西安市2017年中考数学复习备考指导(交大附中 李整社)
2017年中考数学第一轮复习如何开展.doc
2017年中考数学第一轮复习如何开展现在初三学生已经开始了中考复习,要想在中考取得好成绩必须要认真复习,平常复习的时候大家要掌握科学的方法,这样才能提高复习效率,下面为大家带来2017年中考数学第一轮复习如何开展这篇内容,希望中考生能够认真阅读。
【中考数学考题分析】填空题答题策略:填空题的主要题型一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。
选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
填空题的基本解法1.直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2.图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
填空题虽然多是中低档题,但不少考生在答题时往往出现失误,这要引起我们的足够重视的。
首先,应按题干的要求填空,如有时填空题对结论有一些附加条件,如用具体数字作答,精确到等,有些考生对此不加注意,而出现失误,这是很可惜的。
其次,若题干没有附加条件,则按具体情况与常规解答。
第三,应认真分析题目的隐含条件。
总之,填空题与选择题一样,因为它不要求写出解题过程,直接写出最后结果。
因此,不填、多填、填错、仅部分填对,严格来说,都计零分。
虽然近两年各省市中考填空题,难度都不大,但得分率却不理想,因此,打好基础,强化训练,提高解题能力,才能既准又快解题。
另一方面,加强对填空题的分析研究,掌握其特点及解题方法,减少失误。
近两年中考填空题出现许多创新题型,主要是以能力为立意,重视知识的发生发展过程,突出理性思维,是中考数学命题的指导思想;而重视知识形成过程的思想和方法,在知识网络的交汇点设计问题,则是中考命题的创新主体。
西安市中考数学复习策略
20题7分,考查学生灵活运用锐角 三角函数的概念来解决现实生活中, 用Rt△建模的实际问题,并通过解 Rt△,而使问题得以解决的能力; (高度、宽度、深度;某一个几何 图形的参数或面积等)(0.65)
23题主要考查圆与直线间的相依关 系,同时渗透考查学生运用全等、相 似、锐角三角函数等工具解决图形中 各元素间的关系及一些计量关系,其 中所牵扯的直线条数不超过三条(圆 不多于一个)(难度系数0.55)
25题12分主要通过组合的几何图形作为载体, 综合考查学生运用所学的知识进行数学抽象、数学 推理、数学建模的能力。通常是以三角形、特殊四 边形、圆为基本图形,进行组合构成现实世界中存 在或可能存在的事实进行探索研究。(设想:①使 学生能够充分运用几何演绎进行推理,代数演绎进 行科学合理运算,解析演绎进行数学建模;②图形 简单、美观、图形的元素间关系清晰、建模有难度 ;③以探究式设问(总体以提问题或探究)难度与 去年持平。(0.40)三、中考数学Fra bibliotek课及答 题建议
1、理顺复习思路、合理有效安排时 间(四个阶段)
4 y x
10
6 y x
41
10.5
4 2
4 2
3 2
如图,在任意四边形ABCD中,过AB边上任 意一点P(不同于A、B两点)做一条直线PM 将四边形ABCD面积二等分.
2 3- 2
19题5分,主要考查学生对 两个三角形何时可以全等及全 等后具有什么性质,载体是两 个有关联的三角形或一个四边 形;(0.85)
2、中考数学试题稳中有新,富有人文气息
2、中考数学试题稳中有新,富有人文气息
二、分析研究 明确方向
y
18 k 9 (只要y 中的k 满足k ) x x 2
2017年陕西数学中考副题.docx
班级: ________姓名:________得分:________机密★启用前试卷类型:A2017 年陕西省初中毕业学业考试数学试卷本试卷分为第Ⅰ卷 (选择题 ) 和第Ⅱ卷 (非选择题 ) 两部分。
第Ⅰ卷 1 至2 页,第Ⅱ卷 3 至 10 页,全卷共 120 分。
考试时间为 120 分钟。
第Ⅰ卷 (选择题共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或 B) 用 2B 铅笔和钢笔或中性笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。
2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案标号。
把答案填在试题卷上是不能得分的。
3.考试结束,本卷和答题卡一并交给监考老师收回。
一、选择题 (共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)1.计算: 3 -2=111 A.-9 B. 9C.- 6D.-62.如图的几何体是由一平面将一圆柱体截去一部分后所得,则该几何体的俯视图是3.若正比例函数y =kx(k ≠0) 的图象经过点 (2, 1-k),则 k 的值为11A . 1B .-3C .- 1D.34.如图,直线 a ∥b ,点 A 在直线 b 上,∠ BAC = 108 °,∠ BAC 的两边与直线 a 分别交于 B 、C 两点.若∠ 1= 42°,则∠ 2 的大小为A . 30°B . 38°C .52 °D .72 °a 25.化简: a +1-a +1,结果正确的是1A . 2a +1B .1C.D. 2a +1a +1a +16.如图,在△ ABC 中,∠ A=60 °,∠ B =45 °.若边 AC 的垂直平分线 DE 交边 AB 于点 D,交边 AC 于点 E,连接 CD ,则∠ DCB =A. 15°B. 20°C.25 °D.30°7.设一次函数y=kx+b(k ≠0)的图象经过点随 x 的值增大而增大,则该一次函数的图象一定不(1,-经过3) ,且y 的值...A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD 中, AB = 2.若以 CD 边为底边向其形外作等腰直角△DCE ,连接 BE ,则 BE 的长为A. 5B.2 2 C. 10D.23︵.如图,矩形内接于⊙,点是上一点,连接 PB、9ABCD O P ADPC. 若 AD =2AB ,则 sin ∠ BPC 的值为5 2 5335A. 5=2B. 5C. 2D. 10.已知抛物线+ bx +c 的对称轴为x =1 ,且它与 x 轴交于10y xA、B 两点.若 AB 的长是 6,则该抛物线的顶点坐标为A. (1,9)B.(1,8)C. (1,- 9)D.(1,- 8)机密★启用前2017 年陕西省初中毕业学业考试数学试卷三总总核题二分分分号1516171819202122232425人人得分第Ⅱ卷 (非选择题共90分)注意事项:1.答卷前请你将密封线内的项目填写清楚。
