2021年中考数学总复习——12.1 随机事件的概率
中考数学概率知识点归纳
![中考数学概率知识点归纳](https://img.taocdn.com/s3/m/a5c30dbcdc88d0d233d4b14e852458fb770b3801.png)
中考数学概率知识点归纳一天天积累,一点点努力,一步步前进,一滴滴汇聚,终于到了中考这一天。
放松心情,面带微笑,保持信心,你必将拥有灿烂的人生。
祝中考顺利!下面是小编给大家带来的中考数学概率知识点,欢迎大家阅读参考,我们一起来看看吧!中考数学概率知识点:随机事件1.随机事件的定义.2·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.3·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.4.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.中考数学备考知识点:随机事件发生的可能性随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
中考数学知识点总结:概率统计的9个考点考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
2021年中考数学一轮复习课件-第二十九讲 概率初步(46PPT)
![2021年中考数学一轮复习课件-第二十九讲 概率初步(46PPT)](https://img.taocdn.com/s3/m/5469e3f0bcd126fff6050bbd.png)
考点二 概率的求法 【示范题2】(2020·玉林中考)经过人民中路十字路口红绿灯处的两辆汽车,可 能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概
3
率是____4___.
【答题关键指导】简单事件的概率计算 (1)若一次试验中所有的结果数是有限的,并且每一种可能的结果出现的可能性 是一样的,这样的概率模型称为等可能模型,等可能模型的概率计算公式为: P(E)= 事件E可能出现的结果数 .
4
答案: 1
4
(2)画树状图为:
共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果 有4种, 所以抽得的2张卡片上的数字之和为3的倍数的概率=4 =1.
12 3
3.(2020·安徽中考)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为 了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪 一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇 形统计图,部分信息如下:
三、用频率估计概率
在大量重复试验中,如果事件A发生的频率 m 会稳定在某个常数p附近,那么
n
事件A发生的概率为P(A)=___p___,其中 p满足___0_≤__p_≤__1___.
【自我诊断】 1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任 意摸出一个球,则下列叙述正确的是 ( D ) A.摸到红球是必然事件 B.摸到白球是不可能事件 C.摸到红球与摸到白球的可能性相等 D.摸到红球比摸到白球的可能性大
2
以组成三角形的概率为___5___.
4.(2020·河南中考)如图所示的转盘,被分成面积相等的四个扇形,分别涂有 红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针 所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率
初中数学知识点归纳简单事件的概率
![初中数学知识点归纳简单事件的概率](https://img.taocdn.com/s3/m/4f683e5e6ad97f192279168884868762caaebbf6.png)
初中数学知识点归纳简单事件的概率数学中,概率是指其中一事件发生的可能性大小,常用数字来表征。
而简单事件是指一个试验中只有一个基本结果的事件。
本文将归纳初中数学中有关简单事件概率的知识点,以及相应的计算方法。
一、基本概念1.随机事件:在一定条件下可以发生或者不发生的事件。
2.样本空间:随机试验中所有可能的基本事件组成的集合,记作S。
3.随机事件的概率:事件A在随机试验中发生的可能性大小,记作P(A)。
4.概率的性质:a.非负性:对于任意事件A,P(A)≥0。
b.确定性:对于必然事件S,P(S)=1c.可列可加性:对于两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
二、计算概率的方法1.等可能概型:当所有基本事件发生的可能性相等时,称为等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:抛一枚均匀硬币的正反面,事件A为正面朝上,样本空间S为{正面,反面}。
则P(A)=1/22.不等可能概型:当基本结果发生的可能性不相等时,称为不等可能概型。
a.概率计算公式:P(A)=事件A的基本结果数/样本空间S的基本结果数。
b.例子:从一副扑克牌中抽取一张牌,事件A为得到红心,样本空间S为{52张牌}。
则P(A)=26/52=1/2三、计算概率的性质1.对立事件:对于事件A,它的对立事件为A',表示A不发生。
a.概率计算公式:P(A')=1-P(A)。
b.例子:掷一颗骰子,事件A为得到奇数点数,对立事件A'为得到偶数点数。
则P(A')=1-P(A)=1-1/2=1/22.互斥事件:对于事件A和B,它们不能同时发生。
a.概率计算公式:P(A∪B)=P(A)+P(B)。
b.例子:掷一颗骰子,事件A为得到1点,事件B为得到2点。
则P(A∪B)=P(A)+P(B)=1/6+1/6=1/33.独立事件:对于事件A和B,它们的发生与否互不影响。
专题训练32:概率-2021年中考数学一轮复习知识点课标要求
![专题训练32:概率-2021年中考数学一轮复习知识点课标要求](https://img.taocdn.com/s3/m/2f1f44e3a32d7375a5178011.png)
2021年中考数学一轮复习知识点课标要求专题训练32:概率(含答案)一、知识要点:1、随机事件必然事件:在一定条件下,一定会发生的事件称为必然事件。
不可能事件:在一定条件下,一定不会发生的事件称为不可能事件。
必然事件和不可能事件统称确定性事件。
随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件。
2、概率(1)概率的性质:P(必然事件)=1;P(不可能事件)=0;0<P(不确定事件)<1。
(2)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包括其中的m 种结果,那么事件A 发生的概率n m A P)(。
