(完整版)立体几何初步知识点(很详细的).doc

合集下载

立体几何复习知识点汇总(全)

立体几何复习知识点汇总(全)

立体几何知识点汇总(全)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段)⑦ba,是夹在两平行平面间的线段,若a,的位置关系为相交或平行或异面.a=,则bb⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

(完整版)立体几何知识点总结完整版

(完整版)立体几何知识点总结完整版

立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、 空间两条直线的三种位置关系,并会判定。

3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。

4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。

5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。

【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

立体几何知识点整理一.直线和平面的三种位置关系:1. 线面平行l符号表示: 2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系: 1. 线线平行:ml m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法一:用线面平行实现。

m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα 方法二:用面面平行实现。

方法三:用线面垂直实现。

若αα⊥⊥m l ,,则m l //。

方法四:用向量方法:若向量和向量共线且l 、m 不重合,则m l //。

2. 线面平行:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂方法一:用线线平行实现。

αββα////l l ⇒⎭⎬⎫⊂ 方法二:用面面平行实现。

方法三:用平面法向量实现。

若为平面α的一个法向量,⊥且α⊄l ,则α//l 。

3. 面面平行:lβαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l 用线面平行实现。

三.垂直关系: 1. 线面垂直:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l AC l , 方法一:用线线垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 方法二:用面面垂直实现。

2. 面面垂直:βαβα⊥⇒⎭⎬⎫⊂⊥l l 方法一:用线面垂直实现。

方法二:计算所成二面角为直角。

3. 线线垂直:m l m l ⊥⇒⎭⎬⎫⊂⊥αα 方法一:用线面垂直实现。

方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则ml ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒(2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)余弦定理:abc b a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

转化为向量的夹角 (计算结果可能是其补角):=θcos(二) 线面角(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。

(完整版)立体几何初步(知识点梳理),推荐文档

(完整版)立体几何初步(知识点梳理),推荐文档

春季高考立体几何部分知识点梳理及历年试题一.线面之间空间关系及证明方法A.线//线的证明方法1.将两条直线放到一个平面内(或者转移到同一平面内)利用平行四边形或者三角形的中位线来证明2. 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(线//面→线//线)3. 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面//面→线//线)4.垂直于同一个平面的两条直线平行。

B.线⊥线的证明方法1.异面直线平移到一个平面内证明垂直2. 一条直线垂直于一个平面,则这条直线与平面内任意直线垂直.(线⊥面→线⊥线)C.线//面的证明方法1. 平面外一直线与平面内一直线平行,则该直线与此平面平行. (线//线→线//面)2. 如果两个平面平行,那么其中一平面内的任一直线平行于另一平面(面//面→线//面)D. 线⊥面的证明方法1.一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线⊥线→线⊥面)2. 两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面(面⊥面→线⊥面)E. 面//面的证明方法1.一个平面内有两条相交直线与另一个平面平行,则这两平面平行(线//面→面//面)2. 如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行(线//线→面//面)3.垂直于同一条直线的两个平面平行。

4.平行于同一个平面的两个平面平行。

F. 面⊥面的证明方法1. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(线⊥面→面⊥面)二.各几何体的体积公式柱体(圆柱,棱柱)V=s h 其中s 为底面积,h 为高∙椎体(圆柱,棱柱)V= 其中s 为底面积,h 为高13s ∙ℎ球体 体积V= 表面积S=443πr 3πr22012年春考真题23.已知空间四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,给出下列四个命题:1.AC 与BD 是相交直线2.AB//DC3.四边形EFGH 是平行四边形4.EH//平面BCD 其中真命题的个数是A. 4B.3C.2D.1解析:如图AC 与BD 没有相交,是异面直线。

