第10章生物氧化
生物化学及分子生物学(人卫第九版)-06-01节生物氧化
递电子体
递氢体
线粒体氧化体系的递氢体和递电子体
水溶性辅酶或辅基: NAD+ /NADH, NADP+/NADPH 为双电子传递体
功能基团:芳环中五价氮和三价 氮间的变化
线粒体氧化体系的递氢体和递电子体
水溶性辅酶或辅基:FAD/FADH2, 为单双电子传递体 结构中含核黄素 FMN/FMNH2
复合体IV的电子传递过程
复合体IV的CuB-Cyta3将电子传递给O2、生成水
二、NADH和FADH2是呼吸链的电子供体
NADH和FADH2是线粒体呼吸链的电子供体,形成两条呼吸链
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
复合体Ⅱ:琥珀酸-泛醌还原酶,即三羧酸循环中的琥珀酸脱氢酶
电子传递:琥珀酸→FAD→几种Fe-S →Q
复合体Ⅱ:无H+泵的功能
(三)复合体Ⅲ将电子从还原型泛醌传递给细胞色素c
复合体Ⅲ:泛醌-细胞色素C还原酶 人复合体Ⅲ含有 Cyt b(b562, b566)、Cyt c1和一种可移动的铁
辅基:铁硫中心(Fe-S)含铁离子和硫原子 通过 Fe2+ ⇌ Fe3++e- 反应传递电子
单电子传递体
Fe-S
Fe2S2
Fe4S4
线粒体氧化体系的递氢体和递电子体
细胞色素蛋白 (cytochrome , Cyt)
含血红素样辅基的蛋白质
分Cyt a、b、c 及不同的亚类
细胞色素a,b,c 结合的血红素辅基
小结
氧化磷酸化: 在线粒体完成氧化与磷酸化的偶联过程
生物化学复习要点-生物氧化与氧化磷酸化
生物氧化与氧化磷酸化一、教学大纲基本要求教学大纲基本要求讲解生物氧化与氧化磷酸化,1.生物能学简介,包括化学反应的自由能,自由能变化与化学反应平衡常数的关系,标准自由能变化的加和性,高能磷酸化合物,生物氧化的概念和特点。
2.线粒体电子传递,包括线粒体电子传递过程,电子传递链,电子传递链有关的酶和载体,电子传递链的抑制剂。
3.氧化磷酸化作用,包括氧化磷酸化的,P/O比和由ADP形成ATP的部位,电子传递和ATP形成的偶联及调节机制概念,氧化磷酸化的偶联机理,氧化磷酸化的解偶联。
二、本章知识要点1、本章概述有机物分子在生物细胞内被逐步氧化生成CO2,并释放出能量。
电子传递和氧化磷酸化作用使NADH和和FADH2再氧化并以ATP捕获释放出的能量。
真核生物电子传递和氧化磷酸化作用在线粒体内膜进行,而原核生物中过程在质膜上进行。
2、自由能变、反应平衡常数、氧化还原电位体系内能用于做功的能量称为自由能。
对化学反应来说,可以把自由能看成促使化学反应达到平衡的一种驱动力。
反应物自由能的总和与产物的自由能总和之差就是该反应的自由能变化(△G)。
当△G<0时体系未达到平衡,反应可以自发正向进行;当△G>0时体系未达到平衡,必须供能反应才能正向进行;当△G=0时反应处于平衡状态。
在参加反应物质的浓度为1mol/L、压力为一个大气压(0.1MPa),温度为25℃、pH=0的条件下进行反应时自由能的变化称为标准自由能变化(△G0)。
标准自由能变化具有加和性。
对生物化学反应而言,在参加反应物质的浓度为1mol/L、压力为0.1MPa,温度为25℃、pH=7.0的条件下进行反应时自由能变为标准自由能变化(△G0)。
生化反应中自由能变与反应的平衡常数间的关系可以用△G0=-RTlnK′eq =-2.303RTlogK′eq。
氧化-还原电位(E)是物质对电子亲和力的量度。
生化反应的标准氧化-还原电势(E0 )是在标准状况(参加反应物质的浓度为1mol/L、压力为0.1MPa,温度为25℃)和pH7的条件下测量的,用伏特表示。
生物氧化
目录
生物氧化的概念
营养物质在活细胞内彻底氧化成CO2和水,
并释出能量的过程称生物氧化,也叫细胞呼吸 (cellular respiration)。
生 物 氧 化 的 三 个 阶 段
营养物质
阶段Ⅰ
糖原
脂肪
蛋白质
基本单位
葡萄糖 脂肪酸 氨基酸
阶段Ⅱ
乙酰CoA
阶段Ⅲ
线粒体
ADP+Pi CO2
2H
ATP H2O
(四)氢过氧化物酶(hydroperoxidase)
1.过氧化物酶(peroxidase)
H2O2 2H2O 2GSH
GSH过氧化物酶
NADP+
GSH还原酶
GSSG
NADPH+H+
GSH 有抗氧化剂的作用,可还原细胞产生的H2O2
2. 过氧化氢酶(触酶,catalase) 2H2O2
过氧化氢酶
2H2O + O2
分子(kD) 亚基
1000 >40
辅酶/辅基
FMN、Fe-S
主要功能
