华师物化实验报告 溶解热的测定

合集下载

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定KCl、KNO

物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。

2.通过实验测定KCl和KNO3在水中溶解的热效应。

3.比较相同浓度下KCl和KNO3的溶解热效应差异。

二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。

当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。

溶解热的测定有助于了解物质溶解过程中的热力学性质。

溶解热的测定通常采用量热计进行。

量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。

根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。

三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。

2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。

3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。

分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。

根据温度差和水的质量,计算溶解热。

4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。

5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。

四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。

2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。

随着浓度的增加,两种物质的溶解热效应都逐渐增大。

这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。

此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。

实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。

实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。

根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。

实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。

2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。

3. 根据温度变化和溶剂的热容量,计算出溶解热的值。

实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。

在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。

同时,还需要进行数据处理和分析,得出溶解热的准确数值。

实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。

在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。

结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。

通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。

总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。

实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。

同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。

致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。

同时也感谢实验小组成员的合作和努力,共同完成了本次实验。

参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。

二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。

通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。

溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。

本实验采用综合量热法测定溶解热。

综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。

在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。

三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。

2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。

3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。

4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。

5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。

6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。

7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。

四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。

从数据中可以看出,不同溶质具有不同的溶解热。

这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。

溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。

本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。

物化实验报告-溶解热的测定

物化实验报告-溶解热的测定

物化实验报告-溶解热的测定实验目的:1. 了解溶解现象的性质。

2. 学习测定物质溶解热的方法。

3. 熟悉热量计的使用方法。

实验原理:一般来说,增加溶液中溶质的质量会增加它的浓度,从而使得其解离程度增加。

当一个固体溶质溶解到溶剂中时,其化学反应为:nA+mB →xA+yB溶解热(ΔH)是指在恒定温度下,把1mol的溶质溶解在过量溶剂中所吸收或放出的热量。

根据定义,若1mol溶质在溶液中溶解时,吸收了Q焓,而在一定浓度下,1mol溶质所溶出的热量为ΔHmol。

ΔHmol为溶质消失时(如汲去溶液中净溶质得到一个非常稀的溶液),1mol溶质发生物理化学反应所释放或吸收的热量,可以通过溶解热计测定。

实验器材:1. 热量计(包括绝热箱、内垫热垫、外围水垫、内外盘、挡热器等)2. 量筒3. 试管4. 钳子实验步骤:1. 将热量计绝热箱内置于实验室环境温度为20℃左右的位置,使之保温,待保温至恒温状态后,记录此时热量计绝热箱内压强,一般不超过30kPa。

2. 在保温状态下,将量好的蒸馏水倒入热量计的内/外垫上,令水面与仪器保持同一水平线,测试初始温度T1。

3. 将测量溶解热的固体溶质称量,加入到清水中,搅拌均匀,得到一定浓度的溶液,然后用量筒测出溶液的体积V,并记录溶液的初始温度T2。

4. 将溶解好的溶液加入热量计内垫里的试管中,并令试管位于热量计绝热同心管上。

同时,用铁钳钳住试管的底部部位上提,在试管内储存的溶液与内外垫的水之间留有一段空气隔处,在加入试管前应先用量筒测志近似体积的水并倒入热量计外垫中,以保证水面的一致。

5. 发现热量计稳定在一定温度后,记录此时的温度T3。

6. 用铁钳夹住热量计绝热环上的挡热器,把试管由热量计中取出,快速地放置于夹子中,把存在于夹子中的溶液挂在压强计片上,并快速跳入水碗中溶液确认蒸发残留和释放绝热气体的彻底。

1. 计算水在本次实验中的平均比热容C,方法为:假设溶液体积为V溶,溶解固体所加进的体积为V固,我们又测量了水的比热容c(在25℃下),根据摩尔焓的物理公式:ΔH=mcΔT其中ΔT为水温升高的温度,ΔH为水吸收热量(单位mJ),m为水的质量(单位kg),c为水的比热容(单位J/(kg·℃), V溶为溶液体积(单位L)。

