遗传规律学细菌遗传规律分析
细菌的遗传分析
两个位点间的时间约为1分钟,约相当于20%的重组值。
-
已知中断杂交实验该两个基因相距1分钟, 从而得出: 1分钟图距 ≈ 20% 重组值
(中断杂交作图)
(重组作图)
4 Ecoli染色体全长:90分钟;含有:3.6X106bp 20X90 ≈ 1800 cM
课上练习P181第12题
12题解: 据题意 Hfr gal+lac+(A)X F-gal-lac-(B)→F-gal+早,多;lac晚,少. F+ gal+lac+(C)X F-gal-lac-(B)→F+lac+早,多;无gal+ 从AXB中知: gal和lac位于F因子插入位点两侧,gal原点最近。 从CXB中知: C菌株是F因子从细菌染色体上错误切割下来,且 带有细菌lac+的菌株F`lac。 将菌株A与B混合培养一段时间(不到90分钟)后,取混 合液接种在lac-EMB上。紫红色菌落带有分解lac的基因。 将该菌落的细菌又与F-lac-strrB杂交。如该细菌是Flac+ strrB,则无重组子产生。 如该细菌F`lac+ strrB, 则有较多重组子产生。
第六节 细菌的转化与转导作图
一 细菌的转化 受体菌自然或在人工技术作用下直接摄取来 自供体菌的游离DNA片段,并把它整合到自己 的基因组中,而获得部分新的遗传性状的基因转 移过程,称为转化。
通过转化方式而形成的杂种后代,称转化子 (transformant)。
转化过程
⑤非转化子
⑤转化子, 获得供体基因
两个基因进入受体菌的先后;
lac-(乳糖不发酵)ade-(腺嘌呤缺陷型) 完全培养基 (无腺嘌呤、加链霉素)
遗传学第五章细菌的遗传分析
普遍性转导(generalized transduction)
A 细菌
进入裂解周期时, 由于噬菌体颗粒的 错误包装,将A菌 部分染色体片段 包装入噬菌体,形成 转导噬菌体。
以λ噬菌体为例:
遗传学第五章细菌的遗传分析
• λ噬菌体简介 (1)形态及遗传物质
遗传学第五章细菌的遗传分析
(2)基因组
相关功能的基因聚集成簇
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
七、细菌同源重组的机制
(一)细菌同源重组的特点 (二)细菌同源重组的分子基础 1、重组热点
chi序列
5′ GCTGGTGG 3′ 3′ CGACCACC 5′ 2、重组相关的酶 RecBCD, RecA, RuvA, RuvB, RuvC
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
五、 中断杂交试验(interrupted mating experiment)和基因定位
1957,Wollman and Jacob
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
遗传学第五章细菌的遗传分析
六、转化(transformation)和转导作图 (一)转化
概念:转化是指某一基因型的细胞从周围 介质中吸收来自另一基因型细胞的DNA而 使受体的基因型和表型发生相应变化的现 象。
B 细菌
遗传学第五章细菌的遗传分析
细菌的遗传分析 ppt课件
第六节 细菌的遗传分析
微生物作为遗传研究材料的优越性
ppt课件
15
按照细菌出现感受态的方式,可把转 化分为三种类型
自然转化(naturally occuring transformation):细 菌自发地出现感受态,如肺炎链球菌,流感嗜血杆菌, 枯草杆菌等。 人 工 诱 导 的 感 受 态 (artificially induced competence) :如 Ca2+ 诱导的大肠杆菌等发生的转 化。 原生质体转化(protoplast transformation):将DNA 分 子 连 同 PEG 一 同 加 入 原 生 质 体 , 造 成 细 胞 摄 取 DNA 。 还 可 以 用 电 穿 孔 法 (electroporation) 代 替 PEG , 用 高 压 脉 冲 电 流 在 细 胞 膜 上 击 成 小 孔 , 使 DNA 分子通过小孔而导入细胞,又称为电转化。可 适用于多种细菌,放线菌和真核细胞的转化。
结果与结论:
仍然出现原养型菌落。 从而表明互养并非原养型菌落出现的原因,而可能发生 了遗传重组。
ppt课件 26
转化作用及其排除
Lederberg 和 Tatum 曾 把 品系 A 的培养液经加热灭 菌,加入到 B 品系的培养 物中,未得到原养型菌落; 表明原养型菌落可能不是 由转化作用产生。 戴维斯(Dawis, 1950) 的 U 型管试验(结果没有得到原 养型细菌); 实验结论:细胞直接接触 是原养型细菌产生的必要 条件。 ppt课件
第二节细菌的遗传分析
2020/4/16
2
二、接合(conjugation)
• 在原核生物中,两个细胞在相互接触过程中, 遗传物质从一个个体转移到另一个个体的现象 称为接合。 输出遗传物质的个体称为供体(donor), 又称为“雄性”。接受外源遗传物质的个体称 为受体(receptor),又称为雌性。 E.coli(大肠杆菌)是遗传学研究中应用最 为广泛的细菌。野生型的E.coli可以在只含有盐 类和葡萄糖的简单培养基上生长。
2020/4/16
4
黎德伯格和塔特姆接合试验
2020/4/16
5
黎德伯格和塔特姆接合试验
• A和B均不能在基本培养基上生长,但若将 A和B在完全液体培养基上培养几个小时以 后再涂布在基本培养基上,就能长出一些 原养型(met+bio+thr+leu+)的菌落。细菌 的野生型又称为原养型。
• 这种原养型菌落的出现是由于营养上的互 补,还是由于两种不同类型细胞直接接触 而交换了遗传物质的结果呢?