二、课标要求:1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量的重复试验,可以用频率来估计概率。
三、常见考点:1、必然事件、不可能事件、随机事件的辨析。
2、简单事件的概率求解。
3、用频率估计概率。
4、用概率解决实际问题。
5、概率与其它知识的综合运用。
四、专题训练:1.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,再往该盒子中放入5个相同的白球,摇匀后从中随机模出一个球.若摸出白球的概率为,则盒子中原有的白球的个数为( )A .10B .15C .18D .20 2.下列说法正确的是( )A .“买10张中奖率为的奖券必中奖”是必然事件B .“汽车累计行驶10000km ,从未出现故障”是不可能事件C .天气预报说“明天下雪的概率为80%”,但“明天下雪”仍是随机事件D .射击奥运冠军射击一次,命中靶心是必然事件3.在4张相同的卡片上分别写有数1、3、4、6.将卡片的背面朝上并洗匀,从中抽取一张,抽到的数是奇数的概率()A.B.C.D.14.一只不透明的袋子中装有2个白球、3个黄球和5个红球,这些球除颜色外都相同,搅匀后任意摸出一个球,则下列事件中发生的概率最大的是()A.摸到白球B.摸到黄球C.摸到红球D.摸到不是白球5.某同学掷一枚硬币,结果是一连8次都掷出正面朝上,请问他第9次掷出硬币时出现正面朝上的概率是()A.小于B.大于C.等于D.不能确定6.在四张究全相同的卡片上,分别画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是()A.B.C.D.17.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. B. C.D.8.在一个布袋中装着只有颜色不同,其它都相同的红、白两种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,则两次所摸出的球都是同一颜色球的概率是()A.B.C.D.9.如图,A,B两个转盘分别被平均分成三个,四个扇形,分别转动A盘,B盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在区域为止,两个转盘停止后指针所指区域内的数字之和小于6的概率是()A.B.C.D.10.在一只不透明的口袋中放入红球5个,黑球1个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n是()A.3 B.4 C.5 D.611.一个口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,放回搅匀,再摸出第2个球,则两次摸球可能出现的所有结果中,都是白球的概率为.12.一个盒子中装有分别写上数字1,2,﹣4的三个大小形状相同的白球,现摇匀后从中随机摸出一个球,将上面的数字记作a,不放回.再从中随机摸出一个球,将上面的数字记作b,则a,b的值使得抛物线y=ax2+bx+3的对称轴在y轴右侧的概率为.13.在一个不透明的箱子里装有红色、蓝色、黄色的球共50个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在20%和30%,则箱子里蓝色球的个数很可能是.14.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F 两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.15.抛掷一枚质地均匀的硬币,若第一次是正面朝上,则第二次正面朝上的概率为.16.小明抛掷两枚质地均匀的骰子(如图,骰子的六个面上分别刻有1到6的点数),两枚骰子朝上的点数和是7的概率是.17.在一个不透明的口袋里有标号1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球,若从袋中不放回地摸两次,则两球标号数字是一奇一偶的概率是.18.把一枚质地均匀的骰子先后抛掷两次,将“两次抛掷骰子所得点数相同”记为事件A,则P(A)=.19.某校合唱团为了开展线上“同唱一首赞歌”活动,需招收新成员,小东、小海、小富、小美四名同学报名参加了应聘活动,其中小东、小海来自八年级,小富、小美来自九年级,现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小东同学的概率为;(2)若随机抽取两名同学,请用画树状图或列表法求两名同学均来自九年级的概率.20.有4张印有“青”、“山”、“绿”、“水”字样的卡片(卡片的形状、大小、质地都相同),放在一个不透明的盒子中,将卡片洗匀.(1)从盒子中任意取出一张卡片,恰好取出印有“青”字的卡片的概率为;(2)先从盒子中任意取出一张卡片,记录后放回并搅匀,再从其中任意取出一张卡片,求取出的两张卡片中,至少有1张印有“青”字的卡片的概率(画树状图或列表法求解).21.在一个口袋中装有3个大小形状完全相同的小球,小球上面分别写有数字1、2、3,现从袋中随机摸出1个小球,记下小球上的数字后放回,再随机地摸出1个小球,(1)请用画树状图或列表法中的一种,列举出两次摸出的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.22.某校开展以“我和我的祖国”为主题的大合唱活动,九年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中随机抽选学生担任领唱.(1)若只选一名学生担任领唱,则选中女生的概率是;(2)若随机选出两名学生担任领唱,请用树状图或列表法求选中一男一女的概率.23.在一个不透明的布袋里装有3个大小、质地均相同的乒乓球,球上分别标有数字为1、2、3.(1)随机从布袋中一次摸出两个乒乓球,写出两个乒乓球上的数字都是奇数的概率是;(2)随机从布袋中摸出一个乒乓球,记下数字后放回布袋里,再随机从布袋中摸出一个乒乓球,请用列表或画树状图的方法求出两个乒乓球上的数字之和不小于4的概率.24.甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?25.一个不透明的袋子中装有四个小球,球面上分别标有数字﹣1,0,1,2四个数字.这些小球除了数字不同外,其它都完全相同,袋内小球充分搅匀.(1)随机地从袋中摸出一个小球,则摸出标有数字2的小球的概率为(直接写出答案);(2)若先从袋中随机模出一个小球(不放回),然后再从余下的三个小球中随机摸出一个小球,请用树状图或表格形式列出所有可能出现的结果,并求出两次摸出的小球球面上数字之和为1的概率.参考答案1.解:设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.故选:D.2.解:A、“买10张中奖率为的奖券必中奖”是随机事件,故原命题错误,不符合题意;B、汽车累计行驶10000km,从未出现故障”是随机事件,故原命题错误,不符合题意;C、天气预报说“明天下雪的概率为80%”,但“明天下雪”仍是随机事件,正确,符合题意;D、射击奥运冠军射击一次,命中靶心是随机事件,故原命题错误,不符合题意,故选:C.3.