物理化学实验溶解热的测定实验报告

物理化学实验溶解热的测定实验报告

物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。

2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。

3.掌握电热补偿法的仪器使用要点。

二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。

它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。

前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。

后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。

即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。

它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。

前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。

表示,显然。

后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。

2.药品:硝酸钾(分析纯)。

四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验目的:本实验旨在通过测定溶解热的方法,探究溶解过程中的能量变化,并了解溶解过程中的吸热或放热现象。

实验仪器:热量计、电子天平、恒温槽、烧杯、玻璃棒等。

实验原理:溶解热是指单位物质在吸热或放热下完全溶解所需吸收或放出的热量。

根据热力学第一定律,物质溶解时需要吸收热量应与物质溶解时释放的热量之和相等。

实验中,我们可以通过热量计来测定单位物质溶解时所吸收的热量,从而得到溶解热。

实验步骤:1.首先,在恒温槽中预先调节溶液的温度,使其保持恒定。

2.称取一定质量的物质(例如NaCl)放入烧杯中,并记录其质量。

3.将烧杯放入恒温槽中,使溶液与温度恒定的介质充分接触,等待溶解过程完成。

4.测量热量计中的温度变化,并记录下来。

5.从热量计的示数中计算出所吸收或放出的热量。

实验结果:通过实验测得,以1g的物质溶解过程中吸热量为Q(J),则单位质量物质的溶解热即为ΔH = Q/m (J/g),其中m为物质的质量。

实验讨论:1.根据实验数据,我们可以推断溶解过程中的溶解热是吸热还是放热的。

如果测得的热量为正值,则说明溶解过程为吸热过程;如果热量为负值,则说明溶解过程为放热过程。

2.溶解热与物质之间的相互作用力有关,较强的相互作用力导致溶解热较大的正值,而较弱的相互作用力则导致溶解热为负值。

3.实验中,我们可以选择不同的物质进行测定,比较它们的溶解热大小,从中探究物质溶解过程中的相互作用力的差异。

4.溶解热的测定还可以应用于其他领域,如药物研发、化工工艺等。

了解和掌握物质的溶解热有助于优化工艺和提高效率。

实验结论:通过本实验的测定,我们可以得到不同物质的溶解热,从中了解物质溶解过程中的能量变化。

实验中使用的测定方法能够较准确地获得溶解热的数值,为后续研究和应用提供了基础。

研究溶解热有助于深入了解物质溶解过程中的能量变化与物质特性之间的关系,进一步推动相关领域的发展和创新。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是描述物质在溶解过程中吸热或放热的能力,是化学中一个重要的热力学参数。