立体几何基础知识

立体几何基础知识

立体几何基础知识1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45 ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母、、来表示,还可用平行四边形的对角顶点的字母来表示如平面AC .3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法)Aa A a点 A 在直线a上A aA a点 A 不在直线a上A A点 A在平面内A A点 A 不在平面内A baa b A直线 a 、b交于A点a a直线 a 在平面内aa //直线 a 与平面平行aA a A直线a与平面交于点Al平面、相交于直线l注意:直线与平面平行( a //)和直线与平面相交(a A )两种情形,统称为直线在平面外,记为 a.4.平面的基本性质(1)公理 1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内B符号表示:A, B a.如图示: A应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理 1 说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性” ,它既是判断直线在平面内,又是检验平面的方法.(2) 公理2: 如果两个平面有一个公共点, 那么它们还有其他公共点, 且所有这些公共点的集合是一条过这个公共点的直线A符号表示:l 且A l 且 l 唯一如图示:A应用:①确定两相交平面的交线位置;②判定点在直线上公理 2 揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.(3)公理 3: 经过不在同一条直线上的三点,有且只有一个平面推理模式: A, B, C 不共线存在唯一的平面,使得 A, B, C应用:①确定平面;②证明两个平面重合注意 : “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个” ,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.(4)推论 1 : 经过一条直线和直线外的一点有且只有一个平面推理模式: A a存在唯一的平面,使得A,l(5)推论 2: 经过两条相交直线有且只有一个平面推理模式: a b P存在唯一的平面,使得a,b(6)推论 3 : 经过两条平行直线有且只有一个平面推理模式: a // b存在唯一的平面,使得a,b5.平面图形与空间图形的概念 : 如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形特别注意空间四边形是平面图形而不是平面图形.6.空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;..7.公理 4 :平行于同一条直线的两条直线互相平行推理模式: a // b, b // c a // c .8.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等9.等角定理的推论: 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角( 或直角 ) 相等10.空间两条异面直线的画法a b babaD1C1A1B1DCA B11.异面直线判定定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:A, B, l, B l AB 与 l 是异面直线12. 异面直线所成的角:已知两条异面直线a, b ,经过空间任一点O 作直线 a // a, b // b,a , b所成的角的大小与点 O 的选择无关,把 a , b 所成的锐角(或直角)叫异面直线a, b 所成的角(或夹角).为了简便,点 O 通常取在异面直线的一条上注 : 异面直线所成的角的范围:(0,]213.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b垂直,记作 a b.14.求异面直线所成的角的方法:通过平移,把两条异面直线所成的角转化成两条相交直线所成的角.15.两条异面直线的公垂线、距离和两条异面直线都垂直相交的直线,我们称之为异面直线的公垂线....理解:因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线间的距离.注意 : 两条异面直线的公垂线有且只有一条16.直线和平面的位置关系( 1)直线在平面内(无数个公共点);符号表示为:a;( 2)直线和平面相交(有且只有一个公共点);符号表示为:a A ,( 3)直线和平面平行(没有公共点); 符号表示为 : a //.17.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:a,b, a // b a //.18.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式: a // , a,b a // b .19.平行平面:如果两个平面没有公共点,那么这两个平面互相平行.20.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.21.平行平面的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:: a,b,a b P , a //,b ////.22.平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a //a' ,b//b' ,,,b,a'b''a',b'//.a b o a o23.平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:// ,a,b a // b .24.面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:// , a a //.25.线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足直线与平面垂直简称线面垂直,记作:a⊥ α26.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面27.直线和平面垂直的性质定理 :如果两条直线同垂直于一个平面, 那么这两条直线平行28.两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面29.两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直推理模式: a ?,a.30.两平面垂直的性质定理:若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面推理模式:,l , a, a l a31.异面直线所成的角:已知两条异面直线a, b ,经过空间任一点O 作直线 a // a, b // b,a , b所成的角的大小与点 O 的选择无关,把 a , b 所成的锐角(或直角)叫异面直线a, b 所成的角(或夹角).为了简便,点 O 通常取在异面直线的一条上注 : 异面直线所成的角的范围:(0,]232.求异面直线所成的角的方法:ab′b O33.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角注: ①一直线平行于平面或在平面内,所成角为0 角②直线和平面所成角范围:0,2(2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角34.二面角:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为 l ,两个面分别为,的二面角记为l;35.二面角的平面角:( 1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线OA, OB ,则AOB 叫做二面角l的平面角2l的棱l,且与两半平面交线分别为OA, OB, O 为垂足,则AOB也()一个平面垂直于二面角是l的平面角说明:①二面角的平面角范围是[0 ,180 ] ;②二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直36.求二面角的射影公式: cos S,S其中各个符号的含义是:S 是二面角的一个面内图形 F 的面积,S是图形 F 在二面角的另一个面内的射影,是二面角的大小37.点到平面的距离:已知点 P 是平面外的任意一点,过点 P 作 PA,垂足为 A ,则 PA 唯一,则 PA是点 P 到平面的距离即一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离结论:连结平面外一点 P与内一点所得的线段中,垂线段PA 最短38.异面直线的公垂线:和两条异面直线都垂直相交的直线叫做异面直线的公垂线.39.公垂线唯一:任意两条异面直线有且只有一条公垂线40.两条异面直线的公垂线段:两条异面直线的公垂线夹在异面直线间的部分,叫做两条异面直线的公垂线段;41.公垂线段最短:两条异面直线的公垂线段是分别连结两条异面直线上两点的线段中最短的一条;42.两条异面直线的距离:两条异面直线的公垂线段的长度说明:两条异面直线的距离AB 即为直线a到平面过另一条直线且与这条直线平行的平面的距离的距离即两条异面直线的距离等于其中一条直线到43.直线到与它平行平面的距离:( 转化为点面距离)一条直线上的任一点到与它平行的平面的距离, 叫做这条直线到平面的距离44.两个平行平面的公垂线、公垂线段:(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段(3)两个平行平面的公垂线段都相等(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长45.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离46.七种距离:点与点、点到直线、两条平行直线、两条异面直线、点到平面、平行于平面的直线与该平面、两个平行平面之间的距离,其中点与点、点与直线、点到平面的距离是基础,求其它几种距离一般化归为求这三种距离,点到平面的距离有时用“体积法”来求47.多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线48.棱柱的概念:有两个面互相平行,其余每相邻两个面的交线互相平行,这样的多面体叫棱柱两个互相平行的面叫棱柱的底面(简称底);其余各面叫棱柱的侧面;两侧面的公共边叫棱柱的侧棱;两底面所在平面的公垂线段叫棱柱的高(公垂线段长也简称高)49.棱柱的分类:侧棱不垂直于底面的棱柱叫斜棱柱侧棱垂直于底面的棱柱叫直棱柱底面的是正多边形的直棱柱叫正棱柱棱柱的底面可以是三角形、四边形、五边形这样的棱柱分别叫三棱柱、四棱柱、五棱柱50.棱柱的性质(1)棱柱的侧棱相等,侧面都是平行四边形;直棱柱侧面都是矩形;正棱柱侧面都是全等的矩形;(2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等的多边形;(3)过棱柱不相邻的两条侧棱的截面都是平行四边形51.直棱柱:52.正棱柱:53.长方体的性质 : 长方体的一条对角线长的平方等于一个顶点上的三条棱长的平方和54.棱锥的概念:有一个面是多边形,其余各面是有一个公共顶点的三角形,这样的多面体叫棱锥其中有公共顶点的三角形叫棱锥的侧面;多边形叫棱锥的底面或底;各侧面的公共顶点( S) ,叫棱锥的顶点,顶点到底面所在平面的垂线段(SO) ,叫棱锥的高(垂线段的长也简称高).55.棱锥的表示:棱锥用顶点和底面各顶点的字母,或用顶点和底面一条对角线端点的字母来表示例如五棱锥可表示为S ABCDE ,或 S AC .56.棱锥的分类:(按底面多边形的边数)分别称底面是三角形,四边形,五边形的棱锥为三棱锥,四棱锥,五棱锥57.棱锥的性质:定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积比等于顶点到截面的距离与棱锥高的平方比.中截面:经过棱锥高的中点且平行于底面的截面,叫棱锥的中截面58.正棱锥:底面是正多边形,顶点在底面上的射影是底面的中心的棱锥叫正棱锥.(1)正棱锥的各侧棱相等,各侧面是全等的等腰三角形,各等腰三角形底边上的高相等(叫正棱锥的斜高).(2)正棱锥的高、斜高、斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱、侧棱在底面上的射影也组成一个直角三角形59.球的概念:与定点距离等于或小于定长的点的集合,叫做球体,简称球定点叫球心,定长叫球的半径与定点距离等于定长的点的集合叫做球面一个球或球面用表示它的球心的字母表示,例如球 O 60.球的截面:用一平面去截一个球 O ,设 OO是平面的垂线段, O 为垂足,且 OO d ,所得的截面是以球心在截面内的射影为圆心,以r R2 d 2为半径的一个圆,截面是一个圆面注 : 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆61. 表面积、体积公式( 1)直棱柱的侧面积: S ch ;( 2)圆柱的侧面积: S cl2 r l ( 其中 c 为底面圆的周长 ) ; ( 3)正棱锥的侧面积 : S1ch ( 其中 h 为斜高 );1 24Sclrl (其中 c 为底面圆的周长 );( )圆锥的侧面积:2( 5)圆台的侧面积 :S1(c c )l( r r )l ;2 ( 6)球的表面积: S 4 R 2;( 7)柱体的体积 : V Sh ;( 8)锥体的体积: V1Sh ;3( 9)台体的体积: V1(SS S S)h ;3( 10)球的体积公式: V4 R 33R ,而在实际问题中常给出球的外径(直径)注意 : ①在应用球体积公式时要注意公式中给出的是球半径②球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。

