发动机悬置的结构、作用、设计要求
发动机悬置的结构、作用、设计要求

发动机悬置得结构、作用、设计要求1.概述:随着当前底盘、发动机技术得日臻完善,车辆得振动、噪声得控制转而成为各个整车厂在研发上得重中之重。
据统计分析在一个车辆系统得上万个零部件中,对振动起关键作用得大概有二百个。
它们又分别在整车得振动系统中起不同得作用。
这里仅对发动机产生得振动经由发动机悬置到车身得振动系统得结构、作用、设计要求给出一定程度得阐述与说明.振动情况及位置频率Hz路面激励得频率范围车体1~3座椅与驾驶员4~8发动机总成5~18前后桥10~16车轮共振11~15排气管机械系统12~22发动机得振动频率范围怠速抖动20~30车体弯曲扭转25~40方向盘抖动25~40发动机总成弯曲130~230排气管气体系统100~1000变速器噪声350~600进气系统噪声100~600发动机噪声1000~5000基于汽车振动学得相应设计优化,应最大可能得避免整车主要部件在各种工况下得振动耦合.悬置得作用概括来说就就是对发动机振动与路面激励得隔离与吸收,减少乘客舱中人所受得影响,降低其她零部件因为过多振动产生得疲劳破坏。
2.悬置系统得结构2.1布置概念:◆前轮驱动——较低排量,◆后轮驱动-—较大排量.质量发动机+变速箱发动机+变速箱+驱动轴转距约1/4得驱动转距T全部得驱动转距T转距纵向横向方向●动力总成横置,如尊驰、骏捷等。
4G63 4G64 4G934G18 等动力总成中华1、8T 宝来等车得动力总成。
2.2结构概念:●橡胶悬置悬置结构为橡胶+金属支架,在低频、大振幅得动刚度与滞后角变化小。
在高频、小振幅激励下得动刚度与滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。
●液力悬置悬置结构为橡胶形腔+液体(乙二醇)+金属支架,在低频、大振幅得激励下具有大阻尼;在高频、小振幅得激励下具有小刚度。
可根据实际与成本情况决定采用一个液压悬置还就是采用多个液压悬置。
常用于发动机左右悬置。
汽车发动机悬置系统的设计指南

1 发动机悬置系统的设计指南1.1 悬置系统的设计意义及目标简介现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。
如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。
此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。
由此可知,悬置系统的设计目标值:1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉;2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声;3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声;4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。
1.2 悬置系统的布置方式选择每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式:1) 平置式。
这是常用的、传统的布置方式,其特征是布局简单、安装容易。
在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。
2) 斜置式。
这是一种目前汽车发动机中用得最多的布置方式。
在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。
一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。
这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。
发动机悬置系统设计理论基础

发动机悬置系统常用材料
高强度钢
用于制造承受较大载荷的悬置支架和 连接件,具有较高的强度和刚度。
铝合金
复合材料
如玻璃纤维增强塑料(GFRP)和碳纤 维增强塑料(CFRP),具有轻质、高 强度和耐腐蚀等优点,适用于需要减 轻重量的部件。
质量轻,散热性好,常用于制造需要 轻量化的部件,如悬置支架和连接件 。
引入仿真分析
利用仿真分析工具对悬置系统进行优 化设计,提高设计效率。
强化试验验证
通过试验验证设计的有效性,确保实 际应用中的性能表现。
持续改进与创新
关注行业动态,不断改进和创新发动 机悬置系统设计技术,提高整车性能 。
感谢您的观看
THANKS
材料创新
新型高阻尼材料和复合材料的出现将为发动机悬 置系统的发展提供更多可能性,提高减振效果和 耐久性。
模块化设计
为了便于维护和更换,发动机悬置系统将趋向于 采用模块化设计,降低生产成本和维修成本。
05
发动机悬置系统设计中的 问题与解决方案
发动机悬置系统设计中的常见问题