解:∵共有4张相同的卡片,分别写有数1、3、4、6,其中奇数有1、3共有2个,∴从中抽取一张,抽到的数是奇数的概率是=.故选:B.4.解:∵一只不透明的袋子中装有2个白球、3个黄球和5个红球,∴摸到白球的概率为:=;摸到黄球的概率为:;摸到红球的概率为=;摸不到白球的概率为1﹣=,故选:D.5.解:无论哪一次抛掷硬币,都有2种情况,即正、反,故第10次掷出硬币时出现正面朝上的概率为.故选:C.6.解:∵四张完全相同的卡片上分别画有等腰三角形、平行四边形、矩形、圆,其中既是轴对称图形又是中心对称图形的有矩形、圆,∴现从中任意抽取一张,卡片上所画的图形既是轴对称图形又是中心对称图形的概率为=,故选:B.7.解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是=.故选:B.8.解:画树状图如图:共有4个等可能的结果,两次所摸出的球都是同一颜色球的结果有2个,∴两次所摸出的球都是同一颜色球的概率为=,故选:A.9.解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,所以两个转盘停止后指针所指区域内的数字之和小于6的概率==.故选:A.10.解:根据题意可得=,解得:n=3,经检验n=3是分式方程的解,即放入口袋中的黄球总数n=3,故选:A.11.解:画树状图得:∵共有9种等可能的结果,摸出两个白球的有4种结果,∴两次摸出的球都是白球的概率为.故答案为:.12.解:根据题意列表如下:1 2 ﹣41 ﹣﹣﹣(1,2)(1,﹣4)2 (2,1)﹣﹣﹣(2,﹣4)﹣4 (﹣4,1)(﹣4,2)﹣﹣﹣所有等可能的情况有6种,其中满足a,b的值使得抛物线y=ax2+bx+3的对称轴在y轴右侧的情况有4种,则a,b的值使得抛物线y=ax2+bx+3的对称轴在y轴右侧的概率为=,故答案为:.13.解:根据题意得摸到红色、黄色球的概率为20%和30%,所以摸到蓝球的概率为50%,因为50×50%=25(个),所以可估计箱子中蓝色球的个数为25个.故答案为25.14.解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形ABCD,∴点A落在阴影区域内的概率为,故答案为:.15.解:∵每次抛掷硬币正面朝上的概率均为,且两次抛掷相互不受影响,∴抛掷一枚质地均匀的硬币,若第一次是正面朝上,则第二次正面朝上的概率为,故答案为:.16.解:画树状图为:共有36个等可能的结果数,其中两枚骰子朝上的点数和是7的结果数为6个,∴两枚骰子朝上的点数和是7的概率为=,故答案为:.17.解:列表如下:1 2 3 4 51 ﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2 (2,1)﹣﹣﹣(2,3)(2,4)(2,5)3 (3,1)(3,2)﹣﹣﹣(3,4)(3,5)4 (4,1)(4,2)(4,3)﹣﹣﹣(4,5)5 (5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中两球标号数字是一奇一偶的情况有12种,则两球标号数字是一奇一偶的概率是=.故答案为:.18.解:利用列表法表示所有可能出现的结果如下:共有36种等可能出现的结果,其中“两次抛掷骰子所得点数相同”的有6种,∴P两次抛掷骰子所得点数相同=P(A)==,故答案为:.19.解:(1)若随机抽取一名同学,恰好抽到小东同学的概率为,故答案为:;(2)画树状图如下:总共有12种可能结果,其中两名均来自九年级的结果有2种,所以.20.解:(1)从盒子中任意取出一张卡片,恰好取出印有“青”字的卡片的概率为,故答案为:;(2)画树状图如下:由图可知,共有16个等可能的结果,其中取出的两张卡片中,至少有1张印有“青”字的卡片的结果有7个,∴取出的两张卡片中,至少有1张印有“青”字的卡片的概率为.21.解:(1)列表如下:1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)共有9种等可能的结果.(2)由(1)得两次摸出的球上的数字和为偶数的有5中情况,所以两次摸出的球上的数字和为偶数的概率为.22.解:(1)只选一名学生担任领唱,则选中女生的概率是,故答案为:;(2)画树状图得:∵共有20种等可能的结果,选中一男一女的有12种情况,∴选中一男一女的概率为=.23.解:列表得:1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)(1)∵有9种可能结果,两个数字都是奇数的只有4种,∴P(都是奇数)==,故答案为:;(2)∵有9种可能结果,两个数字之和不小于4的只有6种,∴P(都是奇数)==.24.解:(1)画树状图如图所示:由图知共有12种等可能结果;(2)由(1)知若、都是方程的解有4种可能,若、都不是方程的解有2种可能,即:P(小明获胜)=,P(小刚获胜)=,故游戏不公平.25.解:(1)随机地从袋中摸出一个小球,则摸出标有数字2的小球的概率为,故答案为:;(2)画树状图如图:共有12个等可能的结果,两次摸出的小球球面上数字之和为1的结果有4个,∴两次摸出的小球球面上数字之和为1的概率为=.。
中考数学复习 《简单随机事件的概率》练习题含答案
![中考数学复习 《简单随机事件的概率》练习题含答案](https://img.taocdn.com/s3/m/a835c41d5627a5e9856a561252d380eb629423cd.png)
中考数学复习 简单随机事件的概率一、选择题1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( D )A .甲组B .乙组C .丙组D .丁组【解析】根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选D. 3.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( B )A.17B.37C.47D.574.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.125.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )A.12B.14C.18D.116【解析】根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,两个转盘的指针都指向2的概率为116.6.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是( C )A.12B.13C.49D.59【解析】大正方体表面涂色后分割成27个小正方体,容易知道恰好有两面涂有颜色的正方体有12个,P =1227=49.二、填空题7.“明天的太阳从西方升起”这个事件属于__不可能__事件.(选填“必然”“不可能”或“不确定”)8.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 __13__.9.