开题报告-基于Matlab的指纹识别

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计选题:基于matlab的指纹识别

随着科学技术的不断发展,自动化的指纹识别技术如今已经被人们广泛地应用在银行、商业交易、公安部门、海关部门等需要对人的身份进识别的领域,而本文所描述的是对自动化指纹识别系统的研究现状以及自动化指纹识别系统的基本算法和流程,本实验是利用MATLAB2012来进行了指纹识别系统的仿真和实验的。

然而在生物识别技术的快速发展的今天,人们通过研究发现了每一个人的指纹都具有唯一性和不变性。也正因为这样,指纹识别技术正在逐步的发展成为一种新的身份识别技术,并且凭借它良好的安全性以及可靠性,逐步有取代传统身份认证的方式趋势。

本实验简单的介绍了指纹识别图像的预处理的方法和步骤。指纹图像预处理之后将会得到一个宽度为统一像素的细化后的二值化图像,最后再根据特定的指纹图像的端点以及交叉点的特征进行对指纹自动匹配。本论文中采用MATLAB2012编程实现所有算法。

关键词:指纹识别技术指纹图像预处理指纹识别 MATLAB2012

1.1指纹及其识别

如今,生物特征识别领域中的最为成熟的应用技术之一--指纹识别技术。其实它已经有非常悠久的历史了。很久以前,指纹识别技术已经很早就应用于刑事侦查和司法鉴定领域了,很多人不知道的是。随着计算机网络和信息处理技术的快速发展,这门历史悠久的指纹识别技术也开拓了更多更广阔的市场,自动的指纹识别技术和与其相关的产品越来越多的应用在普通人的生活当中。

生物识别技术(Biometric Identification Technology)的定义是:利用人体的不同的生物特征来进行对人的身份进行认证的一种技术[1]。这是因为人的生物特征是唯一的,可以区分与他人不同的特征。并且我们还可以通过技术测量或者是自动识别来检验出生理特性以及行为方式,我们所说的这个特征分为生理特征、行为特征。我们对生物特性来进行提取并放入数据库,再将提取出来的人

的唯一特征和它的身份一一对应起来。

指纹识别技术:对“全局特征”、“局部特征”进行分析的技术就是我们所说的指纹识别技术。而且我们每一个人的指纹都具有独一无二的特征点,而且这些特征点都是可以测量的。每一个特征点还会伴随着大概七个左右不同的特征。可想而知,我们有10个手指,将产生至少4900的独立功能并可以测量的数据。这将意味:指纹识别技术是一个门可靠的身份识别技术。

根据不同的人的指纹也会有不同,即使是同一个人,也会有不同的指纹。而且纹线走向、纹线的断点、交叉点的不同更加决定了指纹都具有“唯一”的这种特性,这恰恰就是指纹识别技术的原理。不仅如此,我们的指纹也是不会随着我们年龄的增长而发生太大的变化,也就是说我们指纹是终生不变的。利用唯一性和稳定性这个指纹的特性,可以将一个人身份个人信息和他所对应的指纹联系起来。实现的方法就是:通过对他的指纹样本的预先保存,再和指纹模板进行配对和比较。再利用计算机对指纹图像进行快速的识别。这样就能很快的识别出指纹所对应的的人的真实身份了。从而达到一种身份认证和识别的功能。

1.2 指纹识别算法概述

本实验所使用的主要算法是滤波特征和不变矩指纹识别算法。

滤波特征识别算法:大小不变,不变的位置,方向不变,这是特征指纹图像必须满足的三个特点。大小不变性是很容易满足的。而在滤波特征提取算法中,位置不变性,则是通过确定指纹图像的中心点位置来实现的。通过在匹配阶段,建立起多个角度的旋转特征向量来实现指纹图像的方向不变性。而滤波特征的提取算法,包括了 4 个步骤。一是先确定指纹图像的中心点。作为需要处理的指纹区域的中心位置,记为R01 区域;二是以中心位参考点,对R01 区域来进行适当的划分,得到一定大小的块;三是运用一组Gabor 滤波器,对R01 区域做八个不同方向的滤波运算;四是对滤波后的图像,分别计算出每一块中。图像灰度值相对于均值的平均绝对偏差。进而得到特征向量或特征编码。这种指纹识别算法。首先要对指纹图像提取滤波特征,然后在特征向量上(由滤波特征值构成的)进行匹配。

不变矩识别算法的基本思路是:

1、搜索预处理后的二值化图像中,所有可能成为目标的区域。

2、计算出R01区域中7个不变矩特征,求出与模板匹配程度最高的R01

区域进行匹配。其中相似度度量采用欧式距离(Euclidean

distance)。

这里,搜索算法为系统使用的最简单的顺序查找方法。就是对数据库文件,逐一搜索。一张指纹数字图像图片被系统读入时,就会根据上述的方法,先对这一幅指纹数字图像进行特征值提取和编码,并保存到临时变量中去。系统的指纹数字图像数据库文件里同时也会保存一组指纹数字图像灰度偏差的特征。过程如下:

1.申请内存空间。将匹配结果的临时变量进行保存,对输入系统的要匹配的指纹数字图像的编码进行保存。

2. 搜索系统的数据库文件。当数据库文件为空时,程序结束查找。

3. 当系统的数据库文件不为空时。由于在指纹数字图像在入库的时候,指纹数字图像是按一定排列顺序的编码。同样地,系统也将匹配的指纹数字图像的图象编码设置同样的顺序。这样系统就按照一定得顺序进行匹配。这样可以通过欧氏距离( E D)匹配算法,来判断两个指纹数字图像之间的欧氏距离。前面提到系统是对一张指纹数字图像进行两次编码的保存。将相对应的特征向量进行比较,取其中最小的一个作为系统比对的结果输出。这里是通过欧式距离来实现的对比数据库中模板图像和待测试图像相对应的特征点向量距离计算的。对于计算机计算出来的数据,如果匹配指数小于定值 T,则被认为是匹配成功,否则匹配失败。

简单的说,欧氏距离(Euclidean distance)就是将两组特征向量相减,然后求出他们对应之间的差的平方和,然后开根号。举个例子来说吧:A=(1,2,3)B=(4,5,6)则他们之间的距离就是d=sqrt((1-4)2+(2-5)2+(3-6)2)。接着识别系统就逐一搜索数据库中的数据文件,求的他们距离的最小数值。如果对比的两张指纹数字图像的特征向量之间的距离是0,则系统会认为这两张数字图像是同一张,或者说来自于同一手指。从而达到识别的功能。欧氏距离表示的是两张指纹数字图像的特征向量的相似程度。距离越近就越容易相互干扰,误码率也就越高,也

相关文档
最新文档