振动传递
发动机产生的振动通过悬置系 统传递至车架,影响整车舒适
发动机悬置系统设计理论基 础
目 录
• 发动机悬置系统概述 • 发动机悬置系统设计理论 • 发动机悬置系统材料与制造工艺 • 发动机悬置系统设计实例分析 • 发动机悬置系统设计中的问题与解决方案
01
发动机悬置系统概述
发动机悬置系统的定义
发动机悬置系统是汽车动力总成的重 要组成部分,主要负责将发动机固定 在车架上,并隔离发动机的振动和噪 音,以保证车辆的舒适性和稳定性。
它由多个橡胶悬置组成,每个悬置具 有不同的刚度和阻尼特性,以适应不 同的振动频率和幅度。
发动机悬置系统的设计

发动机悬置系统的设计悬置系统发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源作用于发动机悬置系统的激振源主要如下:①发动机起动及熄火停转时的摇动;②怠速运转时的抖动;③发动机高速运转时的振动;④路面冲击所引起的车体振动;⑤大转矩时的摇动;⑥汽车起步或变速时转矩变化所引起的冲击;⑦过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按着振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz的低频振动源如下:①发动机低速运转时的转矩波动;②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功;③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④路面不平使车身产生的振动;⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;②变速时产生的振动;③燃烧压力脉动使机体产生的振动;④发动机配气机构产生的振动;⑤曲轴的弯曲振动和扭振;⑥动力总成的弯曲振动和扭振;⑦传动轴不平衡产生的振动。
汽车发动机悬置设计

汽车发动机悬置设计的目标有哪些?发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
一般来讲对发动机悬置系统有如下要求。
1,能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
2,固定并支承汽车动力总成的重量,每个悬置上分配的重量尽可能均匀;3,承受动力总成内部因发动机旋转和平移质量产生的往复惯性力及力矩;4,隔离由于发动机激励而引起的车架或车身的振动,降低振动噪声5,隔离由于路面不平度以及车轮所受路面冲击而引起的车身振动向动力总成的传递。
,降低振动噪声6,保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
,如何进行发动机悬置设计?发动机悬置系统设计流程可用下图表示:确定动力总成物理参数及所受激振力确定悬置点数目及布置型式计算悬置元件的静、动态载荷计算发动机机体与飞轮壳接合面上的静态弯矩确定安装点位置与方位的变动范围并确定初始值确定悬置元件刚度变化范围并确定初始值分析此悬置系统固有频率、振型、振动解耦水平优化设计弯矩值是否在许可范围内是否设计、校核悬置支架并选定悬置元件设计定型校核悬置元件静、动态载荷及静、动态变形校核各零部件空间位置是否干涉满足要求满足要求不满足要求道路试验验证满足要求不满足要求不满足要求发动机悬置对整车平顺性有哪些影响?悬置是将发动机的震动(扭矩变化,发动机离心惯性力,往复惯性力等)尽量隔离,将路面对发动机的激励和急加速急减速以及急转弯造成的发动机的位移与震动尽量降低。
减少发动机高频的噪声和低频的振动,减少振动向车架的传递,降低车内噪声,提高乘坐舒适性,同时使发动机不会出现过大的位移,造成发动机舱内零件干涉以致于破坏零件,使零件失效。
动力总成悬置系统设计总结

动力总成悬置系统设计总结第一章悬置系统的经验设计悬置系统的功能与设计原则发动机悬置系统是发动机应用工程的重要组成部分。
悬置系统的功能与设计原则大致可归纳如下:1隔离振动在发动机所有工作转速范围内,发动机产生的振动必须通过悬置系统加以隔离,尽可能降低传递给汽车底盘和车身的振动。
同时悬置系统还必须隔离道路不平引起的车轮悬挂系统的振动,防止这一振动向发动机传递,避免发动机振动加剧以满足车辆运行时的平稳性和舒适性,并保证怠速和停机时发动机的稳定性。
2发动机支承和定位为了隔离振动,发动机被支承在几个弹簧软垫上。
因而在发动机本身振动和外界作用力驱动下,发动机和底盘之间必然存在着相对运动。
所以悬置系统必须具有控制发动机相对运动和位移的功能,使发动机始终保持在相对稳定和正确的位置上,决不能让发动机在向各方向运动中与底盘车身上的零件发生干涉和碰撞。
3保护发动机车辆在行驶过程中同时承受着动态负荷和冲击负荷。
悬置系统应具有保护发动机的能力,防止发动机上个别部位因承受过大的冲击载荷而损坏,特别要保证发动机缸体后端面与飞轮壳的结合面上的弯曲力矩不超过制造厂规定的限值。