第二节 细菌的遗传分析
细菌与细菌之间的遗传物质的交流 (拟有性过程)有四种不同的方式:
一、转化 二、接合(杂交) 三、性导 四、转导
2020/4/16
1
一、转化(Transformation)
• 细菌通过细胞膜摄取周围环境中DNA片 段,并通过重组将其整合到自身染色体 中的过程,称为转化。
当外源DNA进入宿主后,使宿主产 生新的表现型时就能测知转化的发生。
2020/4/16
10
F 因子的存在状态
2020/4/16
11
(二)F因子
• F因子处于自主状态时,可以不依赖宿主细胞 的染色体而独立复制(每个F+细胞只有一个F 因子)。据研究,F因子至少包含有15个基因, 其中有的基因控制F(或性)伞毛(F pillus) 的形成,F伞毛是F+细胞表面伸出的一种长附 属物。F+与F+之间互不理睬,但F+和F-一旦 相互接触,F伞毛就变成了两个细胞之间原生 质的通道,叫做结合管(conjugation tube)。 F+细胞中的F因子由结合管向F-传递,使F-变 成F+。
第七章 细菌遗传分析
1)不同的Hfr品系转移的起始基因是不同的; 说明:F因子可以在不同的位点插入细菌染色体; 2)与同一基因相邻的基因是相同的; 说明:不同品系细菌的基因顺序是相同的; 3)Hfr基因可以两个不同方向转移基因进入F-; 4)一个Hfr转移的起始基因是另一个Hfr最后转移的基因 说明:细菌的染色体是环状的. HfrH 1 thr pro 312 2 gly lac his pur gal 3
第四节
中断杂交与重组作图
一 中断杂交实验作图
1中断杂交实验 Hfr thr+ leu+ azir Tonr lac+ gal+ strs X F- thr- leu- azis tons lac- gal- strr
选择培养基 加str
9′ ↓
11′ ↓ ↓
18′ ↓ ↓ ┆
25′ ↓ ↓ ┆
无thr,leu
第七章 细菌的遗传分析 学习要点:
1名词概念 转化、转染、转导、质粒、性导、F因子、Hfr、转 化子、转导子、半合子、附加体、高频转导、低频转 导、感受态因子、特异性转导、合子诱导 2 了解细菌染色体大小与结构;
3 细菌的突变型的类型; 4 细菌菌株的类型、接合的组合方式与重组特点; 5 中断杂交实验作图的原理与方法;
第六节 转化与转导作图
一 细菌的转化与作图 (一)转化:指外源DNA片断不经中间媒介体直接进 入感受态细胞进行基因重组形成重组体的过程。 转化子:通过转化而形成的重组体. (二)转化作图 1 转化作图的条件: 2 转化基因间关系及其确定
DNA浓度 下降比率 1/2 1/2 A转化率下 B转化率 降比率 下降比率 1/2 1/2 1/2 1/2 A与B共转化 率下降比率 1/2 1/4 A与B 关系 连锁 不连锁
细菌和病毒的遗传学分析
用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。
细菌的遗传分析
Question
• 我们已知在F+×F-杂交中,几乎所有F-细菌变 为F+, F+×F-→F+;
• 而在Hfr ×F-杂交中,尽管出现高频重组,但F- 细菌很少转变为F+细菌。这个问题使遗传学家感 到迷惑不解。?