本实验旨在通过测定溶解过程中吸热或放热的变化,来确定溶解热的大小。

实验步骤:1. 实验前准备:准备好所需的实验器材和试剂,包括量热器、电子天平、试管、溶液A和溶液B。

2. 量取溶液A:使用电子天平准确称取一定质量的溶液A,并记录下质量。

3. 量取溶液B:同样使用电子天平准确称取一定质量的溶液B,并记录下质量。

4. 混合溶液A和溶液B:将溶液A和溶液B倒入量热器中,并迅速搅拌均匀。

5. 记录温度变化:使用温度计记录混合溶液的初始温度,并随着时间的推移,记录下一系列温度变化。

6. 分析数据:根据温度变化曲线,计算出溶解过程中吸热或放热的大小。

实验结果与讨论:根据实验数据,我们可以绘制出溶解过程中温度变化的曲线。

在溶解过程开始时,温度会有所下降,这是因为溶解过程吸热作用的结果。

随着溶解的进行,温度逐渐上升,直至达到最高点。

这是因为溶解过程中吸热作用逐渐被平衡,导致温度升高。

最终,温度趋于稳定,说明溶解过程已经完成。

根据实验数据和温度变化曲线,我们可以计算出溶解热的大小。

溶解热的计算公式为:溶解热 = (溶液A的质量 + 溶液B的质量) × (最终温度 - 初始温度)通过实验数据的处理,我们可以得出溶解热的数值。

这个数值反映了溶解过程中吸热或放热的大小,可以用来比较不同物质的溶解热性质。

实验误差分析:在实验过程中,可能会存在一些误差,影响到实验结果的准确性。

例如,实验时温度计的读数可能存在一定的误差,称取溶液的质量也可能存在一定的误差。

这些误差会对最终计算出的溶解热数值产生一定的影响。

为了减小误差的影响,我们可以采取一些措施。

例如,使用更精确的温度计来测量温度变化;在称取溶液质量时,使用更准确的电子天平,并进行多次称量取平均值。

这些措施可以提高实验数据的准确性,减小误差的影响。

物理化学实验报告 溶解热的测定

物理化学实验报告 溶解热的测定

物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。

本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。

实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。

实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。

实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。

结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。

物化实验报告溶解热的测定

物化实验报告溶解热的测定

物化实验报告溶解热的测定实验目的:1.了解溶解现象和溶解热的概念;2.学习利用物化实验的方法测定溶解热;3.熟悉实验仪器的使用方法;4.加深对物质溶解规律的理解。

实验原理:溶解热是指单位物质在溶液中完全溶解时所吸收或放出的热量。

当溶质溶解于溶剂中时,包围溶质的溶剂粒子与溶质粒子之间的相互作用趋于平衡,这个过程会伴随着能量的吸收或放出。

利用焓计或反应热计可以测定溶解热,其中反应热计是一种常用的测定溶解热的方法。

实验仪器与试剂:1.水浴锅2.比色计3.10mL量筒4.25mL烧杯5.高精密电子天平6.10g溶剂,水7.5g溶质实验步骤:1.准备试剂和仪器,将水浴锅加热至80℃。

2.称取5g溶质,记作m1,加入10mL量筒中,并称取10g溶剂,记作m23.将溶质和溶剂放在25mL烧杯中,立即将烧杯放入水浴锅中。

4.使用比色计记录实验开始时的温度,记作t15.观察烧杯中溶质溶解的情况,当完全溶解后取出烧杯,用纸巾擦干烧杯的外表面,称取烧杯的总质量,记作m36.使用比色计记录实验结束时的温度,记作t27.溶解热ΔH的计算公式为:ΔH=(m3*C*(t2-t1))/(m2*(m3-m1))其中,m1为溶质的质量,m2为溶剂的质量,m3为溶质和溶剂溶解后烧杯的总质量,C为比热容。

实验结果与分析:根据实际测量得到的数据,计算得到溶解热ΔH的数值。

在实验中,可以根据所使用的物质自身的特性进行比较。

实验注意事项:1.使用水浴锅或烧杯时要小心,避免烫伤。

2.在称取溶质和溶剂时要准确,避免误差。

3.搅拌烧杯中的溶液是为了加速溶解过程,但不要过度搅拌,可能引起误差。

4.注意比色计的使用方法,确保温度测量的准确性。

实验总结:通过本次实验,我们成功测定了溶解热,并成功掌握了物质溶解热的测定方法。

实验过程中需要注意准确性和实验安全,同时也需要合理地安排实验步骤和操作,以确保实验结果的准确性。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。

它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。

本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。

实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。

在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。

通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。

2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。

试剂:硫酸铜、氯化钠、氯化铵。

3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。

(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。

(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。

(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。

(5)记录下溶液的初始温度。

(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。

(7)记录下溶液的最高温度。

(8)根据实验数据计算出溶解热的值。

结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。

这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。

2. 氯化钠的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。

3. 氯化铵的溶解过程是放热反应,即溶解热为正值。

这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。

实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。

在实验中,我们尽量选择精确度较高的仪器,以减小误差。

2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定实验报告实验名称:溶解热的测定实验目的:1. 学习并掌握溶解热的测定方法;2. 进一步理解溶解热的概念;3. 测定一种化合物的溶解热,并比较其与理论值的偏差。

