大学物理下册练习及复习资料
《大学物理》复习题及答案
《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
(完整word版)《大学物理》下册复习资料
《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理下册总复习汇总
(D)都小于 L / 2 。
[D ]
16
设两个半环式的螺线管的自感系数为L’,
I
I
1
(L d I dt
M
dI dt
)
(L
M)
dI dt
2
(L d I dt
M
dI dt
电磁学、相对论、量子物理总复习
教师: 李美姮
1
一、选择题:
1. 半径分别为 R,r 的两个金属球,相距很远。用一根细长
导线将两球连接在一起并使它们带电,在忽略导线的影响
下,两球表面的电荷面密度之比 R / r 为:
(A) R / r , (B)R2 / r2 ,
(C)r2 / R2 , (D)r / R .
并联: I p Rp IQ RQ IQ 2I p
Wp
L
p
I
2 p
1
WQ
LQ
I
2 Q
2
15
14. 已知圆环式螺线管的自感系数为 L ,若将该螺线管锯成 两个半环式的螺线管,则两个半环式的螺线管的自感系数为:
(A)都等于 L / 2 ;
(B)有一个大于 L / 2 ,另一个下于 L / 2 ;
(C)都大于 L / 2 ;
带电体产生的.
(A) 半径为R的均匀带电球面; (B) 半径为R的均匀带电球体;
E dS
1
S
0
i
q内
(C) 点电荷;
(D) 外半径为R,内半径为R / 2的均匀带电球壳体.
E Er 关系曲线
E
E 1/ r2
R
3 0
r2
OR
r
O
R
r
[A ]
《大学物理》第八章至十一章练习题及资料整理总结
《大学物理》(下)复习提纲第八章静止电荷的电场(1)掌握电场强度的迭加法计算。
掌握库仑定律。
(2)掌握电场强度通量计算方法、高斯定理。
(3)掌握静电场的环路定律,电势能和电势的定义和计算公式。
(4)掌握导体静电平衡时电荷如何分布。
导体静电平衡后的电势计算方法以及平行板电容器的电容公式。
(5)掌握电介质在外电场中极化性质和电介质中的高斯定理。
要会用介质中高斯定理定性分析介质中电场和电势,掌握电场能量计算公式。
1.如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d 的P点的电场强度.2.电荷为+q 和-2q 的两个点电荷分别置于x=1 m和x=-1 m处.一试验电荷置于x 轴上何处,它受到的合力等于零?3.若匀强电场的场强为E ,其方向平行于半径为R 的半球面的轴,如图所示.则通过此为半球面的电场强度通量Φe___________________,如果图是B,通量Φ为___________________。
e4.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于___________________,如果电荷为q 的点电荷位于立方体的中心上,通过侧面abcd 的电场强度通量等于通量e Φ为___________________。
5.根据高斯定理的数学表达式∑⎰=⋅0/εq S d E S可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.6.三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_______________,E D =_________________ (设方向向右为正).7. 真空中一“无限大”均匀带电平面,其电荷面密度为σ (>0).在平面附近有一质量为m 、电荷为q (>0)的粒子.试求当带电粒子在电场力作用下从静止开始垂直于平面方向运动一段距离l 时的速率.设重力的影响可忽略不计.8. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在各个区域距离轴线为 r 处的 P 点的电场强度大小E 为 _______________________.9.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径. A 、B 两处各放有一点电荷,电荷分别为+q 和-q .把另一电荷为Q (Q <0 )的点电荷从D 点沿路径DCO 移到O 点,则电场力所做的功为___________________10. 将电荷均为q 的三个点电荷一个一个地依次从无限远处缓慢搬到x 轴的原点、x = a 和x = 2a 处.求证外界对电荷所作之功为设无限远处电势能为零.11. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10-8C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.12. 如图所示,两个同心的均匀带电球面,内球面半径为R1、带电荷Q1,外球面半径为R2、带有电荷Q2.设无穷远处为电势零点,试求下图(A),(B),(C)三图中、距离球心为r 处的P点的电势U为分别为__________________,__________________,__________________。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
