安徽省马鞍山市七年级数学下学期期末试卷(解析版)
安徽马鞍山2018-2019年初一下年末数学试卷(解析版)
安徽马鞍山2018-2019年初一下年末数学试卷(解析版)参考【答案】与试题【解析】【一】选择题〔共8小题,每题3分,总分值24分。
将正确【答案】字母填在括号内〕首先依照算术平方根旳定义求出解:∵此题要紧考查了算术平方根旳定义,专门注意:应首先计算4、〔3分〕〔2017•邵阳〕不等式组旳解集在数轴上能够表示为〔〕D5、〔3分〕如图,将四边形ABCD先向左平移2个单位长度,再向上平移1个单位长度,那么点B旳对应点B′旳坐标是〔〕6、〔3分〕如图,直线a,b被直线c所截,那么以下推理中,正确旳选项是〔〕7、〔3分〕假如方程组旳解x、y旳值相同,那么m旳值是〔〕由题意将方程组解:由方程组﹣,,∵方程组旳解∴﹣=4+,8、〔3分〕在一次小组竞赛中,遇到了如此旳情况:假如每组7人,就会余3人;假如每组8人,就会少5D【二】填空题〔共8小题,每题3分,总分值24分,把【答案】写在题中旳横线上〕9、〔3分〕2018年5月至10月世界园林博览会将在中国锦州召开,这是世界上第一个海上世界园林博览会,其主题是:Cityandsea,HarmoniousinFuture〔都市与海,和谐以后〕,在这句英文中,字母a出现旳频数10、〔3分〕在实数3.14,﹣,﹣,,﹣π,中,无理数有3个、解:无理数有12、〔3分〕〔2017•沈阳〕在平面直角坐标系中,假设点M〔1,3〕与点N〔x,3〕之间旳距离是5,那么x13、〔3分〕不等式组旳整数解是0、1、2、3、解:2215、〔3分〕吸管吸易拉罐内旳饮料时,如下图,∠1=110°,那么∠2=70度、〔易拉罐旳上下底面互相平行〕16、〔3分〕小红解方程组旳解为,由于她太粗心滴上了墨水,遮上了两个数●和☆,【三】解答题〔共3小题,总分值12分〕17、〔4分〕计算:﹣+3×﹣、=﹣+6+2=18、〔4分〕和差不多上方程y=ax+b旳解,求a和b旳值、解:把和,19、〔4分〕解不等式组,并把解集表示在数轴上、解:≤﹣,在数轴上表示不等式组旳解集为:【四】解答题〔共3小题20题5分,21题5分,22题7分,共17分〕20、〔5分〕①在平面直角坐标系中,画出顶点为A〔﹣3,﹣1〕、B〔1,3〕、C〔2,﹣2〕旳△ABC、②假设将此三角形通过平移,使B旳对应点B′坐标为〔﹣1,0〕,试画出平移后旳△A′B′C′、③求△A′B′C′旳面积、×﹣×﹣﹣21、〔5分〕某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,依照采集到旳数据绘制旳统计图〔不完整〕如下:请你依照图中提供旳信息,完成以下问题:〔1〕图1中,“电脑”部分所对应旳圆心角为126度;〔2〕共抽查了80名学生;〔3〕在图2中,将“体育”部分旳图形补充完整;〔4〕爱好“书画”旳人数占被调查人数旳百分比10%;22、〔7分〕请把以下证明过程补充完整、:如图,BCE,AFE是直线,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD证明:∵AD∥BC〔〕∴∠3=∠CAD〔两直线平行,内错角相等〕∵∠3=∠4〔〕∴∠4=∠CAD〔等量代换〕∵∠1=∠2〔〕∴∠1+∠CAF=∠2+∠CAF〔等式性质〕即∠BAF=∠CAD∴∠4=∠BAF〔等量代换〕∴AB∥CD〔同位角相等,两直线平行〕【五】解答题〔共3小题,共23分〕23、〔8分〕〔2018•广陵区二模〕小明到某品牌服装专卖店做社会调查、了解到该专卖店为了激励营业员旳工作积极性,实行“月总收入=差不多工资+计件奖金”旳方法,而“计件奖金=销售每件旳奖金×月销售件〔2〕营业员丙月总收入不低于1800元,这位营业员当月至少要卖服装多少件?24、〔7分〕在平面直角坐标系中,设坐标旳单位长度为1cm,整数点P从原点O动身,速度为1cm/s,且点P只能向上或向右运动,请回答以下问题、13个、〔3〕当点P从点O动身13秒时,可得到整数点〔8,5〕、〔4〕当P点从点O动身〔m+n〕秒时,可得到整数点是〔m,n〕、25、〔8分〕为了庆祝“七一”党旳生日,育新街道办事处要制作一批宣传材料,蓝天广告公司报价:每份材料收费20元,另收设计费1000元;福康公司报价:每份材料费40元,不收设计费、〔1〕什么情况下选择蓝天公司比较合算;〔2〕什么情况下选择福康公司比较合算;六、附加题〔共2小题,选做1题,20分〕26、〔10分〕关于x旳不等式组旳所有整数解旳和为﹣9,求m旳取值范围、,≤﹣≤27、〔10分〕如图,l1∥l2,MN分别和直线l1,l2交于点A,B,ME分别和直线l1,l2交于点C,D,点P在MN上〔P与A,B,M三点不重合〕①假如点P在A,B两点之间运动时,∠α,∠β,∠γ之间有何数量关系?请说明理由、②假如点P在A,B两点外运动时,∠α,∠β,∠γ之间有何数量关系?〔只要求写出结论〕、。
马鞍山市七年级下册末数学试卷及答案
一、解答题1.在平面直角坐标系中,(,1)A a ,(,3)B b 满足()2120a b ++-=.(1)直接写出a 、b 的值:a = ;b = ;(2)如图1,若点(3,)P n 满足ABP △的面积等于6,求n 的值; (3)设线段AB 交y 轴于C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-出发,在x 轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为t 秒,问t 为何值时,有2ABE ABF S S =?请求出t 的值.解析:(1)1-,2;(2)233n =或13-;(3)225t =或2 【分析】 (1)由2(1)20a b +-=,求出a 和b 的值即可;(2)过P 点作直线//l y 轴,延长AB 交l 于Q ,设出Q 点坐标,根据面积关系求出Q 点坐标,再求出PQ 的长度,即可求出n 值;(3)先根据AGOC CONB AGNB S S S +=梯形梯形梯形求出C 点坐标,再根据面积关系求出t 值即可.【详解】解:(1)2(1)20a b ++-,10a ∴+=,20b -=,1a ∴=-,2b =,故答案为1-,2;(2)如图1,过P 作直线l 垂直于x 轴,延长AB 交直线l 于点Q ,设Q 的坐标为(3,)m ,过A 作AH l ⊥交直线l 于点H ,连接BP ,BH ,AHQ ABH BQH S S S ∆∆∆=+, ∴1114(1)(31)(31)(1)(32)222m m ⨯-=⨯+⨯-+--, 解得113m =, 11(3,)3Q ∴, 113(31)(32)222ABP AQP BPQ S S S PQ PQ PQ ∆∆∆=-=⨯+-⨯-=, 又点(3,)P n 满足ABP ∆的面积等于6, ∴311||623n -=, 解得233n =或13-; (3)如图2,延长BA 交x 轴于D ,过A 作AG x ⊥轴于G ,过B 作BN x ⊥轴于N , AGOC CONB AGNB S S S +=梯形梯形梯形, ∴111(1)1(3)2(13)3222OC OC +⨯++⨯=⨯+⨯, 解得53OC =, 5(0,)3C ∴, ADG DNB AGNB S S S ∆∆+=梯形, ∴1111(13)3(3)3222DG DG ⨯⨯+⨯+⨯=+⨯, 解得32DG =, (1,0)G -,5(2D ∴-,0), 由题知,当t 秒时,(82,0)F t -+,511|82()||2|22DF t t ∴=-+--=-, CE t =,13[2(1)]22ABE S CE t ∆∴=⨯⨯--=,111(31)|2|22ABF BDF DAF S S S DF t ∆∆∆=-=⨯⨯-=-, 2ABE ABF S S ∆∆=,∴3112|2|22t t =-, 解得225t =或2. 【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.2.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数;(3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC +∠ECG =80°,又∵∠EGC -∠ECG =30°,∴∠EGC =55°,∠ECG =25°,∴∠ECG =∠GCF =25°,∠PCF =∠PCQ =12(80°-50°)=15°,∵PQ ∥CE ,∴∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF=∠FCD =4x -3x =x ,①当点G 、F 在点E 的右侧时,则∠ECG =x ,∠PCF =∠PCD =32x , ∵∠ECD =80°, ∴x +x +32x +32x =80°, 解得x =16°,∴∠CPQ=∠ECP =x +x +32x =56°; ②当点G 、F 在点E 的左侧时,则∠ECG =∠GCF =x ,∵∠CGF =180°-4x ,∠GCQ =80°+x ,∴180°-4x =80°+x ,解得x =20°,∴∠FCQ =∠ECF +∠ECQ =40°+80°=120°,∴∠PCQ =12∠FCQ =60°,∴∠CPQ =∠ECP =80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.3.如图,已知//AB CD ,CN 是BCE 的平分线.(1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒; (2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒, CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 4.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM与BC交于点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)证明:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.5.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.6.