此外车辆在崎岖道路上行驶时,车架的扭曲变形会使发动机承受扭曲应力,使发动机局部受到损伤。
悬置系统应布置合理,并正确选择软垫刚度等参数,以保证能充分缓冲和抵御外力的冲击并消除薄弱环节。
4克服和平衡因扭矩输出而产生的反作用力悬置系统必须有足够强度,当发动机变速箱总成输出最大扭矩时能克服最大扭矩所产生的最大反作用力。
悬置软垫和支架在这种条件下都必须具有足够的可靠性。
5发动机与底盘之间的连接零件必须有足够柔性这些零件是排气管进气管、燃油管、冷却水管、压缩空气管、油门操纵机构及变速箱操纵机构等。
如果它们的刚度较大,则发动机的振动容易造成这些零件的损坏,特别是在怠速停机和出现共振时表现得尤其剧烈。
另一方面如果它们刚度较大,也会改变发动机悬置系统的刚度和自振频率,从而影响隔振效果并导致噪声升高,因此这些连接件必须采用柔性软管或柔性连接。
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成悬置系统布置是汽车设计中十分重要的一环,它直接关系到车辆的行驶稳定性和舒适性。
随着汽车工业的不断发展和技术的不断革新,汽车动力总成悬置系统的布置也在不断完善和创新。
本文将就汽车动力总成悬置系统布置进行研究探讨。
1. 悬置系统的基本结构汽车动力总成悬置系统主要由悬架、减震器和弹簧三部分组成。
悬架分为独立悬架和非独立悬架。
不同的悬架类型对车辆的行驶稳定性、操控性、车身高度和舒适性都有不同的影响。
减震器的作用是减少悬架运动时产生的振动和对车辆的充分接地性能进行控制。
常见的减震器有液压减震器和气压减震器。
液压减震器主要是利用液体在缸筒与活塞间的阻尼和压力进行减震,而气压减震器则是利用了空气的弹性和压力来实现减震。
弹簧的主要作用是支撑车辆的重量和吸收路面的冲击力,将地面的不平顺力传递到车辆上部。
弹簧一般采用金属弹簧和橡胶弹簧,它们的材料、形状和刚度对车辆的悬架调整具有重要的影响。
2. 悬架系统的布置原则汽车动力总成悬置系统的布置需要遵循一些基本原则,以确保车辆的行驶稳定性和乘坐舒适性。
如下:(1) 配置恰当的悬挂器:悬挂器类型和刚度应该恰当地选择依据车辆的性质和用途。
例如,运动型车辆较偏向采用独立悬架,而舒适型车辆较偏向采用非独立式悬架。
弹簧刚度与车重成比例,太硬的弹簧将降低乘坐舒适性,太软的弹簧则会影响车辆的稳定性。
(2) 掌握悬挂器的减震能力:一个合理的悬架系统除了有合适的弹簧和悬架,还需要有减震器。
减震器的好坏将直接影响到车辆的舒适性和稳定性。
减震器的刚度应该适合车辆的基本配置,比如运动型车辆和其他车型在减震器的选择和调整上存在巨大差异。
(3) 取舍悬架类型:车型的确定直接关系到悬架类型的选择。
在减少成本和提高性能之间需要权衡取舍。
现代汽车中大多数都采用独立悬架,但非独立悬架的性价比更高。
(4) 确保配件的合理匹配:制造的不同部分应该有合适的匹配,以构建一个坚固、平衡的悬架系统。
车辆动力总成悬置系统的结构及类型

动力总成悬置系统的结构及类型一、悬置结构及发展历史常见的悬置类型按发展历程来分有橡胶悬置、液压悬置、半主动悬置、主动悬置。
见图1所示。
图1 悬置的结构、性能及发展历程二、橡胶悬置橡胶悬置按结构分,可以分为衬套型悬置,方块形橡胶悬置以及楔形橡胶悬置衬套型橡胶悬置的橡胶元件位于内外两个圆筒形的金属管(内芯和外管)之间,橡胶可以用于承受压力或剪力,或者二者兼而有之。
衬套型橡胶悬置按主簧结构的形状还可以分为八字形,一字型以及X 型(见图2)。
每种类型的衬套型悬置三向刚度比例不一样,适应不同的整车要求。
图2 衬套型橡胶悬置结构图方块形橡胶悬置主要用在前置后驱车的左右悬置上,形成一对V型悬置组,可以通过调整安装角度获得更好的整车状态下的解耦及频率分布效果(见图3)。
具体计算过程的可以参照我发表的在汽车技术杂志上论文《基于动力总成质心位移及转角控制的悬置系统优化设计》。
图3 V型布置悬置系统及块状橡胶悬置结构图楔形橡胶悬置的橡胶元件硫化在金属两侧,主要用于承受剪切力,通常用在前置后驱车的变速器悬置上。
图4展示了两种楔形悬置的结构。
在分析中对于拉得比较开得悬置可以作为两个悬置来计算,相当于又形成了一对V型悬置组。
图4 楔形橡胶悬置结构图三、液压悬置液压悬置按结构分为筒形液压悬置以及梯形液压悬置,一般美系和日系车用筒形液压悬置的较多,欧系喜欢用梯形液压悬置。
液压悬置内部布置有解耦盘/膜,以及形成惯性通道的流道板。
流道板和橡胶主簧之间形成上夜室,底膜(皮碗)与流道板之间形成下液室,用于存储液体。
筒形液压悬置为了降低高频动刚度硬化还装有节流盘。
具体结构见图5所示。
而梯形液压悬置由于结构的限制一般不设节流盘。
被动式液压悬置的发展一共历经了三代,这一部分内容将在后续的文章中做具体的阐述。
图5 筒形液压悬置结构图四、半主动悬置半主动悬置的控体系统由电子控制单元、电磁阀、带有活动阀的悬置主体构成(可以是橡胶悬置或液阻悬置)(见图6),其工作原理为:电子电子控制单元监控发动机转速并在怠速时发出信号开启电磁阀;电磁阀开启后,发动机进气歧管内的负压力促使勾当阀开启,打开节流孔。