中断杂交实验 (Interrupted-mating experiment)
Wollman 和 Jacob进行中断杂交实验:
细菌的遗传分析
概述
• 细菌、放线菌和蓝细菌等均属于原核生物(prokaryotes)。 • 主要特征:没有核膜,其核基因组是由一个裸露的环状
DNA分子构成,称为拟核。细胞内没有以膜为基础的 细胞器,也不进行典型的有丝分裂和减数分裂。 • 细菌是单细胞生物,结构简单,繁殖能力强,分布广, 世代周期短,个体数量多,在正常条件下,完成一个世 代仅20 min, 较容易诱变和筛选各类型突变。 • 细菌不仅是许多病毒的宿主细胞,而且有自身的遗传特 性,又易于培养建立纯系,长期保存,成为遗传学研究 的常用实验材料。
Hfr : thr+ Leu+ azir tonr Lac+ gal+ strs ×
F- :thr- Leu- azis tons Lac- gal- strr
azi:叠氮化钠; ton:噬菌体T1; str:链霉素; Lac:乳糖; gal:半乳糖
结果发现Hfr的未选择性标记基
因进入F-所需时间: • 9分钟时:
细菌的细胞结构:简单 (原核生物) • 基本结构: 细胞壁 (cell wall), 细胞膜 (cell membrane); 拟核 ( nucleoid ),核糖体 (ribosome), 细胞质 (cytoplasm),内含物等;
• 特殊结构: 一定条件下具有的结构 e.g. 荚膜 (capsule) 和鞭毛 (flagella)
医学课件第7章细菌的遗传分析
第二节 大肠杆菌的突变型及筛选
一、大肠杆菌的突变类型
1. 合成代谢功能的突变型(anabolic function mutants) •合成代谢功能(anabolic functions):野生型(wild type)在基本培养基上具有合成所有代谢和生长所 必需的有机物的功能。 •营养缺陷型(auxotroph):野生型品系的某个必需 基因发生突变,导致不能完成一个特定的生化反 应,从而阻碍整个合成代谢功能的实现。
In 1953, W. Hayes isolated another strain demonstrating a similar elevated frequency.
Both strains were designated Hfr, or high-frequency recombination. Because Hfr- cells behave as chromosome donors, they are a special class of F+ cells.
20
F+×F-
Hfr×F-
所有 F+
很少 F+
21
•F因子整合到 细菌染色体
•Hfr与受体细 菌染色体的等 位基因间可以 重组(10-2)
22
很少 Hfr×F-
F+ ?
Hfr细胞和F-细胞之间的接合,一般很少有整条Hfr染色 体转入F-细胞(pilus容易断裂),因此:
F-细胞得到的只是部分F因子,其余部分依赖于整条 Hfr染色体的转移。这样在Hfr×F-杂交后代大多数重 组子仍为F-
41
a+b+c+ in cross 1 << a+b+c+ in cross 2
细菌的遗传分析-1
(二)、突变型的筛选 二、
选择培养法: 选择培养法:
是根据菌株在基本培养基和选择培养基上的生长表现确 是根据菌株在基本培养基和选择培养基上的生长表现确 基本培养基 定菌株的突变型, 原养型和营养缺陷型或对某一抗生素的 定菌株的突变型,如原养型和营养缺陷型或对某一抗生素的 敏感型和非敏感型(抗性型 ; 敏感型和非敏感型 抗性型); 抗性型
人工诱变
哈工大哈工大-遗传学
第六章 细菌的遗传分析
营养缺陷突变) 影印法(营养缺陷突变)
人工诱变 完全培养基
印迹
基本培养基 +aaA
基本培养基
哈工大哈工大-遗传学 第六章 细菌的遗传分析
基本培养基 +aaB
原核生物遗传物质转移的方式: 原核生物遗传物质转移的方式: 接合( 接合(conjugation) ) 转化( 转化(transformation) ) 转导(transduction) 转导( )