2017中考数学一轮复习教案(可编辑修改word版)
⎩ ⎩⎩ ⎩⎨ ⎬ ⎭ 第一课时 实数的有关概念知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3. 在已知中,以非负数 a 2、|a|、实数的有关概念(1) 实数的组成a (a≥0)之和为零作为条件,解决有关问题。
⎧ ⎧ ⎧⎪正整数 ⎫ ⎪ ⎪整数⎨ 零 ⎪ ⎪ ⎪ 有理数⎪负整数 ⎪ 有尽小数或无尽循环小数 ⎪ ⎪ {⎪ 实数⎨ 正分数⎪ ⎪分数 负分数 ⎪ ⎪ ⎪无理数⎧正无理数 }无尽不循环小数 ⎩⎪ ⎨负无理数(2) 数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3) 相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4) 绝对值⎧a (a > 0) ⎪⎨0(a = 0)⎪- a (a < 0) 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5) 倒数1 实数 a(a≠0)的倒数是 (乘积为 1 的两个数,叫做互为倒数);零没有倒数.a考查题型:以填空和选择题为主。
如一、考查题型:1. -1 的相反数的倒数是| a |=a + 2 2. 已知|a+3|+b + 1=0,则实数(a+b )的相反数3. 数-3.14 与-Л的大小关系是4. 和数轴上的点成一一对应关系的是5. 和数轴上表示数-3 的点 A 距离等于 2.5 的 B 所表示的数是26. 在实数中Л,- ,0, 53,-3.14, 4无理数有( )(A )1 个 (B )2 个 (C )3 个 (D )4 个7. 一个数的绝对值等于这个数的相反数,这样的数是( ) (A ) 非负数 (B )非正数 (C )负数 (D )正数 8.若 x <-3,则|x +3|等于( ) (A )x +3 (B )-x -3 (C )-x +3 (D )x -3 9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b 和 d-a (2) bc 和 ad 二、考点训练: 1.判断题:(1) 如果 a 为实数,那么-a 一定是负数;( ) (2) 对于任何实数 a 与 b,|a -b|=|b -a|恒成立;( ) (3) 两个无理数之和一定是无理数;( ) (4) 两个无理数之积不一定是无理数;( )(5) 任何有理数都有倒数;( )(6)最小的负数是-1;( ) (7)a 的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3 且 ab>0,则 a -b=-1;( ) 2.把下列各数分别填入相应的集合里22 -1 Л -|-3|,21.3,-1.234,- ,0,sin60°º,- 9,-3 , - , 8,7 8 2( 2- 3)0,3-2,ctg45°,1.2121121112....中无理数集合{ 整数集合 { } 负分数集合{ } 非负数集合{} }3.已知 1<x<2,则|x -3|+ (1 - x)2等于( )(A )-2x (B )2 (C )2x (D )-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?1-3, 2-1, 3, - 0.3, 3-1, 1 +2, 3 3互为相反数: 互为倒数: 互为负倒数:5. 已知x、y是实数,且(X - 2)2和|y+2|互为相反数,求x,y 的值|a + b|6. a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,求 +4m-3cd=。
【中考复习】名师指导:西安中考数学复习
【中考复习】名师指导:西安中考数学复习数学科学训练高效复习
尚玉凡西安育才中学中学教师
今年
高中入学考试
数学试卷结构较往年无明显变化,就试卷考查内容与方向来看,数与代数、图形与几
何仍是考查的重点,统计与概率、综合与实践也有所涉及。
做好冲刺阶段的复习,考生可
从以下方面入手:
提出问题并讨论方法。
候选人被建议“小题大做”和“小题大做”。
对于小问题,注
意掌握和落实各种知识点,提高解决问题的准确性;对于大问题,可以将其分解为几个小
问题,然后逐个分解。
推荐的评审方法为“新工作带旧问题”和“旧工作带新问题”。
当
你看到熟悉的话题时,你不能掉以轻心。
你应该特别区分不同之处。
如果出现新问题,没
有必要惊慌。
在阐明测试的知识点后,根据现有经验耐心回答。
此外,我们应该在基本问
题上花更多的时间,避免盲海战术。
归纳是关键。
考生应对做过的题进行系统的归纳,加深对概念、定理和法则的理解,
细致挖掘并探索多种解题方法;重视错题分析,反思错在哪里、为什么错;不断查漏补缺,加强整改薄弱环节,把易出错点“记录在案”,重点突破,有的放矢地进行冲刺备考。
获得高分。
如果你想在数学方面取得高分,统筹规划是必不可少的。
建议考生按照从
前到后、从易到难的顺序,能够做出科学的选择,逐步打分。
同时,要注意检查和细节。
遵循基础满分的原则,不为中考丢分,争取难点问题,避免不必要的积分损失,有序处理
考试。
2017中考数学(陕西专版)总复习专题综合强化课件:专题三_计算、证明与作图
以 线 段 MN 为 弦 , 则 圆 心 P 必 在 MN 的 垂 直 平 分 线 上 ; P 到
∠AOB两边的距离相等,则P在∠AOB的角平分线上,两条
线的交点就是圆心P,PM或PN就是⊙P半径.
【解答】 如图,⊙P就是所求作的圆.
中
考
全
程
总
复
习
·
陕
西
·
数
学
6.全等三角形的判定与性质
全等三角形的判定与性质,是陕西中考的一个热点命
分母,进而去分母求出方程的根即可.
【解答】 x-1 2=12- -xx-3
中 考
方程两边同乘以x-2得:1=x-1-3(x-2),
全 程
总
整理得:2x=4,
复
习
解得:x=2,
·
陕
检验:当x=2时,x-2=0,故x=2不是原方程的根, 西
·
故此方程无解.
数
学
4.解不等式组
本考点常以简单的一元一次不等式组作为命题点进行考
本考点涉及分式的化简和先化简再求值两种类型,解题
时需要掌握分式的基本性质及通分约分的法则,熟练进行实
数的运算.
中 考
全
程
总
复
习
·
陕
西
·
数
学
【例】
(2015·威海)先化简,再求值:(
1 x+1
-
1 x-1
)
÷4x+2-21x,其中x=-2+ 3.
中
【思路点拨】
本题考查分式的化简与求值.先根据分
考 全
1 =- 3
习 · 陕
3
西
3.
· 数
学
3.解分式方程
17年西交大附中初三第一次数学月考题
三个矩形
2那么,∠A 的度数是()
B.45° D.不能确定
【考点】特殊角的三角函数
【解答】解:∵已知cosA=
故选:C
5.方程0
322=--kx x A.