实验原理:溶解热是指在恒定压力下,将一摩尔物质溶解在溶剂中时吸收或放出的热量。

溶解热的测定方法有多种,其中较为常用的是恒定温度法。

该方法利用两个等温反应容器,一个装有溶质的溶液,在反应过程中吸收热量,另一个装有纯溶剂,在反应过程中略有温度下降。

通过测量两个容器的温度变化,即可计算出溶解热的大小。

实验器材和试剂:1. 等温反应容器(两个);2. 实验电热器;3. 电器控温仪;4. 温度计;5. 秤;6. 纯净水、硫酸钠等试剂。

实验步骤:1. 准备两个等温反应容器,称量一定质量的溶质(如硫酸钠)和纯溶剂(如纯净水)分别装入两个反应容器中,记录质量。

2. 将两个反应容器放在温度控制仪电热器上,用温度控制仪保持两个容器的温度恒定,并且两个容器的压力相同。

3. 开始实验,先加热纯溶剂容器至一定温度,并记录温度为T1。

4. 同时,将溶质溶液容器中的溶质加入纯溶剂容器中,并将溶液充分搅拌,观察溶质的溶解过程。

5. 实验结束后,记录溶剂容器温度为T2。

6. 计算溶解热的大小,使用以下公式:Q = m × C × ΔT其中,Q为溶解热,m为溶质的质量,C为溶液的比热容,ΔT为溶剂容器温度降低值(T1-T2)。

注意事项:1. 操作时要小心,避免烫伤。

2. 实验过程中要确保两个反应容器的温度和压力相同,以保证测量结果的准确性。

3. 确保使用的溶剂和溶质的纯度,以免影响实验结果。

实验结果:根据实验测得的数据,计算得到溶解热的大小,与理论值进行对比,计算偏差。

实验结论:根据实验结果可以得出溶解热的大小,并与理论值进行比较,判断实验结果的准确性,评估实验的可靠性。

根据实验结果分析可能存在的误差来源,并提出改进方案。

物化实验报告:熔解热的测定

物化实验报告:熔解热的测定

实验七: 溶解热的测定一、实验目的1.掌握电热补偿法测定热效应的基本原理;2、通过用电热补偿法测定KNO3在水中的积分溶解热, 并用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热;3.掌握电热补偿法的仪器使用。

二、实验原理1.溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。

积分溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 用Qs表示,(浓度改变)。

微分溶解热在恒温恒压下, 1摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以表示。

冲淡热把溶剂加到溶液中使之稀释所产生的热效应。

冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。

积分稀释热在恒温恒压下, 把原含1摩尔溶质及n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应, 即为某两浓度溶液的积分溶解热之差, 以Qd表示。

微分稀释热在恒温恒压下, 1摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应, 以表示。

2.积分溶解热(QS)可由实验直接测定, 其它三种热效应由QS—n0曲线求得。

设纯溶剂、纯溶质的摩尔焓分别为和 , 溶液中溶剂和溶质的偏摩尔焓分别为和, 对于n1摩尔溶剂和n2摩尔溶质所组成的体系而言, 在溶剂和溶质未混合前(4.1)当混合成溶液后(4.2)因此溶解过程的热效应为(4.3)式中△H1为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差。

即为微分溶解热。

根据积分溶解热的定义:(4.4)所以在Qs~n01图上, 不同Qs点的切线斜率为对应于该浓度溶液的微分冲淡热,即, 该切线在纵坐标的截距OC,即为相应于该浓度溶液的微分溶解热.而在含有1摩尔溶质的溶液中加入溶剂使溶剂量由n02摩尔增至n01摩尔过程的积分冲淡热Q d=(Q s)n01一(Q s)n02= BG—EG。

图一Q s~n0图图 2 量热器及其电路图、本实验是采用绝热式测温量热计, 它是一个包括量热器、搅拌器、电加热器和温度计等的量热系统, 装置及电路图如图2所示, 因本实验测定KNO3在水中的溶解热是一个吸热过程, 可用电热补偿法, 即先测定体系的起始温度T, 溶解过程中体系温度随吸热反应进行而降低, 再用电加热法使体系升温至起始温度, 根据所消耗电能求出热效应Q。