哈工大哈工大-遗传学 第六章 细菌的遗传分析
因子的三种状态: ⑶. E.coli 与F 因子的三种状态: 因子, ①.没有F因子,即F-; 没有 因子 因子, ②.一个自主状态F因子,即F+; 一个自主状态 因子 因子, ③.一个整合到宿主染色体内的F因子,即Hfr。 一个整合到宿主染色体内的 因子 。
哈工大哈工大-遗传学 第六章 细菌的遗传分析
(三)、F 因子与高频重组品系 1. F 因子
供体和受体的性别差异,是由F因子引起的 供体和受体的性别差异,是由 因子引起的 因子 因子:致育因子(性因子),是一种附加体。 ),是一种附加体 ⑴.F 因子:致育因子(性因子),是一种附加体。 携带F因子的菌株称为供体菌或雄性, 表示。 携带 因子的菌株称为供体菌或雄性,用F+表示。 因子的菌株称为供体菌或雄性 未携带F因子的菌株为受体菌或雌性, 表示。 未携带 因子的菌株为受体菌或雌性,用F-表示。 因子的菌株为受体菌或雌性 ⑵.F 因子的组成: 因子的组成: 染色体外遗传物质,环状 染色体外遗传物质,环状DNA; ; 40~60个蛋白质基因; 个蛋白质基因; 个蛋白质基因 2~4个/细胞 雄性内 。 个 细胞 雄性内)。 细胞(雄性内
第五章 细菌的遗传分析
中断杂交实验与重组作图
致育基因 配对区
原点
致育基因
F因子在细菌染色体上有很多插入位点,并且插入的取向不同 一个F+品系可以产生很多Hfr品系
几个Hfr菌株的线性连锁群的产生
Hfr H菌株的基因转移顺序 thr pro lac pur gal his gly thi Hfr 1菌株的基因转移顺序 thr thi gly his gal pur lac pro
三、重组作图
Hfr lac+ade+ ×F- lac-ade- ;转移顺序: 先 lac, 后ade.
Hfr lac+ ade+ 无交
F- lac- ade-
换
Hfr lac+ ade+
外部
F- lac- ade-
交换
Hfr lac+ ade+ 之间
F- lac- ade-
交换
F- lac- ade-
3、抗性突变型:细菌由于某基因的突变而对某些噬 菌体或抗菌素产生抗性。
如:抗药突变型: 抗链霉素突变型:Strr,(野生型Strs) 抗青霉素突变型:Penr,(野生型Pens )
❖ 抗phage突变型: 抗T1-phage突变型:Tonr,(野生型Tons )
❖ 细菌接合现象的发现 ❖ F因子及其转移 ❖ 细菌重组的特点
❖ 外源DNA的进入,除受体部位外,还必须有 酶或蛋白质分子,以及能量等的协同作用。 外源DNA只有在酶促旺盛的受体部位进入。
转化与转导作图
感受态细胞与感受态因子
❖ 感受态细胞:这种能接受外源DNA分子并被 转化的细菌细胞。
❖ 感受态因子:促进转化作用的酶或蛋白质的 分子。
感受态细胞
医学:细菌的遗传分析和基因定位
质粒和转座子
除了染色体,细菌中还可 能含有质粒和转座子等可 移动遗传元件。
基因密度和结构
细菌基因组中的基因密度 较高,且基因结构相对简 单,通常不含内含子。
基因表达调控
转录调控
细菌通过调节转录起始和转录终止来控制基因表 达。
翻译调控
细菌通过调节翻译起始和翻译终止来控制蛋白质 合成。
适应性调控
细菌在应对环境变化时,会迅速调整基因表达以 适应新环境。
医学细菌的遗传分析和基因定位
contents
目录
• 细菌遗传学基础 • 细菌遗传分析技术 • 基因定位技术 • 医学中细菌遗传和基因定位的应用 • 未来展望与挑战
01 细菌遗传学基础
细菌基因组结构
01
02
03
环状染色体
细菌的基因组通常由一个 环状染色体组成,其大小 通常在数百万至数千万碱 基对之间。
因功能研究和基因克隆等。
04 医学中细菌遗传和基因定 位的应用
病原菌的遗传特征分析
病原菌的遗传特征分析有助于了解病 原菌的传播途径、变异规律和致病机 制,为疾病的预防和治疗提供科学依 据。
