第七章生物氧化

合集下载

生物化学第七章生物氧化课件

生物化学第七章生物氧化课件

生物化学第七章生物氧化课件一、教学内容1. 生物氧化的定义和意义;2. 生物氧化的类型和过程;3. 生物氧化中的一些重要酶和蛋白质;4. 生物氧化在能量代谢和物质代谢中的作用;5. 生物氧化与人体健康的关系。

二、教学目标1. 学生能够理解生物氧化的定义和意义,知道生物氧化在生命活动中的重要性;2. 学生能够了解生物氧化的类型和过程,掌握生物氧化中的一些重要酶和蛋白质的作用;3. 学生能够理解生物氧化在能量代谢和物质代谢中的作用,并能够运用这些知识解释一些生物学现象。

三、教学难点与重点重点:生物氧化的定义和意义,生物氧化在生命活动中的重要性。

难点:生物氧化的类型和过程,生物氧化中的一些重要酶和蛋白质的作用。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:笔记本、笔。

五、教学过程1. 实践情景引入:通过介绍一些与生物氧化相关的生物学现象,如呼吸作用、发酵等,引起学生对生物氧化的兴趣。

2. 概念讲解:通过多媒体课件或板书,详细讲解生物氧化的定义和意义。

3. 类型和过程介绍:通过多媒体课件或板书,介绍生物氧化的类型和过程,同时结合一些实例进行讲解。

4. 重要酶和蛋白质的作用:通过多媒体课件或板书,讲解生物氧化中的一些重要酶和蛋白质的作用,同时结合一些实例进行讲解。

5. 随堂练习:通过一些选择题或简答题,检查学生对生物氧化的理解和掌握程度。

6. 能量代谢和物质代谢的作用:通过多媒体课件或板书,讲解生物氧化在能量代谢和物质代谢中的作用,同时结合一些实例进行讲解。

7. 作业布置:布置一些相关的阅读材料和练习题,加深学生对生物氧化的理解和掌握程度。

六、板书设计板书设计如下:生物氧化1. 定义和意义2. 类型和过程3. 重要酶和蛋白质4. 在能量代谢和物质代谢中的作用七、作业设计文章:生物氧化与人体健康的关系问题:(1)生物氧化在人体健康中的作用是什么?(2)为什么说生物氧化与人体健康密切相关?2. 练习题:一、选择题:1. 生物氧化的定义是()。

第七章 生物氧化-2

第七章 生物氧化-2

3、呼吸链各组分在体外重组:
NADH可以使NADH脱氢酶(FMN)还原,但不能 直接还原b ,c1 ,c, aa3
NADH呼吸链:大多数代谢产物
FADH2呼吸链:琥珀酸、脂酰辅酶A
三、线粒体外NADH的氧化

线粒体外NADH不能穿过线粒体膜,要借助穿
梭作用才能参加呼吸链。

线粒体外的NADH将所带的H交给某种能穿过线
(2)氧化磷酸化偶联机理: 化学渗透假说

1961年英国生物化学家P.Mitchell首先提 出,1974年P.Mitchell与Moyle又作了修改。 电子传递的结果使H+从线粒体内膜基质 “泵”到膜外液体中,形成一个跨内膜的H+ 离子梯度,这梯度所含的势能促使ATP生成。

设想:

在完整的线粒体膜中, 呼吸
OH CH 3 CH 3 CH 3O CH 3O OH CH 3 CH 3
泛醌
O CH 3O CH 3O O
(CH 2CH=CCH 2)nH
(CH 2CH=CCH 2)nH
5、细胞色素类

只存在需氧生物中,以铁卟啉作为辅基,递电子体

铁离子的氧化与还原
Fe3+ + e Fe2+

b,c1,c,a,a3: 辅基结构不同,与蛋白质的连接方式 也不同。
在结构完整的线粒体中,氧化(底物脱氢或失电子) 与磷酸化(ADP与Pi合成ATP)这两个过程是紧密地 偶联在一起的,即氧化释放的能量用于ATP合成,这 个过程就是氧化磷酸化。