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究随着汽车行业的不断发展,汽车动力总成的悬置系统也越来越受到重视。
悬置系统是指汽车动力总成(发动机、变速器、传动轴等)与底盘系统(车轮、悬挂系统等)之间的连接部件,它直接影响着汽车的行驶舒适性、稳定性和操控性。
对悬置系统的布置进行深入研究,对于提高汽车整体性能,提升驾驶体验具有重要意义。
一、悬置系统的作用悬置系统是汽车动力总成和底盘系统之间的连接部件,它具有以下几个主要的作用:1. 支撑和固定动力总成:悬置系统能够支撑和固定动力总成,使其能够准确地与底盘系统相连,并且在汽车运行中保持稳定。
这样可以有效减少汽车在行驶过程中的振动和噪音,提高行驶的舒适性。
2. 传递动力和扭矩:悬置系统不仅需要支撑和固定动力总成,还需要传递动力和扭矩,使其能够顺利地传递到底盘系统,并且转化为车轮的动力,从而驱动汽车前进。
3. 缓解冲击和震动:悬置系统需要具备缓解冲击和震动的能力,使得汽车在行驶中能够保持平稳,避免因为道路不平而对车辆和乘客造成不良影响。
二、悬置系统的布置研究悬置系统的布置对于汽车整体性能有着重要的影响,因此需要进行深入的研究和优化。
在悬置系统的布置研究中,需要考虑以下几个方面:1. 动力总成的重心位置:动力总成的重心位置对于悬置系统的布置具有重要的影响。
一般来说,动力总成的重心位置越低,汽车的行驶稳定性和操控性就会越好。
需要通过合理的设计和布置,将动力总成的重心位置降低到最佳位置。
2. 悬置系统的刚度和弹性:悬置系统的刚度和弹性对于汽车行驶的舒适性和稳定性具有重要的影响。
刚度过大会导致汽车在行驶过程中的震动传递过大,影响乘坐舒适性;而弹性过大会导致汽车在行驶过程中的悬挂过度变形,影响行驶稳定性。
需要通过研究和优化悬置系统的刚度和弹性,使之达到最佳的状态。
3. 隔振和隔音设计:悬置系统需要具备良好的隔振和隔音设计,以减少汽车在行驶过程中产生的振动和噪音,提高行驶的舒适性。
需要通过合理的设计和布置,减少动力总成和底盘系统之间的振动传递,并且采用隔音材料,降低汽车内部的噪音。
发动机悬置安装机构的设计

发动机悬置安装机构的设计摘要:本文结合客车发动机安装要求,设计了一种发动机悬置安装机构,现就具体设计内容做如下介绍。
关键词:安装机构;支撑框架;悬置系统1、背景技术汽车发动机悬置是连接汽车发动机和车身的部件,由于发动机悬置系统,对其可靠性能和振动性能要求非常高,可靠性要求在全寿命里程内不发生断裂、开焊、严重变形等。
而现汽车发动机放置空间有限,发动机悬置系统要保持一定的强度有很大的限制。
为了满足生产需要,现提供一种方案。
2、产品设计本次设计的产品主要目的在于提供一种简单实用的发动机悬置安装机构。
具体设计方案如下。
如图1所示,一种发动机悬置安装机构包括将发动机悬置在车架上的前支架总成,前支架总成包括第一车架带、支撑板、第一软垫与第一支架;其中,第一车架带呈U型形状,其由底边、底边两端分别连接的折弯边以及折弯边连接的竖直边构成;所述竖直边螺栓安装在车架上;两个支撑板分别设在底边与折弯边的折弯角部;每个支撑板包括依次设置的水平段、直边段与直角边段;直边段与底边呈135度夹角设置,直边段上设有两个腰孔。
第一支架呈L型形状,其由第一竖直板、第一水平板以及连接第一竖直板与第一水平板的第一加强板构成;第一竖直板一侧设有L型形状的切口,另一侧均布设有四个第一螺孔;第一水平板上设有两个第一腰孔;第一支架通过螺栓连接至发动机安装座上,第一水平板与第一软垫连接,第一软垫连接至支撑板的直边段上。
底边与折弯边呈45度夹角设置,折弯边与竖直边呈135度夹角设置;竖直边呈U型形状,其相对的两侧边均向外侧垂直折弯形成折弯连接部,该折弯连接部上竖直向均布一列螺孔,该螺孔适配有螺栓并安装在车架上,竖直边与车架之间设有垫板。
第一支架由第二竖直板、第二水平板以及连接第二竖直板与第二水平板的第二加强板构成;第二竖直板一侧设有L型形状的切口,另一侧均布设有四个第二螺孔;第二水平板上设有两个第二腰孔。
第一软垫包括外U型板、内U型板、橡胶块与V型板;其中,外U型板底边上设有螺纹贯穿的两个第一螺栓,外U型板与内U型板的槽口相对设置,橡胶块底部粘结在外U型板槽内,上部粘结在内U型板槽内,V型板的两端部焊接在内U型板底边上,V型板的一侧边由内向外设有螺纹贯穿的一个第二螺栓,第二螺栓与V型板侧边呈45度夹角设置。
发动机悬置的结构、作用、设计要求

目录发动机悬置的结构、作用、设计要求 (2)1.1 悬置的作用 (2)1.2 悬置的设计要求 (2)1.3 悬置的设计结构 (2)1.4 悬置的布置 (5)1.5 悬置系统设计程序 (9)1.1 悬置系统安装要求 (10)发动机悬置的结构、作用、设计要求1.1 悬置的作用悬置元件既是弹性元件又是减振装置,其特性直接关系到发动机振动向车体的传递,并影响整车的振动与噪声。