传递NADH+H+中2个e到Q, 并由基质向膜间隙泵出4个 H+ 传递琥珀酸中2个电子、2个 质子到Q 通过Q循环传递QH2中2个e到 细胞色素C,并把4H+ 由基质 泵出到膜间隙 传递复合体Ⅲ中2个电子到复 合体Ⅳ 把4个Cyt c传来的4个e转交给 O2,在摄取基质中4H+与O2 生成2H2O的同时,把基质中 另外4H+ 泵出到膜间隙
1. NADH氧化呼吸链
NADH→复合体Ⅰ→ Q →复合体Ⅲ →Cyt c →复合体Ⅳ →O2
每对氢通过此呼吸链生成 2.5mol ATP; 又称主要呼吸链; 以NADH的方式进入;
生物化学 代谢总论与生物氧化
~P ~P ATP
~P
~P
~P
6-磷酸葡萄糖 3-磷酸甘油
二 生物氧化
二、生物氧化
有机物质(糖、脂肪和蛋白质)在生
物细胞内进行氧化分解而生成CO2和H2O
并释放出能量的过程称为生物氧化。 生物氧化通常需要消耗氧,所以又称
O NH C N NH CH3
肌酸磷酸
O
O NH
P O
P O NH2
C NH O N CH3 CH2CH2CH2CHCOOH
磷酸精氨酸
CH2COOH
这两种高能化合物在生物体内起储存能量的作用。
3-磷酸腺苷-5’-磷酰硫酸
硫酯键型
酰基辅酶A
O SCoA
R C
甲硫键型
COO CH CH2 CH2 H3C S
(3) 水的生成方式是代谢物脱下的H与O结合
产生的。 (4) CO2的生成方式是有机酸脱羧产生的。
生物氧化的内容
(1)细胞如何在酶的催化下将有机化合物中的C变 成CO2—CO2如何形成? • 脱羧反应
(2)在酶的作用下细胞怎样利用分子氧将有机化 合物中的H氧化成H2O—H2O如何形成? • 电子传递链 (3)当有机物被氧化成CO2和H2O时,释放的能量怎 样转化成ATP—能量如何产生? • 底物水平磷酸化 • 氧化磷酸化
分解代谢与合成代谢
生物小分子合成大分子 • •
合成代谢 •
需要能量
能量代谢
新陈代谢
•
• •
释放能量
分解代谢
生物大分子分解成小分子
物 质 代 谢
新陈代谢的共同特点
生物化学三大代谢重点总结
第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。
2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。
组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。
转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。
偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。
磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。
7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。
10-物质代谢与能量代谢(09)
2、生物氧化的特点
1)在体温下进行 在酶作用下发生一系列化学反应, 2)在酶作用下发生一系列化学反应,氧化和 放能逐步进行 产生的能量以ATP ATP形式储存 3)产生的能量以ATP形式储存
14
3、生物分子的氧化过程
1)分解代谢,伴随代谢物的脱氢和辅酶的还原 分解代谢, NADH NAD+ NADH或 经历一系列电子载体 电子载体传递过程将 2)NADH或FADH2经历一系列电子载体传递过程将 和电子传递给O 同时形成ATP H和电子传递给O2,同时形成ATP 经呼吸链释放的能量是机体能量的重要来源
23
线粒体内膜的功能: 线粒体内膜的功能:
1)在线粒体基质或面内基质的内膜蛋白上,丙酮酸及脂 在线粒体基质或面内基质的内膜蛋白上, 肪酸氧化为CO 同时NAD FAD还原 肪酸氧化为CO2,同时NAD+和FAD还原 2)电子从NADH传至线粒体内膜,同时形成跨膜质子泵 电子从NADH传至线粒体内膜, NADH传至线粒体内膜 内膜上的F ATP酶复合体将贮存于电化学质子梯度的 3)内膜上的F0F1ATP酶复合体将贮存于电化学质子梯度的 能量合成ATP 能量合成ATP
16
电子传递链的组分
酶复合体 相对分子量 辅基
复合体Ⅰ 复合体Ⅰ NADH-Q还原酶 还原酶 复合体Ⅱ 琥珀酸-Q还原酶 复合体Ⅱ 琥珀酸 还原酶 复合体Ⅲ 复合体Ⅲ 细胞色素还原酶
88000 14000
复合体Ⅳ 复合体Ⅳ 细胞色素氧化酶
16000
FMN Fe-S FAD Fe-S 血红素b- 血红素 -562 血红素b- 血红素 -566 血红素c 血红素 1 Fe-S 血红素a 血红素 血红素a 血红素 3 CuA和CuB