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.7.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB//CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.8.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.解析:(1)点,点;12;(2)存在,点的坐标为和;(3)∠OFC=∠FOB-∠FCD,见解析.【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据△DEC的面积是△DEB面积的2倍和三角形面积公式得到,解得x=1或x=7,然后写出点E的坐标;(3)分类讨论:当点F在线段BD上,作FM∥AB,根据平行线的性质由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,则∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同样得到当点F在线段DB的延长线上,∠OFC=∠FCD-∠FOB;当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.【详解】解:(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系.也考查了平行线的性质和分类讨论的思想. 9.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案. 【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒, 5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下: 如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠又ADP α∠=∠ =180CPDDPFCPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.10.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.解析:(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45° 【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论.【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3); (2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y , ∵∠CAD=90°, ∴∠CAE+∠OAD=90°, ∴2y+∠OAD=90°, ∴∠OAD=90°-2y , ∵DM ∥x 轴,∴∠OAD+∠ADM=180°, ∴90-2y+2x+90°=180°, ∴x=y ,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90° (3)∠N 的大小不变,∠N=45°理由:如图,过D 作DE ∥BC ,过N 作NF ∥BC.∵BC ∥x 轴,∴DE ∥BC ∥x 轴,NF ∥BC ∥x 轴, ∴∠EDM=∠BMD ,∠EDA=∠OAD , ∵DM ⊥AD , ∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°, ∵MN 平分∠BMD ,AN 平分∠DAO ,∴∠BMN=12∠BMD ,∠OAN=12∠OAD ,∴∠ANM=∠BMN+∠OAN=12∠BMD+12∠OAD=12×90°=45°. 【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.11.如图①,在平直角坐标系中,△ABO 的三个顶点为A (a ,b ),B (﹣a ,3b ),O (0,0),且满足3a ++|b ﹣2|=0,线段AB 与y 轴交于点C .(1)求出A ,B 两点的坐标; (2)求出△ABO 的面积;(3)如图②,将线段AB 平移至B 点的对应点B '落在x 轴的正半轴上时,此时A 点的对应点为A ',记△A B C ''的面积为S ,若24<S <32,求点A '的横坐标的取值范围. 解析:(1)A (-3,2),B (3,6);(2)△ABO 的面积为12;(3)点A '的横坐标的取值范围是04A x '<<. 【分析】(1)根据算术平方根和绝对值的非负性可得a =-3,b =2,进而可求得A ,B 两点的坐标;(2)过A 作AE ⊥x 轴,垂足为E ,过B 作BF ⊥x 轴,垂足为F ,根据ABO AEO BOF AEFB S S S S =--梯形即可求得答案;(3)先根据1122ABO A B S CO x CO x =⋅+⋅△可求得点C 的坐标,设B '(m ,0),根据平移的性质可得A '(m -6,-4),过点A '、B '、C 分别作坐标轴的平行线,交点记为点M 、N 、H ,根据A B C A MC A B H CB N A HNM SS S S S '''''''=---四边形可得122S m =+,再根据24<S <32可求得610m <<,进而可求得点A '的横坐标的取值范围. 【详解】解:(1)∵320a b ++-=,30a +≥,20b -≥,∴a +3=0且b -2=0,∴a =-3,b =2,又∵A (a ,b ),B (-a ,3b ),∴A ,B 两点的坐标为A (-3,2),B (3,6);(2)如图,过A 作AE ⊥x 轴,垂足为E ,过B 作BF ⊥x 轴,垂足为F ,∵ A (-3,2),B (3,6),∴ AE =2,BF =6,EF =6,EO =3,OF =3,∴ABO AEO BOF AEFB S S S S =--梯形111()222AE BF EF EO AE FO BF =+-⋅-⋅ 111(26)63236222=⨯+⨯-⨯⨯-⨯⨯ 12=∴△ABO 的面积为12;(3)由(2)知:12ABO S =△,而1122ABO A B S CO x CO x =⋅+⋅△ ∴1133=1222CO CO ⋅+⋅, 解得:CO =4,∴C (0,4),∵B '在x 的正半轴上,∴设B '(m ,0),且m >0,此时由平移的性质易知A '(m -6,-4),∴如图所示,过点A '、B '、C 分别作坐标轴的平行线,交点记为点M 、N 、H ,则A B C A MC A B H CB N A HNM S S S S S '''''''=---四边形11168(6)8644222m m =⨯--⨯-⨯⨯-⨯ 122m =+,即122S m =+,又∵2432S <<,∴2412232m <+<,解得:610m <<,∴064m <-<,∴点A '的横坐标的取值范围是04A x '<<.【点睛】本题考查了算术平方根和绝对值的非负性,平移的性质,用割补法求三角形的面积,以及解一元一次不等式组,熟练掌握用割补法求三角形的面积是解决本题的关键.12.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格每户每月用水量单位:元/吨 15吨及以下a 超过15吨但不超过25吨的部分b 超过25吨的部分 5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.解析:(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.13.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.解析:(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-,11()(4 1.5)12224MNOB t S BM ON OB t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)13224MNAC t S MC NA OB t t =+⋅=⨯+-⨯=-+四边形. 当2344t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形; 当2344t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当2344t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形. 【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键. 14.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.解析:(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少【分析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.15.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为(),0A a ,(),4B b ,()2,C c ,//BC x 轴,且a 、b 满足12100a b a b +-+-+=.(1)则a =______;b =______;c =______;(2)如图1,在y 轴上是否存在点D ,使三角形ABD 的面积等于三角形ABC 的面积?若存在,请求出点D 的坐标;若不存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,点(),0N n 在x 轴上,若三角形BCM 的面积小于三角形BMN 的面积,直接写出n 的取值范围是______.解析:(1)−3,4,4;(2)(0,207)或(0,47);(3)n <−5或n >−1 【分析】(1)根据非负数的性质构建方程组,求出a 和b ,再根据BC ∥x 轴,可得c 的值; (2)当点D 在直线AB 的下方时,如图1−1中,延长BC 交y 轴于E (0,4),连接AE .