(完整版)立体几何初步知识点(很详细的)

(完整版)立体几何初步知识点(很详细的)

立体几何初步1、 柱、锥、台、球的结构特征(1) 棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行 于底面的截面是与底面全等的多边形。

(2) 棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。

(3) 棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。

(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴 ,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6) 圆台:定义:以直角梯形的垂直与底边的腰为旋转轴 ,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7) 球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、 空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽 度。

3、 空间几何体的直观图一一斜二测画法斜二测画法特点: ①原来与x 轴平行的线段仍然与 x 平行且长度不变;② 原来与y 轴平行的线段仍然与 y 平行,长度为原来的一半。

4、 柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特姝儿何体表面积公式(、c 为底面周长, h 为高, h 为斜高, l 为母线)s 直棱柱侧面积 ch s ®柱侧 2 rh s 正棱锥侧面积 -ch' 2 S 圆锥侧面积 rls 正棱台侧面积1 尹 Q )h' s 圆台侧面积 (r R) ls 圆柱表 2 r r l S i 锥表 r r l s 圆台表 r rl Rl R 2(3) 柱体、 锥体、台体的体积公式V 柱 Sh 2V 圆柱 Sh r h V 锥 ’Sh 3 1 2V 圆锥-r h 3 V 台 S 'S S)h V I 台 3(s .S 'S S)h 12 2 -(r 2rR R 2)h3 (4)球体的表面积和体积公式: V 球=4 R 3 ; S 求面=4 R 234、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

立体几何初步知识点全总结

立体几何初步知识点全总结

立体几何初步知识点全总结一、空间几何体的结构。

1. 棱柱。

- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 直棱柱:侧棱垂直于底面的棱柱。

正棱柱:底面是正多边形的直棱柱。

- 性质:- 侧棱都相等,侧面是平行四边形。

- 两个底面与平行于底面的截面是全等的多边形。

- 过不相邻的两条侧棱的截面(对角面)是平行四边形。

2. 棱锥。

- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。

- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。

- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

3. 棱台。

- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。

- 性质:- 棱台的各侧棱延长后交于一点。

- 棱台的上下底面是相似多边形,侧面是梯形。

4. 圆柱。

- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

- 性质:- 圆柱的轴截面是矩形。

- 平行于底面的截面是与底面全等的圆。

5. 圆锥。

- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。

- 性质:- 圆锥的轴截面是等腰三角形。

- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。

6. 圆台。

- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

高一数学立体几何初步知识点总结

高一数学立体几何初步知识点总结

高一数学立体几何初步知识点总结高一数学知识点总结:立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

(完整版)立体几何知识点总结.doc

(完整版)立体几何知识点总结.doc

立体几何知识点总结1、柱、锥、台、球的结构特征( 1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDE A' B 'C ' D ' E '或用对角线的端点字母,如五棱柱AD '几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

( 2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥 P A' B'C ' D ' E '几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

( 3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台P A' B'C ' D ' E '几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴 ,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个扇环。

(完整版)高中数学必修二立体几何知识点梳理

(完整版)高中数学必修二立体几何知识点梳理

立体几何初步1、柱、锥、台、球的构造特点( 1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各极点字母,如五棱柱ABCDE A' B' C ' D ' E '或用对角线的端点字母,如五棱柱AD '几何特点:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

( 2)棱锥定义:有一个面是多边形,其余各面都是有一个公共极点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各极点字母,如五棱锥P A' B' C ' D ' E '几何特点:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于极点到截面距离与高的比的平方。

( 3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各极点字母,如五棱台P A' B' C ' D ' E '几何特点:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的极点( 4)圆柱:定义:以矩形的一边所在的直线为轴旋转, 其余三边旋转所成的曲面所围成的几何体几何特点:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面张开图是一个矩形。

( 5)圆锥:定义:以直角三角形的一条直角边为旋转轴, 旋转一周所成的曲面所围成的几何体几何特点:①底面是一个圆;②母线交于圆锥的极点;③侧面张开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特点:①上下底面是两个圆;②侧面母线交于原圆锥的极点;③侧面张开图是一个弓形。