1.2 悬置的设计要求1.2.1 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
1.2.2 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
1.2.3 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
1.2.4 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
1.3 悬置的设计结构1.3.1 发动机悬置软垫的设计-金属板件和橡胶组成1.3.1.1 悬置软垫的负荷通常前悬置位于发功饥机体前端或机体前部两侧,与后悬置相比、远离动力总成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬置主要承受扭转负荷。
对后悬置来说.距离动力总成的主惯性轴较近,承受较小的扭转负荷及振幅。
同时,由于它处于发动机动力输出端,受传动系不平衡力的严重干扰和外部轴向推力的冲击,当发动机输出最大转矩时.支承点出现的最大反作用力也应由后悬挂来承担。
所以后悬置的垂直刚度较大,也起着限制动力总成前后位移的作用。
悬置系统同样还承受了汽车行驶在平平道路上的颠簸、冲击、汽车制动及转向时所产生的动负荷。
1.3.1.2 悬置软垫的机构形式在设计发动机悬置时。
必须充分的考虑悬置的使用日的,例如支承的质量和限制的位移等,选择合理的形状。
悬置的基本形式有三中,即压缩式、剪切式和倾斜式。
给出了这二种悬置的基本特性及用途。
通常采用倾斜式的悬置结构,利用这种悬置的弹性特性,支点设定可以获得较大的自由度。
汽车发动机悬置系统的设计指南

1 发动机悬置系统的设计指南1.1 悬置系统的设计意义及目标简介现代汽车发动机无一不是采用弹性支承安装的,这在汽车行业称之为“悬置”,在力学及振动工程中则是个隔振问题。
如果不用中间弹性元件而直接将发动机刚性地固紧在汽车车架(底盘)上,则当汽车在不平坦的路面上行驶时将导致机身由于车架的变形、冲击而损坏;而当汽车在平坦光滑的路面上行使时来自发动机的振动将导致车架、车身产生令人厌恶的结构噪声。
此外弹性悬置还能补偿在发动机安装及运动过程中由车架变形导致的相对位置的不精确。
由此可知,悬置系统的设计目标值:1) 能在所有工况下承受动、静载荷,并使发动机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉;2) 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声;3) 能充分地隔离由于地面不平产生的通过悬置而传向发动机的振动,降低振动噪声;4) 保证发动机机体与飞轮壳的连接弯矩不超过发动机厂家的允许值。
1.2 悬置系统的布置方式选择每个隔振器(悬置系统)不论其结构形状如何都可以看作由三个相互垂直的弹簧组成,按照这三个弹簧的刚度轴线和参考坐标轴线间的相对位置关系,悬置系统弹性支承的布置可以有常见的三种不同方式:1) 平置式。
这是常用的、传统的布置方式,其特征是布局简单、安装容易。
在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴各自对应地平行于所选取的参考坐标轴。
2) 斜置式。
这是一种目前汽车发动机中用得最多的布置方式。
在这种布置方式中,每个弹性支承的三个相互垂直的刚度轴相对于参考坐标轴的布置是:除一个轴平行于参考坐标外,其他两个轴分别与参考坐标轴有一夹角。
一般斜置式的弹性支承都是成对地对称布置于垂向纵剖面的两侧,但每对之间的夹角可以不同,坐标位置也可任意。
这种布置方式的最大优点是:它既有较强的横向刚度,又有足够的横摇柔度,因此特别适用于象汽车发动机这样既要求有较大的横向稳定性,又要求有较低的横摇固有频率以隔离由不均匀扭矩引起的横摇振动。
汽车发动机悬置设计分析解析

二:发动机悬置系统设计简介
3.刚体重心和转动惯量的测量:
对于一个规则的刚体,我们能够很容易 得到刚体的重心和转动惯量,但对于一 个非常复杂且不规则的刚体,我们却很 难得到这些参数,对于发动机,通过计算 机的模型虽然我们也可以得到,但由于 制造误差和材料的均匀性等其他因素 的 影响,得到的数据往往有一些差异(根据 我们对CHERY实际检测数据),目前发 动机一般有三种测量方法可以得到重 心 和转动惯量:单线摆,双线摆,三线摆,相 对来说三线摆是一种比较简单但误差 很 小的方法,我们公司现在已经具备这种 检测设备和检测能力,可以为客户检测
二:发动机悬置系统设计简介
8.发动机悬置系统的六阶固有频率的计算: 目前一般有两种方法得到发动机悬置系统的六阶固有频率,一种是模态 分析,一种是直接测动机悬置系统的解耦设计: 解耦设计一般的是指动力总成在受到激励时,因为动力总成我们一般把 它看成一个刚体,它有六个方向的运动,我们在设计发动机悬置系统的时 尽量使各个方向上的运动相互解耦.