通过全基因组测序等技术手段,可以 全面揭示病原菌的基因组结构和变异 情况,为快速诊断和有效控制疾病提 供支持。
抗生素抗性的遗传基础
抗生素抗性的遗传基础研究有助于发 现新的抗生素药物靶点,为开发新型 抗生素提供理论支持。
通过研究病原菌对不同抗生素的抗性 机制,可以了解抗性基因的传播方式 和抗性进化规律,为制定有效的抗感 染治疗方案提供依据。
疾病与基因变异的关系研究
疾病与基因变异的关系研究有助于发现新的疾病易感基因和致病基因,为疾病的 预测、预防和治疗提供新思路。
公平获取资源
第七章 细菌的遗传分析
7细菌的遗传分析 细菌(bacteria)、放线菌(actinomycetes)和蓝细菌(cyanobacteria)等均属于原核生物(prokaryotes)。
这类生物的主要特征是没有核膜,其核基因组是由一个裸露的环状DNA分子构成,因此称为拟核(nucleoid),原核细胞(prokaryocyte)也由此而得名。
该基因组编码功能相关蛋白质的基因或相互协同调节作用的几个基因往往成簇排列成一个操纵子。
细胞内没有以膜为基础的细胞器,也不进行典型的有丝分裂和减数分裂。
因此它们的遗传物质传递规律和重组机制与真核生物不完全相同。
由于细菌是单细胞生物,结构简单,繁殖力强,分布广,世代周期短,个体数量多,在正常条件下,完成一个世代仅20min,较容易诱变和筛选各类突变型。
细菌不仅是许多病毒的宿主细胞,而且有自身的遗传特性,又易于培养建立纯系和长期保存等优点,已成为遗传学研究中常用的实验材料之一。
特别是大肠杆菌的研究与应用最为广泛和深入,遗传背景也较清楚,基因组测序也是最早完成的生物之一,碱基对为4639229bp,预测基因数4377,其中4290编码蛋白,其余编码RNA。
许多基因不仅已定位在染色体上,而且对其功能的研究也较深入。
为此本章主要以大肠杆菌为材料,讨论细菌的遗传物质的传递规律与染色体作图以及细菌同源重组的分子机制。
153 7畅1 细菌的细胞和基因组7畅1畅1 细菌的细胞 细菌包括真细菌(eubac teri a ),如大肠杆菌(Escherchi a co li )和古细菌(archaebacteri a ),如詹氏甲烷球菌(M ethanococcus jannaschii )。
这些细菌以多种形态存在:球菌(cocc i )、杆菌(bacilli )和螺旋菌(sp i 唱rilla )等。
其大小随种类不同而异,杆菌以长和宽表示,一般长为1~5μm ,宽0畅5~1μm ;球菌以直径大小表示,一般为0畅5~1μm ;螺旋菌是测量其弯曲形长度,一般长为1~50μm ,直径为0畅5~1μm 。
细菌的遗传分析
(六)大肠杆菌的染色体呈环状
从上表中可以看出,转移顺序的差异是由于各Hfr之间转移的原点(O)和转移的方向不同所致。
该实验说明F因子和细菌DNA都是环状的,F因子插入环状染色体的不同位置形成不同的转移原点和转移方向。
*
(六)大肠杆菌的染色体呈环状
*
三、性导(sexduction) (一)F’因子 整合到细菌中的F因子也可以重新离开染色体,成为独立的环。这个过程是整合的逆过程,称为环出(looping out)。 F因子在环出过程中并不是完全准确无误的,往往连同部分染色体片段一同离开。 部分染色体DNA与F DNA的杂合环称为F’因子。
*
(四)细菌的交换过程
这样,重组后的F-细菌不再是部分二倍体,而是单倍体,得到的重组体的类型只有一个,而不是两个,相反的重组体是不能存活的(例如有++,没有――)。
*
(五)用中断杂交技术作连锁图
Wollman和Jacob用中断杂交实验了解接合过程中基因转移的顺序和时间,从而绘制出连锁图。
根据供体基因进入受体细胞的顺序和时间绘制连锁图的技术,称为中断杂交技术。
*
(一)杂交实验
1946年,Leaderberg和Tatum发现E.coli可以通过接合交换遗传物质。选用两个不同营养缺陷型的E.coli菌株,A和B。A菌株需要在基本培养基中补充甲硫氨酸(met)和生物素(bio) ,B菌株需要在基本营养培养基上补充苏氨酸(thr)和亮氨酸(leu)才能生长。采用多营养缺陷型是为了防止回复突变干扰试验结果。