依靠呼吸链上的电子传递体系完成-----电子 传递体系磷酸化。
(1)氧化磷酸化偶联部位的确定
A、自由能变化值

第七章 生物氧化

第七章 生物氧化
按其分子结构特点及所含高能键的特征分 磷氧型 磷氮型 烯醇式磷酸化合物 酰基磷酸化合物 焦磷酸化合物 胍基磷酸化合物
高能磷酸化合物
硫酯键化合物
高能非磷酸化合物
甲硫键化合物
几种常见的高能化合物
ATP的结构与功能 二、ATP的结构与功能
ATP的分子结构特点与水解自由能的关系 (1)ATP的分子结构特点与水解自由能的关系
三、高能化合物
生化反应中, 生化反应中 , 在水解时或基团转移反应中可 释放出大量自由能( 21千焦 摩尔) 千焦/ 释放出大量自由能 ( > 21 千焦 / 摩尔 ) 的化合物称 为高能化合物。 为高能化合物。 (一)生物体内的高能化合物 ATP的结构与功能 (二)ATP的结构与功能
一、高能化合物的类型
ATP的利用途径 的利用途径 ATP的 的 相 对 生成途径 速 率
能荷
能荷对ATP的生成途径和 的生成途径和ATP 能荷对 的生成途径和 的利用途径相对速率的 影响
ATP循环 ATP循环
ATP
肌酸 磷酸 肌酸 氧化磷酸化 底物水平磷酸化
~P 机械能(肌肉收缩) 机械能(肌肉收缩) 渗透能(物质主动转运) 渗透能(物质主动转运) 化学能(合成代谢) 化学能(合成代谢) 电能(生物电) 电能(生物电) 热能(维持体温) 热能(维持体温)
第七章 生物氧化
第一节 第二节 第三节 生物氧化概述 电子传递链 氧化磷酸化
第一节 生物氧化概述
一、生物氧化的概念及特点 二、生化反应中自由能的变化 三、高能化合物
一、生物氧化的概念及特点
1、概念:糖类、脂肪、蛋白质等有机物质在细胞中进行 概念:糖类、脂肪、 氧化分解生成CO 氧化分解生成 CO2 和 H2O 并释放出能量的过程称为生物氧

第七章 生物氧化习题

第七章 生物氧化习题

第七章生物氧化一、名词解释1. 生物氧化(biological oxidation):生物细胞将糖、脂、蛋白质等燃料分子氧化分解,最终生成CO2和H2O并释放出能量的作用。

生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP;2.呼吸链(respiratory chain):有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。

电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源;3.氧化磷酸化(oxidative phosphorylation):在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。

氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式;4.磷氧比(P/O):电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。

经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。

如NADH的磷氧比值是3,FADH2的磷氧比值是2;5.底物水平磷酸化(substrate level phosphorylation):在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。

此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP;6.铁硫蛋白(iron-sulfur protein, Fe-S):又称铁硫中心,其特点是含铁原子和硫原子,或与蛋白质肽链上半胱氨酸残基相结合;7. 细胞色素(cytochrome, Cyt):位于线粒体内膜的含铁电子传递体,其辅基为铁卟啉;二、填空题1. 生物氧化有3种方式:脱氢、脱质子和与氧结合。

第七章生物氧化

第七章生物氧化
代谢脱下的成对氢原子( 通过多种酶和辅酶 (1)代谢脱下的成对氢原子(2H)通过多种酶和辅酶 所催化的连锁反应逐步传递,最终与氧 所催化的连锁反应逐步传递,最终与氧结合生成 水; 酶和辅酶按一定顺序排列在线粒体内膜; 线粒体内膜 (2)酶和辅酶按一定顺序排列在线粒体内膜; 传递氢的酶和辅酶——递氢体 传递氢的酶和辅酶 递氢体 传递电子的酶和辅酶——递电子体 传递电子的酶和辅酶 递电子体 此过程与细胞呼吸有关,此传递链称为呼吸链 呼吸链。 (3)此过程与细胞呼吸有关,此传递链称为呼吸链。 递氢体、递电子体都起传递电子的作用,又称电 递氢体、递电子体都起传递电子的作用,又称电 子传递体。 子传递体。
3.生物氧化的特点 3.生物氧化的特点
C6H12O6 + 6O2 (2840kJ/mol) 6CO2+6H2O + 能量
生物氧化
反应条件 反应过程 能量释放 CO2生成方式 温 和 (体温、pH近中性) 体温、pH近中性) 近中性 酶促反应 逐步进行 (化学能、热能) 化学能、热能) 有机酸脱羧
体外燃烧
呼 吸 链
AH2
2H(2H++2e)
1 2 O2
H2O
氧化
A ADP+Pi
能量 ATP 磷酸化
偶 联
NADH呼吸链能够产生 呼吸链能够产生3 如:1mol NADH + H+经NADH呼吸链能够产生3 molATP
3.氧化磷酸化偶联部位(重点) 3.氧化磷酸化偶联部位(重点) 氧化磷酸化偶联部位
(P253)
位置: 位置:位于线粒体内 膜上(真核) 膜上(真核),细胞 膜上(原核) 膜上(原核)。
线粒体的结构
呼吸链
二、呼吸链的化学组成成分