设D (0,m ).当点D 在直线AB 的上方时,如图1−2中,连接OB ,设D (0,m ).分别构建方程,可得结论.(3)如图2中,当点N 在点A 的右侧时,连接MN ,OB ,设M (a ,b ),利用面积法求出b 的值,再求出S △BNM =S △BCM 时,n 的值,同法求出当点N 在点的左侧时,且S △BNM =S △BCM 时,n 的值,结合图象可得结论.【详解】解:(1)∵12100a b a b +--+=, 又∵1a b +-,|2a −b +10|≥0,∴a +b −1=0且2a −b +10=0,∴a =−3,b =4,∵BC ∥x 轴,∴c =4,∴a =−3,b =4,c =4,故答案为:−3,4,4;(2)当点D 在直线AB 的下方时,如图1−1中,延长BC 交y 轴于E (0,4),连接AE .设D (0,m ).∵S△ABD=S△AED+S△BDE−S△ABE=S△ABC,∴12×(4−m)×3+12×(4−m)×4−12×4×4=12×2×4,∴m=47;当点D在直线AB的上方时,如图1−2中,连接OB,设D(0,m).∵S△ABD=S△ADO+S△ODB−S△ABO=S△ABC,∴12×m×3+12×m×4−12×3×4=12×2×4,∴m=207.综上所述,满足条件的点D的坐标为(0,207)或(0,47).(3)如图2中,当点N点A的右侧时,连接MN,OB.设M(a,b),∵S△BCM=S△OBC−(S△AOB−S△AOM),∴12×2×(4−b)=12×2×4−(12×3×4−12×3×b),解得b =125, 当S △BNM =S △BCM 时,则有12×(n +3)×4−12×(n +3)×125=12×2×(4−125), 解得n =−1, 当点N 在点A 的左侧时,且S △BNM =S △BCM 时,同法可得n =−5,观察图象可知,满足条件的n 的值为n <−5或n >−1.【点睛】本题属于三角形综合题,考查了三角形的面积,非负数的性质,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用未知数构建方程解决问题,对于初一学生来说题目有一定的难度.16.学校组织270名同学和7名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为45人/辆,小客车载客量为30人/辆(1)学校准备租用7辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为400元/辆,小客车租金为300元/辆,哪种租车方案最省钱?(3)学校临时增加10名学生和4名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有1名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有20人,请你帮助设计租车方案解析:(1)有3种租车方案;(2)租5辆大客车,2辆小客车最省钱;(3)租用大客车2辆,小客车7辆;或租10辆小客车.【分析】(1)设租大客车x 辆,根据题意可列出关于x 的不等式,求得不等式的解集后,再根据x 为整数即可确定租车方案;(2)依次计算(1)题中的租车方案,比较结果即可得出答案;(3)设租大客车x 辆,小客车y 辆,根据客车的座位数满足的条件可确定x 、y 满足的不等式组,进一步可确定x 、y 满足的方程,再由带队的老师数可确定x 、y 满足的不等式,二者结合即可确定租车方案.【详解】解:(1)由题意知:本次乘车共270+7=277(人).设租大客车x 辆,则小客车(7-x )辆,根据题意,得4530(7)277x x +-≥, 解得:7415x ≥, 因为x 为整数,且x ≤7,所以x =5,6,7,即有3种租车方案.(2)方案一:当x =7,所租7辆皆为大客车时,租车费用为:7×400=2800(元), 方案二:当x =6,所租6辆为大客车,1辆为小客车时,租车费用为:6×400+300=2700(元),方案三:当x =5,所租5辆为大客车,2辆为小客车时,租车费用为:5×400+300×2=2600(元),所以,租5辆大客车,2辆小客车最省钱.(3)乘车总人数为270+7+10+4=291(人),因为最后一辆小客车最少20人,则客车空位不能大于10个,所以客车的总座位数应满足:291≤座位数≤301.设租大客车x 辆,小客车y 辆,则291≤45x +30y ≤301,即21193220515x y ≤+≤, ∵x 、y 均为整数,∴3x +2y =20,即3102y x =-. ∵每辆大客车有2名教师带队,每辆小客车至少有1名教师带队, ∴2x +y ≤11. 把3102y x =-代入上式,得3210112x x +-≤,解得2x ≤. 又∵x 为整数且是2的倍数,∴x =2,y =7或x =0,y =10.故租车方案为:租大客车2辆,小客车7辆;或租10辆小客车.【点睛】本题考查了不等式和不等式组的实际应用、二元一次方程的整数解等知识,正确理解题意,列出不等式和不等式组是解题的关键.17.某市出租车的起步价是7元(起步价是指不超过3km 行程的出租车价格),超过3km 行程后,其中除3km 的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km ,那么顾客还需付回程的空驶费,超过3km 部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A 处到相距km x (12x ≤)的B 处办事,在B 处停留的时间在3分钟以内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)解析:当x 小于5时,方案二省钱;当x=5时,两种方案费用相同;当x 大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km 的km 数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km 的km 数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.【详解】方案一的费用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x ,方案二的费用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x ,。
2022届马鞍山市初一下期末检测数学试题含解析
2022届马鞍山市初一下期末检测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.下列变形属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x+3=(x﹣1)2+2C.x2﹣6xy+9y2=(x﹣3y)2D.3(5﹣x)=﹣3(x﹣5)【答案】C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A.不是因式分解,故本选项不符合题意;B.不是因式分解,故本选项不符合题意;C.是因式分解,故本选项符合题意;D.不是因式分解,故本选项不符合题意;故选C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.2.三角形的周长为15cm,其三边的长均为整数,当其中一条边长为3cm时,则不同形状的三角形共有()A.2种B.3种C.4种D.5种【答案】A【解析】【分析】根据三角形的两边之和大于第三边,根据周长是15厘米,可知最长的边要小于7.5厘米,进而得出三条边的情况.【详解】解:∵三角形中一边的长为3cm,且另外两边长的值均为整数,∴有两种情况:当三角形的最长边为7时,三条边分别是3cm、5cm、7cm,当三角形的最长边为6时,三条边分别是3cm、6cm、6cm.故选A.【点睛】本题考查学生对三角形三边关系的理解及运用能力,注意不能构成三角形的情况一定要排除.3.下列说法错误的是( )A.如果两条直线被第三条直线所截,那么内错角相等B.在同一平面内过一点有且仅有一条直线与已知直线垂直C.经过直线外一点有且只有一条直线与已知直线平行D.连接直线外一点与直线上各点的所有线段中,垂线段最短【答案】A【解析】【分析】分别利用平行线的性质以及垂线的性质分别判断得出答案.【详解】A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A.【点睛】考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键.4.下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多【答案】D【解析】由于不知道两户居民的全年的支出总费用是否相等,所以无法判断全年食品支出费用的情况,故选D 53)A.0与1之间B.1与2之间C.2与3之间D.3与4之间【答案】B【解析】分析:利用“夹逼法”得到:1<3<4,然后开方即可得到答案.详解:∵1<3<4,∴1<3<2,∴3的值在1与2之间.故选B.点睛:本题考查了估算无理数的大小.注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.在平面直角坐标系中,点A(4,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据横坐标是正数,纵坐标是负数,是点在第四象限的条件进行判断.【详解】解:∵4>0,-1<0,∴点A(4,-1)在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.7.用加减消元法解方程组,下列解法不正确的是()A.,消去x B.,消去yC.,消去x D.,消去y【答案】D【解析】【分析】应用加减消元法,判断出解法不正确的是哪个即可.【详解】解:①②,消去,不符合题意; ①②,消去,不符合题意; ①②,消去,不符合题意; 应该是:①②,消去,不是:①②,消去,符合题意. 故选:.