*
黎德伯格和塔特姆接合试验
*
黎德伯格和塔特姆接合试验
A和B均不能在基本培养基上生长,但若将A和B在完全液体培养基上培养几个小时以后再涂布在基本培养基上,就能长出一些原养型(met+bio+thr+leu+)的菌落。细菌的野生型又称为原养型。
第五章 细菌的遗传分析
转导(transduction)就是以病毒作为载体
将遗传信息从一个细菌细胞传递到另一 个细菌细胞。
转导颗粒:把细菌染色体片段包装在噬
菌体蛋白质外壳内而产生的假噬菌体, 其中并不包含噬菌体的遗传物质。
转导
普遍性转导 局限性转导
2.普遍性转导与作图 普遍性转导(general transduclion): 能够转导细菌染色体上的任何基因。 如:P 和P 这类噬菌体所进行的转导。
2.分解代谢功能的突变型 ■ 野生型的分解代谢功能正常 ■ 突变型由于基因的改变影响了分解代 谢功能 如:Lac-突变型不能分解乳糖,因此就 不能生长在以乳糖为唯一碳源的基本培养 基中,而野生型细菌Lac+都能利用乳糖。
3.抗性突变型 细菌由于某基因的突变而对某些噬菌体或 抗菌素产生抗性。 如:抗链霉素突变型Str-,相应的野生型 为Str+。
1. 2. 3. 4. 5. 6. 7. 8.
F+ F+ FHfr Hfr FFF+
第五节 F′因子与 性导
一、F′因子
F+
Hfr
1959年,Adelberg和Burns发现: 整合到细菌染色体上的F因子,在环出时不够准 确,携带出细菌染色体上的一些基因,这种带 有染色体基因的附加体称为F′因子( F′factor) F′因子携带染色体的节段大小:从一个标准基 因到半个细菌染色体。
3.转化的过程
4.转化作图 在转化过程中,DNA小片段 → 受体。 ■相距很远的二个基因很难同时存在于一个DNA 片段中,一般不能同时进行转化。 ■两个基因紧密连锁时,它们就有较多的机会包 括在同一个DNA片段中,并同时整合到受体染 色体里——共转化(cotransformation),共 转化的基因一般是连锁的。
细菌遗传分析
第四章细菌和病毒的遗传(一) 名词解释:1.原养型:如果一种细菌能在基本培养基上生长,也就是它能合成它所需要的各种有机化合物,如氨基酸、维生素及脂类,这种细菌称为原养型。
2.转化(transformation):指细菌细胞(或其他生物)将周围的供体DNA,摄入到体内,并整合到自己染色体组的过程。
3.转导:以噬菌体为媒介,把一个细菌的基因导入另一个细菌的过程。
即细菌的一段染色体被错误地包装在噬菌体的蛋白质外壳内,通过感染转移到另一受体菌中。
4.性导(sexduction):细菌细胞在接合时,携带的外源DNA整合到细菌染色体上的过程。
5.接合(coniugation):指遗传物质从供体—“雄性”转移到受体—“雌性”的过程。
6.Hfr菌株:高频重组菌株,F因子通过配对交换,整合到细菌染色体上。
7.共转导(并发转导)(cotransduction):两个基因一起被转导的现象称。
8.普遍性转导:能够转导细菌染色体上的任何基因。
9.]10.局限转导:由温和噬菌体(λ、)进行的转导称为特殊转导或限制性转导。
以λ噬菌体的转导,可被转导的只是λ噬菌体在细菌染色体上插入位点两侧的基因。
11.att位点:噬菌体和细菌染色体上彼此附着结合的位点,通过噬菌体与细菌的重组,噬菌体便在这些位点处同细菌染色体整合或由此离开细菌染色体。
12.原噬菌体(prophage):某些温和噬菌体侵染细菌后,其DNA整合到宿主细菌染色体中。
处于整合状态的噬菌体DNA称为~~。
13.溶原性细菌:含有原噬菌体的细胞,也称溶原体。
14.F+菌株:带有F因子的菌株作供体,提供遗传物质。
(二) 是非题:1.在大肠杆菌中,“部分二倍体”中发生单数交换,能产生重组体。
()2.由于F因子可以以不同的方向整合到环状染色体的不同位置上,从而在结合过程中产生不同的转移原点和转移方向。