第七章 生物氧化

第七章 生物氧化

2019/11/28
7
3. 有氧氧化
生物氧化在有氧和无氧条件下都能进行。 在有氧条件下,好气生物或兼性生物吸收空 气中的氧作为电子受体,可将燃料分子完全 氧化分解,这称为有氧氧化。因为有氧氧化 燃烧完全,产能多,所以,只要有氧气存在, 细胞都优先进行有氧氧化。
2019/11/28
8
4. 生物能及其存在形式
第七章 生物氧化
生物氧化概念 生物氧化的特点 生物氧化的本质及过程 NADH和FADH2的彻底氧化
2019/11/28
1
一、生物氧化概念
有机物在生物体内的氧化包括物质分解和
产能
O2
CO2 + H2O
呼吸作用
细胞呼吸(微生物)
2019/11/28
2
二、生物氧化的特点
1. 生物氧化是在生物细胞内进行的酶促氧化过程, 反应条件温和(水溶液,中性pH和常温)。
2019/11/28
34
(1)ATP产生的数量
研究氧化磷酸化最常用的方法是测定线粒体或其 制剂的P/O比值和电化学实验。P/O比值是指每消 耗一摩尔氧所消耗无机磷酸的摩尔数。根据所消 耗的无机磷酸摩尔数,可间接测出ATP生成量。实 验指明NADH呼吸链的P/O值是3,即每消耗一摩尔 氧原子就可形成3摩尔ATP,FADH2呼吸链的P/O值 是2,即消耗一摩尔氧原子可形成2摩尔ATP。
QH2-cyt. c还原酶由9个多肽亚基组成。活 性部分主要包括细胞色素b 和c1,以及铁硫 蛋白(2Fe-2S)。
2019/11/28
26
细胞色素
(简写为cyt. )是含铁的电子传递体,辅基为铁 卟啉的衍生物,铁原子处于卟啉环的中心,构成 血红素。各种细胞色素的辅基结构略有不同。线 粒体呼吸链中主要含有细胞色素a, b, c 和c1等, 组成它们的辅基分别为血红素A、B和C。细胞色素 a, b, c可以通过它们的紫外-可见吸收光谱来鉴 别。

生物化学(王镜岩版)第七章 生物氧化

生物化学(王镜岩版)第七章 生物氧化
复合体Ⅰ 复合体Ⅰ
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2 NADH→ →CoQ
NAD+和NADP+的结构
R=H: NAD+;
R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 ( )
氧化还原反应时变化发生在五价氮和三价氮之间。 氧化还原反应时变化发生在五价氮和三价氮之间。
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
辅酶Q
FAD、Fe-S
细胞色素 b-562
细胞色素还原酶 细胞色素c 血红素a 血红素a3 CuA和 CuB 细胞色素氧化酶 O2
细胞色素b-566 细胞色素c1 Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶 复合体Ⅰ NADH功能: 将电子从NADH传递给泛醌 (ubiquinone) 功能 将电子从 传递给泛醌
二、氧化还原电势 氧化还原反应——凡是反应中有电子从一种 物质转移到另一种物质的化学反应称为氧化 还原反应。即电子转移反应就是氧化还原反 应。 如: Fe 3+ + e
氧化型 电子受体
Fe 2+
还原型 电子供体
氧化还原电势——还原剂失掉电子或氧化剂 得到电子的倾向称氧化还原电势。
标准电势——任何的氧化-还原物质即氧还电对都 有其特定的电动势,称标准电势。用E0或ε0表示。 氧还电对的标准电势值越大,越倾向于获得电子。 例如,异柠檬酸/α-酮戊二酸 + CO2电对在浓度均 为1.0mol/L时,其标准电势为-0.38V, 这个氧化电对倾向于将电子传递给氧还电对 NADH/NAD+,因为其标准电势为-0.32V。