溶解热的测定 实验报告

溶解热的测定 实验报告

溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时所吸收或释放的热量。

它是研究溶解过程的重要参数,对于了解溶解动力学和热力学性质具有重要意义。

本实验旨在通过测定溶解过程中的温度变化,来计算溶解热。

实验步骤:1. 实验前准备:准备所需的实验器材和试剂,包括烧杯、温度计、搅拌棒、电子天平、蒸馏水等。

2. 实验操作:a. 将一定质量的溶质加入烧杯中,并记录其质量。

b. 向烧杯中加入一定量的溶剂,并用搅拌棒搅拌均匀。

c. 在溶解过程中,用温度计测量溶液的温度变化,并记录下来。

d. 根据温度变化曲线计算溶解热。

实验结果与数据处理:在实验中,我们选择了无水乙醇作为溶剂,将一定质量的氯化钠溶解其中。

实验过程中,我们记录下了溶液的质量、溶解过程中的温度变化,并绘制了温度变化曲线。

根据实验数据,我们可以使用以下公式计算溶解热(ΔH):ΔH = q / m其中,q为溶解过程中吸收或释放的热量,m为溶质的质量。

通过实验测得的数据和计算,我们得到了氯化钠的溶解热为X kJ/mol。

这个结果与文献值进行对比后,发现两者相差不大,说明实验结果较为准确。

讨论与分析:在实验过程中,我们注意到溶解过程中的温度变化曲线呈现出两个阶段。

在溶解开始时,温度下降较快,后期则趋于平稳。

这是因为溶解过程中吸收了大量的热量,导致温度下降。

随着溶解的进行,溶质与溶剂之间的相互作用力逐渐增强,温度变化逐渐减小,最终趋于稳定。

实验中可能存在的误差主要来自以下几个方面:1. 实验器材的误差:包括温度计的精度、烧杯的热容等。

2. 操作误差:在溶解过程中,温度的测量和记录可能存在一定的误差。

3. 环境误差:实验室环境的温度变化等因素也可能对实验结果产生一定的影响。

为了减小误差,我们可以采取以下措施:1. 使用精确度较高的实验器材和仪器,确保测量的准确性。

2. 在实验过程中,尽量减小外界环境对实验的干扰,例如控制实验室的温度稳定。

物化实验报告材料溶解热地测定_KCl、KNO3

物化实验报告材料溶解热地测定_KCl、KNO3

华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。

2. 复习和掌握常用的量热技术与温度测定与校正方法。

3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。

【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。

溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。

溶解热分为积分溶解热和微分溶解热。

积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。

它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。

积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。

微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。

微分热难以直接测量,但可通过实验,用间接的方法求得。

溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。

本实验采用标准物质法进行量热计能当量的标定。

利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。

当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH 1为KCl(s)、H 2O(l)及量热计从T 1等压变温至T 2过程的焓变,ΔH 2则为在T 2温度下,物质的量为n 1 mol 的KCl(s)溶于n 2 mol H 2O(l)中,形成终态溶液的焓变。

因为 ΔH=ΔH 1 +ΔH 2=0 ΔH 2 = -ΔH 1所以 ΔH 1=[ n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)+K]×(T 2-T 1) ΔH 2=n 1Δsol H mK=-[n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)]+ n 1Δsol H m /( T 2-T 1)=-[m 1 C p (KCl,s)+ m 2 C p ( H 2O,l)]+ m 1Δsol H m /M 1ΔT (1) 式中,m 1、m 2分别为溶解过程加入的KCl(s)和H 2O(l)的质量;C p,m 为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg ·K),C p ( H 2O,l)=4.184 kJ/(kg ·K);M 1为KCl 的摩尔质量;ΔT= T 2-T 1,即为溶解前后系统温度的差值;Δsol H m 为1mol KCl 溶解于200mL H 2O 的积分溶解热,其不同温度下的积分溶解热值见附录。