立体几何初步知识点

立体几何初步知识点

立体几何初步知识点㈠间的几何体⒈识和描述棱柱、棱锥、棱台、圆柱、圆锥、圆台多面体:⑴棱柱:有两个面相互平行,其余各面都是同时与这两个面相邻的平行四边形的多面体棱柱的底面:两个互相平行的面棱柱的侧面:除底面以外的面棱柱的侧棱:相邻两个侧面的公共边棱柱的对角线:既不在同一个底面也不在同一个侧面上的两个顶点的连线棱柱的分类:三棱柱、四棱柱、五棱柱…….(按照底面的形状)直棱柱:侧面平行四边形都是矩形的棱柱长方体:底面和侧面都是矩形的棱柱正方体:所有棱长都相等的长方体棱柱的表示:用其两个底面各顶点的字母表示或用其某一条对角线的两个端点的字母表示⑵棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体棱锥的侧面:有公共顶点的三角形面;棱锥的底面:除侧面以外的面棱锥的顶点:各个侧面的公共点;棱锥的侧棱:相邻两个侧面的公共边棱锥的分类:三棱锥、四棱锥、五棱锥……(按照底面的形状)棱锥的表示:用表示它的顶点和底面各顶点的字母来表示,或用顶点和底面一条对角线端点的字母来表示⑶棱台:过棱锥的任一侧棱上不与侧棱端点重合的点,作一个平行于底面的平面去截棱锥,截面和原棱锥底面之间的部分叫作棱台棱台的底面:截面和原棱锥底面分别叫作棱台的上底面和下底面棱台的侧面:除上底面和下底面以外的面棱台的侧棱:相邻侧面的公共边棱台的对角线:既不在同一底面上也不在同一个侧面上的两个顶点的连线棱台的分类:三棱台、四棱台、五棱台……棱台的表示:用上下底面多边形各顶点字母来表示旋转体:⑷圆柱:以矩形的一边为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体圆柱的轴:旋转轴圆柱的高:在轴上这条边的长度圆柱的底面:垂直于轴的边旋转而成的圆面圆柱的侧面:不垂直于轴的边旋转而成的曲面母线:不垂直于轴的那条边,无论旋转到什么位置,都叫作侧面的母线圆柱的表示:用表示它的轴的字母来表示⑸圆锥:以直角三角形的一条直角边为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体圆锥的轴:旋转轴圆锥的高:在轴上这条边的长度圆锥的底面:垂直于轴的边旋转而成的圆面圆锥的侧面:不垂直于轴的边旋转而成的曲面母线:不垂直于轴的那条边,无论旋转到什么位置,都叫作侧面的母线圆锥的表示:用表示它的轴的字母来表示⑹圆台:以直角梯形的垂直于底边的腰所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体圆台的轴:旋转轴圆台的高:在轴上这条边的长度圆台的底面:垂直于轴的边旋转而成的圆面圆台的侧面:不垂直于轴的边旋转而成的曲面母线:不垂直于轴的那条边,无论旋转到什么位置,都叫作侧面的母线圆台的表示:用表示它的轴的字母来表示圆柱、圆锥、圆台的性质:平行于圆柱、圆锥、圆台的底面的截面都是圆;圆柱、圆锥、圆台的轴截面分别是全等的矩形、等腰三角形、等腰梯形⑺球:以半圆的直径为旋转轴、半圆弧旋转一周形成的曲面围成的几何体球面:球的表面球心:这个半圆圆心球的半径:这个半圆的半径球的性质:球面上所有的点到球心的距离都相等,等于球的半径;用任何一个平面去截球面,得到的截面都是圆,其中过球心的平面截球面得到的圆的半径最大,等于球的半径⒉立体图形的三视图、直观图,图形的中心投影及平行投影⑴画出三视图或根据三视图说明图形的结构⑵画出直观图(斜二测画法)⑶中心投影:投影中心距投影面有限远时,投射线都经过投影中心的投影法叫作中心投影法,用此法得到的投影叫作中心投影⑷平行投影:所有的投射线都互相平行,或看作投影中心在无限远处,这种投影法叫作平行投影法,用此法得到的投影叫作平行投影⒊ 各类简单几何体的面积和体积公式面积:⑴ 圆柱侧面积rl cl S π2==,其中,r 是圆柱底面半径,c 是底面周长,l 是侧面母线长⑵ 圆锥侧面积rl cl S π==21,其中,r 是圆锥底面半径,c 是底面周长,l 是侧面母线长⑶ 圆台侧面积()()l r r l c c S ''21+=+=π,其中,'r 、r 分别是圆台的上下底面半径,'c、c 分别是圆台的上下底面周长,l 是侧面母线长 ⑷ 球的表面积24r S π=体积:⑸ 拟柱体的体积:()0'461S S S h V ++=,其中,'S 、S 分别是拟柱体的上下底面积,中截面面积为0S ,高为h ,体积为V⑹ 圆柱的体积公式:h r V 2π=⑺ 圆锥的体积公式:h r V 231π= ⑻ 圆台的体积公式:()⎪⎭⎫⎝⎛++=2''231r rr r h V π ⑼ 球的体积公式:334r V π=㈡ 间的直线与平面⒈点、线、面的位置关系⑴平面的表示:小写的希腊字母α、β、γ,…表示;表示平面的平行四边形的字母表示;表示平面的平行四边形的对角顶点的字母表示⑵点、直线、平面的位置关系表示:此处略去⑶直线和平面的确定:公理 1 如果一条直线上的两点在一个平面内,那么这条直线在这个平面内;公理2 过不在同一直线上的三点,有且只有一个平面公理2的三条推论①一条直线和直线外一点确定一个平面②两条相交直线确定一个平面③两条平行直线确定一个平面⑷空间的两条直线的位置关系:① 相交直线——在同一个平面内,有且只有一个公共点;② 平行直线——在同一个平面内,没有公共点;③ 异面直线——不同在任何一个平面内,没有公共点⑸直线和平面的位置关系:①直线在平面内——有无数个公共点;②直线和平面相交——有且只有一个公共点;③直线和平面平行——没有公共点公理3 平行于同一条直线的两条直线平行公理4 如果两个不重合的平面有一个公共点,那么它们的交集是一条过该点的直线定理1 空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补⒉平行关系⑴直线与平面平行的性质定理:一条直线与一个平面平行,则过该直线的任一平面与此平面的交线与该直线平行⑵直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行⑶平面与平面平行的性质定理:两个平面平行,则任意一个平面与这两个平面相交所得的交线互相平行⑷平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行⒊垂直关系⑴直线与平面垂直①异面直线垂直的定义:设a、b是异面直线,过a上任意一点A作c∥b,如果a⊥c,就称a⊥b②直线与平面垂直的定义:如果一条直线与一个平面相交,并且垂直于这个平面内所有的直线,就称这条直线与这个平面垂直。