第七章 生物氧化

第七章 生物氧化

第七章生物氧化1.化学渗透学说的要点是什么?2.2,4-二硝基苯酚的解偶联机制是什么?3.简述ATP合成酶的结构特点及功能。

4.阐述一对电子从NADH传递至氧所生成的ATP分子数。

5.一对电子从FADH。

传递至氧产生多少分子A TP?为什么?6 简述ADP对呼吸链的调节控制作用。

7.试比较电子传递抑制剂,氧化磷酸化抑制剂和解偶联剂对生物氧化作用的影响。

8.呼吸链中各电子传递体的排列顺序是如何确定的?9.铁硫蛋白和细胞色素传递电子的方式是否相同?为什么?10.为什么说在呼吸链中,辅酶Q是一种特殊灵活的载体参考答案1.化学渗透学说的要点是:(1)呼吸链中各递氢体和电子传递体是按特定的顺序排列在线粒体内膜上;(2)呼吸链中三大复合物(即NADH-CoQ还原酶复合物,细胞色素还原酶复合物和细胞色素氧化酶复合物)都具有质子泵的作用,在传递电子的过程中将2个H+泵出内膜,所以呼吸链的电子传递系统是一个主动运输质子的体系;(3)质子不能自由通过线粒体内膜,泵出膜外的H+不能自由返回膜内侧,使膜内外形成质子浓度的跨膜梯度;(4)在线粒体内膜上存在有ATP合成酶,当质子通过ATP合成酶返回线粒质时,释放出自由能,驱动ADP和Pi合成ATP。

2.2,4一二硝基苯酚在生理条件下,羟基解离带负电荷,不能穿过线粒体内膜。

但由于内膜二侧的质子浓度梯度使内膜外侧的PH降低,这样羟基就不能解离,2,十二硝基苯酚可自由进入线粒体,一分子2,4-二硝基苯酚进入线粒体就相当于从内膜外侧带入线粒体内一个质子,破坏了内膜二侧的质子梯度,使ATP不能合成,而电子传递继续进行,结果使电子传递和氧化磷酸化两个过程分离。

3.A TP合成酶复合物由头部,基部和柄部组成。

头部也称F1,是由5种肽链组成的9聚体(α3β3γδε),具有催化A TP合成的功能,其中α和β亚基上有ATP和ADP结合位点,β亚基为催化亚基,γ-亚基可调节质子从F0蛋白向F1蛋白的流动,起阀门作用。

生物化学第七章生物氧化.ppt课件

生物化学第七章生物氧化.ppt课件

四、线粒体呼吸链的组成
(一)呼吸链的组成成分
NADH
NADH-Q 还原酶
琥珀酸-Q 还原酶
FADH2
FMN、Fe-S
血红素a 血红素a3 CuA和 CuB
辅酶Q
细胞色素还原酶 细胞色素c
细胞色素氧化酶 O2
FAD、Fe-S
细胞色素 b-562 细胞色素b-566 细胞色素c1
Fe-S
1. 复合体Ⅰ: NADH-泛醌还原酶
功能: 将电子从NADH传递给泛醌 (ubiquinone)
复合体Ⅰ
FMN; Fe-SN-1a,b; Fe-SN-4; Fe-SN-3; Fe-SN-2
NADH→
→CoQ
NAD+和NADP+的结构 R=H: NAD+; R=H2PO3:NADP+
NAD+(NADP+)和NADH(NADPH)相互转变 氧化还原反应时变化发生在五价氮和三价氮之间。
FMN结构中含核黄素,发挥功能的部位是 异咯嗪环,氧化还原反应时不稳定中间产物是 FMN• 。
铁硫蛋白中辅基铁硫簇(Fe-S)含有等量铁原 子和硫原子,其中铁原子可进行Fe2+ Fe3++e 反应传递电子。
Ⓢ 表示无机硫
泛醌(辅酶Q, CoQ, Q)由多个异戊二烯连接 形成较长的疏水侧链(人CoQ10),氧化还原反应 时可生成中间产物半醌型泛醌。
(二)呼吸链成分的排列顺序
由以下实验确定 ① 标准氧化还原电位 ② 拆开和重组 ③ 特异抑制剂阻断 ④ 还原状态呼吸链缓慢给氧
1. NADH氧化呼吸链
NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c → 复合体Ⅳ→O2
2. 琥珀酸氧化呼吸链

【化学】呼吸链生物化学

【化学】呼吸链生物化学

第七章生物氧化1、生物氧化(biological oxidation):物质在体内进行氧化称生物氧化。

主要指营养物质在体内分解时逐步释放能量,最终生成CO2和水的过程。

生物氧化又称组织呼吸或细胞呼吸。

生物氧化释放的能量:主要(40%以上)用于ADP的磷酸化生成A TP,供生命活动之需。

其余以热能形式散发用于维持体温。

2、生物氧化内容(1)生物体内代谢物的氧化作用、代谢物脱下的氢与氧结合成水的过程。

(2)生物体内二氧化碳的生成。

(3)能量的释放、储存、利用(ATP的代谢——A TP的生成与利用)。

3、生物氧化的方式——遵循一般氧化还原规律。

(1)失电子:代谢物的原子或离子在代谢中失去电子,其原子正价升高、负价降低都是氧化。

(2)脱氢:代谢物脱氢原子(H=H++e)的同时失去电子。

(3)加氧:向底物分子直接加入氧原子或氧分子的反应使代谢物价位升高,属于氧化反应。

向底物分子加水、脱氢反应的结果是向底物分子加入氧原子,也属于氧化反应。

4、生物氧化的特点(1)在温和条件下进行(37℃,中性pH等);(2)在一系列酶催化下完成;(3)能量逐步释放,部分储存在A TP分子中;(4)广泛以加水脱氢方式使物质间接获得氧;(5)水的生成由脱下的氢与氧结合产生;(6)反应在有水环境进行;(7)CO2由有机酸脱羧方式产生。