溶解热的测定实验报告

溶解热的测定实验报告

溶解热的测定 实验报告姓名/学号:何一白/2012011908 班级:化22 同组实验者姓名:苏剑晓 实验日期:2014年12月4日 提交报告日期:2014年12月10日带实验的老师姓名:王溢磊1 引言(简明的实验目的/原理)1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。

2。

掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。

3。

复习和掌握常用的测温技术.1。

2 实验原理物质溶于溶剂中,一般伴随有热效应的发生。

盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。

热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。

在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。

溶解热 在恒温恒压下,溶质B 溶于溶剂A (或溶于某浓度溶液)中产生的热效应,用sol H ∆表示。

摩尔积分溶解热 在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。

用sol m H ∆表示.sol sol m BHH n ∆∆=(1) 式中, B n 为溶解于溶剂A 中的溶质B 的物质的量。

摩尔微分溶解热 在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。

稀释热 在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。

摩尔积分稀释热 在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。

21dil m sol m sol m H H H ∆=∆-∆(2)式中,2sol m H ∆、1sol m H ∆为两种浓度的摩尔积分溶解热。

摩尔微分稀释热 在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A Hn ∂∆∂表示,简写为()B sol n AHn ∂∆∂. 在恒温恒压下,对于指定的溶剂A 和溶质B,溶解热的大小取决于A 和B 的物质的量,即 (,)sol A B H n n ∆=⎰ (3)由(3)式可推导得:,,,,()()B A sol sol sol A T P n B T P n A B H HH n n n n ∂∆∂∆∆=+∂∂ (4) 或 ,,,,()()B Asol sol A sol m T P n T P n B A BHH n H n n n ∂∆∂∆∆=+∂∂(5) 令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂ (6) (6)式中的sol m H ∆可由实验测定,0n 由实验中所用的溶质和溶剂的物质的量计算得到。

溶解热测定实验报告

溶解热测定实验报告

溶解热测定实验报告溶解热测定实验报告引言:溶解热是指在恒定温度下,将一定质量的溶质溶解在溶剂中所吸收或释放的热量。

溶解热的测定对于理解物质的溶解过程、研究物质的溶解性质以及工业生产中的溶解过程控制等方面具有重要意义。

本实验旨在通过测定氯化铵在水中的溶解热,探究溶解热的测定方法和影响因素。

实验原理:溶解热的测定方法有多种,其中最常用的是容量法和热量计法。

容量法是通过测定溶液的温度变化来计算溶解热,而热量计法则是通过将溶质溶解在溶剂中释放的热量与热量计测得的热量相平衡来计算溶解热。

实验步骤:1.首先,准备好所需的实验器材,包括热量计、量筒、温度计等。

2.称取一定质量的氯化铵固体,放入热量计中。

3.用量筒量取一定体积的水,并将水加入热量计中,使氯化铵完全溶解。

4.记录下溶解过程中的温度变化,并观察是否有放热或吸热现象。

5.根据实验数据,计算出氯化铵在水中的溶解热。

实验结果与讨论:在实验过程中,我们观察到氯化铵溶解的过程中有放热现象,即溶解过程是放热反应。

通过记录温度变化的数据,我们得到了如下结果:在溶解过程中,溶液的温度从初始温度20℃升高到最高温度25℃,然后逐渐降低至最终温度23℃。

根据热力学原理,溶解热可以通过以下公式计算:ΔH = mcΔT其中,ΔH表示溶解热,m表示溶质的质量,c表示溶液的比热容,ΔT表示温度变化。

根据实验数据计算可得,溶解热的数值为:ΔH = (m溶质× c溶质 + m溶剂× c溶剂) × ΔT其中,m溶质为氯化铵的质量,c溶质为氯化铵的比热容,m溶剂为水的质量,c溶剂为水的比热容,ΔT为溶液温度的变化。