kcal/mol kJ/mol
第10章 生物氧化与氧化磷酸化
第二节
生物能及其存在形式
一、生物能和 ATP 1. ATP 是生物能存在的主要形式 ATP 是能够被生物细胞直接利用的能量形式 2. 生物化学反应的自由能变化 生物化学反应与普通的化学反应一样,也服从热力学的规律 二、高能化合物 1.概念 一般将水解时能够释放 21kJ/mol(5 千卡/mol)以上自由能(G’< -21 kJ / mol) 的化合物称为高能化合物。 2. 种类 根据生物体内高能化合键的特性可以把他们分成以下几种类型: (1).磷氧键型(-O~P) ①酰基磷酸化合物 ②酰基磷酸化合物 ③烯醇式磷酸化合物
(2).黄素蛋白
(3).铁硫蛋白
(4).辅酶 Q
(4).细胞色素体系 细胞色素(cytochromes)Cyt 是一类含铁卟啉辅基(即血红素)的蛋白质 把电子从 CoQ 传递到分子氧的过程中起着重要作用 Cyt a Cyt a Cyt Cyt b Cyt c Cyt c Cyt c1 Cyt a3 都是完全的膜结合蛋白
③加水脱氢
H R C O H 2O H R C OH OH 酶 O R C OH + 2H + + 2e -
2、氧直接参加的氧化反应 加氧酶催化的加氧反应 ①加氧酶能够催化氧分子直接加入到有机分子中
②氧化酶催化的生成水的反应 氧化酶主要催化以氧分子为电子受体的氧化反应, 反应产物为水。 在各种脱氢反应中产 生的氢质子和电子,最后都是以这种形式进行氧化的。 3、生成二氧化碳的氧化反应 ①直接脱羧作用 氧化代谢的中间产物羧酸在脱羧酶的催化下,直接从分子中脱去羧基。例如 a-酮戊二 酸的氧化脱羧 ②氧化脱羧作用 氧化代谢中产生的有机羧酸(主要是酮酸)在氧化脱羧酶系的催化下,在脱羧的同时, 也发生氧化(脱氢)作用。例如异柠檬酸的氧化脱羧 三、生物氧化的特点 1、生物氧化是在生物细胞内进行的酶促氧化过程,反应条件温和(水溶液,pH7 和常温) 2、氧化进行过程中,必然伴随生物还原反应的发生
生物氧化
生物氧化
* 概 念
物质在生物体内进行氧化称生物氧化,主要指糖、
脂肪、蛋白质等在体内分解时逐步释放能量,最终生
成CO2 和 H2O的过程。此过程需耗氧、排出CO2,又在 组织细胞内进行,故又称组织呼吸或细胞呼吸
(cellular respiration)。
糖 脂肪
O2
CO2和H2O 能量
蛋白质
还原型Fe-S FMN Q NADH→ FMN; Fe-S →CoQ N-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 NAD+ 氧化型Fe-S FMNH2 QH2 复合体Ⅰ
NADH+H+
复合体Ⅱ: 琥珀酸-泛醌还原酶
功能: 将电子从琥珀酸传递给泛醌
复合体Ⅱ
琥珀酸→ Fe-S1; b560; FAD; Fe-S2 ; Fe-S3 →CoQ
N O NH
H 3C
N
H 3C
N
H
O
H
O
FAD/FMN
FADH2/FMNH2
3、铁硫蛋白的分子结构
蛋白质
铁硫蛋白中辅基铁硫簇(Fe-S)含有等量铁原子和硫原子
Fe
2+
-e +e
Fe 3+
4、泛醌(辅酶Q, CoQ, Q)
泛醌(辅酶Q, CoQ, Q)由多个异戊二烯连接形成较长的疏水侧 链(人CoQ10),氧化还原反应时可生成中间产物半醌型泛醌。
底 物 β-羟丁酸 琥珀酸 抗坏血酸 呼吸链的组成 NAD+→复合体Ⅰ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 复合体Ⅱ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 Cyt c→复合体Ⅳ→O2 复合体Ⅳ→O2 0.88 0.61-0.68 1 1 细胞色素c (Fe2+) 1.7 2 P/O比值 2.4~2.8 可能生成的 ATP数 3
生物化学--新陈代谢总论与生物氧化
二、生物体内能量代谢的基本规律
1.服从热力学原理。热力学第一定律是能量守恒定律,热力 学第二定律指出,热的传导自高温流向低温。机体内的化 学反应朝着达到其平衡点的方向进行。
2.生化反应最重要的热力学函数是吉布斯自由能G 。自由能
是在恒温、恒压下,一个体系作有用功的能力的度量。用 于判断反应可否自发进行,是放能或耗能反应。 ΔG<0,表示体系自由能减少,反应可以自发进行,但是不 等于说该反应一定发生或以能觉察的速率进行,是放能反 应。 ΔG>0,反应不能自发进行,吸收能量才推动反应进行。 ΔG=0,体系处在平衡状态。