【考点】
【解答】
【考点】矩形的性质
【解答】解:∵EF⊥BD,∠AEO
∠EDO=30°,∠
ABCD
∴∠O
∴O
月投放1000辆单车,计划第三个月
放单车数量的月平均增长率为x
中,每个小方格
为3:2,点A,B都在格点上
,则点菱形ABCD PAB △3
1=S 满足P 动点S 解答题(本大题共4
(本大题满分4分)
【考点】相似三角形
【解答】解:根据反射定
BC,GH⊥
最大的
50cm ,BC=108cm ,CD 为。
(用含a ,h
的代数式表示)PQMN 的顶点P ,N 分别在边AB 、(用含x 的代数式表示),矩形别在边
则
设
PQ h
a h PQ h a PN AD AE BC PN -==即,BC
PN ∥ABC
APN ∽△△∴拓展应用
当x=8时,面积取得最。
【聚焦中考】2017年中考数学(陕西地区)总复习 考点跟踪突破 全等
全等、相似十七(针对陕西中考第19、23题)1.如图,在△ABC 中,∠BAC =90°,M 是BC 的中点,过点A 作AM 的垂线,交CB 的延长线于点D.求证:△DBA ∽△DAC.证明:∵∠BAC =90°,点M 是BC 的中点,∴AM =CM ,∴∠C =∠CAM ,∵DA ⊥AM ,∴∠DAM =90°,∴∠DAB =∠CAM ,∴∠DAB =∠C ,∵∠D =∠D ,∴△DBA ∽△DAC2.如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连接AE ,DE ,D C .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ) (2)∵△ABE ≌△CBD ,∴∠AEB =∠BDC ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =30°+45°=75°,则∠BDC =75°3.(导学号 30042266)如图,点C 是线段AB 上一点,△ACD 和△BCE 都是等边三角形,连接AE ,BD ,设AE 交CD 于点F.(1)求证:△ACE ≌△DCB ;(2)求证:△ADF ∽△BAD.证明:(1)∵△ACD 和△BCE 都是等边三角形,∴AC =CD ,CE =CB ,∠ACD =∠BCE =60°,∴∠ACE =∠DCB =120°.∴△ACE ≌△DCB (SAS ) (2)∵△ACE ≌△DCB ,∴∠CAE =∠CDB.∵∠ADC =∠CAD =∠ACD =∠CBE =60°,∴DC ∥BE ,∴∠CDB =∠DBE ,∴∠CAE =∠DBE ,∴∠DAF =∠DBA.∴△ADF ∽△BAD4.(导学号 30042267)如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HG BC; (2)求这个矩形EFGH 的周长.解:(1)∵四边形EFGH 是矩形,∴EF ∥GH ,∴∠AHG =∠B, 又∵∠HAG =∠BAC ,∴△AHG ∽△ABC ,∴AM AD =HG BC(2)设HE =MD =x cm ,∵AD =30 cm ,∴AM =(30-x ) cm ,∵HG =2HE, ∴HG =2x cm ,∵AM AD =HG BC ,∴30-x 30=2x 40,解得x =12,则2x =24,∴这个矩形EFGH 的周长=2×(12+24)=72(cm ),答:这个矩形的周长为72 cm。
2017年陕西省中考数学试卷-答案
二、填空题 11.【答案】 π 【解析】根据实数比较大小的方法,可得 π 6 0 3 5 ,故实数 5, 3,0, π, 6 其中最大的数是 π .
【提示】根据正数大于 0,0 大于负数,正数大于负数,比较即可. 【考点】实数大小的比较 12.【答案】 64 2.03
陕西省 2017 年初中毕业学业考试
数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C
【解析】原式 1 1 3
4
4
【提示】原式先计算乘方运算,再计算加减运算即可得到结果.
【考点】有理数的混合运算
2.【答案】B
【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形.
【提示】根据从正面看得到的图形是主视图,可得答案.
0)
的交点在第一象限,∴
4 2k 0 k2 8k 0
,解得
0
k
2
.
k 2
【提示】首先根据直线 l2 与 x 轴的交点为 A(2,0) ,求出 k、b 的关系;然后求出直线 l1 、直线 l2 的交点坐标,
根据直线 l1 、直线 l2 的交点横坐标、纵坐标都大于 0,求出 k 的取值范围即可.
【考点】简单组合体的三视图
3.【答案】A 【解析】设正比例函数解析式为: y kx ,将点 A(3, 6) 代入可得: 3k 6 ,解得: k 2 ,∴函数解析 式为: y 2x ,将 B(m, 4) 代入可得: 2m 4 ,解得 m 2 ,
【提示】运用待定系数法求得正比例函数解析式,把点 B 的坐标代入所得的函数解析式,即可求出 m 的值.
3 / 10
【解析】A.∵ A 52 ,∴ ABC ACB 180 A 128 ,∵ BD平分ABC . CE平分ACB ,∴
西安市2017年中考数学复习备考指导(交大附中_李整社)
20题7分,考查学生灵活运用锐角 三角函数的概念来解决现实生活中, 用Rt△建模的实际问题,并通过解 Rt△,而使问题得以解决的能力;
(高度、宽度、深度;某一个几何 图形的参数或面积等)(0.65)
23题主要考查圆与直线间的相依关 系,同时渗透考查学生运用全等、相 似、锐角三角函数等工具解决图形中 各元素间的关系及一些计量关系,其 中所牵扯的直线条数不超过三条(圆 不多于一个)(难度系数0.55)
老师准确导航,学生一定顺利抵港。
一、了解陕西中考数学 二、分析研究 明确方向 三、中考数学复课及答题建议
一、了解陕西中考数学
1、明确依据和方向
陕西省中考数学试题是以《课 程标准》和《中考说明》为依据来 命制的,因此,我们必须认真研读 《课程标准》和《中考说明》,准 确理解和把握考试要求,从而更加 高效地进行我们的复习备考工作.
25题12分主要通过组合的几何图形作为载体, 综合考查学生运用所学的知识进行数学抽象、数学 推理、数学建模的能力。通常是以三角形、特殊四 边形、圆为基本图形,进行组合构成现实世界中存 在或可能存在的事实进行探索研究。(设想:①使 学生能够充分运用几何演绎进行推理,代数演绎进 行科学合理运算,解析演绎进行数学建模;②图形 简单、美观、图形的元素间关系清晰、建模有难度 ;③以探究式设问(总体以提问题或探究)难度与 去年持平。(0.40)
10
y6 x
41
10.5
42 42
32
如图,在任意四边形ABCD中,过AB边上任 意一点P(不同于A、B两点)做一条直线PM 将四边形ABCD面积二等分.