高中数学必修二第八章立体几何初步知识点总结全面整理(带答案)

高中数学必修二第八章立体几何初步知识点总结全面整理(带答案)

高中数学必修二第八章立体几何初步知识点总结全面整理单选题1、设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A.若m⊥n,m⊥α,n⊥β,则α⊥βB.若m//n,m⊥α,n//β,则α⊥βC.若m⊥n,m//α,n//β,则α//βD.若m//n,m⊥α,n⊥β,则α//β答案:C分析:利用线面垂直的判定性质、面面垂直的判定推理判断A,B;举例说明判断C;利用线面垂直的判定性质判断D作答.对于A,因m⊥n,m⊥α,当n⊂α时,而n⊥β,则α⊥β,当n⊄α时,在直线m上取点P,过P作直线n′//n,则m⊥n′,过直线m,n′的平面γ∩α=l,如图,由m⊥α得m⊥l,于是得l//n′//n,而n⊥β,则l⊥β,而l⊂α,所以α⊥β,A正确;对于B,若m//n,m⊥α,则n⊥α,又n//β,则存在过直线n的平面δ,使得δ∩β=c,则有直线c//n,即有c⊥α,所以α⊥β,B正确;对于C,如图,在长方体ABCD−A1B1C1D1中,平面ABCD为平面α,直线A1B1为直线m,平面ADD1A1为平面β,直线B1C1为直线n,满足m⊥n,m//α,n//β,而α∩β=AD,C不正确;对于D,若m//n,m⊥α,则n⊥α,又n⊥β,于是得α//β,D正确.故选:C2、已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是()A.2πR2B.94πR2C.83πR2D.πR2答案:B分析:根据圆柱的表面积公式以及二次函数的性质即可解出.设圆柱的底面半径为r,圆柱的高为ℎ,所以在轴截面三角形中,如图所示:由相似可得,rR =3R−ℎ3R,所以,ℎ=3R−3r,即圆柱的全面积为S=2πr2+2πrℎ=2πr2+2πr(3R−3r)=2π(−2r2+3rR)=2π[−2(r−34R)2+98R2]≤9π4R2,当且仅当r=34R时取等号.故选:B.3、如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤答案:D解析:根据平面的表示方法判断.③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.4、如图,PA 垂直于矩形ABCD 所在的平面,则图中与平面PCD 垂直的平面是( )A .平面ABCDB .平面PBCC .平面PAD D .平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD ,由四边形ABCD 为矩形得CD ⊥AD ,因为PA ∩AD =A ,所以CD ⊥平面PAD .又CD ⊂平面PCD ,所以平面PCD ⊥平面PAD .故选:C5、在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )A .π2B .π3C .π4D .π6 答案:D分析:平移直线AD 1至BC 1,将直线PB 与AD 1所成的角转化为PB 与BC 1所成的角,解三角形即可.如图,连接BC1,PC1,PB,因为AD1∥BC1,所以∠PBC1或其补角为直线PB与AD1所成的角,因为BB1⊥平面A1B1C1D1,所以BB1⊥PC1,又PC1⊥B1D1,BB1∩B1D1=B1,所以PC1⊥平面PBB1,所以PC1⊥PB,设正方体棱长为2,则BC1=2√2,PC1=12D1B1=√2,sin∠PBC1=PC1BC1=12,所以∠PBC1=π6.故选:D6、圆台的上、下底面的面积分别是π,4π,侧面积是6π,则这个圆台的体积是()A.2√33πB.2√3πC.7√36πD.7√33π答案:D分析:求出圆台的高,再利用圆台的体积公式进行计算.设圆台的上、下底面的半径分别为r,R,母线长为l,高为h.,由圆台的上、下底面的面积分别是π,4π,得{πr2=π,πR2=4π,所以r=1,R=2,由圆台侧面积公式可得π×(2+1)l=6π,所以l=2,所以ℎ=√22−(2−1)2=√3,所以该圆台的体积V=13πℎ(R2+r2+Rr)=13π×√3×(4+1+2)=7√33π.故选:D.7、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D8、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.多选题9、如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为4πR3B.圆锥的侧面积为√5πR2C.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆锥、球的体积之比为3:1:2答案:BD分析:依次判断每个选项:圆柱的体积为2πR3,A错误;圆锥的侧面积为√5πR2,B正确;圆柱的侧面积为4πR2,C错误;计算体积之比为3:1:2,D正确,得到答案.依题意圆柱的底面半径为R,则圆柱的高为2R,圆柱的体积为πR2×2R=2πR3,∴A错误;圆锥的母线长为√5R,圆锥的侧面积为πR×√5R=√5πR2,∴B正确;∵圆柱的侧面积为4πR2,圆锥表面积为√5πR2+πR2,∴C错误;∵V圆柱=πR2⋅2R=2πR3,V圆锥=13πR2⋅2R=23πR3,V球=43πR3∴V圆柱:V圆锥:V球=2πR3:23πR3:43πR3=3:1:2,∴D正确.故选:BD.10、在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为AB,A1D1的中点,则()A.BD⊥B1CB.EF//平面DB1BC.AC1⊥平面B1D1CD.过直线EF且与直线BD1平行的平面截该正方体所得截面面积为√2答案:BC解析:(1)求出BD,B1C所成的角,不为90∘(2)通过证明面面平行,再到线面平行.即先证面FGE//面DBB1D1,再可以说明EF//平面DB1B(3)先证B1C⊥面ABC1,则可说明B1C⊥AC1,同理可得B1D1⊥AC1,则证明了AC1垂直于平面内两条相交直线,故AC1⊥平面B1D1C(4)找到过直线EF且与直线BD1平行的平面即平面FGEQ,求出面积即可A. 由图易知BD//B1D1,又有B1D1=D1C=B1C=2√2,故△B1D1C为等边三角形,故B1D1与B1C所成的角为60∘BD,B1C所成的角为60∘,故A错.B. 