【点睛】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用. 8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.9.下列调查中,调查方式选择合理的是( )A .为了了解全国中学生的视力情况,选择全面调查B .为了了解一批袋装食品是否含有防腐剂,选择全面调查C .为了检测某城市的空气质量,选择抽样调查D .为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查【答案】C【解析】试题分析:根据全面调查与抽样调查的要求可得选项A ,为了了解全国中学生的视力情况,人数较多,应选择抽样调查,选项A 错误;选项B ,为了了解一批袋装食品是否含有防腐剂,食品数量较大,应选择抽样调查,选项B 错误; 选项C ,为了检测某城市的空气质量,选择抽样调查,选项C 正确; 选项D ,为了检测乘坐飞机的旅客是否携带违禁物品,事关重大,应选择全面调查,选项D 错误;故答案选C . 考点:全面调查与抽样调查.10.某商场将A 商品按进货价提高50%后标价,若按标价的八折销售可获利40元,设该商品的进货价为x 元,根据题意列方程为( )A .0.8(150%)40x ⨯+=B .8(150%)40x ⨯+=C .0.8(150%)40x x ⨯+-=D .8(150%)40x x ⨯+-=【答案】C【解析】【分析】首先理解题意找出题中存在的等量关系:售价-成本=利润,根据此列方程即可.【详解】解:设这件的进价为x 元,则这件衣服的标价为(1+50%)x 元,打8折后售价为0.8×(1+50%)x 元,可列方程为0.8×(1+50%)x-x=40,故选:C .【点睛】本题考查了由实际问题抽象出一元一次方程,此题的关键是理解成本价、标价、售价之间的关系及打8折的含义.二、填空题11.甲、乙两个芭蕾舞团参加舞剧《天鹅湖》的表演,已知甲、乙两个团的女演员的身高平均数分别为165cm 、165cm ,方差分别为S 甲2=1.5、S 乙2=2.5,则身高更整齐的芭蕾舞团是_____团.【答案】甲【解析】【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【详解】根据方差的意义,方差越小数据越稳定;因为甲的方差为1.5,乙的方差为2.5,故有甲的方差小于乙的方差,故甲团演员的身高较为整齐.故答案为:甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.某校在“数学小论文“评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有______篇.【答案】1【解析】【分析】根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.【详解】∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文100篇,∴第一个方格的篇数是:120×100=5(篇);第二个方格的篇数是:320×100=15(篇);第三个方格的篇数是:720×100=35(篇);第四个方格的篇数是:620×100=30(篇);第五个方格的篇数是:320×100=15(篇);∴这次评比中被评为优秀的论文有:30+15=1(篇);故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:______.【答案】稳定性【解析】塔吊的上部是三角形结构,可以保证安全吊塔上部的结构的稳定性,应用了三角形的稳定性,故答案为三角形的稳定性14.如图所示,网格线是由边长为1的小正方形格子组成的,小正方形的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.小明与数学小组的同学研究发现,内部含有3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S ,其各边上格点的个数之和为m ,则S 与m 之间的关系式为__________.【答案】122S m =+ 【解析】【分析】 根据四个图形的特点,对每个图的面积(S)进行计算,再与其各边上的格点之和(m)进行比较即可得到两者之间的关系.【详解】观察已知格点四边形,发现:第一个图: 211933231222S =-⨯⨯-⨯⨯=,而其各边上格点之和m=5,这里911522222S m ==⨯+=+; 第二个图:12441242S =⨯-⨯⨯⨯=,而其各边上的格点的和m=4,这里11442+222S m ==⨯+=; 第三个图:21119321211222222S =-⨯⨯⨯-⨯⨯-⨯⨯=,而其各边上格点之和m=5,这里911522222S m ==⨯+=+; 第四个图:111343*********S =⨯-⨯⨯-⨯⨯-⨯⨯=,而其各边上格点之和m=8,这里11682222S m ==⨯+=+; 故答案为:122S m =+. 【点睛】本题考查的是列代数式,仔细分析每一个图形并列出代数式,从中找到变化的规律是解决此类题的关键. 15.某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5∼95.5这一分数段的频率是________【答案】0.1【解析】【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【详解】解:读图可知:共有(1+1+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是20=0.4 50故本题答案为:0.1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.163x+在实数范围内有意义,则x的取值范围是_____.【答案】x≥﹣1【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.3x+在实数范围内有意义,则x+1≥0,解得:x≥﹣1,则x的取值范围是:x≥﹣1.故答案为:x≥﹣1.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.17.若有理数a ,b 满足|a+12|+b 2=0,则a b =______. 【答案】2【解析】【分析】 首先依据非负数的性质求得a 、b 的值,然后利用有理数的乘方求解即可.【详解】∵|a+12|+b 2=2, ∴a=-12,b=2. ∴a b =(-12)2=2. 故答案为:2.【点睛】本题主要考查的是非负数的性质,熟练掌握非负数的性质是解题的关键.三、解答题18.如图,在平面直角坐标系中,ABC ∆的顶点坐标为()2,3A -、()3,2B -、()1,1C -.(1)若将ABC ∆向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C ∆,写出点1C 的坐标;(2)画出111A B C ∆绕原点旋转180︒后得到的222A B C ∆;写出点2C 的坐标;(3)A B C '''∆与ABC ∆是中心对称图形,请写出对称中心的坐标:________;(4)顺次联结C 、1C 、C '、2C ,所得到的图形有什么特点?试写出你的发现(写出其中的一个特点即可).【答案】(1)平移后的三角形111A B C ∆如图所示,见解析;点1C 的坐标是()12,2C ;(2)如图所示,见解析;点2C 的坐标是()22,2C --;(3)对称中心的坐标是()0,0O ;(4)四边形21CC C C '的四条边都相等.【解析】【分析】(1)平移后由图可知点C 1(2,2);(2)旋转后由图可知C 2(-2,-2);(3)结合(1)(2)的作图可知对称中心是(0,0);(4)观察可知四边形CC 1C′C 2的四条边都相等;【详解】(1)平移后的三角形111A B C ∆如图所示,点1C 的坐标是()12,2C ;(2)111A B C ∆绕原点旋转180︒后得到的222A B C ∆如图所示,点2C 的坐标是()22,2C --(3)对称中心的坐标是()0,0O(4)四边形21CC C C '的四条边都相等.【点睛】此题考查作图-平移变换,作图-旋转变换,能够根据条件准确作出图形是解题的关键. 19.如图,在ABC ∆中,12AB AC ==厘米,9BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,BPD ∆与CQP ∆是否全等?请说明理由; ②点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD CPQ ∆≅∆?并说明理由;(2)若点Q 以②中的运动速度从点C 出发,点P 以原来运动速度从点B 同时出发,都逆时针沿ABC 的三边运动,求多长时间点P 与点Q 第一次在ABC ∆的哪条边上相遇?【答案】(1)①详见解析;②4;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇. 【解析】 【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明; ②因为VP ≠VQ ,所以BP ≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度; (2)因为VQ>VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得. 【详解】解:(1)①因为1t =(秒),所以3BP CQ ==(厘米)因为12AB =厘米,D 为AB 中点,所以6BD =(厘米),又因为9BC = (厘米), 所以936PC BC BP =-=-=(厘米),所以PC BD =,因为AB AC =,所以B C ∠=∠, 在BPD ∆与CQP ∆中,BP CQ =,B C ∠=∠,BD PC =,所以()BPD CQP SAS ∆≅∆. ②因为B C ∠=∠,要使BPD CPQ ∆≅∆,只能14.52BP CP BC ===厘米,所以点P 的运动时间 4.53 1.5t =÷=秒,因为BPD CPQ ∆≅∆,所以6CQ BD ==厘米. 