二:发动机悬置系统设计简介
10.发动机悬置系统的优化选择和验证方法: 通过ADAMS和FEA分析,我们可以得到设计完成的发动机悬置的NVH 结果,并通过调整悬置弹性中心的位置坐标和悬置的刚度,阻尼来进行调 整系统,使之能够达到最优化的结果.
三:整车NVH性能评估
1.车身. 2.子系统. 3.车门. 4.玻璃. 5.发动机前仓盖. 6.悬架. 7.轮胎. 8.内饰件. 9.方向盘. 10.发动机和边变速箱. 11.传动轴. 12.排气系统. 13.连接件. 14.风扇和空调压缩机,液体. 15.司机 16.载荷(人员和行李)
发动机悬置系统设计
Stan/ Dec. 18. 2006
连接世界的解决方案 Your link to global solution
动力总成悬置系统匹配设计规范

动力总成悬置系统匹配设计规范一、悬置系统主要作用 (1)二、元件的主要种类 (1)三、悬置系统的设计指标 (2)四、悬置系统设计参数的输入 (3)1、动力总成的惯性参数 (3)2、动力总成悬置系统的位置数据 (4)3、动力总成悬置系统的刚度数据 (4)4、变速器的各挡速比和主减速比 (5)5、发动机的其他参数 (5)6、动力总成悬置系统及周边的相关数模 (5)五、总成悬置系统的解耦设计及固有频率的合理配置 (5)1、解耦设计的原因 (5)2、固有频率的合理配置 (6)3、悬置系统解耦特性和固有频率的计算方法 (6)4、解耦和固有频率的合理配置的评价方法 (9)5、悬置系统解耦计算和固有频率配置的目的 (9)六、悬置系统的工况计算 (10)七、悬置支架设计 (12)八、置系统设计时应遵循的主要规范 (12)九、结语 (16)一、悬置系统主要作用发动机悬置是指专门设计制造的可以作为一个独立系统进行装备使用的安装在发动机与汽车底盘之间,以隔离(减少)发动机振动能量向周围环境的传播和影响为目的的隔振系统。
合理设计和使用发动机悬置,可以明显降低动力总成及车体的振动水平,减少系统传递给车体的激振力,以及由此激发的车身钣合金和底盘相关零件的振动和噪声,从而明显提高车辆的耐久性和乘坐舒适性。
悬置系统的主要作用如下:1、固定并支承汽车动力总成;悬置首先是一个支撑元件、它必须能支承发动机总成的重量,使其不至于产生过大的静态位移而影响正常工作。
从支承的角度考虑,要求悬置刚度越高越好;从隔振的角度考虑,要求悬置的刚度越低越好。
因此悬置要有合适的刚度。
2、限位作用发动机在受到各种干扰力(如制动、加速或其他动载荷)作用的情况下,悬置能有效的限制其最大位移,以避免发生与相邻件的碰撞与干涉,确保发动机能正常工作。
衰减作用于动力总成上的一切动态力和对车身造成的冲击。
3、隔振降噪作用承受和衰减动力总成内部因发动机不平衡旋转和平移质量产生的往复惯性力、力矩和不平衡扭矩;隔离发动机激励而引起的车架或车身的振动。
悬置支架设计要求

悬置支架设计要求
悬置支架设计需要考虑以下要求:
1. 支撑强度:悬置支架需要能够支撑动力总成,包括发动机和变速器,所以需要有足够的强度。
同时,对优化结构进行了应力分析校核,确保其强度满足设计要求。
2. 刚度和弹性:悬置支架需要具有足够的刚度和弹性,以确保动力总成在行驶过程中的稳定性和舒适性。
3. 稳定性:悬置支架需要能够抵抗水平方向和垂直方向的应力,确保动力总成在行驶过程中的稳定性。
4. 重量:悬置支架需要尽可能轻量化,这样可以减少悬挂系统的重量,提高车辆的操纵性和经济性。
根据仿真和试验结果,优化后的左悬置支架主动侧支架重量由303Kg降至114Kg,实现了降重3762%。
5. 材料选择:悬置支架需要使用高强度材料,如铝合金、钢等,以保证其耐用性和稳定性。
6. 安装和调整:悬置支架需要易于安装和调整,以便于动力总成的安装和调整。
同时,安装位置和角度等方面也要进行科学的设计和优化。
7. 设计耐久性:悬置支架需要在行驶过程中能够抵抗各种应力和变形,确保其长期稳定性和可靠性。
8. 可维修性:悬置支架需要具有良好的可维修性,以便于更换和维修。
例如,取消了开口加紧结构,两端采用“铁-铁”配合这种结构,使维修更方便。
9. 适应性:悬置支架需要能够适应不同的车辆和动力总成,以便于