5、物质体外氧化(燃烧)与生物氧化的比较(1)物质体内、体外氧化的相同点:物质在体内外氧化所消耗的氧量、最终产物、和释放的能量均相同。

(2)物质体内、体外氧化的区别:体外氧化(燃烧)产生的二氧化碳、水由物质中的碳和氢直接与氧结合生成;能量的释放是瞬间突然释放。

5、营养物氧化的共同规律糖类、脂类和蛋白质这三大营养物的氧化分解都经历三阶段:分解成各自的构件分子(组成单位)、降解为乙酰CoA、三羧酸循环。

第一节 ATP生成的体系一、呼吸链(respiratory chain):代谢物脱下的氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。

生物化学 第07章 生物氧化

生物化学 第07章 生物氧化

糖酵解反应全过程
ATP ADP
葡萄糖
6-磷酸葡萄糖
ATP ADP 6-磷酸果糖 1,6-二磷酸果糖
2×乳酸
磷酸二羟丙酮 2×丙酮酸 2×NADH+ 2H+ 2×NAD+
3-磷酸甘油醛 2×Pi
2×烯醇式丙酮酸 2×ATP
2×ADP
2×磷酸烯醇式丙酮酸
2× 2-磷酸甘油酸
2×H2O
2×1,3-二磷酸甘油酸 2×ADP
物质在体内外氧化时所消耗的氧量、 最终产物(CO2,H2O)和释放能量均 相同。
生物氧化与体外氧化的不同点
生物氧化
体外氧化
反应条件
温和
反应过程 逐步进行的酶促反应
能量释放 逐步进行
CO2生成方式 有机酸脱羧
H2O
需要
速率
受体内多种因素调节
剧烈 一步完成 瞬间释放 碳和氧结合
不需要
(二)需氧脱氢酶
脑、骨骼肌
苹果酸-天冬氨酸穿梭
苹果酸、 谷氨酸 天冬aa、α-酮戊二酸
NADH+ H+
NADH 氧化呼吸链
2.5
肝脏和心肌组织
相同点 将胞浆中NADH的还原当量转送到线粒体内
高能化合物
含高能磷酸键或高能硫 酸键的化合物称为高能 化合物
概念:水解时释放的能量 大于21kJ/mol的化学键称 为高能键,常用符号“~” 表示。
细胞色素的传递方向
笔洗一洗AA散 b、c1、c、aa3
洗一洗
4. Cyt在呼吸链中的作用
2Cyt-Fe3++2e
2Cyt-Fe2+
2Cytaa3-Fe2+ +1/2O2 2Cytaa3-Fe3+ +O2-

生物化学第七章生物氧化

生物化学第七章生物氧化

生物化学第七章生物氧化适用于高中生物竞赛一、生物氧化的概念和特点:物质在生物体内氧化分解并释放出能量的过程称为生物氧化。

与体外燃烧一样,生物氧化也是一个消耗O2,生成CO2和H2O,并释放出大量能量的过程。

但与体外燃烧不同的是,生物氧化过程是在37℃,近于中性的含水环境中,由酶催化进行的;反应逐步释放出能量,相当一部分能量以高能磷酸酯键的形式储存起来。

二、线粒体氧化呼吸链:在线粒体中,由若干递氢体或递电子体按一定顺序排列组成的,与细胞呼吸过程有关的链式反应体系称为呼吸链。

这些递氢体或递电子体往往以复合体的形式存在于线粒体内膜上。

主要的复合体有:1.复合体Ⅰ(NADH-泛醌还原酶):由一分子NADH还原酶(FMN),两分子铁硫蛋白(Fe-S)和一分子CoQ组成,其作用是将(NADH+H+)传递给CoQ。