因此,点Q 的速度为6 1.54÷=(厘米/秒):(2)因为Q P V V >,只能是点Q 追上点P ,即点Q 比点P 多走+AB AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得43212x x =+⨯,解得24x =(秒)此时P 运动了24372⨯=(厘米),又因为ABC ∆的周长为33厘米,723326=⨯+,所以点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题考查全等三角形,熟练掌握全等三角形的性质即计算法则是解题的关键.20.(1)将△ABO 向右平移4个单位,请画出平移后的三角形A′B′O′,并写出点A′、B′的坐标. (2)求△ABO 的面积.【答案】(1)作图见解析;(2)作图见解析;(3)1. 【解析】 【分析】(1)画出A 、B 、O 三点平移后的对应点A′、B′、O′即可解决问题; (2)利用分割法求三角形的面积即可. 【详解】解:(1)如图所示:△A′B′O′,即为所求, 点A′的坐标为:(2,2)、B′的坐标为:(1,4); (2)△ABO 的面积为:4×4﹣12×2×4﹣12×2×2﹣12×2×4=1.【点睛】本题考查作图−平移变换,三角形的面积等知识,解题的关键是学会利用分割法求三角形的面积,属于中考常考题型.21.(1)26(3)-+-. (234964-. 【答案】(1)15;(2)1. 【解析】 【分析】(1)分别化简绝对值和平方,再计算加法; (2)分别计算算术平方根和立方根,再计算减法.解:(1)原式=6+9=15;(2)原式=7﹣(﹣4)=7+4=1【点睛】本题考查了实数的运算,解题的关键是理解绝对值、乘方、算术平方根和立方根的意义.22.将证明过程填写完整.如图,AD⊥BC于点D,EF⊥BC于点F,∠1=∠1.求证AB∥DG.证明:∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(___________________________)∴AD∥(______________________________________)∴∠1=∠3(______________________________________)又∵∠1=∠1(已知)∴∠1=∠3(________________________)∴AB∥DG(___________________)【答案】垂直的定义;EF;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行【解析】【分析】根据平行线的判定和平行线的判定对各步骤进行完善即可.【详解】∵EF⊥BC于点F,AD⊥BC于点D,(已知)∴∠CFE=∠CDA=90°(垂直的定义)∴AD∥ EF (同位角相等,两直线平行)∴∠1=∠3(两直线平行,同位角相等)又∵∠1=∠1(已知)∴∠1=∠3(等量代换)∴AB∥DG(内错角相等,两直线平行)本题主要考查了平行线的判定和性质,关键是掌握平行线的性质和判定定理的综合运用.23.我们约定:体重在选定标准的5±%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg ),收集并整理得到如下统计表:根据以上表格信息解决如下问题:(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:(2)请你选择其中一个统计量.....作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.【答案】(1)60,59,55;(1)见解析; 【解析】 【分析】(1)根据平均数、中位数和众数的定义分别进行计算,即可求出答案;(2)根据选平均数作为标准,得出体重x 满足()()6015%6015%x ⨯-≤≤⨯+为“普通体重”,从而得出②,④,⑨的男生的体重具有“普通体重”;根据选中位数作为标准,得出体重x 满足()()5915%5915%x ⨯-≤≤⨯+为“普通体重”,从而得出④和⑨的男生的体重具有“普通体重”;根据选众数作为标准,得出体重x 满足()()5515%5515%x ⨯-≤≤⨯+为“普通体重”,此时得出③、⑦、⑩的男生的体重具有“普通体重”. 【详解】(1)这组数据按从小到大的顺序排列为:45,53,55,55,58,60,62,65,67,80,则平均数为:45+53+55+55+58+60+62+65+67+8010,=60(kg );中位数为:58+60=592(kg ); 众数为:55; 故填表为:6059 55(2) i )选平均数作为标准.理由:平均数刻画了一组数据的集中趋势,能够反映一组数据的平均水平. 当体重x 满足:()()6015%6015%x ⨯-≤≤⨯+ 即5763x ≤≤时为“一般体重”,此时序号为②,④,⑨的男生具有“一般体重”. ii )选中位数作为标准.理由:中位数刻画了一组数据的集中趋势,且不受极端数据(如最小值45 和最大值80)的影响.当体重x 满足:()()5915%5915%x ⨯-≤≤⨯+ 即56.0561.95x ≤≤时为“一般体重”, 此时序号为④和⑨的男生具有“一般体重”. iii )选众数作为标准.理由:众数刻画了一组数据的集中趋势,可以反映较多的人的实际情况. 当体重x 满足:即52.2557.75x ≤≤时为“一般体重”, 此时序号为③,⑦,⑩的男生具有“一般体重”. 【点睛】此题考查了中位数、众数、平均数,本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.24.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120AOC ∠=︒,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OA 上,另一边ON 在直线AB 的下方,其中30OMN ∠=︒.(1)将图1中的三角尺绕点O 顺时针旋转至图2,使一边OM 在AOC ∠的内部,且恰好平分AOC ∠,求CON ∠的度数;(2)将图1中三角尺绕点O 按每秒10º的速度沿顺时针方向旋转一周,旋转过程中,在第 秒时,边(3)将图1中的三角尺绕点O 顺时针旋转至图3,使ON 在BOC ∠的内部,请探究BOM ∠与NOC ∠之间的数量关系,并说明理由.【答案】 (1) 150°;(2) 9或27;6或1 ;(3)见解析. 【解析】 【分析】(1)根据角平分线的定义求出∠COM ,然后根据∠CON=∠COM+90°解答;(2)分别分两种情况根据平行线的性质和旋转的性质求出旋转角,然后除以旋转速度即可得解; (3)用∠BOM 和∠NOC 表示出∠BON ,然后列出方程整理即可得解. 【详解】解:(1)∵OM 平分∠AOC , ∴∠COM=12∠AOC=60°, ∴∠CON=∠COM+90°=150°; (2))∵∠AOC=120°, ∴∠BOC=60°, ∵∠OMN=30°,∴当ON 在直线AB 上时,MN ∥OC , 旋转角为90°或270°, ∵每秒顺时针旋转10°, ∴时间为9或27,直线ON 恰好平分锐角∠BOC 时, 旋转角为60°或 180°+60°=10°, ∵每秒顺时针旋转10°, ∴时间为6或1;故答案为9或27;6或1. (3)∵∠MON=90°,∠BOC=60°, ∴∠BON=90°-∠BOM , ∠BON=60°-∠NOC , ∴90°-∠BOM=60°-∠NOC , ∴∠BOM-∠NOC=30°,故∠BOM 与∠NOC 之间的数量关系为:∠BOM-∠NOC=30°. 【点睛】本题考查了旋转的性质,角平分线的定义,平行线的性质,读懂题目信息并熟练掌握各性质是解题的关键,25.如图,三角形ABC 在直角坐标系中,若把三角形ABC 向左平移1个单位再向上平移2个单位,得到三角形A B C '''.(1)写出三角形ABC 三个顶点的坐标;(2)请画出平移后的三角形,并写出三角形A B C '''的顶点坐标.【答案】(1)()()()2,2,3,1,0,2A B C --;(2)如图所示:A B C ∆'''即为所求. 见解析,A′(-3,0),B′(2,3),C′(-1,4). 【解析】 【分析】(1)直接利用已知图象得出各点坐标即可;(2)直接利用平移的性质得出各点坐标,进而得出答案. 【详解】(1)()()()2,2,3,1,0,2A B C --;(2)如图所示:A B C ∆'''即为所求, A′(-3,0),B′(2,3),C′(-1,4).【点睛】此题主要考查了作图--平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.。
马鞍山市名校2022届七年级第二学期期末学业水平测试数学试题含解析
马鞍山市名校2022届七年级第二学期期末学业水平测试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.不等式x-1<0 的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【分析】首先解不等式求得x的范围,然后在数轴上表示即可.【详解】解:解x-1<0得x<1.则在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.2.已知a<b,下列式子不成立...的是()A.a﹣5<b﹣5 B.3a<3b C.﹣a+1<﹣b+1 D.1122a s ->- b【答案】C【解析】【分析】我们将四个选项做一个简单的变形,实际就是解四个选项的不等式,看哪一项不满足a<b这个解. 【详解】将a﹣5<b﹣5左右两边同时加5,得a<b,所以A项满足要求;将3a<3b左右两边同时除以3,得a<b,所以B项满足要求;1122a b ->-左右两边同时乘以-2,得a <b ,所以D 项满足要求. 【点睛】本题考查不等式,实际求四个选项的解不是a <b 的是哪个,考查学生会不会解不等式.3.在数轴上表示不等式2(x ﹣1)≤x+3的解集,正确的是( )A .B .C .D .【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示解集即可判断.【详解】解2(x ﹣1)≤x+3得x≤5在数轴上表示为故选B.【点睛】此题主要考查不等式的解法与表示方法,解题的关键是熟知不等式的性质.4.