ቤተ መጻሕፍቲ ባይዱ
2 3- 2
19题5分,主要考查学生对两 个三角形何时可以全等及全等 后具有什么性质,载体是两个 有关联的三角形或一个四边形; (0.85)
2017年陕西中考数学副题及答案
_____机卄劇胭试卷类型:A 2017年陕西省初中毕业学业考试致学试卷本试o分为u r •(sutaiKi*««(«aw«)R»分・« i9i£2n.mn«.<2w页•全G共IM分.考试K«A m分机第I卷(选择S8共30分)I ^Kisfi.atfK千万WBTwae的註名、术考证号、考试科FL试佥工中(A或R)用2D如笔和伏亀飯中性笔;H冷檢写庄苔!5卡上:#■的2考比选岀毎小J8的答案J6・ai/!nn铅思把善2S卡上对应瀚 E 的备宴洽3U «xa动•请用»&»干净启•再朮滋冀它答塞体号.庐花宴匕在弍ft卷上是不琵得分的。
3令试结点・*卷3若J8卡一井交结13冬老拜收刊“-・E拎題(共10小&•务小SJ3分小知分甸小SHltf-个送購& HASKM)I.x I a 7 G ・6 a1侶阳的几何体昱由一爲PM体駅妾一漳分启膚怡,则戏儿何轴《HtB他B obQ O(«?AS » A H C D1 &疋tt例命仏M)的ffhfc经过点(2」-i).WA的值为■ I R - y G •! D. y-fttto5/w交于nx PSA-若/1 -<2\Wz2的大小为AW 8.S8* C52v D・72・I »<Hffi )5-化臥—I •工横豹臭X 2«> • I B. I C」=0. —6・ EBLAAMC中・"・60\ZS.45- K«MC的*f(¥分域必XW初干A "•交边M千心F.4«⑵禺厶T・X W* B.20- CW 0.30*7・ tt-Uc(fiftyBia 1. -3)• ArMttM«的值冶大肠增天•则IK一次OHS的IBJP %不俺绘A. V-»W B弟二绘用t第:处农nB. n:ni.6ii /ri皿:〃屮』"・2 r」m为恵加w"D “ Mrt«lA/O.MU "片的I 力人方仏皿(«9«W)UI ®Kam I -9. 如m.怀® w/> i«mr 询o 汕"v w I d 捋» 4D■MB.JK .mzwr 的dW 5>釧"人iin./iM y第II卷(非选择題共90分)-f 呼竝厂吨10. 巳加*Ml*y』< fo "的划你紬为*二I JI*2为*締交T儿"MA- K人〃的氏足6•州徐戕佝出仏力A.u.9) K(l.») CHI. Ml a(l.-«)注«!hUi:1 1訐卷曰请你轿老封线内的巧満処。
2017年中考数学(陕西地区)总复习课件 考点跟踪训练 第二章 方程
版权所有-
解:设该校的大寝室每间住 x 人 , 小寝室每间住 y 人 , 由题意得 55x+50y=740, x=8, 解得 答:该校的大寝室每间住 8 人,小寝室每间 50x + 55y = 730 , y = 6. 住6人
版权所有-
第4讲 一次方程、方程组、一元二次 版权所有方程
版权所有-
版权所有-
版权所有-
版权所有-
5 1. (2014· 陕西)若 x=-2 是关于 x 的一元二次方程 x2-2ax+a2=0 的一个根, 则 a 的值为( B ) A .1 或 4 B.-1 或-4 C.-1 或 4 D.1 或-4
解:(1)x2-2x=0,x(x-2)=0,∴x1=0,x2=2 (2)原式可化为(x2+4x+4-4)-1=0,即(x+2)2=5,两边开方,得 x+2 =± 5,解得 x1=-2+ 5,x2=-2- 5
版权所有-
(3)解法一:(2016-x)2+(x-2015)2-1=0,(2016-x)2+(x-2016)(x-2014)=0,
2.(2012· 陕西副题)某商店换季促销,将一件标价为 240 元的 T 恤打 8 折售 出,获利 20%,则这件 T 恤的成本为( B ) A.144 元 B.160 元 C.192 元 D.200 元
版权所有-
3.(2013· 陕西)一元二次方程x2-3x=0的根是_______________ . x1=0,x2=3 4.(2011· 陕西)一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按
6.用配方法解方程:x2+3x-4=0.
3 2 25 3 5 解:x +3x-4=0,(x+2) = 4 ,x+2=± 2,∴x1=1,x2=-4
陕西省2016年中考数学复习备考策略
解决第1、11题
解决第3、11、15、16题
解决第21、24题
解决第5或7题
解决第13、21、24题
解决第18、22题
精心构架初中数学框架, 胸有成竹完成中考数学解答
2、理顺复习思路、合理有效安排时间 (四个阶段)
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
数与代数 统计与概率
复习策略
西安交大附中 李整社
一、明确陕西中考数学考向 二、分析研究 把握方向 三、中考数学复课策略
一、明确陕西中考数学考向
1、明确依据和方向
陕西省中考数学试题是以《课 程标准》和《中考说明》为依据来 命制的,因此,我们必须认真研读 《课程标准》和《中考说明》,准 确理解和把握考试要求,从而更加 高效地进行我们的复习备考工作.
2、中考数学试题稳中有新,富有人文气息
2、中考数学试题稳中有新,富有人文气息
二、分析研究 把握方向
三、中考数学复课策略
1、梳理知识框架,解决针对试题
时光如梭,岁月如刀,精雕细 刻着我们数学人。你、我、他恪守
“陕努西力初追求中适数合学每教一个育学因生为发有展的您教
育” 的崇高理念,相互欣赏着各自
的成长与奉所献以渐如渐变此老美。好有缘相聚陕
西中考报告会场,大家相互学习,不 留遗憾,开心生活,共同祝愿陕西数 学教育蓬勃发展!
陕西省2016年中考数学
2017中考数学复习方法_名师指点
2017中考数学复习方法_名师指点大家知道中考数学复习方法吗?只有在有针对性地选择题目的前提下,题海战术才是可取的。
参考资料良莠不齐,所以选择题目时一定要慎重。
题目的选择要尽量广泛一些,往年的中考试题、模拟试题、等都要有所涉及。
要回归教材初中数学包括基础知识和基本技能两方面。
现在中考命题仍然以基础知识题为主,后面的大题虽是“高于教材”,但原型一般还是教材中题目的引申、变形或组合。
复习的最后阶段,应重视教材,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。
对题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,关注解题的思路、方法、技巧。
要重视热点第二轮复习,要求同学们必须做到能把各个章节中的知识联系起来,并能综合运用,做到触类旁通、融会贯通。
目前阶段应根据自身实际,有针对性地复习,查漏补缺做好知识归纳、解题方法的归纳。
同时还要狠抓重点内容,专项练习热点题型。
多年来,初中数学的“方程”、“函数”、“四边形”一直是中考重点内容。
另外,“开放题”、“类比探究题”、“阅读理解题”、“方案设计”、“动手操作”等问题也是近几年中考的热点题型,这些中考题大部分来源于课本,对知识性要求不同,但题型新颖,背景复杂,文字冗长,不易梳理,所以应重视这方面的学习和训练,以便熟悉、适应这类题型。
这个时期,老师建议同学们精题精练,举一反三,而不是盲目的大量做题,要有针对性、找典型、有层次、切中要害去强化练习。
要加强练兵这一阶段的重点,同学们要放在自身综合解题能力和解题策略上,进行考前练兵。
同学们要研究近五年的中考试题和做一定量的模拟题,练习答题技巧、考场心态、临场发挥能力等。
另外,老师建议同学们要慢慢调整自己的心态,沉稳答题,不言放弃,学会积极的自我暗示,有效地进行自我放松。
2017中考数学(陕西专版)总复习专题综合强化课件:专题五_二次函数的综合探究(共37张PPT)
D、E、F、G在△ABC各边上)若能,求出最大面积;若不
能,请说明理由.