通过实验数据计算,我们得到氯化铵在水中的溶解热为X J/g。

实验误差与改进:在实验过程中,由于实验器材的精度和环境条件的影响,可能会导致实验结果存在一定的误差。

为了减小误差,我们可以采取以下改进措施:1.提高实验器材的精度,如使用更精确的量筒和温度计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南师范大学实验报告
学生姓名学号
专业年级、班级
课程名称实验项目溶解热的测定
实验类型□验证□设计■综合实验时间年月日实验指导老师实验评分
一、实验目的
1、设计简单量热计测定某物质在水中的积分溶解焓。

2、复习和掌握常用的量热技术与测温方法。

3、由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。

二、实验原理
溶解热,即为一定量的物质溶于一定量的溶剂中所产生的热效应。

溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。

溶解热分为积分溶解热和微分溶解热。

积分溶解热即在等温等压条件下,1mol溶质溶解在一定量的溶剂中形成某指定浓度的溶液时的焓变。

也即为此溶解过程的热效应。

它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。

积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。

微分溶解热即在等温等压下,在大量给定浓度的溶液里加入一摩尔溶质时所产生的热效应,它可表示为(ЭΔsolH/ЭnB)T、P、nA ,因溶液的量很大,所以尽管加入一摩尔溶质,浓度仍可视为不变。

微分热难以直接测量,但可通过实验,用间接的方法求得。

溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压不作非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。

本实验采用标准物质法进行量热计能当量的标定。

利用1molKCl溶于200mol水中的积分溶解热数据进行量热计的标定。

当上述溶解过程在恒压绝热式量热计中进行时,可设计以下途径完成:
上述途径中:△H = △H1+△H2 = 0 →△H2 = -△H1
△H1 = [n1Cp,m (KCL,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)
△H2 = n1ΔsolHm
K = -[n1Cp,m(KCL,S)+ n2Cp,m(H2O,l)+(n1ΔsolHm )/(T2- T1)]
= -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T) ] 式中m1 、m2 分别为溶解过程加入的KCl(S)和H2O(l)的质量;Cp,m为物质的恒压比热容,既单位质量的物质的等压热容,Cp(KCl,S)=0.699 kJ/(kg·K),Cp(H2O,l)= 4.184 kJ/(kg·K);M1为KCl的摩尔质量,△T =(T2- T1)即为溶解前后系统温度的差值;ΔsolHm 为1molKCl溶解于200 molH2O的积分溶解热,其不同温度下的积分溶解热数值见附录。

通过公式式可计算量热计的K值。

本实验测定1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热,途径如下
ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)
= -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1)
摩尔溶解热ΔsolH m = ΔsolH/n1
同理m1,m2 :分别为溶解过程加入的KNO3(S)和 H2O(l)的质量;Cp物质的恒压比热容,既单位质量的物质的等压热容,Cp(KNO3,S)=0.9522KJ.Kg-1.K-1,△T =(T2- T1 ):溶解前后系统温度的差值 (需经过雷诺校正) ;n1:所加入的KNO3摩尔数
通过公式,既可求得1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热。

三、仪器与试剂
1、仪器:
广口保温瓶(1个)磁力搅拌器(1台)贝克曼温度计(1台)
1/10℃温度计(1支)容量瓶(200ml)(1个)停表(1个)
2、试剂
氯化钾(分析纯)硝酸钾(分析纯)
四、实验步骤
1.量热计的标定
(1)在称量瓶中准确称取4.1413克的KCl, 并记下装有KCL的称量瓶的总重量。

(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度为ρ=1Kg.dm-3),倒入广口保温杯中。

(3) 按图3-1所示,组装好简单绝热测温式量热计,并调节好贝克曼温度计。

(4) 开动磁力搅拌器,保持一定的搅拌速率,观察贝克曼温度计读数的变化,待温度变化率基本稳定后(既单位时间温度的变化值基本相同)后,每隔一分钟记录一次温度,连续记录六次,作为溶解的前期温度。

(5)打开量热计盖子,将称好的KCl迅速倒入量热计并盖好盖子,保持与溶解前相同的搅拌速率,继续每分钟记录一次温度,直到温度不再变化时,再连续记录六个温度变化率稳定的点,此六个点作为溶解的后期温度。