《大学物理学》第二版下册习题解答
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。
大学物理下册复习题
大学物理下册复习题大学物理下册复习题大学物理是一门重要的学科,它涵盖了许多基础概念和原理,对于培养学生的科学思维和解决问题的能力至关重要。
下册的复习题是检验学生对所学知识的掌握程度的重要工具。
本文将对大学物理下册的复习题进行一些讨论和解答,希望能够帮助同学们更好地复习和理解物理知识。
第一章:电磁感应电磁感应是大学物理下册的重要内容之一。
在这一章中,我们学习了法拉第电磁感应定律和楞次定律,了解了电磁感应现象的产生和应用。
1. 简述法拉第电磁感应定律和楞次定律的内容及其应用。
法拉第电磁感应定律表明,当磁通量的变化率通过一个闭合回路时,该回路中会产生感应电动势。
楞次定律则说明,感应电动势的方向总是使得感应电流产生的磁场抵消磁通量的变化。
这两个定律常常被应用于发电机、变压器等电磁设备的设计和工作原理的解释。
2. 一个导体的一端以速度v进入磁感应强度为B的均匀磁场,另一端离开磁场。
求导体两端的感应电动势。
根据法拉第电磁感应定律,感应电动势与磁通量的变化率成正比。
当导体进入磁场时,磁通量逐渐增加,感应电动势的方向使得感应电流产生的磁场与外磁场相反,即感应电流的方向与导体运动方向相反。
当导体离开磁场时,磁通量逐渐减小,感应电动势的方向使得感应电流产生的磁场与外磁场同向,即感应电流的方向与导体运动方向相同。
因此,导体两端的感应电动势分别为正和负。
第二章:电磁波电磁波是一种传播电磁能量的波动现象,也是大学物理下册的重要内容之一。
在这一章中,我们学习了电磁波的特性、传播速度以及电磁波的谱系。
1. 什么是电磁波?它有哪些特性?电磁波是一种由电场和磁场相互作用而产生的波动现象。
它具有以下特性:- 电磁波是横波,即电场和磁场的振动方向垂直于波的传播方向。
- 电磁波在真空中的传播速度为光速,即299,792,458米/秒。
- 电磁波具有波长、频率和振幅等特性,它们之间的关系由光速公式c=λf给出。
2. 电磁波的谱系是什么?电磁波的谱系是根据其频率范围将电磁波分为不同类型的分类系统。
大学物理下册总复习(可拷)全篇
0
可见光波长范围 3900 ~ 7600 A
干涉
nr为介质中与路程 r 相应的光程。
位相差与光程差: 2
两相干光源同位相,干涉条件
a· b· n
r 介质
k ,
k 0,1,2…加强(明)
(2k 1)
2
杨氏干涉
k 0,1,2…减弱(暗)
分波阵面法
等倾干涉、等厚干涉 分振幅法
杨氏干涉
缺级
单缝衍射 a sin =n
极小条件 n=0,±1, ±2,···
即:
k nab a
光栅主极大 (a+b)sin =k k 就是所缺的级次
k=0,±1, ±2, ···
偏振
I I0 cos2
自然光透过偏振片
1 I 2 I0
起偏角
tgi0
n2 n1
i0
2
载流直导线的磁场:
B
0 I 4a
(cos1
cos2 )
无限长载流直导线:
B 0I 2a
直导线延长线上: 载流圆环 载流圆弧
B0
B 0I
2R B 0I
2R 2
B
R
I
无限长直螺线管内部的磁场
B 0nI
磁通量 磁场中的高斯定理
m
B
dS
B
cos
dS
B dS 0
安培环路定理
磁介质中安培 环路定理
M L1L2
自感磁能 磁场能量
磁场能量密度
W 1 LI 2 2
W 1 BHV 2
w W 1 B2 1 H 2 1 BH
V 2 2
2
任意磁场总能量
W
V
wdV
大学物理复习提纲(下)
《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。
大学物理复习题(下)
大学物理复习题(下册)第八章 振 动一.单项选择题1、一个轻质弹簧竖直悬挂,弹簧系数为k ,簧的下端悬挂一质量为m 的物体。
则此系统作简谐振动时振动的固有角频率为( )A .k m =ωB .k m =ωC .m k =ωD .mk =ω 2、一质点作简谐振动,其振动表达式为x=0.02cos(4)2t π+π(SI),则其周期和t=0.5s 时的相位分别为( )A .2s 2πB .2s π25C .0.5s 2πD .0.5s π25 3、一弹簧振子作简谐振动,初始时具有动能0.6J ,势能0.2J 。