记AD中点为G,易知FG//D1D,GE//DB,则可知FG//面DBB1D1,GE//面DBB1D1故面FGE//面DBB1D1FE⊂面FGE,故EF//平面DB1B.C. 四边形BCB1C1为正方形,B1C⊥BC1,又AB⊥面B1BCC1,故AB⊥B1C则B1C⊥面ABC1故B1C⊥AC1同理B1D1⊥AC1故AC1⊥平面B1D1C.D.记A1B1中点为Q,由B项可知,面FGEQ//面DBB1D1,故BD1//面FGEQ,又EF⊂面FGEQ,故过EF且与直线BD1平行的平面为如图所示的平面FGEQ,面积为S=FQ⋅FG=2⋅√2=2√2.故选:BC小提示:本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.11、如图直角梯形ABCD中,AB//CD,AB⊥BC,BC=CD=12AB=2,E为AB中点.以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2√3则()A.平面PED⊥平面PCD B.PC⊥BDC.二面角P−DC−B的大小为π4D.PC与平面PED所成角的正切值为√2答案:ABC解析:先证明PE⊥平面DEBC,得PE⊥DC,再结合DC⊥DE,即证DC⊥平面PED,所以平面PED⊥平面PCD,判断A正确;利用投影判断PC⊥BD,判断B正确;先判断∠PDE即为二面角P−DC−B的平面角,再等腰直角三角形判断∠PDE=π4,即C正确;先判断∠CPD为PC与平面PED所成的角,再求正切tan∠CPD=CDPD,即知D错误.由题易知EC=2√2,又PE=2,PC=2√3,所以PE2+EC2=PC2,所以PE⊥EC,又PE⊥ED,ED∩EC=E,所以PE⊥平面DEBC,所以PE⊥DC,又DC⊥DE,PE∩DE=E,所以DC⊥平面PED,又DC⊂平面PCD,所以平面PED⊥平面PCD,故A正确;PC在平面EBCD内的射影为EC,又EBCD为正方形,所以BD⊥EC,PC⊥BD,故B正确;易知∠PDE即为二面角P−DC−B的平面角,又PE⊥ED,PE=ED,所以∠PDE=π4,故C正确;易知∠CPD为PC与平面PED所成的角,又PD=2√2,CD=2,CD⊥PD,所以tan∠CPD=CDPD =2√2=√22,故D错误.小提示:求空间中直线与平面所成角的常见方法为:(1)定义法:直接作平面的垂线,找到线面成角;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离,距离与斜线长的比值即线面成角的正弦值;(3)向量法:利用平面法向量与斜线方向向量所成的余弦值的绝对值,即是线面成角的正弦值.本题使用了定义法.填空题12、我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱ABC−A1B1C1,其中AC⊥BC,若AA1=AB=1,当“阳马”即四棱锥B−A1ACC1,体积最大时,“堑堵”即三棱柱ABC−A1B1C1的表面积为_______.答案:3+2√22分析:依据均值定理去求四棱锥B−A1ACC1取体积最大值时AB的长度,再去求三棱柱ABC−A1B1C1的表面积即可.四棱锥B−A1ACC1的体积是三棱柱体积的23,V ABC−A1B1C1=12AC⋅BC⋅AA1=12AC⋅BC≤14(AC2+BC2)=14AB2=14,当且仅当AB=BC=√22时,取等号.所以三棱柱ABC−A1B1C1的表面积为S=2×12×√22×√22+(√22+√22+1)×1=3+2√22.所以答案是:3+2√2213、如图,平面OAB⊥平面α,OA⊂α,OA=AB,∠OAB=120°.平面α内一点P满足PA⊥PB,记直线OP 与平面OAB所成角为θ,则tanθ的最大值是_________.答案:√612分析:作出图形,找出直线OP与平面OAB所成的角θ,证出PA⊥平面PBH,得出PA⊥PH,得出点P的轨迹就是平面α内以线段AH为直径的圆(A点除外),转化成与圆有关的最值问题,即可求出结果.如图,过点B作BH⊥OA,交OA的延长线于点H,连接PH,OP,取AH的中点为E,连接PE,过点P作PF⊥OA,垂足为F,∵平面OAB⊥平面α,且平面OAB∩平面α=OA,BH⊂平面OAB,PF⊂α,∴BH⊥α,PF⊥平面OAB,∴OP在平面OAB上的射影就是直线OA,故∠AOP就是直线OP与平面OAB所成的角θ,即∠AOP=θ,∵AP⊂α,∴AP⊥BH,又∵PA⊥PB,PB∩BH=B,PB,BH⊂平面PBH,∴PA⊥平面PBH,∵PH⊂平面PBH,∴PA⊥PH,故点P的轨迹就是平面α内以线段AH为直径的圆(A点除外),∵OA=AB,且∠OAB=120∘,∴∠BAH=60∘,设OA=a(a>0),则AB=a,从而AH=AB⋅cos60∘=a2,∴PE=12AH=a4,如图,当且仅当PE⊥OP,即OP是圆E的切线时,角θ有最大值,tanθ有最大值,tanθ取得最大值为:PEOP =√OE2−PE2=a4√(a+4)2−(4)2=√612.所以答案是:√612.14、如果一个水平放置的图形用斜二测画法画出的直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是______.答案:2+√2##√2+2分析:求出直观图中梯形的下底长,作出原图形,结合梯形的面积公式可求得结果.直观图中,梯形的下底长为1+2×1×cos45∘=1+√2,作出原图形如下图所示:由图可知,原图形为直角梯形ABCD,且该梯形的上底长为CD=1,下底长为AB=1+√2,高为AD=2,=2+√2.因此,原图形的面积为S=(AB+CD)⋅AD2所以答案是:2+√2.解答题15、如图,在正方体ABCD−A1B1C1D1中,A1C1与B1D1交于点O1,求证:(1)直线A1B∥平面ACD1;(2)直线BO1∥平面ACD1.答案:(1)证明见解析(2)证明见解析分析:(1)根据题意,先证得四边形A1D1CB是平行四边形,从而证得A1B∥D1C,即可证得线面垂直;(2)连接BD,交AC于O,连接D1O,只需证明O1B∥D1O,即可证得线面垂直;(1)证明:直线A1B在平面ACD1外,因为A1D1∥BC,A1D1=BC,所以四边形A1D1CB是平行四边形,所以A1B∥D1C,而D1C是平面ACD1内的直线,根据判定定理可知,直线A1B∥平面ACD1.(2)证明:如图,连接BD,交AC于O,连接D1O,易知D1O1∥OB,D1O1=OB,则四边形D1O1BO是平行四边形,所以O1B∥D1O,所以D1O在平面ACD1上,根据判定定理可知,O1B∥平面ACD1.。