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率__19__.10.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为__14__.【解析】大于6的为7,8两块扇区,而一共有8块扇区,P =28=14.11.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为15,那么口袋中小球共有__15__个.【解析】设小球共有x 个,则3x =15,解得x =15.12.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏__不公平__.(填“公平”或“不公平”)【解析】奇偶情况数不对等,不公平.三、解答题13.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个).故袋中红球的个数是200个(2)80÷290=829.答:从袋中任取一个球是黑球的概率是8 2914.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是__不可能__事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.解:(2)画树状图:即小张同学得到猪肉包和油饼的概率为212=1615.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)小明为厂家设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(转盘上用文字注明,简述获奖方式)解:(1)该抽奖方案符合厂家的设奖要求:分别用黄1、黄2、白1、白2、白3表示这5个球,从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,黄1)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,黄1)、(白1,黄2)、(白1,白2)、(白1,白3)、(白2,黄1)、(白2,黄2)、(白2,白1)、(白2,白3)、(白3,黄1)、(白3,黄2)、(白3,白1)、(白3,白2),共有20种,它们出现的可能性相同.所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(A)=220=110,即顾客获得大奖的概率为10%,获得小奖的概率为90%(2)本题答案不唯一,如图所示,将转盘中圆心角为36°的扇形区域涂上黄色,其余区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖。
随机事件的概率与计算知识点总结
![随机事件的概率与计算知识点总结](https://img.taocdn.com/s3/m/149679256ad97f192279168884868762caaebb8f.png)
随机事件的概率与计算知识点总结概率是数学中一个重要的分支,用于描述事件发生的可能性。
在我们日常生活中,随机事件无处不在,了解概率与计算知识点能够帮助我们更好地理解和分析各种事件的发生概率。
本文将对随机事件的概率与计算知识点进行总结,帮助读者更好地理解和应用于实际问题中。
1. 概率的基本概念概率是描述随机事件发生可能性的数值,在0到1之间取值,0表示不可能发生,1表示必然发生。
对于一个随机事件E,其概率记作P(E)。
2. 事件的排列与组合在考虑多种事件同时发生的情况下,我们需要了解事件的排列与组合。
排列是指考虑事件中元素的顺序,而组合则只考虑元素的选择与不考虑顺序。
在计算排列与组合中,我们可以使用阶乘、组合数学公式等方法来求解。
3. 加法法则加法法则用于计算多个事件中至少有一个事件发生的概率。
如果事件A和事件B是互斥事件(即两者不能同时发生),则它们的概率可通过简单相加得到:P(A∪B) = P(A) + P(B)。
4. 乘法法则乘法法则用于计算多个事件同时发生的概率。
如果事件A和事件B是相互独立事件(即一个事件的发生不影响另一个事件的发生),则它们的概率可通过简单相乘得到:P(A∩B) = P(A) × P(B)。
5. 条件概率在一些情况下,事件的发生可能会受到其他事件的影响。
条件概率用于描述在给定其他事件发生的前提下,某个事件发生的概率。
条件概率可通过P(A|B) = P(A∩B) / P(B)来计算,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。
6. 贝叶斯定理贝叶斯定理是描述事件的后验概率与先验概率之间关系的数学公式。
它以事件的条件概率为基础,并利用贝叶斯公式来进行计算,即P(A|B) = (P(B|A) × P(A)) / P(B),其中P(A)和P(B)分别表示事件A和事件B的概率。
7. 随机变量与概率分布随机变量是概率论中一个重要的概念,它可以用于描述随机事件的结果。
随机事件的概率 课件
![随机事件的概率 课件](https://img.taocdn.com/s3/m/ef8d408c59f5f61fb7360b4c2e3f5727a5e924e2.png)
类型一 必然事件、不可能事件和随机事件的判定
例1 在下列事件中,哪些是必然事件?哪些是不可能事件?哪些是随机 事件? (1)如果a,b都是实数,那么a+b=b+a; (2)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; (3)铁球浮在水中; (4)某电话总机在60秒内接到至少15次传呼; (5)在标准大气压下,水的温度达到50 ℃时沸腾; (6)同性电荷,相互排斥.
(2)写出“第一次取出的小球上的标号为2”这一事件. 解 记“第一次取出的小球上的标号为2”为事件A, 则A={(2,1),(2,3),(2,4)}.
类型三 用频率估计概率
例3 李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这
门课3年来的考试成绩分布: 经济学院一年级的学生王小慧下 学期将选修李老师的高等数学课, 用已有的信息估计她得以下分数 的概率(结果保留到小数点后三位). (1)90分以上;(2)60分~69分; (3)60分以上.
类型二 列举试验结果 例2 某人做试验,从一个装有标号为1,2,3,4的小球的盒子中,无放回地 取两个小球,每次取一个,先取的小球的标号为x,后取的小球的标号 为y,这样构成有序实数对(x,y). (1)写出这个试验的所有结果; 解 当x=1时,y=2,3,4; 当x=2时,y=1,3,4; 当x=3时,y=1,2,4; 当x=4时,y=1,2,3. 因此,这个试验的所有结果是(1,2),(1,3),(1,4),(2,1),(2,3),(2,4), (3,1),(3,2),(3,4),(4,1),(4,2),(4,3).
随机事件的概率
知识点一 随机事件 思考 抛掷一粒骰子,下列事件,在发生与否上有什么特点? (1)向上一面的点数小于7; (2)向上一面的点数为7; (3)向上一面的点数为6. 答案 (1)必然发生;(2)必然不发生;(3)可能发生也可能不发生.