1.5个周期后,弹簧振子振动的总能量E=( )A .0.2JB .0.4JC .0.6JD .0.8J4、简谐振动的运动方程为x=Acos (ωt+ϕ),相应的x 一t曲线如图所示,则其初相ϕ为( )A.2π-B.0C.2πD.π 5、质点作简谐振动,振动方程x=0.06cos(3πt-2π)(SI)。
质点在t=2s 时的相位为( ) A .61π B .31π C .21π D .65π 6、简谐振动的位移曲线x —t ,速度曲线V 一t ,加速度曲线a-t 在图中依次表示为( )A .曲线I 、II 、IIIB .曲线II 、I 、IIIC .曲线III 、II 、ID .曲线I 、III 、II7、两个同方向简谐振动的运动学方程分别为x 1=2×10-2cos ⎪⎭⎫ ⎝⎛π+3t 10(SI) x 2=2×10-2cos ⎪⎭⎫ ⎝⎛π-3t 10(SI) 则合振动的运动学方程为( )A .x=4×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) B .x=4×10-2cos10t(SI) C .x=2×10-2cos ⎪⎭⎫ ⎝⎛+π3210t (SI) D .x=2×10-2cos10t(SI) 8、一个单摆,其摆长为l ,悬挂物体的质量为m ,则该振动系统的周期为( )。
大学物理(下)期末复习题
练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。
4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。
2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。
则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。
大学物理下册复习题
大学物理下册复习题# 大学物理下册复习题一、经典力学1. 牛顿运动定律:阐述牛顿的三个运动定律,并给出每个定律在实际问题中的应用实例。
2. 功和能:解释功的概念,以及如何计算一个力对物体做的功。
讨论动能定理和势能的概念。
3. 动量守恒:解释动量守恒定律,并给出一个涉及碰撞问题的实例,说明如何应用动量守恒定律解决问题。
4. 角动量守恒:介绍角动量守恒定律及其在天体物理和旋转系统中的重要性。
5. 刚体的转动:解释刚体转动的基本原理,包括转动惯量、角速度和角动量的概念。
二、热力学与统计物理1. 热力学第一定律:解释能量守恒原理在热力学中的应用,并给出一个系统能量转换的实例。
2. 理想气体定律:推导理想气体状态方程,并讨论其在不同条件下的应用。
3. 熵和热力学第二定律:解释熵的概念,以及热力学第二定律的含义和应用。
4. 相变:讨论物质在不同温度和压力下的相变过程,包括相图的解读。
5. 统计物理基础:介绍统计物理的基本概念,如微观状态、宏观状态和玻尔兹曼分布。
三、电磁学1. 电场和电势:解释电场强度和电势的概念,以及它们之间的关系。
2. 高斯定律:推导高斯定律,并用它来解决电场分布问题。
3. 电容器和电介质:讨论电容器的工作原理,以及电介质对电容器电容的影响。
4. 磁场和磁感应强度:介绍磁场的基本概念,包括磁感应强度和磁通量。
5. 安培环路定律:推导安培环路定律,并用它来分析电流产生的磁场。
四、波动学与光学1. 机械波:解释机械波的传播原理,包括纵波和横波的区别。
2. 波的干涉和衍射:讨论波的干涉条件,以及衍射现象的物理意义。
3. 光的波动性:介绍光的波动性质,包括光的干涉、衍射和偏振。
4. 光的粒子性:讨论光的粒子性,包括光电效应和康普顿散射。
5. 相对论基础:简要介绍狭义相对论的基本概念,如时间膨胀和长度收缩。
结语通过本复习题的练习,同学们应该能够对大学物理下册的主要内容有一个全面而深入的理解。
希望这些复习题能够帮助大家在考试中取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学 磁力图所示,一电子经过A 点时,具有速率s m /10170⨯=υ。
(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2) 求电子自A 运动到C 所需的时间。
解:(1)电子所受洛仑兹力提供向心力 Rv m B ev 200=得出T eR mv B 3197310101.105.0106.11011011.9---⨯=⨯⨯⨯⨯⨯== 磁场方向应该垂直纸面向里。
(2)所需的时间为s v R T t 870106.110105.0222-⨯=⨯⨯===ππ eV 3100.2⨯的一个正电子,射入磁感应强度B =0.1T 的匀强磁场中,B 成89︒角,路径成螺旋线,其轴在B 的方向。