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A­BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P­ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S­ABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1­BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D­ABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ­ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A­ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ­ABC =V N ­ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC ­A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC ­A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC ­A 1B 1C 1的体积为V ,则V =3VB 1­ABC =3VA ­B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABC­A1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥P­ABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥Q­BCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q ­BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ­ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D ­MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D ­MAB =V M ­DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。

立体几何知识点总结(全)

立体几何知识点总结(全)

立体几何知识点总结(全)垂直直线:相交成直角的直线。

三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:只有在三维空间中才有,点在平面上方或下方的判断需要借助向量的概念。

四.直线与平面的位置关系直线在平面上:直线的每一个点都在平面上;直线与平面相交:有且只有一个交点;直线与平面平行:没有交点,且方向与平面的法向量垂直;直线与平面垂直:直线方向与平面的法向量相同或相反。

五.平面与平面的位置关系两个平面相交:有且只有一条公共直线;两个平面平行:没有公共直线;两个平面重合:所有点都相同。

改写:一。

空间几何体的三视图在空间几何体中,正视图是指光线从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度。

侧视图是指光线从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度。

俯视图是指光线从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

三视图中反应的长、宽、高的特点有“长对正”,“高平齐”,“宽相等”。

二。

空间几何体的直观图斜二测画法的基本步骤包括建立适当的直角坐标系xOy (尽可能使更多的点在坐标轴上)、建立斜坐标系x'O'y',使x'O'y'=45(或135)以及画对应图形。

在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半。

直观图与原图形的面积关系为S直观图= S原图/4.三。

空间几何体的表面积与体积圆柱侧面积为S侧面=2πr×l,圆锥侧面积为S侧面=πr×l,圆台侧面积为S侧面=πr×l+πR×l。

柱体的体积为V柱体=S×h,锥体的体积为V锥体=S×h/3,台体的体积为V台体=S上+S下+√S上×S下×h/3.球的表面积和体积分别为S=4πR2和V球=4πR3/3.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥,正四面体是每个面都是全等的等边三角形的三棱锥。

必修二立体几何初步知识点整理(可编辑修改word版)

必修二立体几何初步知识点整理(可编辑修改word版)

A1DB1C四棱柱 ⎪ 其他棱柱 ⎪⎩ ⎨ −棱−垂−直于−底面−→ 直棱柱 1 1一、基础知识(理解去记) 必修二立体几何初步知识点整理(一)空间几何体的结构特征 (1) 多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2) 柱,锥,台,球的结构特征1. 棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。

1.2 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:⎧斜棱柱 棱柱⎪ ⎧⎪ −底−面−是正−多形−→正棱柱 ⎨ ⎩② 底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形 1.3 棱柱的性质:①侧棱都相等,侧面是平行四边形;侧棱与底面边长相等 ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如D1C1图】 AC 2 = AB 2 + AD 2 + AA 2②(了解)长方体的一条对角线 AC 1 与过顶点 A 的三条棱所成的角AB分别是,,,那么cos 2+ cos 2 + cos 2 = 1, sin 2+ sin 2 + sin 2 = 2 ;③ ( 了解) 长方体的一条对角线 AC 1 与过顶点 A 的相邻三个面所成的角分别是,,, 则cos 2+ cos 2 + cos 2 = 2 , sin 2+ sin 2 + sin 2 = 1.1.4 侧面展开图:正 n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.正方体正四棱柱 长方体 直平行六面体 平行六面体①S 直棱柱侧 = c ⋅ h 1.5 面积、体积公式:(其中 c 为底面周长,h 为棱柱的高)S= c ⋅ h + 2S ,V= S ⋅ h2. 圆柱直棱柱全底棱柱底2.1 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4 面积、体积公式: S 圆柱侧= 2rh ;S 圆柱全= 2rh + 2r 2 ,V 圆柱=S 底 h=r 2h (其中 r 为底面半径,h 为圆柱高)3. 棱锥3.1 棱锥——有一个面是多边形,其余各面是有一个公共顶点的 三角形,由这些面所围成的几何体叫做棱锥。

立体几何初步知识1

立体几何初步知识1

立体几何初步知识1 【知识要点】●1.●●3.●4. 旋转体——一条平面曲线绕它所在的平面内的一条直线旋转而成的曲面叫做旋转面,封闭的旋转面围成的几何体称为旋转体.●5. 圆柱的轴截面都是全等的矩形,垂直于轴的截面都是与两底面平行且全等的圆面. ●6. 圆锥的轴截面都是全等的等腰三角形,垂直于轴的截面都是与底面平行且相似的圆面. ●7. 圆台的轴截面都是全等的等腰梯形,垂直于轴的截面都是与两底面平行且相似的圆面.●8. 球的截面都是圆面,经过球心的截面都是全等的圆面.球的截面与大圆小圆截面:用一个平面去截一个球,截面是圆面大圆:过球心的截面圆叫大圆, 大圆是所有球的截面中半径最大的圆。