(2)氧化脱羧:在脱羧过程中伴随着氧化(脱氢)
NADP+ NADPH + H+
HOOCCH2CHOHCOOH
苹果酸
苹果酸酶
CH3CCOOH + CO2 O
三、生物氧化中水的生成
代谢物在酶的作用下,将脱下的氢经过氢传递体,传 给氧生成水。
生物氧化体系解决的是有机物脱氢及氢的去路问题, 即解决有机物是如何通过一系列特异性的酶催化的反应脱 氢、递氢和递电子,把氢交给氧生成水,并产生ATP的问 题。
一、新陈代谢的研究方法
代谢途径的研究比较复杂,可从不同水平,主要对中间代 谢进行研究。
新陈代谢途径的阐明凝集了许多科学家的智慧与实验成果。 如1904年德 国化学家Knoop提出的脂肪酸的β氧化学说, 1937年Krebs提出的柠檬酸循环。
1.活体内(in vivo)和活体外(in vitro)实验 2.同位素示踪法和核磁共振波谱法(NMR) 3.代谢途径阻断法 4.突变体研究法
二、生物体内能量代谢的基本规律
3.自由能:生物体(或恒温恒压下)用以作功的能量。在 没有作功条件时,自由能转变为热能丧失。
生物氧化-电子传递
动物机体能量的产生与转移与利用
营养物质经过生物氧化生成二氧化碳和水, 营养物质经过生物氧化生成二氧化碳和水,在 此过程中释放能量。其中一部分以热的形式释放, 此过程中释放能量。其中一部分以热的形式释放, 另一部分被“截获”并储存到ATP分子中(使 分子中( 另一部分被“截获”并储存到 分子中 ADP+Pi ATP, 即磷酸化),可以作为有用功 即磷酸化), ),可以作为有用功 在各种生理活动,如肌肉收缩(机械能)、 )、神经传 在各种生理活动,如肌肉收缩(机械能)、神经传 电能)、生物合成(化学能)、分泌吸收( )、生物合成 )、分泌吸收 导(电能)、生物合成(化学能)、分泌吸收(渗 透能)中利用。 透能)中利用。 因此, 因此,ATP(三磷酸腺苷)被称为机体中通用 (三磷酸腺苷) 的能量货币。 的能量货币。
高能磷酸化合物有转移其磷酰基的倾向, 高能磷酸化合物有转移其磷酰基的倾向, 形成较低能量的磷酸脂。ATP是磷酰基的传递体 是磷酰基的传递体。 形成较低能量的磷酸脂。ATP是磷酰基的传递体。
线粒体——细胞的动力站 细胞的动力站 线粒体
生物氧化过程主要在线粒体的内膜上进行, 生物氧化过程主要在线粒体的内膜上进行,内膜上分布着 许多的酶和电子传递体,构成两条呼吸链 呼吸链。 许多的酶和电子传递体,构成两条呼吸链。内膜上结合的 颗粒(内膜粒子,或称基粒、三分体等)具有ATP合酶的 颗粒(内膜粒子,或称基粒、三分体等)具有 合酶的 活性, 活性,称FoF1ATPase 。
1、 烟酰胺脱氢酶类
NAD+
辅酶
NADP+
作用: 作用:递氢体
递氢机制
呼吸链
2H + NAD+
NADH + H+
考研科目动物生物化学 第9章 生物氧化
铁硫蛋白 (iron-sulfur protein)
Fe2S2,
Fe4S4 Fe4S4
铁硫蛋白通过Fe3+ 和Fe2+变化起传递电 子的作用。
辅酶Q (CoQ)
辅酶Q又称泛醌(ubiquinone),是 脂溶性化合物。CoQ的功能是作为氢传 递体:
CoQ + 2H
CoQH2
辅酶Q既接受NADH脱氢酶的氢,还接受线 粒体其他脱氢酶(琥珀酸-Q还原酶)脱下的氢。
部位I:NADH和辅酶Q之间 部位II:辅酶Q和cyt-c1之间 部位III: cyt-a 和 O2 之间
(3)氧化磷酸化的偶联机理
① 化学偶联假说(chemical coupling hypothesis)
电子传递和ATP生成的偶联是通过一 系列连续的化学反应形成一个高能共价中 间物,这个中间物随后又裂解将其能量供 给ATP的合成。
NADH:,分子Pi和ADP生成分子 ATP,。
FMN:分子Pi和ADP生成分子ATP,。
(2)氧化磷酸化的偶联部位
当电子从一个氧化还原电位较低的 还原型递体转移到较高电位的氧化型递 体时,就有负自由能变化,即能量的释 放。
△
△
△
推动ADP磷酸化形成ATP所需的 标准自由能大约在
ADP形成ATP的部位
- Ⅲ---
--
延胡索酸 琥珀酸
H2O 1/2O2+2H+
Cyt氧化酶
Cyt还原酶
ADP+Pi
-
催化 F1 ATP
ATP
H+
化学渗透假说的要点是:
A H+和电子的传递体按一定的顺序 排列在线粒体内膜上,氧化磷酸化 作用的进行需有完整的线粒体。
生物化学生物氧化PPT课件
呼吸链中各种氧化还原对的标准氧化还原电位
氧化还原对
NAD+/NADH+H+
FMN/ FMNH2 FAD/ FADH2 Cyt b Fe3+/Fe2+
Q
QH2
Q.
e
e
e
2Fe-2S
e
上 述 Q.