()3.受体细菌可以在任何时候接受外来的大于800bp的双链DNA分子。
()4.在中断杂交试验中,越早进入F-细胞的基因距离F+因子的致育基因越远。
细菌的遗传分析
总数
202
208
372
202+208-372 = 38 9.3+0.95=10. 25
38/ 4000=0.95%
THE END
生物工程10-1班 周志丹 1068121105
粗糙脉孢菌Lys+×Lys-杂交子代子囊类型
(1) 子 囊 类 型 子囊型 分裂类 型 + + 105 M1 (2) + + 129 M1 (3) + + 9 M2 (4) + + 5 M2 (5) + + 10 M2 (6) + + 16 M2
未交换型
交换型
3、分裂模式
第一次分裂模式(MⅠ模式):没有
2、nic 和 ad 分别位于着丝点的两侧还是同侧
如果n、a在异侧上,则PD与NPD都是 由双交换形成,因而PD与NPD的频率相
等。但是,表1的实验数据显示,同处
MⅡMⅡ的PD子囊数为90,同处 MⅡMⅡ的NPD子囊数为1,PD多于
NPD。于是n、a在同侧。
着丝粒 ~ nic 之间发生交换的子囊为 101 着丝粒~ ad 之间发生交换的子囊为186
4、作图:
0 nic
5.05 cM
ade
5.25cM
9.3cM<10.25cM
10.25cM-9.30cM=0.95cM, 0.95%为双交换率值。
RF(着丝粒-nic) =[(4)(5)(6)(7) ÷1000] × 1/2 × 100% =[ (5+90+1+5) ÷1000]×1/2 = 5.05 % RF(着丝粒-ad) = [(3) (5) (6) (7) ÷1000] × 1/2 × 100% =[ (90+90+1+5) ÷1000]×1/2 = 9.30 % 1、nic 和ad 这两个基因是否连锁 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传规律学细菌遗传规律分析
第三节 细菌的接合与染色体作图
细菌的遗传物质也可以交换。这种遗传物质的传递, 被称之为拟有性过程。
细菌获取外源遗传物质有4种方式: 接合(conjugation)、性导(sexduction )、 转化(transformation) 、转导(transduction)
遗传规律学细菌遗传规律分析
遗传规律学细菌遗传规律分析
细菌接合的电镜照片
遗传规律学细菌遗传规律分析
二、F因子及其转移
大肠杆菌中供体与受体的区别:是否 具有一种微小的质粒---F因子(F factor或 F element),又称性因子 或致育因子。供体含有F因子,此菌 株就称为F+,受体不含F因子,此 菌株就称为F- 。
遗传规律学细菌遗传规律分析
配对、交换
准确环出
F+
整合
准确环出
F+
Hfr
携带1个基因~ 半条染色体
F-
F’
遗传规律学细菌遗传规律分析
接合过程示意图
遗传规律学细菌遗传规律分析
Hfr菌株的遗形传规成律学细及菌遗其传规基律分析因转移
三、细菌重组的特点
1、 F-细胞得到的只是F因子的一部分,因此Hfr×F- 杂交,选 出的大多数重组子仍为F-。
包含原点、致育基因和配对区。
遗传规律学细菌遗传规律分析
致育基因
原点 转移起始点
使它具有感染性,其中一 些编码F纤毛
配对区域
与受体染色体上同源序列配对,交 换整合到受体菌中,成为受体染色 体的一部分
遗传规律学细菌遗传规律分析
F因子的存在状态:
以大肠杆菌为例,F因子能够以四种状态存在: • 没有F因子,即F-; • 包含一个自由状态的F因子,即F+; • 包含一个整合到自己染色体组内的F因子,即Hfr 。 • 当F因子不能准确环出时,形成F′。
遗传规律学细菌遗传规律分析
遗传规律学细菌遗传规律分析
几种可能解释及其分析
• 对上述试验结果原养型菌落可能产生于: – 亲本细菌A或B发生了回复突变; – 两品系细胞通过培养基交换养料—互养作用; – 两品系间发生了转化作用; – 发生细胞融合,形成了异核体或杂合二倍体。