中考数学一轮复习:简单随机事件的概率及应用
![中考数学一轮复习:简单随机事件的概率及应用](https://img.taocdn.com/s3/m/49dc3a1abed5b9f3f90f1ce5.png)
【解析】(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中取出一只,有 A1A 2, A1B2,B 1B2,B 1A2 四种情况,恰好匹配的有 A 1A 2,B1B 2 两种情况. 2 1 ∴P(恰好匹配)= = . 4 2
知识点二
概率及计算
1.概率: 一个事件发生的可能性的大小,可以用一个数来表示,我们把这个数叫做这 个事件发生的概率. 2.用频率估计概率: 在进行实验的时候,当实验的次数很大时,某个事件发生的频率 稳定在相应的概率附近.我们可以通过多次实验用一个事件的频率来估计这一事件的概率 . 3.概率的计算方法及公式 事件E可能发生的结果数 公式:P(E)= 所有等可能结果的总数 方法:(1)画树状图法;(2)列表法. 4.概率的范围 一般地,当事件 E 为必然事件时,P(E)=1; 当事件 E 为不可能事件时, P(E)=0; 当事件 E 为不确定事件时, P(E)在 0 与 1 之间. 总之,任何事件 E 发生的概率 P(E)都是 0 和 1 之间(包括 0 和 1)的数,即 0≤ P(E )≤1.
【解析】D A、B、C 均为不确定事件,D 项,口袋中装有 2 个红球和 1 个白球,从中 摸出 2 个球,其中必有红球是必然事件,故本选项正确.
掷一枚质地均匀的硬币 10 次,下列说法正确的是( A.每 2 次必有 1 次正面向上 B.可能有 5 次正面向上 C.必有 5 次正面向上 D .不可能有 10 次正面向上
一个正六边形转盘被分成 6 个全等的正三角形, 任意转动这个转盘 1 次, 当转盘停止时, 指针指向阴影区域的概率是( )
A.
1 2
1.2随机事件的概率
![1.2随机事件的概率](https://img.taocdn.com/s3/m/bba63d7e770bf78a64295402.png)
一、概率和频率解释 二、从频率的性质看概率的性质 三、概率的公理化定义 四、概率测度的其他性质
一、 概率和频率解释
定义11(概率的直观定义) 随机事件A发生的可能性大小的度量(数值) 称为事件A
发生的概率 记作P(A)
提示 大量重复投掷一枚均匀硬币 出现正面和反面的频率会
接近一个稳定值1/2 可见频率的稳定值与事件发生的可能性 大小存在内在必然的联系 一方面频率的稳定性说明事件发 生的可能性大小确实是一种客观存在 另一方面 频率的稳定 值对事件发生的可能性大小提供了经验解释
(1) 5天均下雨 (2) 至少一天不下雨 (3) 至多三天不下雨
解 已求得
P(
A0)
1 16
P(
Ai
)
i 16
(i1 2 3 4 5)
记(1) (2) (3)中三个事件分别为A B C 则
(1)
P(
A)
P(
A0)
1 16
(2)
P(B)
5
P( i1
Ai)
1
P(
A0)
15 16
(3)
P(C)
3
P( i1
P(A0)P(A1)P(A2)P(A3)P(A4)P(A5)
P(A0)P(A0)2P(A0)3P(A0)4P(A0)5P(A0)
16 P(A0) 于是可求得
P(
A0)
1 16
P(
Ai
)
i 16
(i1 2 3 4 5)
例110 观察某地区未来5天的天气情况 记Ai为事件 “有i天不下雨”(i0 1 2 3 4 5) 已知P(Ai)iP(A0)(i1 2 3 4 5) 求下列各事件的概率
中考数学复习《概率》考点及经典题型
![中考数学复习《概率》考点及经典题型](https://img.taocdn.com/s3/m/e1e54209182e453610661ed9ad51f01dc28157bc.png)
中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
2021年中考数学概率知识点:事件的概率考点解析
![2021年中考数学概率知识点:事件的概率考点解析](https://img.taocdn.com/s3/m/adbf73304028915f814dc27d.png)
2021年中考数学概率知识点:事件的概率考点解析
学习是一个循序渐进的过程,需要同学们不断的学习和努力。
提供了____中考数学概率知识点,希望能帮助大家更好的复习所学的知识。
事件的概率
第一,初步地理解古典概型,古典概型怎么样进行计算;第二,理解随机现象。
什么样的现象是随机现象呢?一个最重要的特征,就是可以重复,经过大量重复,得到一个估计概率的一个重要概念-频率。
那么这个频率是估计概率的一个重要的概念。
小学阶段,某些随机现象的可能性是不一样的。
初中阶段,要理解一个特殊的随机现象,对概率的一个基本定位分为两种。
一个是具体的古典概型,一个是一般的,即通过大量重复实验用频率去估计概率。
____中考数学概率知识点就分享到这里,希望以上内容对您有所帮助!。
中考概率知识点总结
![中考概率知识点总结](https://img.taocdn.com/s3/m/5936e3d250e79b89680203d8ce2f0066f53364da.png)
中考概率知识点总结概率是一个在日常生活中经常出现的概念,它涉及到我们对未知情况的估计和推测。
在数学中,概率是描述一个随机事件发生可能性的一种数值,通常用来衡量某个事件发生的可能性有多大。
在中考数学中,概率是一个重要的知识点,它涉及到事件的发生概率计算、概率的性质、概率分布、概率的运算等内容。
下面我们来总结一下中考概率知识点。
一、概率的基本概念1.1 随机事件在概率论中,随机事件是指在一定条件下,可能发生也可能不发生的事件。
例如:掷硬币得到正面、摸黑箱中的球是红色等都属于随机事件。
1.2 随机事件的概率随机事件的概率就是指在一定条件下,某个随机事件发生的可能性大小。
概率通常用P(A)表示,其中A表示随机事件,P(A)表示事件A发生的概率。
1.3 随机试验随机试验是指在相同的条件下,可以重复进行的观察、记录或测量,且每次试验的结果不确定。
例如:掷硬币、抽取彩票等都属于随机试验。
1.4 样本空间样本空间是指一个随机试验的所有可能结果的集合,通常用Ω表示。
例如:掷硬币的样本空间为{正面,反面},抽取一张扑克牌的样本空间为{红心A,红心2,…,黑桃K}等。
1.5 事件的互斥和对立互斥事件是指两个事件不可能同时发生,对立事件是指两个事件至少有一个发生。
例如:掷骰子得到奇数和得到偶数是对立事件,抽取一张扑克牌是红心和不是红心是互斥事件。
二、概率的性质2.1 非负性概率永远是非负数,即0≤P(A)≤1,其中A表示随机事件。
2.2 规范性对于一个必然事件,其概率为1,即P(Ω)=1。
2.3 可列可加性对于事件A和事件B,有P(A∪B)=P(A)+P(B)-P(A∩B)。
2.4 对立事件概率关系事件A的对立事件记作A',有P(A)+P(A')=1。
2.5 空集事件概率对于空集事件ϕ,有P(ϕ)=0。
三、事件的概率计算3.1 等可能性原理对于一个没有任何明显差别的样本空间,每个基本事件的概率相等。
例如:掷骰子得到1、2、3、4、5、6的概率都是1/6,抽取一张扑克牌得到红心、方块、梅花、黑桃的概率都是1/4等。
随机事件的概率
![随机事件的概率](https://img.taocdn.com/s3/m/490ac927cbaedd3383c4bb4cf7ec4afe04a1b183.png)