线粒体 基质侧
e
C1 C
线粒 体内 膜胞 液侧
Q
目录
特点
1.消耗2分子的QH2,产生1分子1分子Q, 净消耗分子的QH2 2.传递电子给C1至C的是2Fe-2S 3.b566,b562产生半醌型Q,2个半醌型Q, 结合为QH2
目录
4. 复合体Ⅳ: 细胞色素c氧化酶
FMN FMNH2复合体Ⅰ的功能来自还原型Fe-SQ
氧化型Fe-S
QH2
2H+
H+ 2H+ 2H+
目录
复合体Ⅰ
NADH+H+
NAD+
FMN Fe-S
CoQ
目录
2. 复合体Ⅱ: 琥珀酸-泛醌还原酶
组成: 黄素蛋白(FAD) 铁硫蛋白(Fe-S) Cytb560 (铁卟啉)
功能: 将电子从琥珀酸传递给泛醌
1.反应条件:温和的环境中(体温, pH接近中性),
2.反应实质: 酶促反应 3.能量释放 :逐步进行 4.产物生成:H2O由脱下的氢与氧
结合产生, CO2是有机酸脱羧产生。
体外氧化
高温
单纯化学反应 能量是突然释放的 CO2、H2O是由 物质中的碳和氢直接 与氧结合产生。
目录
* 生物氧化的一般过程
功能:将电子从泛醌传递给细胞色素c
生物化学 第十章 生物氧化PPT课件
多糖
蛋白质
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
生物体内能量产生的三 个阶段
大分子降解 成基本结构 单位
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰
CoA等)
共同中间物进 入三羧酸循环, 氧化脱下的氢由 电子传递链传递 生成H2O,释放 出大量能量,其 中一部分通过磷 酸化储存在ATP 中。
30
(四)电子传递链的组成成分 3、琥珀酸—Q还原酶(复合体Ⅱ)
嵌在线粒体内膜(包括琥珀酸脱氢酶) 电子传递:FADH2 Fe-S CoQ
31
Ubiquinone (Q) accepts electrons from both NADH and FADH2 in the respiratory chain
一、氧化—还原电势
e
提供电子 (还原剂)
负极
锌片溶解 Zn2+进入溶液
铜沉积 Cu2+得电子
得到电子 (氧化剂)
正极
9
ε0 =E0正极 — E0负极 电动势=正负极电极势之差
10
标准氢电极的电极势
为0,25℃、1大气压 氢压力、 H+活度为1M、pH=0
11
• 标准电动势ε0:反应中各种物质的活
ΔG°′=-nFΔE°′ ΔE°′= E0正极 — E0负极
16
NADH+H++1/2O2====NAD++H2O
正极反应:1/2O2+2H++2e H2O E+°′ 0.82
负极反应:NAD++H++2e NADH E-°′ -0.3
11生物氧化
31
ATP循环是生物体内能量转换的基本方式
• ATP循环
氧化磷酸化 底物水平磷 酸化
2020年8月4日星期二
ATP
肌 酸
机械能 渗透能
磷酸 肌酸
化学能 ~P 电能
热能
AD
P 32
(二)高能磷酸化合物ATP的生成
1.底物水平磷酸化: 代谢物在分解代谢过程中由于脱氢或脱水等作用使能量在
分子内部重新分配,形成高能磷酸化合物,然后将高能磷酸 基团转移到ADP形成ATP的过程。
2-磷酸-甘油酸脱水所引起的内部能量重新分布,能量与ADP作用产生一个ATP
2020年8月4日星期二
33
2.氧化磷酸化
伴随放能的氧化作用而进行的磷酸化
是体内生成ATP的主要方式
代谢物氧化脱氢经呼吸链传递给氧生成水的同时,释 放能量用以使ADP磷酸化生成ATP,由于是代谢物的 氧化反应与ADP的磷酸化反应偶联发生,故称氧化磷 酸化。
• 用去垢剂温和处理线粒体内膜,得到四种电 子传递复合体,根据其功能和组合也能进一 步证实排列顺序
2020年8月4日星期二
23
NADH氧化呼吸链
FADH2氧化呼吸链
复合体Ⅱ
琥珀酸-Q氧化还原酶
复合 体Ⅳ
细胞色素 c氧化酶
复合体Ⅰ
NADH-Q氧化还 原酶
2020年8月4日星期二
复合体Ⅲ
泛醌-细胞色素
2020年8月4日星期二
30
三、ATP的生成、利用和储存
• (一)高能化合物:高能磷酸化合物、高 能硫酯化合物。
• 高能磷酸化合物,含有高能磷酸键:磷酸肌酸、 ATP、CTP、UTP、GTP、磷酸烯醇式丙 酮酸等
• 高能硫酯化合物,含有高能硫酯基团:乙 酰CoA、脂酰CoA等
生物化学知识点总结