• 为了验证这些原养型菌落产生的可能而进行的研究最终表明: 这些解释均不成立。
合成代谢功能(anabolic function):野生型(原养型)品 系在基本培养基上具有合成所有代谢和生长所必须的复杂 有机物的功能。 营养缺陷型:一个必需的基因发生了突变不能进行一个特 定的生化反应,从而阻碍整个合成代谢功能的实现。多是 条件致死突变。
遗传规律学细菌遗传规律分析
2、分解代谢功能的突变型: 分解代谢功能( anabolic function):野生型大肠杆菌 能利用比葡萄糖复杂的不同碳源,因为它能把复杂的糖类 转化成葡萄糖或其他简单的糖类,也能把复杂分子如氨基 酸或脂肪酸降解为乙酸或三羧酸循环的中间产物。同样, 一系列降解功能的实现也需要许多基因的表达,其中任何 一个基因突变都会影响降解功能的实现。
遗传规律学细菌遗传规律分析
二、细菌的基因组
双链DNA环状结构,裸露,无蛋白质结合,也 不形成核小体。易于接受带有相同或不同物种 的基因或DNA片段的插入。 大肠杆菌染色体DNA以折叠或螺旋状态存在, 且依赖于RNA分子的作用。
遗传规律学细菌遗传规律分析
第二节 大肠杆菌的突变型及筛选
一、大肠杆菌的突变类型 1、合成代谢功能的突变型:
条件的选择培养来筛选与鉴定。
遗传规律学细菌遗传规律分析
细菌的稀释培养及菌落
遗传规律学细菌遗传规律分析
细菌的平板培养
遗传规律学细菌遗传规律分析
影印培养法
遗传规律学细菌遗传规律分析
细菌的表现型:
菌落形态 颜色、大小、边缘状态等 营养需求 野生型(prototroph) 营养缺陷型(auxotroph) 对药物、噬菌体和其他因素的反应
第七章 细菌的遗传分析
遗传规律学细菌遗传规律分析
遗传学的发展与研究材料密切相关:
性状遗传 植物(豌豆) 细胞遗传 果蝇 分子遗传 细菌和病毒
遗传学从细胞水平发展到分子水平的另一个重 要原因是对基因的化学和物理结构的深入了解。
遗传规律学细菌遗传规律分析
第一节 细菌的细胞和基因组
遗传规律学细菌遗传规律分析
一、细菌的细胞
细菌是单细胞原核生物 是地球上生物量最大的一类生物,占据了地球 上大部分的生物干重。
遗传规律学细菌遗传规律分析
大肠杆菌 E.coli
遗传规律学细菌遗传规律分析
E.Coli 的拟核
遗传规律学细菌遗传规律分析
细菌的繁殖非常快: 在适宜的条件下,每20分钟繁殖一代 一个细胞繁殖n代,就有2n-1+1个细胞。 一昼夜24小时,72代,271+1=2.36×1021
2、 F- 受体细胞只接受部分的供体染色体,这样的细胞就称为 部分二倍体。供体与受体的重组是内基因子( F- 染色体 DNA)与外基因子( Hfr部分染色体DNA)的同源部分配 对、交换,产生重组子。
3、其中单交换产生的是不平衡的部分二倍体线性染色体,而 双交换产生的是有活性的环状重组子和片段。
遗传规律学细菌遗传规律分析
3、抗性突变型:细菌由于某基因的突变而对某些噬菌体或 抗菌素产生抗性。
遗传规律学细菌遗传规律分析
二、细菌培养与突变型的筛选 • 营养缺陷型的筛选、鉴定:基本培养基和完全培养基。
为高效检测、分离混和群体中不同突变型,黎德伯格夫妇 设计了影印培养法。 • 其它突变类型的筛选、鉴定: – 对于其它的突变类型(如温度敏感型),也可以通过培养
部分二倍体及其交换
遗传规律学细菌遗传规律分析
4、原核类中的交换是在一完整的基因组( F-内基因子)与 一不完整的基因组( Hfr外基因子)间进行,即在部分二 倍体间进行。
因此,在细菌的重组中有下列两个特点: 1、只有偶数次交换才能产生平衡的重组子 2、不出现相反的重组子,所以在选择培养基上只出现一种 重组子。
遗传规律学细菌遗传规律分析
一、细菌接合ቤተ መጻሕፍቲ ባይዱ象的发现
Lederberg和Tatum大肠杆菌杂交试验: A—甲硫氨酸缺陷型met-和生物素缺陷型bio-; B—苏氨酸缺陷型thr-和亮氨酸缺陷型leu-。
• 方法: 将A、B混和,在基本培养基(固体)上涂布培养。
• 结果: 平板上长出原养型菌落(++++)。