铁硫蛋白分子中含有非血红素铁和对酸不稳定的硫。

其分子中的铁离子与硫原子构成一种特殊的正四面体结构,称为铁硫中心或铁硫簇,铁硫蛋白是单电子传递体。

泛醌(CoQ)是存在于线粒体内膜上的一种脂溶性醌类化合物。

分子中含对苯醌结构,可接受二个氢原子而转变成对苯二酚结构,是一种双递氢体。

2.复合体Ⅱ(琥珀酸-泛醌还原酶):由一分子琥珀酸脱氢酶(FAD),两分子铁硫蛋白和两分子Cytb560组成,其作用是将FADH2传递给CoQ。

细胞色素类:这是一类以铁卟啉为辅基的蛋白质,为单电子传递体。

细胞色素可存在于线粒体内膜,也可存在于微粒体。

存在于线粒体内膜的细胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒体的细胞色素有CytP450和Cytb5。

3.复合体Ⅲ(泛醌-细胞色素c还原酶):由两分子Cytb(分别为Cytb562和Cytb566),一分子Cytc1和一分子铁硫蛋白组成,其作用是将电子由泛醌传递给Cytc。

4.复合体Ⅳ(细胞色素c氧化酶):由一分子Cyta和一分子Cyta3组成,含两个铜离子,可直接将电子传递给氧,故Cytaa3又称为细胞色素c氧化酶,其作用是将电子由Cytc传递给氧。

生物化学知识点与题目 第七章 生物氧化

生物化学知识点与题目 第七章 生物氧化

第七章生物氧化知识点:一、生物氧化的特点和方式,高能化合物生物氧化的特点;CO2生成的两种脱羧方式;高能化合物二、线粒体的结构和功能、呼吸链与氧化磷酸化线粒体内膜与外膜对于物质的通透性;线粒体内膜和基质中发生的反应;呼吸链的组成;递氢体与递电子体;偶联部位;呼吸链的抑制剂及其抑制部位;P/O;氧化磷酸化三、线粒体外NADH(或NADPH)的氧化磷酸化线粒体外NADPH异柠檬酸穿梭作用;线粒体外NADH磷酸甘油穿梭作用;苹果酸穿梭作用,分别偶联几个ATP的生成一、生物氧化的特点和方式,高能化合物知识点:生物氧化的特点;CO2生成的两种脱羧方式;高能化合物名词解释:生物氧化;高能化合物填空题:1.生物氧化是在细胞中,同时产生的过程。

2.是所有生命形式的主要的能量载体。

3.是高能磷酸化合物的贮存形式,可随时转化为ATP供机体利用。

4.高能磷酸化合物通常是指水解时的化合物,其中重要的是,被称为能量代谢的。

选择题:1.生物氧化的底物是:A、无机离子B、蛋白质C、核酸D、小分子有机物2、下列不属于高能化合物的是:A、1,3-二磷酸甘油酸B、磷酸烯醇式丙酮酸C、NTPD、dNDPE、1-磷酸葡萄糖3、下列不属于高能化合物的是:A、磷酸肌酸B、脂酰~SCoAC、乙酰~SCoAD、dNDPE、1-磷酸葡萄糖4.A TP含有几个高能键:A、1个B、2个C、3个D、4个5.除了哪一种化合物外,下列化合物都含有高能键?A、磷酸烯醇式丙酮酸B、磷酸肌酸C、ADPD、G-6-PE、1,3-二磷酸甘油酸6.呼吸链的电子传递体中,有一组分不是蛋白质而是脂质,这就是:A、NAD+B、FMNC、Fe-SD、CoQE、Cyt判断题:1.在生物圈中,能量从光养生物流向化养生物,而物质在二者之间循环。

2.磷酸肌酸是高能磷酸化合物的贮存形式,可随时转化为A TP供机体利用。

5.生物化学中的高能键是指水解断裂时释放较多自由能的不稳定键。

二、线粒体的结构和功能、呼吸链与氧化磷酸化知识点:线粒体内膜与外膜对于物质的通透性;线粒体内膜和基质中发生的反应;呼吸链的组成;递氢体与递电子体;偶联部位;呼吸链的抑制剂及其抑制部位;P/O;氧化磷酸化名词解释:P/O;呼吸链;电子传递抑制剂;解偶联剂;氧化磷酸化;底物磷酸化填空题:1.真核细胞生物氧化的主要场所是,呼吸链和氧化磷酸化偶联因子都定位于。