生物化学知识点总结第二章一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章一、名词解释1.核苷酸:2.增色效应:由于DNA变性后波长260nm的吸光度值会增加,这种现象称为增色效应3.DNA的变性: DNA的变性是指在某些理化因素作用下,DNA分子中碱基对之间的氢键断裂,使DNA双链结构解开变成单链的过程。
生物氧化还原反应
13
(3)底物与氧分子的氧原子结合
这类氧化还原反应往往要相应的加氧酶参与。 总之,脱氢过程中脱去一个氢原子(即一个质
子和一个电子),加氧反应常伴有氧分子接受 质子和电子而被还原为水。生物氧化的主要方 式是脱氢作用,在依靠氧气生存的生物体内, 从代谢物脱下的氢通过呼吸链的逐步传递最后 被分子氧接受并生成水。
8
这种活化方式不消耗外部能量,但配体反应能 力却大大加强。当然不是任何过渡金属都可以 使分子氧活化。事实上只有少数过渡金属配合 物可以完全与分子氧键合,这取决于金属和配 体的性质。
9
二、生物氧化还原作用的类型
生物体的氧化还原作用主要有三大类型: (1)以氧作为末端电子受体的电子传递过程:
10
SH2
四类表56一些非血红素蛋白的生理功能非血红素铁蛋白生理功能来源铁蛋白铁传递蛋白卵清铁传递蛋白乳铁传递蛋白贮存输送铁动物组织血清卵清乳红氧还蛋白铁氧还蛋白肾上腺皮质铁氧还蛋白传递电子细菌叶绿体细菌肾上腺皮质蚯蚓血红蛋白载氧蚯蚓星虫顺乌头酸酶邻苯二酚双加氧酶氢酶催化动植物细菌细菌藻类一铁蛋白主要存在与动物脾脏肝脏和骨髓中在植物叶绿体及某些细菌中也发现有铁蛋白
目前从已知的细胞色素有50余种。不同的细胞 色素具有不同的性能。
34
1. 细胞色素c
细胞色素c分子较小,易于结晶,其组成和结构 已研究清楚。
细胞色素c:血红素c + 相应蛋白构成。
《生物化学》生物氧化与氧化磷酸化
电子体传递给被氧化酶激活的氧而生成H2O 。
乙醇脱氢酶 CH3CH2OH
CH3CHO
NAD+ NADH+H+
NAD+
2e
电子传递链
1\2 O2 O-
2H+
H2O
第一节 生物氧化概述
二、 生物化学反应的自由能变化
1、自由能(free energy)的概念 物理意义:恒温恒压下,体系中能对环境作功的那部分能 量称为自由能,又称Gibbs自由能,用G表示)。
抑[例制1电]2,子4-二传硝递。基苯酚(dinitrophenol, DNP)
NO2 H+Fra bibliotekNO2 O-NO2
外 线内 粒
体
NO2
内 膜
OH
NO2
NO2
NO2
OH H+
NO2 O-
第三节 氧化磷酸化
五、线粒体穿梭系统
胞液中生成的NADH不能自由通过线粒体内膜 转运胞液NADH的机制主要有: ➢磷酸甘油穿梭系统(肌细胞) ➢苹果酸-天冬氨酸穿梭系统(肝细胞)
CH3-C-COOH
CoASH NAD+
NADH+H+
R CH2-NH2 +CO2
CH3COSCoA+CO2
第一节 生物氧化概述
一、生物氧化的概念
(三)生物氧化中CO2和H2O 的产生 H2O的生成
代谢物在脱氢酶催化下脱下的氢由相应的氢载体(NAD+、
NADP+、FAD、FMN等)所接受,再通过一系列递氢体或递
第一节 生物氧化概述
三、高能化合物
(一)生物体内的高能化合物
2、磷氮键型 3、硫碳键型
生物化学第10章 脂类代谢
课外练习题一、名词解释1、脂肪动员:贮存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血液以供其它组织氧化利用的过程。
2、酮体:脂肪酸在肝内氧化的中间产物——乙酰乙酸、β-羟丁酸和丙酮统称为酮体。
3、脂肪酸的β-氧化:脂肪酸氧化分解时,在脂酰基的β-碳原子上进行脱氢、加水、再脱氢和硫解的连续反应过程。
4、血脂:血浆中各种脂类物质的总称。
5、高脂血症:血脂高于正常值上限。
6、溶血磷脂:甘油磷脂的一位或二位脂酰基水解后形成的磷脂。
二、符号辨识1、ACP:酰基载体蛋白;2、BCCP:生物素羧基载体蛋白三、填空1、甘油三酯的合成包括()途径和()途径共两条途径。
2、脂肪酸β-氧化的限速酶是()。
3、脂肪酸的活化在()中进行,由()酶催化。
4、脂肪酸的β-氧化包括()、()、()和()四步连续反应。
5、酮体在()中生成,在()组织中利用。
6、酮体包括()、()和()三种物质。
7、脂肪酸合成的主要原料是(),需通过()循环由线粒体转运至细胞质。
8、脂肪酸合成的关键酶是()羧化酶;脂肪酸合成酶系催化合成的终产物主要是()。
9、脂肪酸碳链的延长可在()和()中进行。
10、人体内不能合成的不饱和脂肪酸主要是()、()和()。
11、人体内胆固醇的来源有二,即()和()。
胆固醇合成的主要原料是()。
12、胆固醇在体内可转化生成()、()激素和维生素()。