试求这螺旋线运动的周期T 、螺距h 和半径r 。
解:正电子的速率为731193106.21011.9106.110222⨯=⨯⨯⨯⨯⨯==--m E v k m/s 做螺旋运动的周期为101931106.31.0106.11011.922---⨯=⨯⨯⨯⨯==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --⨯=⨯⨯⨯⨯==T v h m半径为3197310105.11.0106.189sin 106.21011.989sin ---⨯=⨯⨯⨯⨯⨯⨯==eB mv r m d =1.0mm ,放在知铜片里每立方厘米有8.42210⨯个自由电子,每个电子的电荷19106.1-⨯-=-e C ,当铜片中有I =200A的电流流通时,(1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响?为什么?vC解:(1)531928'1023.2100.1)106.1(104.85.1200---⨯-=⨯⨯⨯-⨯⨯⨯==nqd IB U aa V ,负号表示'a 侧电势高。
(2)铜片宽度b 对'aa U =H U 无影响。
因为H U =B vb b E H /=和b 有关,而在电流I 一定的情况下,漂移速度)/(nqbd I v =又和b 成反比的缘故。
c b a ⨯⨯,I ,在z 轴方向加有均匀磁场B 。
这时实验得出的数据a =0.10cm ,b =0.35cm ,c =1.0cm ,I =1.0mA ,B =3000G ,片两侧的电势差'AA U =6.55mV 。
(1)这半导体是正电荷导电(P 型)还是负电荷导电(N 型)?(2)求载流子浓度。
解:(1)由电流方向、磁场方向和A 侧电势高于A ’侧电势可以判断此半导体是负电荷导电。
(2)载流子浓度32031933'/1086.210106.11055.63.0100.1m qa U IB n AA 个⨯=⨯⨯⨯⨯⨯⨯==---- 200匝。
每边长为B =4.0T 的外磁场中,当导线通有I =8.0A 的电流时,求: (1)线圈磁矩m 的大小;(2)作用在线圈上的力矩的最大值。
解:(1)36)10150(0.820023=⨯⨯⨯==-NIS m A ⋅m 2 (2)1440.436max =⨯==mB M N ⋅mm 半径为R 的均匀电介质圆盘均匀带有电荷,面电荷密度ω的角速度绕通过中心且垂直于盘面的轴旋转时,其磁矩的大小为441R m πωσ=,而且磁矩m 与角动量L 的关系为L mq m ϖϖ2=,其中q为盘带的总电量。
解:如图所示圆环dr 的磁矩大小为dr r r Trdr dm 322πσωππσ=⋅⋅= 整个旋转圆盘的磁矩大小为 40341R dr r dm m R πσωπσω===⎰⎰ 因为L MR q R ==2,22ωσπ 所以MqLm 2=导线acb 是半径为R 的半圆形,I ,线圈平面与匀强磁场B 的方向垂直。
试求线圈所受的磁力。
解:建立如图坐标系。
在导线上任取一电流元l Id ρ,其受到的安培力为B l Id F d ρρρ⨯=将d F 分解为的dF x 、dF y ,由对称性分析可知x 方向合力为零,整个导线受力⎰⎰⎰=====ππθθθθ02sin sin sin RIB d IBR IBdl dF F F yR =0.1m 的半圆形闭合线圈,载有电流I =10A 。
放在均匀磁场中,磁场方向与线圈平面平行,G B 3100.5⨯=,如图所示。
(1)求线圈所受力矩的大小和方向;(2)在这力矩的作用下,线圈绕过直径的轴转90︒,求力矩所做的功。
xx解:(1)力矩B m M ϖϖϖ⨯=大小220109.7290sin sin -⨯====IB R ISB mB M πθN ⋅m由矢量关系可以判断力矩方向沿直径向上。
(2)力矩所做的功2212109.7)02()(21-ΦΦ⨯=-=Φ-Φ=Φ=⎰R IB I Id A πJ在长直导线AB 内通有电流I 1=40A ,a =9.0cm 、b =20.0cm 的矩形线圈CDEF 中通有电流I 2=5A ,AB 与CDEF 共面,且CD 与AB 平行,相距d =1.0cm 。
试求:(1)矩形线圈每边受到导线AB 的作用力; (2)矩形线圈受到导线AB 的合力和相对矩形中心的合力矩。
解:(1)矩形各边受力方向如图所示。
各边受力大小 421021100.82-⨯===b I d I CD I B F CD πμN 521022100.8)(2-⨯=+==b I a d I EF I B F EF πμNNd da I I dx I x I dx BI F ad dDE 52102102102.9ln 22-+⨯=+===⎰⎰πμπμ5102.9-⨯==DE CF F F N(2)CF 与DE 受力大小相等,方向相反,互相抵消。