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+为() A .10- B .10 C .7- D .7【答案】C【解析】【分析】把解先代入方程,得2a-3b=5,然后变形6b-4a+3,整体代入求出结果.【详解】∵x ay b =⎧⎨=⎩是二元一次方程2x-3y-5=0的解,∴2a-3b-5=0,即2a-3b=5,∴6b-4a+3=-2(2a-3b )+3故选C.【点睛】本题考查了二元一次方程的解及整体代入的方法.解答本题的关键是运用整体代入的方法.5.如图是某农户2018年收入情况的扇形统计图,已知他家2018年的总收入为5万元,则他家的打工收入是( )A.0.75万元B.1.25万元C.1.75万元D.2万元【答案】B【解析】【分析】扇形统计图中圆代表2018年的总收入,各扇形代表各个小部分的收入.图中的百分比,表示每个部分所占总体的比重.可由各部分的收入=总收入×各部分所占百分比,得到答案.【详解】各部分的收入=总收入×各部分所占百分比即打工收入=5×25%=1.25(万元)故答案为B【点睛】本题解题关键是,理解百分比表示的是,各部分的收入占总收入的比重.cm)为()6.如图,在大长方形ABCD中,放入九个相同的小长方形,则图中阴影部分面积(单位:2A.96B.100C.124D.148设小长方形的长为xcm ,宽为ycm ,观察图形,根据小长方形长宽之间的关系,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再利用阴影部分的面积=大长方形的面积−9×小长方形的面积,即可求出结论.【详解】解析:设小长方形的长为x ,宽为y ,由图可知4202311x y x y y +=⎧⎨-+=⎩,解得83x y =⎧⎨=⎩20(112)9(1132)20389124S y xy ∴=+-=+⨯⨯-⨯⨯=阴.故选:C【点睛】本题考查二元一次方程组在几何图形中的应用,关键是根据图形特征找到等量关系.7.若方程组31331x y ax y a +=+⎧+=-⎨⎩的解满足0x y +>,则a 的取值范围是( ) A .1a <-B .1a <C .1a >-D .1a > 【答案】C【解析】【分析】 根据原方程组的特点,由方程组中两个方程相加可得1122x y a +=+,这样结合0x y +>即可列出关于a 的不等式,解此不等式即可求得a 的取值范围.【详解】把原方程组中两个方程相加可得: 4422x y a +=+, ∴1122x y a +=+, 又∵0x y +>, ∴11022a +>,解得:1a >-. 故选C.【点睛】本题考查了解二元一次方程组和一元一次不等式的应用,能得出关于a 的不等式11022a +>是解答本题的关键.试题分析:从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n边形的内角和可以表示成(n-2)•180°,代入公式就可以求出内角和.∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴(12-2)•180°=1800°,∴这个多边形的内角和为1800°.故选B.考点:本题主要考查了多边形的内角和点评:解答本题的关键是记住多边形内角和公式为(n-2)×180°.9.北京春夏之季鲜花烂漫,空气中弥漫着各种花粉,有一种花粉的直径是0.000063米,将0.000063用科学记数法表示应为( )A.6.3×10﹣4B.0.63×10﹣4C.6.3×10﹣5D.63×10﹣5【答案】C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000063=6.3×10﹣1.故选C.点睛:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣1 B.4 C.0 D.-4【答案】D【解析】【分析】先算出(x+m)与(x+1)的乘积,找出所有含x的项,合并系数,令含x项的系数等于2,即可求m的值.【详解】(x+m)(x+1)=x2+(m+1)x+1m,∵乘积中不含x的一次项,本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于2.二、填空题11.把方程3x+4y =5改写为用含x 的式子表示y 的形式是___________. 【答案】534x y -=【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程3x+4y =5,解得:534x y -=, 故答案为:534x y -=【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.12.如图,AB CD ∥,78B ∠=︒,32D ∠=︒,求F ∠=________.【答案】46°【解析】【分析】根据平行线的性质可得∠B=∠1,再根据三角形外角的性质可得∠F=∠1-∠D ,进而可得答案.【详解】∵AB ∥CD ,∴∠B=∠1=78°,∵∠D=32°,∴∠F=∠1-∠D=78°-32°=46°.两个内角的和.13.若x y t 、、满足方程组23532x t y t x =-⎧⎨-=⎩,则x 和y 之间应满足的关系是_____. 【答案】156y x -=【解析】【分析】要想得到x 和y 之间满足的关系,应把t 消去.【详解】解:由235x t =-得:t =325x -, 代入32y t x -=中得:32325x y x --⨯=, 整理得:156y x -=,故答案为:156y x -=.【点睛】 本题考查了消元法,解题的关键是消去无关的第三个未知数,得到x 和y 之间满足的关系.14.若点()2,1P m m -+在y 轴上,则点P 的坐标为______________.【答案】(0,3)【解析】【分析】根据点在坐标轴上的坐标特点,先求出m ,再确定坐标.【详解】解:由点()2,1P m m -+在y 轴上,则m-2=0,即m=2则P 的坐标为(0,3)【点睛】本题考查点在坐标轴上的特点,其关键是掌握:在x 轴上的点,纵坐标为0;在y 轴上的点,横坐标为0; 15.若点P (a+2,a )在y 轴上,点P′(b ,b-3)在x 轴上,则 -a 2+b 2=______.【答案】3【解析】分析:根据x 轴上点的纵坐标为0列方程求出b 的值,再根据y 轴上点的横坐标为0列方程求解得到a 的值,代入计算即可.∴-a1+b1=-4+9=3.故答案为:3.点睛:本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.16.数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:苗苗的画法:①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a.小华的画法:①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a.请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.答:我喜欢__________同学的画法,画图的依据是__________.【答案】苗苗,同位角相等,两直线平行. 小华,内错角相等,两直线平行.【解析】【分析】结合两人的画法和“平行线的判定”进行分析判断即可.【详解】(1)如图1,由“苗苗”的画法可知:∠2=∠1=60°,∴a∥b(同位角相等,两直线平行);(2)如图2,由“小华”的画法可知:∠2=∠1=60°,∴a ∥b (内错角相等,两直线平行).故答案为(1)苗苗,同位角相等,两直线平行;或(2)小华,内错角相等,两直线平行.【点睛】读懂题意,熟悉“三角尺的各个角的度数和平行线的判定方法”是解答本题的关键.17.在平面直角坐标系中,如果将点()2,3A 沿着x 轴向右平移2个单位,那么平移后所得的点的坐标为______.【答案】()4,3【解析】【分析】根据“上加下减、右加左减”求解可得.【详解】解:将点A (2,3)沿着x 轴向右平移2个单位所得对应点的坐标为(4,3),故答案为:(4,3).【点睛】此题考查坐标与图形变化-平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题18.为了响应政府“绿色出行”的号召,李华选择骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题.(3)李华全程骑车的平均速度是多少?【答案】(1)(1)李华到达离家最远的地方是在12时,此时离家30千米;(2)李华返回的途中速度为:15千米/小时;(3)李华全程骑车的平均速度为:10千米/小时.【解析】【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)用离家的距离除以所用时间即可;(3)用李华全程所行的路程除以所用的时间即可.【详解】观察图象可知:(1)李华到达离家最远的地方是在12时,此时离家30千米;(2)李华返回的途中速度为:30(1513)15÷-=千米/小时;(3)李华全程骑车的平均速度为:(3030)(159)10+÷-=千米/小时.【点睛】此题考查函数的图象,解题关键在于看懂题中数据.19.用10个除颜色外均相同的球设计一个摸球游戏:(1)使摸到红球的概率为15;(2)使摸到红球和白球的概率都是25.【答案】(1)2个红球,8个黄球;(2)4个红球,4个白球,2个其他颜色球. 【解析】【分析】(1)利用概率公式,要使摸到红球的概率为15,则红球有2个,然后设计摸球游戏;(2)利用概率公式,要使摸到红球和白球的概率都是25.则红球有4个,白球有4个,然后设计摸球游戏.【详解】(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A20.(1)解分式方程311(1)(2)xx x x-=--+;(2)已知(x2+px+q)(x2﹣3x+2)中,不含x3项和x项,求p,q的值.【答案】(1)原方程无解;(1)p=3,q=1.【解析】【分析】(1)先去分母,把方程化为整式方程x(x+1)-(x-1)(x+1)=3,再解整式方程,然后进行检验确定原方程的解;(1)先计算多项式乘多项式,再根据题意得到p-3=0,1p-3q=0,然后解关于p、q的方程组即可.