随机事件的概率概率理论是一门研究随机事件发生的可能性的数学学科。
通过计算和统计,我们可以了解随机事件发生的概率。
在这篇文章中,我们将探讨随机事件的概念、概率的定义和计算方法,以及一些实际问题中与概率相关的应用。
一、随机事件的概念随机事件是指在一次试验中可能出现的各种结果。
每个结果都有一定的概率发生。
例如,掷骰子时,1到6的点数出现的概率都是相等的,并且总和为1。
我们用事件的符号表示随机事件。
例如,事件A表示掷骰子出现点数为2的结果。
事件B表示掷骰子出现点数为偶数的结果。
事件的发生取决于试验的结果。
如果一个事件发生了,我们称之为该事件发生。
二、概率的定义概率是描述事件发生可能性大小的数值。
概率的取值范围是0到1之间,0表示不可能发生,1表示肯定会发生。
在数学中,我们用P(A)表示事件A的概率。
例如,P(A)表示掷骰子出现点数为2的概率。
概率的计算需要考虑事件发生的可能性和总体样本空间的大小。
三、概率的计算方法1. 经典概率经典概率是指在一次试验中,每个事件发生的可能性相等的情况下,计算事件发生概率的方法。
假设一个袋子里有红、蓝、绿三种颜色的球,每种球的数量相等。
从袋子中随机抽取一球,事件A表示抽到红球的结果。
由于每种颜色出现的概率相等,所以P(A) = 1/3。
2. 统计概率统计概率是通过实验和统计数据来计算事件发生概率的方法。
例如,我们抛硬币的实验中,事件A表示出现正面的结果。
通过大量的实验数据,我们可以统计出正面出现的次数与总实验次数的比值,从而得到事件A的概率。
3. 条件概率条件概率是指在已知一定条件下,某个事件发生的概率。
条件概率用P(A|B)表示,读作在事件B发生的条件下事件A发生的概率。
例如,事件A表示抛一次硬币出现正面的结果,事件B表示抛一次硬币出现的是铜币。
我们知道铜币的一面是正面,因此在已知抛出的是铜币的情况下,事件A发生的概率为1。
四、概率的应用1. 游戏与赌博概率理论在游戏和赌博中扮演着重要的角色。
中考数学复习---《概率》知识点总结与专项练习题(含答案解析)
![中考数学复习---《概率》知识点总结与专项练习题(含答案解析)](https://img.taocdn.com/s3/m/6e736f7ec950ad02de80d4d8d15abe23492f0357.png)
中考数学复习---《概率》知识点总结与专项练习题(含答案解析)知识点总结1. 事件:①确定事件:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件。
②随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
2. 事件的可能性(概率)大小:事件的可能性大小用概率来表示。
表示为()事件P 。
必然事件的概率为1;不可能事件的概率为0;随机事件的概率为10<<P 。
3. 概率的定义与计算公式:①概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率n m 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为()A P =p②概率公式:随机事件A 的概率()所有可能出现的结果数随机事件出现的次数=A P 。
4. 几何概率:在几何中概率的求解皆用部分面积比总面积,或部分长度比总长度,或部分角度比整个大角角度。
专项练习题1.(2022•巴中)下列说法正确的是( )A .4是无理数B .明天巴中城区下雨是必然事件C .正五边形的每个内角是108°D .相似三角形的面积比等于相似比【分析】根据二次根式的化简可得=2,随机事件,正五边形每个内角是108°,相似三角形的性质,逐一判断即可解得.【解答】解:A.∵=2,∴是有理数,故A不符合题意;B.明天巴中城区下雨是随机事件,故B不符合题意;C.正五边形的每个内角是108°,故C符合题意;D.相似三角形的面积比等于相似比的平方,故D不符合题意;故选:C.2.(2022•宁夏)下列事件为确定事件的有()(1)打开电视正在播动画片(2)长、宽为m,n的矩形面积是m n(3)掷一枚质地均匀的硬币,正面朝上(4)π是无理数A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:(1)打开电视正在播动画片,是随机事件,不合题意;(2)长、宽为m,n的矩形面积是mn,是确定事件,符合题意;(3)掷一枚质地均匀的硬币,正面朝上,是随机事件,不合题意;(4)π是无理数,是确定事件,符合题意;故选:B.3.(2022•辽宁)下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.任意买一张电影票,座位号是2的倍数D.从一个只装有红球的盒子里摸出一个球是红球【分析】根据随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、射击运动员射击一次,命中靶心,是随机事件,故A不符合题意;B、掷一次骰子,向上一面的点数是6,是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、从一个只装有红球的盒子里摸出一个球是红球,是必然事件,故D符合题意;故选:D.4.(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.5.(2022•武汉)彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件【分析】根据随机事件,必然事件,不可能事件的定义,即可判断.【解答】解:彩民李大叔购买1张彩票,中奖.这个事件是随机事件,故选:D.6.(2022•贵阳)某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序、主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A.小星抽到数字1的可能性最小B.小星抽到数字2的可能性最大C.小星抽到数字3的可能性最大D.小星抽到每个数的可能性相同【分析】根据概率公式求出小星抽到各个数字的概率,然后进行比较,即可得出答案.【解答】解:∵3张同样的纸条上分别写有1,2,3,∴小星抽到数字1的概率是,抽到数字2的概率是,抽到数字3的概率是,∴小星抽到每个数的可能性相同;故选:D.7.(2022•襄阳)下列说法正确的是()A.自然现象中,“太阳东方升起”是必然事件B.成语“水中捞月”所描述的事件,是随机事件C.“襄阳明天降雨的概率为0.6”,表示襄阳明天一定降雨D .若抽奖活动的中奖概率为501,则抽奖50次必中奖1次 【分析】根据概率的意义,概率公式,随机事件,必然事件,不可能事件的特点,即可解答.【解答】解:A 、自然现象中,“太阳东方升起”是必然事件,故A 符合题意; B 、成语“水中捞月”所描述的事件,是不可能事件,故B 不符合题意;C 、襄阳明天降雨的概率为0.6”,表示襄阳明天降雨的可能性是60%,故C 不符合题意;D 、若抽奖活动的中奖概率为,则抽奖50次不一定中奖1次,故D 不符合题意;故选:A .8.(2022•长沙)下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次【分析】根据概率的意义,全面调查与抽样调查,条形统计图,随机事件,逐一判断即可解答.