13、参与胆固醇合成的NADPH主要来自()途径;乙酰CoA来自()代谢。
14、3-磷酸甘油的来源有两种方式,即()的消化产物和葡萄糖经过()途径产生。
15、每一分子脂肪酸被活化为脂酰CoA需消耗()个高能磷酸键。
16、脂酰CoA经一次β-氧化可生成()分子乙酰CoA和比原来少()个碳原子的脂酰CoA。
17、一分子14碳长链脂酰CoA可经()次β-氧化生成()个乙酰CoA。
18、若底物脱下的[H]全部转变成A TP,则1mol软脂酸(含16C)经β-氧化途径可共生成()个A TP,或净生成()个A TP。
化学生物学复习题及答案
化学生物学复习题及答案 Prepared on 22 November 2020第一章蛋白质1.蛋白质的基本单位——氨基酸2.蛋白质的空间结构:一级结构:组成蛋白质的多肽链的数目,多肽链的氨基酸排列顺序以及多肽链内或链间二硫键的数目和位置。
维系一级结构的主要作用力:肽键二级结构:肽链主链折叠产生的有规则的几何走向。
蛋白质二级结构主要形式有α-螺旋、β-折叠、β-转角和无规则卷曲。
维系蛋白质二级结构的主要作用力:氢键三级结构:在二级结构基础上,肽链的不同区段的侧链基团相互作用在空间进一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维结构。
维系蛋白质三级结构的力主要有氢键、疏水键、离子键和范德华力等。
尤其是疏水键。
四级结构:由多条各自具有一、二、三级结构的肽链通过非共价键连接起来的结构形式。
维持亚基之间的化学键主要是疏水力。
第二章酶1.酶的催化作用特性:高效性;选择性;条件温和;酶活力可调节控制。
酶催化作用的选择性表现在:反应专一性;底物专一性;立体化学专一性。
2.酶的组成可以分为两类:单纯蛋白酶和结合蛋白酶。
结合蛋白酶分为酶蛋白和辅助成分(辅酶和金属离子)3.常见的辅酶: NAD+ 、NADP+、 FAD、FMN、辅酶A(CoA)、四氢叶酸(FH4或THFA)、焦磷酸硫胺素(TPP)、磷酸吡哆素、生物素、维生素B12辅酶、硫辛酸、辅酶Q(CoQ)4.酶的活性部位或活性中心包括:结合部位和催化部位。
结合部位决定酶的专一性;催化部位决定酶所催化反应的性质5.酶作用专一性的机制:锁钥学说、“三点结合”的催化理论、诱导契合学说第三章核酸2. 核苷酸的衍生物: ATP (腺嘌呤核糖核苷三磷酸)、 GTP (鸟嘌呤核糖核苷三磷酸)。
ATP中磷酸键水解能高的分子结构特点:静电效应和共振稳定因素3. DNA双螺旋结构的特点:DNA分子由两条多聚脱氧核糖核苷酸链组成嘌呤碱基和嘧啶碱基位于螺旋的内侧,磷酸和脱氧核糖基位于螺旋外侧螺旋横截面的直径为2nm,每条链相邻碱基平面间隔为,每10个核苷酸形成一个螺旋,螺距为两条DNA链相互结合以及形成双螺旋的力是链间的碱基对所形成的氢键维持这种稳定性的因素:两条DNA链之间形成的氢键的分类及各自的结构特点与在遗传信息的传递与表达中的主要功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物氧化中CO2的生成
直接脱羧 氧化脱羧
第10章生物氧化
一、呼.0吸链
定义 代谢物脱下的成对氢原子(2H)通过多种
酶和辅酶所催化的连锁反应逐步传递,最终与 氧结合生成水,这一系列酶和辅酶称为呼吸链 (respiratory chain) 又 称 电 子 传 递 链 (electron transfer chain)。
复合体Ⅰ NADH→ FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 →CoQ
第10章生物氧化
NAD+和NADP+的结构
R=H: NAD+; R=H2PO3:NADP+
第10章生物氧化
NAD+(NADP+)和NADH(NADPH)相互转变
氧化还原反应时变化发生在五价氮和三价氮之间。
乙酰CoA
蛋白质 氨基酸
TCA
CO2 2H
ADP+Pi ATP
呼吸链
H2O
第10章生物氧化
二、 ATP
高能磷酸键与高能磷酸化合物 高能磷酸键
水解时释放的能量大于20.92KJ/mol的磷 酸酯键,常表示为 P。 高能磷酸化合物
含有高能磷酸键的化合物
第10章生物氧化
第10章生物氧化
三 、 ATP的生成和利用 ATP
第10章生物氧化
第10章生物氧化
(二)呼吸链成分的排列顺序
由以下实验确定: ① 标准氧化还原电位 ② 拆开和重组 ③ 特异抑制剂阻断 ④ 还原状态呼吸链缓慢给氧
第10章生物氧化
电子传递的抑制效应
第10章生物氧化