所以矩形线圈所受合力NF F F EF CD 454102.7100.8100.8---⨯=⨯-⨯=-=方向向左。
由于各力在同一平面内,所以合力矩为零。
I 11I 的长直导线与一个边长a 的通有电流2I 的正三角形线圈在同一平面内,其中一边与长直导线平行且相距为2a。
试求线圈所受到的合力。
解:三角形各边受力方向如图。
导线AB 受力大小πμπμ210210211)2(2I I a I a I AB I B F === 导线AC 与导线BC 受力大小相等,且沿 竖直方向的分量互相抵消,只有水平向右的分力。
导线AC 受力大小dl I xI dl BI F 210222⎰⎰==πμ 其中030cos dxdl =,所以)13ln(330cos 221030cos 2221020+==⎰+πμπμI I dx x I I F a aa 沿x 方向的分量为)13ln(3260cos 210022+==πμI I F F x 三角形所受合力为)3)13ln(1(221021+-=-=πμI I F F F x 方向水平向左。
I 1电磁学磁场的源B(a) P点在水平导线延长线上;(b)P在半圆中心处;(c)P在正三角形中心解:(a)aIaIBπμπμ4221=+=方向垂直纸面向外;(b)rIrIrIrIrIB42222212121μπμπμμπμ+=++=方向垂直纸面向内;(c)aIaIdIBπμπμπμ29)150cos30(cos3223)150cos30(cos2300=-*=-*=οοοο方向垂直纸面向内;四条通以电流I的无限长直导线,相互平行地分别置于2a的正方形各个顶点处,求正方形中心O的磁感应强度大小。
解:由对称性分析可知,在正方形对角线上的两根电流在O点处磁感应强度大小相等,方向相反,所以,该正方形中心O的磁感应强度大小为0。
II(b)(c)PI(a)aa ,厚度不计,电流I 在铜片上均匀分布,求铜片外与铜片共面、离铜片右边缘为b 处的P 点的磁感应强度B 的大小。
解:设立如图坐标系,取铜片上宽度为dx电流, 可将其视为电流强度大小为dx aI的无限长载流导线,则此电流在P 点的产生的磁场的大小为)(2)(200x b a a Idx x b a dxa I dB -+=-+=πμπμ,方向垂直纸面向内。
则整个铜片在P 点的磁场大小为bb a a I x b a n l a I x b a a Idx x b a dx a I dB B a a +=-+-=-+=-+==⎰⎰⎰ln2)(2)(2)(2000000πμπμπμπμA ,C 两点,电流方向如图所示。
求环中心O 处的磁感应强度是多少?解:两导线在O 点磁场大小为0。
设圆环半径为R 铁环上A1C 电流在O 处磁感应强度大小为RL RI B CA CA πμ221101*=,方向垂直纸面向外; 铁环上A2C 电流在O 处磁感应强度大小为R LR I B C A C A πμ222202*=,方向垂直纸面向内。
又由C A CA C A C A L L I I 1221=,带入上两式中得到O 点 总磁感应强度大小021=-=B B BR =1.0cm 的无限长半圆柱面形金属薄片中,自下而上有I =5.0A 的电流通过,如图所示,试求圆柱轴线上任意一点P 的磁感应强度B 的大小及方向。
解:对于俯视图,设立如图坐标系,取圆柱薄片 上一段电流,宽度为dl ,其在P 点磁场如图所示, 由对称性分析可知,整个半圆柱电流在P 点磁场 沿着x 轴方向。
所以dl RIR R dI dB B x ⎰⎰⎰===ππμαπμ2sin 200 又αRd dl =,所以⎰⎰*==ααππμsin 20d R RIR dB B x=5200201037.622sin 2-⨯==*⎰RI d R I πμααπμπTd = 40cm ,每根导线载有电流A I I 2021==,如图所示,求:(1) 两导线所在平面内与该两导线等距离的一点处的磁感应强度; (2) 通过图中斜线所示面积的磁通量。
(设1031==r r cm ,l =25cm 。
) 解(1)与该两导线等距离的一点处的磁感应强度方向垂直纸面向外,大小为T dIdIB 500100.42222⨯===πμπμ (2)由于两电流在矩形上的磁通对称且大小相等,所以其大小为两倍单个导线在此的磁通量。
设立如图的坐标,取长为l ,宽为dx 的面元,则Wb x rI ldx rIS d B r r r63.01.0001102.2ln 0cos 222221-+⨯===•=Φ=Φ⎰⎰πμπμοI1a )和一同轴的导体圆管(内、外半径分别为b 、c )构成。
使用时,电流I 从一导体流去,从从一导体流回。
设电流都是均匀分布在导体的横截面上,求空间的磁场分布解:设电流从内圆柱流出,外圆管流入,以O 点为圆心,如下为半径做圆周为安培环路,并取顺时针方向为正方向。