广泛应用。
10. 安全性:悬置支架需要具有足够的安全系数,以确保在行驶过程中不会因过度变形而导致动力总成脱落或损坏,从而保证乘客的安全。
发动机悬置系统课件PPT67页

→将主悬置配置在惯性主轴上当然是最理想的、 但是如果难以实现的话、应该极力减小与惯性主轴线 的偏移量、或者将其配置在与惯性主轴相平行的轴线上。
扭矩滚轴
非偶合化的观点
第25页,共67页。
(得失)
关于发动机悬置的布置②种类-1)惯性主轴方式悬置 3/3
W-E的情况下、相位差増加为等级(Level)增加、 E-W的情况下、等级最小时的相位有最佳值。
关于怠速振动的对策⑥弹性体;滚动+反弹传递2/2
2悬置间的车身感度相位差
第46页,共67页。
关于怠速振动的对策⑦主悬置位置的离散考虑1/5
・至此、只有以振动传递为主的2个滚动悬置 发生影响、没有考虑在扭矩滚轴上配置主悬置。
具体的讨论项目
第34页,共67页。
关于怠速振动的对策①怠速振动要因
・ 发动机的滚动力矩与上下力为起振力。 ・ 怠速振动是指各悬置点传递的 发动机滚动振动、与车体对上下振动的 振动回应的合成。 ・悬置的传递特性、是以悬置系统的滚动刚性值 和上下刚性值来评价的、与悬置的方式无关。
以下、将发动机悬置简化、分析发动机起振力的传递性。
第5页,共67页。
发动机悬置要素的具体实例 3/3
第6页,共67页。
发动机悬置的主要作用有一下3点: ①支撑重量(重量分担性) ②抑制动态位移(搭载性) ③降低振动传递(防振性)
发动机悬置的作用
第7页,共67页。
由于发动机悬置是通过介入弹性体来支撑动力装置的重量、对于分担的重量、悬置需要具备能够在充分的线形区域进行支撑的静态弹簧系数。
发动机悬置的作用①重量分担性 1/2
K
x
F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机悬置的结构、作用、设计要求
1. 概述:
随着当前底盘、发动机技术的日臻完善, 车辆的振动、噪声的控制转而成为各个整车厂
在研发上的重中之重。
据统计分析在一个车辆系统的上万个零部件中, 对振动起关键作用的
大概有二百个。
它们又分别在整车的振动系统中起不同的作用。
这里仅对发动机产生的振动经由发动机
悬置到车身的振动系统的结构、作用、设计要求给出一定程度的阐述和说明。
内部噪声
Innenraum
车什
・* Karosserie
Fall rb^hn
—Abgasaufhangung
Aggregatl^ger
Antrebswellen —V/H-Achse
二百个零部件
行腔功力学 女全世 H 丸轩适件
足性
何部塩再
NVH 舒适性
'、:川
衣城振瞬上的丽振会 F 驴Hu 训了EinlcgBF v~|
3丸3合冷门I 合§0
基于汽车振动学的相应设计优化,应最大可能的避免整车主要部件在各种工况下的振动耦合。
悬置的作用概括来说就是对发动机振动和路面激励的隔离和吸收,减少乘客舱中人所受
的影响,降低其他零部件因为过多振动产生的疲劳破坏。
2. 悬置系统的结构
布置概念:
前轮驱动一一较低排量, 后轮驱动一一较大排量。
Fahrtrichtung 存驶方向
动力总成纵置,如海狮、阁瑞斯。
3 Punkt Lagerung bei Stanclardantrieb 一点式戻动机悬笛
动力总成横置,如尊驰、骏捷等。
3-Punkt
4-Punkt
四点式
4G63 4G64 4G93
I 〉4G18等动力总成
P ED d^lstutze
摆动式
中华1.8T 宝来等车的动力
总成。
Aggregatlagerungen bei Querantrieb
IT旨发动UL悬旨
结构概念:
橡胶悬置
悬置结构为橡胶+金属支架,在低频、大振幅的动刚度和滞后角变化小。
在高频、小振幅激励下的动刚度和滞后角变化不大,容易产生动态硬化现象,常用于发动机前后悬置,阻止发动机过渡扭转。
液力悬置
悬置结构为橡胶形腔+液体(乙二醇)+金属支架, 在低频、大振幅的激励下具有大阻
尼;在高频、小振幅的激励下具有小刚度。
可根据实际和成本情况决定采用一个液压悬置还 是采用多个液压悬置。