【详解】解:(1)去分母得x(x+1)﹣(x﹣1)(x+1)=3,解得x=1,检验:当x=1时,(x﹣1)(x+1)=0,则x=1为原方程的增根,所以原方程无解;(1)(x1+px+q)(x1﹣3x+1)=x4﹣3x3+1x1+px3﹣3px1+1px+qx1﹣3qx+1q=x4+(p﹣3)x3+(q+1﹣3p)x1+(1p﹣3q)x+1q,∵多项式不含x3项和x项,∴p﹣3=0,1p﹣3q=0,∴p=3,q=1.【点睛】本题考查了解分式方程:解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.也考查了多项式乘法.21.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请猜想:DC与BE的数量关系,并给予证明;(2)求证:DC⊥BE.【答案】(1)DC=BE;(2)详见解析;【解析】【分析】(1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD,得出对应边相等即可;(2)由△ABE≌△ACD可以得出∠B=∠ACD=45°,进而得出∠DCB=90°,就可以得出结论.【详解】(1)解:DC=BE;理由如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∠ABC=∠ACB=45°,∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACD(SAS),∴DC=BE;(2)证明:∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.22.解方程:24y+216y--=1.【答案】-2【解析】【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】去分母得:3(y+2)﹣2(2y﹣1)=12,去括号得:3y+6﹣2y+2=12,移项、合并得:﹣y=2,系数化为1:得y=﹣2.【点睛】本题考查解一元一次方程的解法,注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.23.如图,在ABC ∆中,按以下步骤作图:①以点B 为圆心,以大于12BC 的长为半径作弧,以点C 为圆心,同样长为半径作弧,两弧分别相交于点M 、N ;②作直线MN 分别交AB 、BC 于点D 、E ,连接CD .则直线MN 和BC 的关系是 .若CD=CA ,50A ∠=︒,求ACB ∠的度数.【答案】直线MN 垂直平分BC ;105°.【解析】【分析】根据尺规作图,可得直线MN 和BC 的关系,根据中垂线的性质定理和三角形外角的性质,即可求解.【详解】根据尺规作图,可知:直线MN 垂直平分BC ,故答案是::直线MN 垂直平分BC ;∵CA=CD ,∴50CDA A ∠=∠=︒,∴80ACD ∠=︒,∵直线MN 垂直平分BC ,∴DB=DC ,∴B DCB ∠=∠,又∵50CDA B DCB ∠=∠+∠=︒,∴25DCB ∠=︒,∴8025105ACB ∠=︒+︒=︒.【点睛】本题主要考查线段的垂直平分线的尺规作图以及垂直平分线的性质和三角形外角的性质,掌握垂直平分线的性质,是解题的关键.24.某区中小学开展“阳光体育”大课间活动,某校在大课间中开设了五项活动,A :体操,B :健美操,C :舞蹈,D :球类,E :跑步.为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人;(2)请将统计图1补充完整;(3)统计图2中D项目对应的扇形的圆心角是度(保留一位小数);(4)已知该校共有学生1200人,请根据调查结果估计该校喜欢球类的学生人数.【答案】(1)50;(2)补全统计图见解析;(3)129.6;(4)432人【解析】【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=B的人数,再补图即可;(3)计算出D所占百分比,再用360°×D所占百分比可得答案;(4)首先计算出样本中喜欢球类的学生所占百分比,再利用样本估计总体的方法计算即可.【详解】(1)15÷30%=50(人),故答案为:50;(2)B的人数:50-4-15-18-3=10(人);补全条形图如图:(3)360°×(18÷50×100%)=129.6°,故答案为:129.6;(4)1200×(18÷50×100%)=432(人),答:估计该校喜欢球类的学生人数为432人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.阅读下列材料:一般地,n 个相同的因数a 相乘 a a a n ⋅个,记为n a .如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8(即2log 83=).一般地,若n a b =,(0a >且1a ≠,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814=).(1)计算以下各对数的值:2log 4=__________,2log 16=__________,2log 64=__________. (2)观察(1)中三数4、16,64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log log a a M N +=__________.(0a >且1a ≠,0M >,0N >)(4)根据幂的运算法则:n m n m a a a +⋅=以及对数的含义证明上述结论.【答案】(1)2,4,6;(2)log 24+log 216=log 264;(3)log a M+log a N=log a (MN );(4)证明见解析.【解析】【分析】(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log 24+log 216=log 264;(3)有特殊到一般,得出结论:log a M+log a N=log a (MN );(4)首先可设log a M=b 1,log a N=b 2,再根据幂的运算法则:a n •a m =a n+m 以及对数的含义证明结论.【详解】(1)∵22=4,∴log 24=2,∵24=16,∴log 216=4,∵26=64,∴log 264=6;(2)4×16=64,log 24+log 216=log 264;(3)log a M+log a N=log a (MN );(4)证明:设log a M=x ,log a N=y ,则a x =M ,a y =N ,∴MN=a x•a y=a x+y,∴x+y=log a(MN)即log a M+log a N=log a(MN).【点睛】此题主要考查了同底数幂的乘法应用,本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.。
马鞍山市2020年七年级第二学期期末监测数学试题含解析
马鞍山市2020年七年级第二学期期末监测数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.如果一个多边形的每个内角都为150°,那么这个多边形的边数是( )A.6 B.11 C.12 D.18【答案】C【解析】【分析】根据多边形的内角和定理:180°•(n-2)求解即可.【详解】由题意可得:180°⋅(n−2)=150°⋅n,解得n=12.所以多边形是12边形,故选:C.【点睛】此题考查多边形内角(和)与外角(和),掌握运算公式是解题关键2.点P为直线l外一点,点A、B、C为直线l上三点,且PA=5 cm,PB=4 cm,PC=3 cm,则点P到直线l的距离为()A.5 cm B.4 cm C.3 cm D.不大于3 cm【答案】D【解析】【分析】根据直线外一点到直线的距离即为垂线段的长度和垂线段最短的性质由垂线段最短,求解.考点:垂线段最短【详解】根据直线外一点到直线的距离即为垂线段的长度和垂线段最短的性质由垂线段最短,所以点P到直线l的距离为不大于3cm.故选D.3.下列各数是无理数的是()A B C.117D.0.1010010001【答案】B 【解析】利用无理数的定义即可解答.【详解】A.,是有理数;B.C. 117,是有理数; D. 0.1010010001,是有理数;故选B【点睛】本题考查了无理数的识别,熟练掌握无理数的定义是解题关键.4.下列说法:①内错角相等;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④平行于同一条直线的两条直线互相平行. 其中错误的有( ).A .1个;B .2个;C .3个;D .4个.【答案】C【解析】【分析】由题意根据相交线和平行线的性质,分别进行分析判断即可.【详解】解:①两直线平行,内错角相等,①错误;②在同一平面内,两条直线不平行必相交,②错误;③在同一平面内,过一点有且只有一条直线与已知直线垂直,③错误;④平行于同一条直线的两条直线互相平行,④正确.故选:C.【点睛】本题考查相交线和平行线的性质,熟练掌握相交线和平行线的性质以及垂直线定理即在同一平面内,过一点有且只有一条直线与已知直线垂直是解题的关键.5.用了“不等式的两边同时乘以或除以同一个负数,不等号的方向改变”这一不等式基本性质的变形是 ( )A .由a b > 得33a b ->-B .由a b > 得55a b >C .由a b > 得a c b c +>+D .由a b > 得88a b -<- 【答案】D【解析】A.利用了“不等式两边同时减去一个数,不等号方向不变”B.利用了“不等式两边同乘一个正数,不等号方向不变”C.利用了“不等式两边同时加上同一个数,不等号方向不变”D.利用了“不等式两边同乘同一个负数,不等号方向改变”【详解】A.由a b >的两边同时减去3,得a−3>b−3,故本选项不符合题意B.由a>b 的两边同时乘以5,得5a>5b ,故本选项不符合题意C.由a>b 的两边同时加上c ,得a+c>b+c ,故本选项不符合题意D.由a>b 的两边同时乘以−8,不等号的方向改变,即−8a<−8b ,故本选项符合题意故选:D.【点睛】本题考查了不等式的性质,不等式两边同时乘以或除以同一个负数,不等号的方向改变.6.