●9. 投影——是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法. 投射线交于一点的投影称为中心投影. 投射线相互平行的投影称为平行投影. 平行投影按投射方向是否正对着投影面,可分为斜投影和正投影.●10. 视图——物体按正投影向投影面投射所得的图形. 光线从物体的前面向后投射所得的投影称为主视图或正视图,自上向下的称为俯视图,自左向右的称为左视图. 用这三种视图刻画空间物体的结构,称为三视图. ●11 画三视图时应注意:主视图与左视图的高要保持平齐,主视图与俯视图的长要保持对正,俯视图与左视图的宽度要保持相等,简记为“长对正、高平齐、宽相等”.●12. 投影——是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法. 投射线交于一点的投影称为中心投影. 投射线相互平行的投影称为平行投影. 平行投影按投射方向是否正对着投影面,可分为斜投影和正投影.四棱柱 平行六面体 直平行六面体长方体正方体●13. 视图——物体按正投影向投影面投射所得的图形. 光线从物体的前面向后投射所得的投影称为主视图或正视图,自上向下的称为俯视图,自左向右的称为左视图. 用这三种视图刻画空间物体的结构,称为三视图. ●14 画三视图时应注意:主视图与左视图的高要保持平齐,主视图与俯视图的长要保持对正,俯视图与左视图的宽度要保持相等,简记为“长对正、高平齐、宽相等”.即:“正俯一样长、正侧一样高、俯侧一样宽”.●15平面图形的直观图画法:在斜二测画法中,平行于x 轴的线段长度不变;平行于y 轴的线段长度减半。

立体几何初步(知识点梳理)(K12教育文档)

立体几何初步(知识点梳理)(K12教育文档)

立体几何初步(知识点梳理)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(立体几何初步(知识点梳理)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为立体几何初步(知识点梳理)(word版可编辑修改)的全部内容。

春季高考立体几何部分知识点梳理及历年试题一.线面之间空间关系及证明方法A。

线//线的证明方法1。

将两条直线放到一个平面内(或者转移到同一平面内)利用平行四边形或者三角形的中位线来证明2。

一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(线//面线//线)3. 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面//面线//线)4.垂直于同一个平面的两条直线平行。

B.线⊥线的证明方法1.异面直线平移到一个平面内证明垂直2。

一条直线垂直于一个平面,则这条直线与平面内任意直线垂直.(线⊥面线⊥线)C。

线//面的证明方法1。

平面外一直线与平面内一直线平行,则该直线与此平面平行。

(线//线线//面)2. 如果两个平面平行,那么其中一平面内的任一直线平行于另一平面(面//面线//面)D。

线⊥面的证明方法1.一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(线⊥线线⊥面)2. 两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面(面⊥面线⊥面)E. 面//面的证明方法1.一个平面内有两条相交直线与另一个平面平行,则这两平面平行(线//面面//面)2. 如果一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行(线//线面//面)3.垂直于同一条直线的两个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
立体几何初步
1、柱、锥、台、球的结构特征 ( 1)棱柱:
几何特征 :两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

( 2)棱锥
几何特征 :侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与
高的比的平方。

( 3)棱台:
几何特征 :①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 ( 4)圆柱:定义 :以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成 几何特征 :①底面是全等的圆; ②母线与轴平行; ③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。

( 5)圆锥:定义 :以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征 :①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

( 6)圆台:定义: 以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征: ①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

( 7)球体:定义: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征: ①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法
斜二测画法特点: ①原来与 x 轴平行的线段仍然与 x 平行且长度不变;
②原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积
( 1)几何体的表面积为几何体各个面的面积的和。

( 2)特殊几何体表面积公式( c 为底面周长, h 为高, h ' 为斜高, l 为母线)
S
直棱柱侧面积
ch
S
圆柱侧
2 rh
S 正棱锥侧面积
1 ch' S
rl
圆锥侧面积
1
2
S 正棱台侧面积
( c 1 c 2 )h' S 圆台侧面积 (r
R) l
2
2
2
S
圆柱表 2
r r
l
圆锥表
r r
l S 圆台表
r
rl Rl
R
S
( 3)柱体、锥体、台体的体积公式
V 柱 Sh
V 圆

Sh
r 2
h
V 锥 1
Sh
V


1 r 2h
1 (S '
3
1
3
V 台 1 (S '
S '
S S)h
V
圆台
S ' S S)h
(r 2 rR R 2 )h
3 3
3
( 4)球体的表面积和体积公式: V 球 =4 R 3 ; S 球面 =4 R 2
3
4、空间点、直线、平面的位置关系
公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内
用符号语言表示公理
1: A l ,B
l , A ,B l
公理 2:如果两个不重合的平面有一个公共点
,那么它们有且只有一条过该点的公共直线
符号: 平面α和β相交,交线是 a ,记作α∩β= a 。

符号语言: P AI B
AI B
l ,P l
公理 2 的作用:
①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

1
- 2 -
③它可以判断点在直线上,即证若干个点共线的重要依据。

公理 3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理 3 及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据
公理 4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。

两条异面直线所成角的范围
是( 0°, 90° ],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的
位置上。

B、证明作出的角即为所求角C、利用三角形来求角
(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点.
三种位置关系的符号表示:aαa∩α= A a∥α
(9)平面与平面之间的位置关系:平行——没有公共点;α∥β
相交——有一条公共直线。

α∩β=b
5、空间中的平行问题
( 1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行。

线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
( 1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行)
( 2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说
这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直
线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半
平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和
性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

2。

相关文档
最新文档