生物化学(2)第七章 生物氧化

生物化学(2)第七章  生物氧化

种类
1、 α -脱羧和β -脱羧; 2、直接脱羧和氧化脱羧: 氧化脱羧是指脱羧过程中伴随着氧化(脱氢)。
(三)生物氧化中水的生成 生物氧化中所生成的水是代谢物脱下的氢 经生物氧化作用和吸入的氧结合而成的。 糖类、蛋白质、脂肪等代谢物所含的氢在 一般情况下是不活泼的,必须通过相应的脱氢 酶将之激活后才能脱落。 进入体内的氧也必须经过氧化酶激活后才 能变为活性很高的氧化剂。但激活的氧在一般 情况下,也不能直接氧化由脱氢酶激活而脱落 的氢,两者之间尚需传递才能结合成水。所以 生物体主要是以脱氢酶、传递体及氧化酶组成 的生物氧化体系,以促进水的生成。
构象耦联学说 化学渗透学说
(1)化学偶联假说(1953) 认为电子传递过程产生一种活泼的 高能共价中间物。它随后的裂解驱动氧 化磷酸化作用。 (2)构象偶联假说(1964) 认为电子沿电子传递传递使线粒体 内膜蛋白质组分发生了构象变化,形成 一种高能形式。这种高能形式通过ATP的 合成而恢复其原来的构象。
原 理
线粒体外的NADH可将其所带之H转交 给某些能透过线粒体内膜的化合物(甘 油-3-磷酸,苹果酸等),进入线粒体内 后再氧化。
(1)甘油-3-磷酸穿梭途径(glycerol 3phosphate shuttle) 细胞液中含有甘油-3-磷酸脱氢酶, 可以将二羟丙酮磷酸还原为甘油-3-磷酸, 后者可进入线粒体内; 线粒体内又在甘油-3-磷酸脱氢酶作 用下,将甘油-3-磷酸转变为二羟丙酮磷 酸,同时FAD还原为FADH2 ,于是细胞 液中的NADH便间接形成了线粒体内的 FADH2 , FADH2将电子传递给CoQ还 原为QH2 ,后者通过呼吸链产生ATP。
需氧黄素脱氢酶
不需氧黄素脱氢酶
(2)以烟酰胺核苷酸为辅酶的脱氢酶 (烟 酰胺脱氢酶) 以NAD(CoⅠ)或NADP( CoⅡ )为 辅酶,催化代谢物脱氢,由NAD+ 或NADP+ 接受,然后将氢交给中间传递体,最后传 递给分子氧生成水。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上一页
下一页
返回
琥珀酸氧化呼吸链
这个呼吸链由琥珀酸脱氢酶复合体、CoQ和细胞色素 组成。其中琥珀酸脱氢酶复合体包括FAD、铁硫中心和 另一种细胞色素b(称为b558)。琥珀酸氧化呼吸链的电 子传递途径如图:
上一页
下一页
返回
线粒体中某些重要底物氧化时的呼吸链
上一页
下一页
节首
章首
线粒体呼吸链的组成
NADH-Q还原酶(NADH dehydrogenase, complex I)
琥珀酸-Q还原酶(succinate-Q reductase,complex Ⅱ )
细胞色素还原酶(cytochrome reductase, complex Ⅲ
细胞色素氧化酶(cytochrome oxidase, complex Ⅳ)
氧化型
H2O
一个或多个传递体
M
还原型
O2
生物氧化过程中水的生成
上一页
下一页
节首
章首
线粒体生物氧化体系
线粒体结构和功能特点
– 结构 – 功能
线粒体呼吸链
– 主要功能 – 组成 – 呼吸链中各组分的排列顺序
上一页
下一页
章首
线粒体的结构
之嵴外 间, 膜 线 为伸 光 粒 膜向 滑 体 间基 , 有 腔质 内 双 。。 膜 层
上一页
下一页
节首
章首
Complex I结构示意图
上一页
下一页
Complex Ⅱ结构示意图
上一页
下一页
Complex Ⅲ结构示意图
上一页
下一页
Complex Ⅳ结构示意图
上一页
下一页
各复合物之间的相互关系
上一页
下一页
线粒体呼吸链的组成
烟酰胺腺嘌呤二核苷酸(NAD+或CoI) 黄素单核苷酸和黄素腺嘌呤二核苷酸
上一页
下一页
节首
章首
直接脱羧作用(direct decarboxylation)
α-直接脱羧:如氨基酸脱羧
R-CHNH2-COOH α-氨基酸
R-CH2NH2 + CO2 胺
β-直接脱羧:如草酰乙酸脱羧
上一页
下一页
返回
氧化脱羧基(oxidativedecarboxylation )
α-氧化脱羧:如丙酮酸的氧化脱羧:
第七章 生物氧化
学习要求:1 细胞是如何利用氧分子代谢物分子中的氢氧化成 水的?
2 细胞是如何在酶的催化下把代谢物分子中的碳变成 二氧化碳?
3 当有机物被氧化时,细胞是如何将氧化时产生的能 量搜集和贮存起来的?
上一页
下一页
内容提要
生物氧化的特点和方式 线粒体生物氧化体系 生物氧化过程中能量的转变 非线粒体氧化体系
上一页
下一页
返回
铁硫蛋白(铁硫中心)
分子中常含2或4个Fe(称非血红素铁)和2或4个对 酸不稳定硫,其中一个Fe原子能可逆地还原而传递电子。 在NADH脱氢酶和琥珀酸脱氢酶中均含有多个不同的铁硫 蛋白,它们可将电子由FMNH2(或FADH2)转移到泛醌上。
上一页
下一页
返回
泛醌
是一种脂溶性的醌类化合物,其分子中的 苯醌结构能进行可逆的加氢反应,故也属于 递氢体。
上一页
下一页
生物氧化的特点和方式
生物氧化的特点 生物氧化中二氧化碳的生成方式 生物氧化过程中水的生成方式
上一页
下一页
章首
生物氧化的特点
生物氧化的能量是逐步释放的 生物氧化过程产生的能量储存在高能
化合物中
主要是ATP。ATP中的能量可以通过水解而被释 放出来,供给生物体的需能反应。
生物氧化具有严格的细胞内定位
内折膜 外叠结 膜成构