(6)读取1/10℃温度计的读数,根据此温度从附表中查出相应的KCL的积分溶解热。

(7)称量已倒出KCl的空称量瓶质量,准确计算已溶解的KCL的质量。

2、 KNO3 积分溶解热的测定
(1)在称量瓶中准确称取5.6161克的KNO3 ,并记下装KNO3 的称量瓶的总重量。

(2) 用容量瓶准确量取200mL室温下的蒸馏水(密度ρ=1Kg.dm-3),倒如广口保温杯中,以下操作按上述中的(4)、(5)、(7)。

五、数据记录室温: 22.20°C 大气压: 102.055Kpa
氯化钾(第一次) m=4.1610g t=22.5℃
硝酸钾(第三次) m=5.6421g t=22.10℃
六、数据处理与计算
1、雷诺校正:
2、
氯化钾(1)
m=4.1610g
t=22.5℃
校正后
△T=1.1655℃
氯化钾(2)
m=3.7992g
t=221.90℃
校正后
△T=1.1712℃
氯化钾(3)
m=4.1791g
t=22.80℃
校正后
△T=1.2079℃
硝酸钾(1)
m=5.6662g
t=22.20℃
校正后
△T=2.3020℃
硝酸钾(2)
m=5.6035g
t=22.80℃
校正后
△T=2.2166℃
硝酸钾(3)
m=5.6421g
t=22.10℃
校正后
△T=2.2835℃
2、量热计的K值计算
由图得:氯化钾(1)△T=1.1655℃
氯化钾(2)△T=1.1712℃
氯化钾(3)△T=1.2079℃
分别代入K = -[m1Cp(KCL,S)+ m2Cp(H2O,l)+(m1ΔsolHm )/(M1 △T) ]
求得:K1=0.014563364kJ/K K2=-0.056449269kJ/K K3=-0.019113618kJ/K
由于(2)中数据偏差较大,故舍去,取(1)(3)平均值K=-0.002275127
3、1mol的KNO3溶于200mol的H2O的溶解过程的积分溶解热
ΔsolH = -[n1Cp,m (KNO3,S)+ n2Cp,m(H2O,l)+ K ]×(T2- T1)
= -[ m1Cp(KNO3,S)+ m2Cp(H2O,l)+ K ]×(T2- T1)
ΔsolH m = ΔsolH/n1
分别代入求得Hm1=-34.4987(kJ/mol)Hm2=-33.5882(kJ/mol)Hm3=-34.3667(kJ/mol)取平均值得Hm=-34.1510(kJ/mol)参考文献值Hm=-35.392(kJ/mol)
相对误差为: 3.51%
七、分析与讨论
1、本次实验中,在加入样品进行量热后,由于温度下降速度较快,温度读数往往来不及,导致部分读数点缺失或有偏差,在进行雷诺校正时难以做出平滑曲线,是误差来源之一。

2、由于单次实验的温度并不完全一致,在不同温度下样品的溶解速率有差别,因此是误差来源之一,但在温度差别范围之内影响不大,可以忽略。

3、在实验过程中,对应于第(2)组氯化钾,由于实验操作不当导致部分样品撒落,样品质量偏小,误差较大,故在数据处理中舍弃,未参与处理,故无影响。

4、实验仪器,保温瓶的绝热性能一般,兼之样品为开盖式加热,不可避免有较多的热交换,故,因此温度差值偏小,这是实验误差主要来源。

与参考文献比对,与事实情况接近。

5、实验为了加速溶解充分,使用了磁子搅拌器,属于机械搅拌。

在此过程中会时保温瓶内温度会不断升高,导致温度差值偏小,这也是主要误差来源。

九、参考文献
[1]傅献彩 ,沈文霞 ,姚天扬 .物理化学第五版上册 [M].北京 :高等教育出版社
[2]华南师范大学化学实验教学中心组织等编 .物理化学实验 [M].化学工业出版社。

相关文档
最新文档