常用于发动机左右悬置。
3. 发动机悬置系统的设计要求
确定发动机悬置系统的主要因数: 悬置的位置和静态刚度: 自重,加减速,弯道行驶,启动关车及交变载荷。
悬置的动态刚度:
怠速振动的隔离,加减速和常速行驶,与轮胎车桥的振动耦合。
悬置的阻尼: 橡胶,液力和空气悬置的阻尼,特性是频率和位移的函数。
静刚度曲线,如下图。
表示悬置受载荷与位移的关系。
FZ.N)
SP
10000
f
-8000 J 6000 /
4000 /
一—一
15
*10
一^
^3, Gang
4000 /1. Gang
eooo / -BOOO
Druck
t
^-10000
悬置刚度曲线上各工作区:
线性工作区是指在一般载荷下,悬置能对振动起很好隔离和吸收的工作段。
Static che Einsenkung (mm)
静态下沉
■
NH
二
&豊左总山
设定某一载荷工况为曲线的拐点,橡胶刚度曲线进入非线性区。
并最终设定一个限位,以避免在任何工况下发生刚性零件的干涉。
约束动力总成在空间运动的最大位移和最大
角度。
如下图:
动力总成的固有频率和振型
根据理论力学的理论,当我们视动力总成为一个刚体的时候,它在发动机舱中运动分别
包含沿X、Y、Z三轴向的平动及绕X、Y Z轴的转动,即横向、纵向、垂直、偏转、俯仰、滚转六个自由度。
对于振动系统来说,它的振动传递率跟振动激励的频率、振动系统自身的频率及系统阻
尼有关,振动系统的传递率公式如下:
不同阻尼比的系统传递率曲线。
振动系统传递率
从而可以看出,只有当’,2时,系统才能起到隔振的作用。
而发动机的振动激励频
率大于等于25Hz,也就要求动力总成刚体振动固有频率上限为
1 (
2 -)2
(1 _ 2)2(2 -)2
,其中1为振动传递率; '为频率比;为阻尼比,下图所示为
17.68Hz。
0 [1
Lagenveg mmi最大限位
(N)
总
空
」
心
急
」
三档全载拐点-:
JO
5 0E*00G -7 5E*00
6 2 5E*006 5 (E*
Torque(N-fnm)
为避免振动耦合,所有着六个动力总成的刚体模态必须高于驱动轴固有频率又要低于轮胎的
横置发动机的颠簸分析。
另一方面,作为发动机悬置系统的另一环。
路面激励传至发动机再经由悬置反馈于车体, 在车内也会产生相应的振动及噪声特征。
在轮下加载相应路面激励功率谱,
悬置在发动机侧和车身测会产生相应位移,
轨上将激出相应的加速度。
下图是模拟和测试值的差别。
longitudinal 纵向
e "S| B » P ・"■ 1&I Fr. «» ]> 脂号护 j
vertlkd 垂直
gimri 偏(转
进而在座椅滑
1*4i-i i 刊 IE .I
>T M1 1^11^1 M l|f_ : 'll flrR! i.l_
JiJ
lateral 横向
IMvn 141 WFH ^-m**iw>9Q —
nick 的俯仰
0tf1_J ks^iri 】・UJI 科■:爭
kddH
rollen 滚转
E wt PMM 9 'Rihw*' ■ i y ■■? i
匕
固有频率,在5 — 15Hz 之间。
大致的分布如下:
它r.或液力悬酋
Gumm ilader
Sin-sweep
Luft- oiler Hydri 脑g-r
/
怠速抖动分析
怠速是发动机的一个常用工况,所以通常情况下,发动机的一阶振动可以通过发动机内 部的平横轴等部件消除(有的装有双平衡轴的发动机对二阶的振动也能起到很好的抑制作 用)。
二阶的振动在怠速区的频率约为
20-35HZ ,这个频率刚好又和车体弯曲和转向系统的
固有频率段比较接近,所以发动机的怠速区在二阶的振动一定要避开动力总成的刚体模态, 又要和车体
弯曲和转向系统的固有频率段由很好的区分。
而把不合避免的振动耦合放到不会 引
起长时间不适的启动停车阶段。
见下图:
通过实际工程经验,可以根据悬置力和动刚度在设计之初估算振动和噪声水平。
/
血7厲崗
^^Starrkorper Mode
80. 60
2D
'n wra 200(1
呂山0 4DOO 5000 soon
Drehzahl (1/min)转速分)。