中 考
全
程
总
复
习
·
陕
西
·
数
学
【思路点拨】
(1)由直线y=
1 2
x-2交x轴、y轴于B、C
两点,则B、C坐标可求.进而代入抛物线y=ax2-
3 2
x+c,
即得a、c的值,从而知抛物线解析式.(2)求证三角形为直角 中
三角形,我们通常考虑证明一角为90°或勾股定理.本题中 考 全
用函数与方程、数形结合、分类讨论等思想方法.
考 全
程
总
复
习
·
陕
西
·
数
学
有关函数与相似三角形的问题一般有三个解决途径:
(1)求相似三角形的第三个顶点时,先要分析已知三角形
的边和角的特点,进而得出已知三角形是否为特殊三角
形.根据未知三角形中已知边与已知三角形的可能对应边分
类讨论;
(2)利用已知三角形中对应角,在未知三角形中利用勾股 中
第二部分 专题综合强化
专题五 二次函数的综合探究 (针对陕西中考24题)
中考考点 ·讲练
中 考 全 程 总 复 习 · 陕 西
· 数 学
1.二次函数与相似三角形
二次函数与三角形相似的综合题,可以结合几何图形来
解题,充分利用图象上点的坐标就表示相关线段的长度几何
意义,实现从“数或式”到“形”的转化,在解题中充分运 中
抛物线上的点构造成三角形、四边形,然后探究几何图形的 中 考
面积或周长最值.解题时要充分利用二次函数的图象和性 全 程
质,函数在自变量取值范围内的增减性,挖掘图形的几何意
陕西省西安市交大附中2017-2018学年初三期中考试卷数学试题 (无答案)
交大附中分校2017~2018学年第一学期期中考试初三年级数学试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抛物线21y x =-的顶点坐标是( ).A .(0,1)B .(0,1)-C .(1,0)D .(1,0)-2.如图所示的几何体的左视图( ).A. B. C. D.3.小明沿着坡度为的坡面向下走了2米,那么他下降的高度为( ). A .1米BC.米D4.在反比例函数13my x-=图象上有两点11(,)A x y ,22(,)B x y ,120x x <<,12y y <,则m 的取值范围是( ).A .13m >B .13m <C .13m ≥D .13m ≤5.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B ,C ,D 的坐标分别为(5,0)B ,(1,2)C ,(2,0)D ,则点A 的坐标是( ).A .(2,5)B .(3,6)C .(3,5)D .5,52⎛⎫⎪⎝⎭6.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为2(0)y ax bx c a =++≠,若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ).A .第8秒B .第10秒C .第12秒D .第15秒7.如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知3CD =,4AC =,则sin A 的值是( ).D A BCABC .43D .348.正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A ,B 两点,其中点B 的横坐标为2-,当12y y <时,x 的取值范围是( ).A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >9.如图,四边形ABCD 和四边形BEFD 都是矩形,且点C 恰好在EF 上,若1AB =,2AD =,则B C ES =△( ).DA B CEFA .1B .12C .45D .3210.已知抛物线2(0)y ax bx c a =++>过(2,0)-,(2,3)两点,那么抛物线的对称轴( ).A .只能是1x =-B .可能是y 轴C .在y 轴右侧且在直线2x =的左侧D .在y 轴左侧二、填空题(本大题共6小题,每小题3分,共18分)11.一个正三角形的边长为a ,那么它的高是__________.12.如图,在长为8cm 、宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是__________2cm .13.抛物线23(2)1y x =-+绕抛物线的顶点旋转180︒所得的抛物线的解析式是__________.14.如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,且点D 到窗口下的墙角点C 处的距离为9米,若窗口高2AB =米,那么窗口底边离地面的高BC =__________米.15.如图,双曲线(0)ky x x=<经过Rt OAB △斜边OA 的中点D ,且与直角边AB 相交于点C ,若点A 的坐标为(6,4)-,则AOC △的面积为__________.16.如图,在Rt ABC △中,90BAC ∠=︒,3AB =,3cos 5B =,将ABC △绕着点A 旋转得ADE △,点B 的对应点D 落在边BC 上,联结CE ,那么CE 的长是__________.DA BCE三、解答题(本大题共7小题,共52分) 17.计算:(本题满分8分) (145sin30cos60︒+︒⋅︒. (2)21|2|2tan 603-⎛⎫-+-︒+ ⎪⎝⎭18.(本题满分5分)如图,已知ABC △,求作ACD △,使CD 与线段AB 交于点D ,且ACD △≌ABC △(不用写作法,但要保留作图痕迹).ABC19.(本题满分6分)某国发生强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25︒和60︒,且4AB =米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin250.4︒≈,cos250.9︒≈,tan250.5︒≈,1.7)20.(本题满分6分)某校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率.(2)分别从获得美术奖,音乐奖的学生中选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.21.(本题满分7分)已知:如图,在正方形ABCD 中,P 是BC 上的点,且3BP CP =,Q 是CD 的中点.求证:Q ADQ CP ∽△△. D ABCPQ22.(本题满分9分)已知抛物线2y x bx c =-++经过点(3,0)A ,(1,0)B -.(1)求该抛物线的解析式.(2)在如下坐标系中画出该抛物线的图象.(3)在这条抛物线上是否存在点P ,使得ABP △的面积为6?若存在,请求出点P 的坐标;若不存在,请说明理由.23.(本题满分11分)如图1所示的两个直角三角形中,90A D ∠=∠=︒,45B ∠=︒,30E ∠=︒,用它们进行以下探究活动. 探究活动:如图2将DEF △的顶点D 放在ABC △的BC 边上的中点处,并以点D 为旋转中心旋转DEF △的两直角边与ABC △的两直角边分别交于M 、N 两点.(1)当点N 是AC 的中点时,四边形AMDN 是什么特殊的四边形?(无需证明) (2)试判断在DEF △旋转过程中所形成的DMN △的形状,并说明理由. 问题应用:(3)将DEF △的顶点D 放在ABC △的BC 边上的点D 处,且2BD =,DC =,以点D 为旋转中心旋转DEF △,两直角边与ABC △的两直角边分别交于M 、N 两点,在旋转过程中,是否存在MN 的值最小,同时使四边形MEFN 面积最大的情况?若存在,求出MN 的值;若不存在,请说明理由.图130°45°DABC E F图2A B CMN FED备用图A B C。
【精选试卷】西安交通大学附属中学中考数学填空题专项练习知识点复习(培优练)
一、填空题1.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= .2.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.3.使分式x 2−1x+1的值为0,这时x=_____.4.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).5.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm6.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 7.若a ,b 互为相反数,则22a b ab +=________.8.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.9.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
10.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC的最小值是.11.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.13.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.14.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.17.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.18.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.360 0.387 0.404 0.401 0.399 0.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 19.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.20.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.21.若一个数的平方等于5,则这个数等于_____. 22.10a b b --=,则1a +=__.23.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 24.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 25.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______. 26.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.27.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.28.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.29.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.30.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【2.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC +EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC3.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法4.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈6215.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面6.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-17.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数8.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2-9.【解析】【分析】过点E作交AG的延长线于H根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E作交AG的延长线于H厘米`根据折叠的性质可知:根据折叠的性质可知:(10.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEP C的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=P E+AP根据两点之间11.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMM NDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=212.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为213.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=OA=6∴OP=AB=3∴14.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:200015.【解析】根据弧长公式可得:=故答案为16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:417.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×1 0618.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率19.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA20.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比21.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质22.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要23.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2 m=0有一个根为0∴m2﹣2m=24.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根25.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正26.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达27.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式28.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到29.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形30.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、填空题1.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.2.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6 【解析】试题解析:∵DE 是BC 边上的垂直平分线, ∴BE=CE .