【解答】解:A 、调查某班45名学生的身高情况宜采用全面调查,故A 符合题意; B 、“太阳东升西落”是必然事件,故B 不符合题意;C 、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,故C 不符合题意;D 、任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数可能是13次,故D 不符合题意;故选:A .9.(2022•东营)如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是轴对称图形的概率是( )A .32B .21C .31D .61 【分析】根据轴对称图形的概念、概率公式计算即可.【解答】解:如图,当涂黑1或2或3或4区域时,所有黑色方块构成的图形是轴对称图形,则P (是轴对称图形)==,故选:A .10.(2022•丹东)四张不透明的卡片,正面标有数字分别是﹣2,3,﹣10,6,除正面数字不同外,其余都相同,将它们背面朝上洗匀后放在桌面上,从中随机抽取一张卡片,则这张卡片正面的数字是﹣10的概率是( )A .41B .21C .43D .1【分析】用﹣10的个数除以总数即可求得概率.【解答】解:由题意可知,共有4张标有数字﹣2,3,﹣10,6的卡片,摸到每一张的可能性是均等的,其中为﹣10的有1种,所以随机抽取一张,这张卡片正面的数字是﹣10的概率是,故选:A .11.(2022•益阳)在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A ,B ,C ,D ,E ,F ,考生从中随机抽取一道试题,则某个考生抽到试题A 的概率为( )A .32B .41C .61D .241 【分析】根据抽到试题A 的概率=试题A 出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:总共有24道题,试题A 共有4道,P (抽到试题A )==,故选:C . 12.(2022•兰州)无色酚酞溶液是一种常用酸碱指示剂,广泛应用于检验溶液酸碱性,通常情况下酚酞溶液遇酸溶液不变色,遇中性溶液也不变色,遇碱溶液变红色.现有5瓶缺失标签的无色液体:蒸馏水、白醋溶液、食用碱溶液、柠檬水溶液、火碱溶液,将酚酞试剂滴入任意一瓶液体后呈现红色的概率是( )A .51B .52C .53D .54 【分析】总共5种溶液,其中碱性溶液有2种,再根据概率公式求解即可.【解答】解:∵总共5种溶液,其中碱性溶液有2种,∴将酚酞试剂滴入任意一瓶液体后呈现红色的概率是,故选:B .13.(2022•铜仁市)在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,则摸中哪种球的概率最大( )A .红球B .黄球C .白球D .蓝球【分析】根据概率的求法,因为红球的个数最多,所以摸到红球的概率最大.【解答】解:在一个不透明的布袋内,有红球5个,黄球4个,白球1个,蓝球3个,它们除颜色外,大小、质地都相同.若随机从袋中摸取一个球,因为红球的个数最多,所以摸到红球的概率最大,摸到红球的概率是:, 故选:A .14.(2022•百色)篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是( )A .1B .21C .41D .61 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:抛硬币有两种结果:正面向上、反面向上,则正面向上的概率为.故选:B .15.(2022•呼和浩特)不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a b +B .a bC .b a a +D .ba 【分析】根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P (A )=.【解答】解:不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是.故选:A . 16.(2022•齐齐哈尔)在单词statistics (统计学)中任意选择一个字母,字母为“s ”的概率是( )A .101B .51C .103D .52 【分析】根据题意,可以写出任意选择一个字母的所有可能性和选择的字母是s 的可能性,从而可以求出相应的概率.【解答】解:在单词statistics (统计学)中任意选择一个字母一共有10种可能性,其中字母为“s ”的可能性有3种,∴任意选择一个字母,字母为“s ”的概率是, 故选:C .17.(2022•镇江)从2021、2022、2023、2024、2025这五个数中任意抽取3个数.抽到中位数是2022的3个数的概率等于 .【分析】列举得出共有10种等可能情况,其中中位数是2022有3种情况,再由概率公式求解即可.【解答】解:从2021、2022、2023、2024、2025这五个数中任意抽取3个数为:2021、2022、2023,2021、2022、2024,2021、2022、2025,2021、2023、2024,2021、2023、2025,2021、2024、2025,2022、2023、2024,2022、2023、2025,2022、2024、2025,2023、2024、2025,共有10种等可能情况,其中中位数是2022有3种情况,∴抽到中位数是2022的3个数的概率为,故答案为:.18.(2022•阜新)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .41B .43C .32D .21 【分析】先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,再根据几何概率的求法即可得出答案.【解答】解:先设每个小等边三角的面积为x ,则阴影部分的面积是6x ,得出整个图形的面积是12x ,则这个点取在阴影部分的概率是=.故选:D .19.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A .41B .31C .21D .33 【分析】如图,将整个图形分割成图形中的小三角形,令小三角形的面积为a ,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,设每个小三角形的面积为a ,则阴影的面积为6a ,正六边形的面积为18a ,∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为=,故选:B .20.(2022•朝阳)如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .83B .21C .85D .1【分析】根据阴影部分的面积所占比例得出概率即可.【解答】解:由图知,阴影部分的面积占图案面积的,即这个点取在阴影部分的概率是,故选:A .21.(2022•通辽)如图,正方形ABCD 及其内切圆O ,随机地往正方形内投一粒米,落在阴影部分的概率是( )A .4πB .1﹣4πC .8πD .1﹣8π 【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.22.(2022•黔东南州)如图,已知正六边形ABCDEF内接于半径为r的⊙O,随机地往⊙O 内投一粒米,落在正六边形内的概率为()A.π233B.π23C.π43D.以上答案都不对【分析】求出正六边形的面积占圆面积的几分之几即可.