上一页
下一页
节首
章首
线粒体的功能特点
外膜对大多数小分子物质和离子可通透,
内膜须依赖膜上的特殊载体选择性地运载物质进出。
基质中含有全部与有机酸氧化分解有关的酶。
内膜上存在着多种酶与辅酶组成的电子传递链,或称呼 吸链。
内膜上的ATP合成酶利用电子传递过程释放的能量合成
原核生物的生物氧化是在细胞膜上进行的, 真核生物的生物氧化是在线粒体中进行的
上一页
下一页
节首
章首
二氧化碳的生成方式
直接脱羧基作用(decarboxylation)
–α-直接脱羧:氨基酸的脱羧 –β-直接脱羧:草酰乙酸脱羧
氧化脱羧基作用(oxidative decarboxylation)
–α-氧化脱羧:丙酮酸的氧化脱羧 –β-氧化脱羧:苹果酸的氧化脱羧
上一页
下一页
返回
细胞色素
细胞色素属于电子传递体,其传递电子的方式如下:
2Cyt•Fe3+ + 2e-
细胞色素 是属于色 蛋白类的结合蛋白质, 辅基是铁卟啉的衍生物, 因其有颜色又普遍存在 于细胞内,故称为细胞 色素。根据其结构与吸 收光谱的不同可将细胞 色素分为a、b和c三类。
上一页
下一页
2Cyt•Fe2+
β-氧化脱羧:如苹果酸的氧化脱羧
上一页
下一页
返回
生物氧化过程中水的生成
在生物氧化中,水是代谢物上脱下的氢与生物体吸进的O2 化合生成的。代谢物上的氢需要在脱氢酶的作用下才能脱
下,吸入的O2要通过氧化酶的作用才能转化为高活性的氧。 在此过程中,还需要有一系列传递体才能把氢传递给氧,
生成水.
代谢物M2H
细胞色素c的结构示意图
返回
呼吸链中各组分的排列顺序
NADH氧化呼吸链 琥珀酸氧化呼吸链 线粒体中某些重要底物氧化时的呼
吸链
上一页
下一页
节首
章首
NADH氧化呼吸链
是细胞内最主要的呼吸链,因为生物氧化过程中绝大多数脱氢酶 都是以NAD+为辅酶,当这些酶催化代谢物脱氢后,脱下来的氢使 NAD+转变为NADH,后者通过这条呼吸链将氢最终传给氧而生成水。 NADH呼吸链各成员的排列见图
(FMN和FAD) 铁硫蛋白(铁硫中心) 泛醌(CoQ) 细胞色素( Cyta 、Cytb、Cytc)
上一页
下一页
节首
章首
烟酰胺腺嘌呤二核苷酸
利用分子中烟酰胺基团的可逆性还原而递氢,还原形成的 NADH即可参与组成呼吸链而进行电子传递。
上一页
NAD+和NADH结构示意图
下一页
返回
黄素酶
辅基:黄素单核苷酸(FMN) 黄素腺嘌呤二核苷酸(FAD)
ATP,完成线粒体的供能作用。
上一页
下一页
节首
章首
线粒体呼吸链的主要功能
线粒体的主要功能 是将代谢物脱下的氢通过多种
酶及辅酶所组成的传递体系的传递,最后与氧结合生 成水。包括代谢物的脱氢、氢及电子的传递以及受氢 体的激活。
呼吸链 (respiratatory chain)由供氢体、传递体、
受氢体以及相应的酶系统所组成的这种代谢途径一般 称为生物氧化还原链。如果受氢体是氧,则称为呼吸 链。
相关文档
最新文档