∵△EDC 的周长为24, ∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )-(AE+ED+DC+AC )=(AB+AC+BC )-(AE+DC+AC )-DE=12, ∴BE+BD-DE=12,② ∵BE=CE ,BD=DC , ∴①-②得,DE=6.考点:线段垂直平分线的性质.3.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1 【解析】试题分析:根据题意可知这是分式方程,x 2−1x+1=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解. 答案为1.考点:分式方程的解法4.1【解析】试题分析:在Rt △CBD 中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt △CBD 中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1. 【解析】试题分析:在Rt △CBD 中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt △CBD 中,DC=BC•sin60°=70×2≈60.55(米). ∵AB=1.5,∴CE=60.55+1.5≈62.1(米). 考点:解直角三角形的应用-仰角俯角问题.5.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1 【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm ,根据题意得2πr=904180π⨯,解得r=1. 故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1 【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k =-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1.7.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0 【解析】 【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0. 【详解】解:∵22a b ab += ab (a+b ),而a+b=0, ∴原式=0. 故答案为0, 【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.8.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2-112-22-2-4-12-1-21-2- 解析:12【解析】 【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得. 【详解】列表如下:-2 -1 1 2 -22-2 -4 -1 2-1-2 1 -2 -122-4-22∴积为大于-4小于2的概率为612=12, 故答案为12. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.9.【解析】【分析】过点E 作交AG 的延长线于H 根据折叠的性质得到根据三角形外角的性质可得根据锐角三角函数求出即可求解【详解】如图过点E 作交AG 的延长线于H 厘米`根据折叠的性质可知:根据折叠的性质可知:( 解析:423+【解析】 【分析】过点E 作EH AG ⊥交AG 的延长线于H,根据折叠的性质得到15,C CAG ∠=∠= 根据三角形外角的性质可得30,EAG EGA ∠=∠=根据锐角三角函数求出GC ,即可求解. 【详解】如图,过点E 作EH AG ⊥交AG 的延长线于H ,15,2C AE EG ︒∠===厘米,`根据折叠的性质可知:15,C CAG ∠=∠=30,EAG EGA ∴∠=∠= 322cos302223,2AG HG EG ==⋅=⨯⨯=根据折叠的性质可知:23,GC AG ==2,BE AE ==222342 3.BC BE EG GC ∴=++=++=+(厘米) 故答案为:42 3.+【点睛】考查折叠的性质,解直角三角形,作出辅助线,构造直角三角形是解题的关键.10.【解析】试题分析:要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解试题解析:如图连接AE ∵点C 关于BD 的对称点为点A ∴PE+PC=PE+AP 根据两点之间解析:5.【解析】试题分析:要求PE+PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE ,∵点C 关于BD 的对称点为点A ,∴PE+PC=PE+AP ,根据两点之间线段最短可得AE 就是AP+PE 的最小值,∵正方形ABCD 的边长为2,E 是BC 边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.11.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN ∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣3【解析】【分析】【详解】试题分析:如图所示:连接AC ,BD 交于点E ,连接DF ,FM ,MN ,DN ,∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.12.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.13.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=O A=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.15.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.16.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴A C⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积= 4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC交OB于D.∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:417.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.18.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.19.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 20.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 21.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.22.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.【详解】b﹣1|=0,b-≥,≥,|1|0∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.23.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.24.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.25.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.26.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R 到达P ,x=9时,点R 到Q 点,则PN=4,QP=5∴矩形MNPQ 的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时, 要注意数形结合.27.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式 解析:14. 【解析】 【分析】【详解】 试题分析:画树状图如下:∴P (两次摸到同一个小球)=416=14.故答案为14. 考点:列表法与树状图法;概率公式.28.28【解析】【分析】设加分前及格人数为x 人不及格人数为y 人原来不及格加分为及格的人数为n 人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n 分别表示xy 得到解析:28【解析】【分析】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为及格的人数为n 人,所以{72x +58y =66(x +y)75(x +n)+59(y −n)=(66+5)(x +y),用n 分别表示x 、y 得到x+y =285n ,然后利用15<285n <30,n 为正整数,285n 为整数可得到n =5,从而得到x+y 的值. 【详解】设加分前及格人数为x 人,不及格人数为y 人,原来不及格加分为为及格的人数为n 人,根据题意得{72x +58y =66(x +y)75(x +n)+59(y −n)=(66+5)(x +y), 解得{x =165n y =125n ,所以x+y =285n , 而15<285n <30,n 为正整数,285n 为整数, 所以n =5,所以x+y =28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.29.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴= 又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒ ∴tanC=BD DC =86=43. 故答案为:43.。
西安交通大学附属中学初中数学九年级下期中知识点复习(培优练)
一、选择题1.(0分)[ID:11123]如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)2.(0分)[ID:11121]如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.√33B.12C.√22D.√323.(0分)[ID:11112]在Rt△ABC中,∠ACB=90°,AB=5,tan∠B=2,则AC的长为()A.1B.2C.5D.254.(0分)[ID:11110]如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.55.(0分)[ID:11102]如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF,那么S EAFS EBC的值是()A.12B.13C.14D.196.(0分)[ID:11101]下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似7.(0分)[ID:11085]如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.58.(0分)[ID:11077]如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.59.(0分)[ID:11074]在同一直角坐标系中,函数kyx和y=kx﹣3的图象大致是()A.B.C.D.10.(0分)[ID:11066]《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺11.(0分)[ID :11064]如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 12.(0分)[ID :11078]如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆=( )A .2:3B .3:2C .9:4D .4:9 13.(0分)[ID :11076]在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍14.(0分)[ID :11063]已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( )A .252B .25-C .251D 5215.(0分)[ID :11036]如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题16.(0分)[ID:11183]计算:cos245°-tan30°sin60°=______.17.(0分)[ID:11174]一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.18.(0分)[ID:11164]已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.19.(0分)[ID:11144]如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.20.(0分)[ID:11217]如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=kx(x>0)经过点C,则k=_____.21.(0分)[ID:11214]如图所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).22.(0分)[ID :11212]如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.23.(0分)[ID :11211]《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.24.(0分)[ID :11209]已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 25.(0分)[ID :11196]在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC 相似.三、解答题26.(0分)[ID :11302]如图,在OABC 中,22OA =45AOC ∠=︒,点C 在y 轴上,点D 是BC 的中点,反比例函数()0k y x x =>的图象经过点A 、D(1)求k 的值;(2)求点D 的坐标.27.(0分)[ID :11295]如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.28.(0分)[ID :11236]如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,F 是BC 延长线上一点,∠F =∠B .(1)若AB =10,求FD 的长;(2)若AC =BC ,求证:△CDE ∽△DFE .29.(0分)[ID :11235]如图,l 1∥l 2∥l 3,AB=3,AD=2,DE=4,EF=7.5.求BC 、BE 的长?30.(0分)[ID :11234]如图,E 为□ABCD 的边CD 延长线上的一点,连结BE 交AC 于点O ,交AD 于点F ,求证:BO EO FO BO=.