线要长一些,书写位置要取中。

在运算过程中,主分线要对准等号。

如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。

如:根据分数与除法的关系,分数除法的运算也可以写成繁分数的形式。

2、繁分数计算的技巧:(1)先找出繁分数中主分线,确定分子部分和分母部分,然后这两部分分别进行计算,每部分的计算结果能约分的要约分,最后改成“分子部分÷分母部分”的形式,再求出结果。

如:(2)繁分数化简的另一种方法是:根据分数的基本性质,将繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。

3、混合运算的技巧:繁分数的分子部分和分母部分,有时也出现是小数的情况,如果分子部分与分母部分都是小数,可依据分数的基本性质,把它们都化成整数,然后再进行计算。

如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。

即:把小数化成分数,或把分数化成小数,再进行化简。

即在复杂的题型中,需要进行分数、小数的化简,一般来说:1)、化小数为整数:若分子、分母都是小数还可以利用分数的基本性质,分子与分母同时扩大相同的倍数,把小数化成整数再化简。

2)、化小数为分数:繁分数中的分子或分母若含有小数,则一般可把小数化成分数再化简。

3)、化分数为小数:繁分数中的分子或分母部分所含有的分数可化为有限小数,则可把分子或分母中的分数化为小数再化简。

4)、化带分数为假分数:繁分数中的分子或分母若含有带分数,则把带分数化为假分数再化简。

5)、化多层为单层:化简复杂的繁分数要学会分层化简。

6)、化复杂为简单:繁分数的分子或分母部分若含有加减运算,则先加减运算再按繁分数化简方法进行化简。

繁分数的分子、分母都是连乘运算可以分子、分母直接约分化简。

(1);(2)。

运算律我们熟悉的运算律有:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律。

简言之,即:交换律、结合律、分配律。

1、交换律:交换律是被普遍使用的一个数学名词,意指能改变某物的顺序而不改变其最终结果。

在四则运算中,加法和乘法都满足交换律。

在小学课本中的表述如下:加法交换律:两个数相加,交换加数的位置,它们的和不变。

a+b=b+a。

乘法交换律:两个数相乘,交换因数的位置,它们的积不变。

a×b=b×a。

2、结合律:在常见的四则运算中,加法和乘法都满足结合律。

在小学课本中表述如下:加法结合律:三个数相加,先把前面两个数相加,再加第三个数,或者先把后面两个数相加,再和第一个数相加,它们的和不变。

相关文档
最新文档