【解答】解:圆的面积为πr2,正六边形ABCDEF的面积为r×r×6=r2,所以正六边形的面积占圆面积的=,故选:A.23.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .12πB .24πC .6010πD .605π 【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为5×6=30,其中阴影部分面积为=, ∴飞镖落在阴影部分的概率是=,故选:A . 24.(2022•成都)如图,已知⊙O 是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是 .【分析】作OD ⊥CD ,OB ⊥AB ,设⊙O 的半径为r ,根据⊙O 是小正方形的外接圆,是大正方形的内切圆,可得OB =OC =r ,△AOB 、△COD 是等腰直角三角形,即可得AE =2r ,CF =r ,从而求出答案.【解答】解:作OD ⊥CD ,OB ⊥AB ,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.。
7随机事件的概率-2021届九年级数学一轮复习知识点与提升训
![7随机事件的概率-2021届九年级数学一轮复习知识点与提升训](https://img.taocdn.com/s3/m/b07cdbad1711cc7930b7163b.png)
0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为(B)
A . 0.22
B . 0.44
C . 0.5
D.0.56
6.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,
则符合这一结果的试验可能是(D)
5/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.抛一枚硬币,出现正面朝上 B.掷一个正六面体的骰子,出现 3 点朝上 C.一副去掉大、小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 D.从一个装有 2 个红球 1 个黑球的袋子中任取一球,取到的是黑球 7.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示 的折线统计图,则符合这一结果的试验最有可能是(C)
提升训练
1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D) A.频率就是概率 B.频率与试验次数无关 C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率
2.某人在做抛掷硬币试验中,抛掷 n 次,正面朝上有 m 次,若正面朝上的频率
是 P=mn,则下列说法正确的是(D)
概率的表示方法 一般地,事件用英文大写字母 A,B,C,…,表示事件 A 的概率 p,可记为 P(A) =P
概率的求解方法 n
1.利用频率估算法:大量重复试验中,事件 A 发生的频率 m 会稳定在某个常 数 p 附近,那么这个常数 p 就叫做事件 A 的概率(有些时候用计算出A发生的所
1/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.
B.
C.
D.
4.一个不透明的盒子中装有 2 个白球,6 个红球,这些球除颜色外,没有任何其他区别, 现从这个盒子中随机摸出一个球,摸到红球的可能性是( A )
中考数学复习《简单随机事件的概率》专题训练题含答案
![中考数学复习《简单随机事件的概率》专题训练题含答案](https://img.taocdn.com/s3/m/02cad41fcd7931b765ce0508763231126edb7790.png)
初三数学中考复习 简单随机事件的概率 专题复习训练题1.下列说法正确的是( D )A .袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B .天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C .某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D .连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上2.下列说法正确的是( D )A .“任意画一个三角形,其内角和为360°”是随机事件B .已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,采用抽样调查法3.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形.其中确定事件的个数是( B )A .1B .2C .3D .44.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( A )A.110B.19C.13D.125.某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,她选中创新能力试题的概率是( A )A.15B.310C.25D.126.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是( D )A .甲组B .乙组C .丙组D .丁组7. 已知小华在罚球线上投篮的命中率大约是62%,下列说法错误的是( A )A .小华在罚球线上连续投篮5次,一定能投中3次B .小华在罚球线上连续投篮5次,有投中3次的可能性C .小华在罚球线上投篮1次,投中的可能性较大D .小华在罚球线上投篮1次,投不中的可能性较小8. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( C )A.15B.25C.35D.459. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球__8__个.10.从1,2,3,…,99,100,这100个整数中,任取一个数,这个数大于60的概率是__0.4__.11.从“线段、等边三角形、圆、矩形、正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是__45__. 12.任取不等式组⎩⎪⎨⎪⎧k -1≤1,2k +5>0,的一个整数解,则能使关于x 的方程:2x +k =-1的解为非负数的概率为__25__. 13.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为__13__. 14.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算15. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续. 球的颜色无记号 有记号红色 黄色 红色 黄色摸到的次数 18 28 2 2(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60% (2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个。