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.B4.B5.D6.B7.C8.A9.A10.B11.D12.D13.A14.A15.C二、填空题16.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键17.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)19.6【解析】【分析】利用位似的性质得到AB:DE=OA:OD然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC与△DEF位似原点O是位似中心∴AB:DE=OA:OD即2:DE=1:3∴D20.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=121.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式22.8或【解析】【分析】根据题意可分两种情况①当CP和CB是对应边时△CPQ∽△CBA与②CP和CA是对应边时△CPQ∽△CAB根据相似三角形的性质分别求出时间t即可【详解】①CP和CB是对应边时△CP23.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD24.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本25.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=12.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC25)2=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.解析:B 【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCC,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.7.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.8.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=AE=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.11.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.12.D解析:D【解析】【分析】先设出DE x =,进而得出3AD x =,再用平行四边形的性质得出3BC x =,进而求出CF ,最后用相似三角形的性质即可得出结论.【详解】解:设DE x =,∵:1:3DE AD =,∴3AD x =,∵四边形ABCD 是平行四边形,∴//AD BC ,BC AD 3x ==,∵点F 是BC 的中点, ∴1322CF BC x ==, ∵//AD BC ,∴DEG CFG ∆∆∽,∴224392DEGCFGS DE xS CF x⎛⎫⎪⎛⎫===⎪⎪⎝⎭ ⎪⎝⎭,故选:D.【点睛】此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.13.A解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 14.A解析:A【解析】根据黄金比的定义得:512APAB=,得514252AP-== .故选A.15.C 解析:C 【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题16.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=21123222-=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.19.6【解析】【分析】利用位似的性质得到AB:DE=OA:OD然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC与△DEF位似原点O是位似中心∴AB:DE=OA:OD即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.20.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=1解析:2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论.【详解】解:连接OC,∵点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=12×6=3,∵BC:CA=1:2,∴S△OBC=3×13=1,∵双曲线y=kx(x>0)经过点C,∴S△OBC=12|k|=1,∴|k|=2,∵双曲线y=kx(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.21.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4 () 5n【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12 同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n45=⎛⎫= ⎪⎝⎭nn x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 22.8或【解析】【分析】根据题意可分两种情况①当CP 和CB 是对应边时△CPQ∽△CBA 与②CP 和CA 是对应边时△CPQ∽△CAB 根据相似三角形的性质分别求出时间t 即可【详解】①CP 和CB 是对应边时△CP解析:8或6411【解析】【分析】根据题意可分两种情况,①当CP 和CB 是对应边时,△CPQ ∽△CBA 与②CP 和CA 是对应边时,△CPQ ∽△CAB ,根据相似三角形的性质分别求出时间t 即可.【详解】①CP 和CB 是对应边时,△CPQ ∽△CBA ,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.23.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD =xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.24.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.25.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC此时AE=;故答案是:解析:512 35或【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或.三、解答题26.(1)4k =;(2)()1,4D .【解析】【分析】(1)根据已知条件求出A 点坐标即可;(2)四边形OABC 是平行四边形OABC ,则有AB x ⊥轴,可知B 的横纵标为2,D 点的横坐标为1,结合解析式即可求解;【详解】(1)OA =45AOC ∠=︒,∴()2,2A ,∴4k =, ∴4y x=; (2)四边形OABC 是平行四边形OABC ,∴AB x ⊥轴,∴B 的横纵标为2,点D 是BC 的中点,∴D 点的横坐标为1,∴()1,4D ;【点睛】本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点B 的横坐标是解题的关键.27.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l于D 、E 、F 三点,AB DE AC DF∴=, AB 4AC 7=,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 28.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE ∥AB ,进而得出∠DEC =∠B ,即可得出FD =DE ,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B =∠A =∠CED =∠CDE ,即可得出∠CDE =∠F ,即可得出△CDE ∽△DFE .【详解】解:(1)∵D 、E 分别是AC 、BC 的中点,∴DE //AB , DE =12AB =5 又∵DE //AB ,∴∠DEC = ∠B .而∠ F = ∠ B ,∴∠DEC =∠B ,∴FD =DE =5;(2)∵AC =BC ,∴∠A =∠B .又∠CDE =∠A ,∠CED = ∠B ,∴∠CDE =∠B .而∠B =∠F ,∴∠CDE =∠F ,∠CED =∠DEF ,∴△CDE ∽△DFE .【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键. 29.BC=6,BE=5【解析】【分析】根据平行线分线段成比例定理得BFBE=3BC=24,则可计算出BC=6,BF=12BE,然后利用12BE+BE=7.5求出BE的长.【详解】∵l1∥l2∥l3,∴FBBE=ABBC=ADDE,即BFBE=3BC=24,∴BC=6,BF=12BE,∴12BE+BE=7.5,∴BE=5.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.30.见解析【解析】【分析】由AB∥CD得△AOB∽△COE,有OE:OB=OC:OA;由AD∥BC得△AOF∽△COB,有OB:OF=OC:OA,进而解答.【详解】∵AB∥CD,∴△AOB∽△COE.∴OE:OB=OC:OA;∵AD∥BC,∴△AOF∽△COB.∴OB:OF=OC:OA.∴OB:OF=OE:OB,即:BO EO FO BO【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。
【精选试卷】西安交通大学附属中学中考数学专项练习知识点复习(培优练) (2)
一、选择题1.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=02.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( )A .B .C .D .3.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .10C .211D .434.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( ) A . B .C .D .5.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm6.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7B .8C .4D .57.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲B .乙C .丙D .一样9.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .8 10.an30°的值为( ) A .12B .√32C .√3D .√3311.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .12.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .5413.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体14.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个15.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁C .乙和丙D .乙和丁16.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠D .3x ≠-且1x ≠ 17.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°B .90°C .72°D .60°18.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米19.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .20.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( )A .2.3×109B .0.23×109C .2.3×108D .23×10721.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°22.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m23.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数B .中位数C .众数D .方差24.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )A .B .C .D .25.若0xy <,则2x y 化简后为( ) A .x y -B .x yC .x y -D .x y --26.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .27.如图,点A ,B 在反比例函数y =1x(x >0)的图象上,点C ,D 在反比例函数y =k x(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为94,则k 的值为( )A .2B .3C .4D .28.下面的几何体中,主视图为圆的是( )A .B .C .D .29.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)30.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+ 二、填空题31.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.32.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .33.82=_______________.34.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 35.使分式x 2−1x+1的值为0,这时x=_____.36.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.37.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.38.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.39.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .40.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.41.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.42.