呼吸链中各种氧化还原对的标准氧化还原电位
氧化还原对
N A D +/N A D H +H +
FM N/ FM NH2 FAD/ FADH2 C yt b Fe3+/Fe2+
Q 10/Q 10H 2 C yt c1 Fe3+/ Fe2+ C yt c Fe3+/Fe2+ C yt a Fe3+ / Fe2+ C yt a3 Fe3+ / Fe2+ 1/2 O 2/ H 2O
E º' (V ) -0.32 -0.30 -0.06 0.04( 或 0.10) 0.07 0.22 0.25 0.29 0.55 0.82
第10章生物氧化
FMN结构中含核黄素,发挥功能的部位是 异咯嗪环,氧化还原反应时不稳定中间产物是 FMN• 。
第10章生物氧化
铁硫蛋白中辅基铁硫簇(Fe-S)含有等量铁原 子和硫原子,其中铁原子可进行Fe2+ Fe3++e 反应传递电子。
Ⓢ 表示无机硫
第10章生物氧化
铁硫蛋白
S 无机硫 S 半胱氨酸硫
能量是突然释放的。
进 行 广 泛 的 加 水 脱 氢 反 应 使 物 质能间接获得氧,并增加脱氢 的机会;脱下的氢与氧结合产 生H2O,有机酸脱羧产生CO2。
产 生 的 CO2 、 H2O, 由 物 质中的碳和氢直接与氧
结合生成。
第10章生物氧化
* 生物氧化的一般过程
糖原
三酯酰甘油
葡萄糖
脂酸+甘油
2. 复合体Ⅱ: 琥珀酸-泛醌还原酶
功能: 将电子从琥珀酸传递给泛醌
复合体Ⅱ 琥珀酸→ Fe-S1; b560; FAD; Fe-S2 ; Fe-S3 →CoQ
第10章生物氧化
第10章生物氧化
3. 复合体Ⅲ: 泛醌-细胞色素c还原酶
功能:将电子从泛醌传递给细胞色素c
复合体Ⅲ QH2→ b562; b566; Fe-S; c1 →Cyt c
第10章生物氧化
细胞色素 细胞色素是一类以铁铁卟啉为辅基的催化电 子传递的酶类,根据它们吸收光谱不同而分类。
第10章生物氧化
第10章生物氧化
第10章生物氧化
4. 复合体Ⅳ: 细胞色素c氧化酶
功能:将电子从细胞色素c传递给氧
复合体Ⅳ 还原型Cyt c → CuA→a→a3→CuB → O2
其中Cyt a3 和CuB形成的活性部位将电子交给O2。
第十章 生物氧化
Biological Oxidation
第10章生物氧化
第一节 生物氧化与高能化合物
第10章生物氧化
一、生物氧化
物质在生物体内进行氧化称生物氧化,主 要指糖、脂肪、蛋白质等在体内分解时逐步释 放能量,最终生成CO2 和 H2O的过程。
糖 脂肪 蛋白质
O2
CO2和H2O
ADP+Pi
第10章生物氧化
泛醌(辅酶Q, CoQ)由多个异戊二烯连接形 成较长的疏水侧链(人CoQ10),氧化还原反应时 可生成中间产物半醌型泛醌。电子传递链中唯一 的非蛋白质组分。
第10章生物氧化
NADH+H+ NAD+
FMN FMNH2
还原型Fe-S
Q
氧化型Fe-S
QH2
复合体Ⅰ的功能
第10章生物氧化
能量
ATP
热能
第10章生物氧化
* 生物氧化与体外氧化之相同点
生物氧化中物质的氧化方式有加氧、脱氢、 失电子,遵循氧化还原反应的一般规律。
物质在体内外氧化时所消耗的氧量、最终产 物(CO2,H2O)和释放能量均相同。
第10章生物氧化
* 生物氧化与体外氧化之不同点
生物氧化
体外氧化
是 在 细 胞 内 温 和 的 环 境 中 ( 体 温,pH接近中性),在一系列 酶促反应逐步进行,能量逐步 释放有利于有利于机体捕获能 量,提高ATP生成的效率。
组成 递氢体和电子传递体(2H 2H+ + 2e)
第10章生物氧化
(一)呼吸链的组成
四种具有传递电子功能的酶复合体(complex) 人线粒体呼吸链复合体
复合体
酶名称 多肽链数 辅基
复合体Ⅰ 复合体Ⅱ 复合体Ⅲ 复合体Ⅳ
NADH-泛醌还原酶 39
琥珀酸-泛醌还原酶
4
泛醌-细胞色素C还原酶 10
细胞色素c氧化酶
13
FMN,Fe-S FAD,Fe-S 铁卟啉,Fe-S 铁卟啉,Cu
* 泛醌 和 Cyt c 均不包含在上述四种复合体中。
第10章生物氧化
呼吸链各复合体在线粒体内膜中的位置
第10章生物氧化
1. 复合体Ⅰ: NADH-泛醌还原酶
功能: 将原子氢(电子)从NADH传递给泛醌 (ubiquinone)
肌酸
磷酸 肌酸
氧化磷酸化 底物水平磷酸化 ~P
ADP
生物体内能量的储存和利 用都以ATP为中心。
第10章生物氧化
~P
机械能(肌肉收缩) 渗透能(物质主动转运) 化学能(合成代谢)
The Oxidation System of ATP Producing