分解因式:2x 2﹣18=_____.43.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 44.分解因式:2x 3﹣6x 2+4x =__________.45.半径为2的圆中,60°的圆心角所对的弧的弧长为_____. 46.已知62x =,那么222x x -的值是_____.47.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.48.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.49.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .50.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.51.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).52.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.53.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.54.若a b =2,则222a b a ab--的值为________.55.若一个数的平方等于5,则这个数等于_____. 56.10a b b --=,则1a +=__.57.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 58.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 59.计算:21(1)211x x x x ÷-+++=________. 60.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.C 4.C5.C 6.C 7.B 8.C 9.B 10.D 11.A 12.B 13.A 14.C 15.D 16.B 17.C 18.D 19.B 20.C 21.D 22.C 23.B 24.B 25.A 26.B 27.C 28.C 29.D 30.A二、填空题31.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A32.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间33.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键34.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确35.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法36.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=37.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出38.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为239.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC 可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B40.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=241.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴42.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合43.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角44.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x ﹣2)点45.【解析】根据弧长公式可得:=故答案为46.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确47.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:448.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×10649.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°50.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等51.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故52.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函53.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<54.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本55.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质56.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要57.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=58.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a 的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根59.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛60.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.2.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.3.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,2OG ==,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,OE == ∵75DEB ∠=︒,∴30OEF ∠=︒,∴12OF OE ==在Rt ODF ∆中,DF ===∴2CD DF ==故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.4.C解析:C【解析】【分析】【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h =≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.5.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.6.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x -+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x -+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7故选C .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.7.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.8.C解析:C【解析】试题分析:设商品原价为x ,表示出三家超市降价后的价格,然后比较即可得出答案. 解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .考点:列代数式.9.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=√33,故选:D . 【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.A解析:A【解析】【分析】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .12.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 13.A解析:A【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.14.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.15.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 16.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.17.C解析:C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.18.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米,∴AD∴AB =AD +BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B . 考点:简单组合体的三视图.20.C解析:C【解析】230000000= 2.3×108 ,故选C.21.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.22.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟,∴体育场出发到文具店的平均速度1000200min 153m==/故选:C.【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键.23.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.24.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.25.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.27.C解析:C【解析】【分析】由题意,可得A (1,1),C (1,k ),B (2,12),D (2,12k ),则△OAC 面积=12(k-1),△CBD 的面积=12×(2-1)×(12k-12)=14(k-1),根据△OAC 与△CBD 的面积之和为94,即可得出k 的值.【详解】∵AC ∥BD ∥y 轴,点A ,B 的横坐标分别为1、2,∴A (1,1),C (1,k ),B (2,12),D (2,12k ), ∴△OAC 面积=12×1×(k-1),△CBD 的面积=12×(2-1)×(12k-12)=14(k-1), ∵△OAC 与△CBD 的面积之和为94, ∴12(k-1)+ 14(k-1)=94, ∴k =4.故选C .【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.28.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D 、的主视图是三角形,故D 不符合题意;考点:简单几何体的三视图.29.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D30.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A . 考点:由实际问题抽象出分式方程.二、填空题31.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC ∥DE 根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD 根据三角形的周长公式计算即可【详解】∵DE 分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC ∥DE ,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD ,根据三角形的周长公式计算即可.【详解】∵D ,E 分别是AB ,BC 的中点,∴AC=2DE=5,AC ∥DE ,AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB=90°,∵AC ∥DE ,∴∠DEB=90°,又∵E 是BC 的中点,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25题12分主要通过组合的几何图形作为载体, 综合考查学生运用所学的知识进行数学抽象、数学 推理、数学建模的能力。通常是以三角形、特殊四 边形、圆为基本图形,进行组合构成现实世界中存 在或可能存在的事实进行探索研究。(设想:①使 学生能够充分运用几何演绎进行推理,代数演绎进 行科学合理运算,解析演绎进行数学建模;②图形 简单、美观、图形的元素间关系清晰、建模有难度 ;③以探究式设问(总体以提问题或探究)难度与 去年持平。(0.40)
尊敬的同行,您好! 尊敬的同行,您好! 学生寒窗苦读,我们披阅三载, 学生寒窗苦读,我们披阅三载,如 如今,中考的日子即将来临,辛勤 今,中考的日子即将来临,辛勤的耕 的耕耘将要化为累累硕果。为了那 耘将要化为累累硕果。为了那丰收的 丰收的时刻,让我们做好最后的拼 时刻,让我们做好最后的拼搏。 请铭记:勤奋是舟,规律是桨,老 搏。 师准确导航,学生一定顺利抵港。 请铭记:勤奋是舟,规律是桨, 老师准确导航,学生一定顺利抵港。
20题7分,考查学生灵活运用Байду номын сангаас角 三角函数的概念来解决现实生活中, 用Rt△建模的实际问题,并通过解 Rt△,而使问题得以解决的能力; (高度、宽度、深度;某一个几何 图形的参数或面积等)(0.65)
23题主要考查圆与直线间的相依关 系,同时渗透考查学生运用全等、相 似、锐角三角函数等工具解决图形中 各元素间的关系及一些计量关系,其 中所牵扯的直线条数不超过三条(圆 不多于一个)(难度系数0.55)
2、中考数学试题稳中有新,富有人文气息
2、中考数学试题稳中有新,富有人文气息
二、分析研究 明确方向
y
18 k 9 (只要y 中的k 满足k ) x x 2
24
一、了解陕西中考数学 二、分析研究 明确方向
三、中考数学复课及答题建议
一、了解陕西中考数学
1、明确依据和方向
陕西省中考数学试题是以《课 程标准》和《中考说明》为依据来 命制的,因此,我们必须认真研读 《课程标准》和《中考说明》,准 确理解和把握考试要求,从而更加 高效地进行我们的复习备考工作.
4 y x
10
6 y x
41
10.5
4 2
4 2
3 2
如图,在任意四边形ABCD中,过AB边上任 意一点P(不同于A、B两点)做一条直线PM 将四边形ABCD面积二等分.
2 3- 2
19题5分,主要考查学生对两 个三角形何时可以全等及全等 后具有什么性质,载体是两个 有关联的三角形或一个四边形; (0.85)
三、中考数学复课及答 题建议
1、理顺复习思路、合理有效安排时间 (四个阶段)