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形,8张宽为a 、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为( )A .23a b +B .2a b +C .3a b +D .无法确定【答案】A【解析】【分析】根据题意可知拼成的长方形的面积是4a 2+3b 2+8ab ,再对此多项式因式分解,即可得出长方形的长和宽.【详解】根据题意可得:拼成的长方形的面积=4a 2+3b 2+8ab ,又∵4a 2+3b 2+8ab=(2a+b )(2a+3b ),b <3b ,∴长=2a+3b .故选A .【点睛】本题考查了长方形的面积.解题的关键是对多项式的因式分解.7.下列命题:①若a b >,则a b >;②直角三角形的两个锐角互余:③如果0a =,那么0ab =④4个角都是直角的四边形是正方形.其中,原命题和逆命题均为真命题的有( )A .0个B .1个C .2个D .3个 【答案】B【解析】写出原命题的逆命题后进行判断即可确定正确的选项【详解】解:①错误,为假命题;其逆命题为若a >b ,则|a|>|b|,错误,为假命题;②直角三角形的两个锐角互余,正确,为真命题;逆命题为两个角互余的三角形为直角三角形,正确,为真命题;③如果a=0,那么ab=0,正确,为真命题;其逆命题为若ab=0,那么a=0,错误,为假命题;④4个角都是直角的四边形是正方形,错误,是假命题,其逆命题为正方形的四个角都是直角,为真命题.原命题和逆命题均是真命题的有1个,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.8.如图,三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,则下列说法错误..的是A .点A 到直线BC 的距离为线段AB 的长度B .点A 到直线CD 的距离为线段AD 的长度C .点B 到直线AC 的距离为线段BC 的长度D .点C 到直线AB 的距离为线段CD 的长度【答案】A【解析】【分析】根据点到直线的距离为点到直线的垂线段的长度来分析即可.【详解】解:∵∠ACB=90°,∴AC ⊥BC根据点到直线的距离为点到直线的垂线段的长度来分析:A :点A 到直线BC 的距离为线段AC 的长度,而不是线段AB 的长度,故A 错误.故选:A .【点睛】本题考查了点到直线的距离的基本概念,属于基础题型,难度不大.9.下列运算正确的是( )A .236=a a a ⋅B .2=a a a -C .()326=a aD .824=a a a ÷ 【答案】C【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A. 235a a =a ⋅ ,故A 选项错误;B. a 2与a 1不是同类项,不能合并,故B 选项错误;C. ()326a =a ,故C 选项正确;D. 826a a =a ÷,故D 选项错误,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.10.若a >b ,则下列不等式中正确的是( )A .a ﹣1<b ﹣1B .a+2>b+2C .﹣3a >﹣3bD .4a <4b 【答案】B【解析】【分析】根据不等式的3个基本性质:1.两边都加上或减去同一个数或同一个式子,不等号的方向不变; 2.两边都乘以或除以同一个正数,不等号的方向不变;3.两边都乘以或除以同一个负数,不等号的方向改变.结合选项,即可得出答案.【详解】A 、由a >b 可得:a ﹣1>b ﹣1,错误;B 、由a >b 可得:a+2>b+2,正确;C 、由a >b 可得:﹣3a <﹣3b ,错误;D 、由a >b 可得:44a b >,错误; 故选B .【点睛】本题考查不等式的基本性质,熟练掌握不等式的3个基本性质是解题关键.二、填空题11.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2=___________。
马鞍山2020-2021七年级下期末试题及参考答案
马鞍山市2020—2021学年度第二学期期末教学质量监测七年级数学试题本试卷共4页,24小题,满分100分.考生注意事项:1.答题前,务必在试题卷、答题卷规定的地方填写自己的姓名、准考证号、座位号.2.答选择题时,每小题选出答案后,请将正确的答案代号在答题卷上用2B铅笔涂黑.3.答非选择题时,请使用0.5毫米的黑色墨水签字笔在答题..卷.上.书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题..卷.规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题....区.域书写的答.....案无效...,在试题卷....、草稿纸上....答题无效.....4.考试结束,请将试题卷和答题卷一并上交.一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出A、B、C、D四个选项,其中只有一个是符合题目要求的.1.下列实数中,最小的数是A.2-B.C.0D.1【答案】A.考查算数平方根和实数大小的比较,简单题.2.下列计算正确的是A.236a a a⋅=B.23639a a=()C.2225420a a a⋅=D.444235a a a=+【答案】D.考查幂的运算,简单题.3.使分式13mm--在实数范围内有意义,则实数m的取值范围是A.1m≠B.3m≠C.3m=D.1m=【答案】B.考查分式有意义的条件,简单题.4.下列说法错误..的是A.由20x+>,可得2x>-B.由12x<,可得0x<C.由24x>-,可得2x<-D.由312x->-,可得23x<【答案】C.考查不等式的基本性质,简单题.5.下列说法中正确的是A.无限不循环小数都是无理数B.绝对值最小的实数不存在C D.有理数与数轴上的点一一对应【答案】A.考查实数的相关概念,简单题.6.如图,若DE ∥AC ,则下列结论中正确的是A .EDC EFC ∠=∠B .AFE ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C .考查平行线的性质,简单题.7.如果2218k x x ++是一个完全平方式,那么k 的值是A .3B .3±C .9D .9±【答案】D .考查完全平方式的概念,简单题.8. 如图,将木条a ,b 与c 钉在一起,1110∠=︒,250∠=︒,要使木条a 与b 平行,木条a 顺时针旋转的度数至少是 A .10︒B .20︒C .30︒D .40︒【答案】B .考查平行线的判定,简单题.9.如图,两个正方形的边长分别为a 和b ,如果10a b +=,22ab =,那么阴影部分的面积是A .15B .17C .20D .22【答案】B .考查整式的运算,中等题. 10.若关于x 的方程212x ax +=--的解是正数,则a 的取值范围为 A .2a < B .2a >C .2a <且4a ≠-D .2a >且4a ≠ 【答案】C .考查分式方程的求解,中等题.二、填空题(本大题共8个小题,每小题3分,满分24分)答案写在答题卷上的指定区域内. 11.方程33810x +=的解是 .【答案】3x =-.考查立方根的概念,简单题. 12|2|0b a -=,则2a b +的值是 .【答案】10.考查算术平方根的非负性,简单题. 13.分解因式:34m m -= .【答案】(12)(12)m m m +-. 考查因式分解,简单题.14.如图所示,1AB l ⊥,2AC l ⊥,则点A 到直线1l 的距离是线段 的长度.a第9题图第6题图4321D B ECFA 第8题图【答案】AB . 考查垂线段的概念,简单题.15.无论x 取何值,2(2)(1)x x x mx n +-=++总成立,则m n +的值为 . 【答案】1-.考查多项式的乘积,简单题. 16.已知1112a b -=,则3aba b-的值是 .【答案】6-. 考查分式的运算,简单题.17.一小区的大门栏杆如图所示,BA 垂直于地面AE 于点A ,CD 平行于地面AE ,则ABC BCD ∠+∠= 度.【答案】270.考查平行线性质的应用,中等题18.对一个实数x 按如图所示的程序进行操作,规定程序运行从“输入一个实数x ”到“结果是否大于88”为一次操作.如果操作正好进行了两次后停止,则x 的取值范围是 .【答案】29.549x <≤.考查一元一次不等式组的应用,中等题.三、解答题(本大题共6题,满分46分).解答题应写出文字说明、演算步骤或证明过程.解答写在答题卷上的指定区域内. 19.(本题满分6分)解不等式组:531321232x x x +<⎧⎪⎨+--≤⎪⎩,并求出满足它的正整数解.由(2)得5x ≥-, (4)分 则满足它的正整数解为1和2.………………………6分第14题图 l 2l 1CAB第17题图20.(本题满分8分)先化简,再求值:213(2)211a a a a a +-÷+-+-,其中23a =.本题考查分式的运算,简单题21.(本题满分8分)如图:(1)写出图中EDM ∠的同位角: ;(2)如果AB ∥CD ,那么图中与FHC ∠相等的角有 个(FHC ∠除外); (3)当EDM ∠=∠ 时,AB ∥CD ,理由: ; (4)如果A ∠与ABD ∠互补,那么E ∠与F ∠有什么关系?说明理由.MD FH C GBEA解:(1)EHM ∠,ACM ∠;……………………………………2分(2)3;…………………………..…………………………3分 (3)ABD ,内错角相等,两直线平行;……………………5分 (4)E F ∠=∠,理由如下:…………………………………6分因为A ∠与ABD ∠互补(已知)所以AF ∥DE (同旁内角互补,两直线平行) 所以E F ∠=∠(两直线平行,内错角相等)………8分 说明:没有注明理由的不扣分. 本题考查平行线的判定和性质,简单题. 22.(本题满分8分)观察以下等式:23(1)(1)1x x x x +-+=+; 23(3)(39)27x x x x -++=-; 23(6)(636)216x x x x +-+=+;…(1)按以上等式的规律,填空:()x a +( )33x a =+; (2)利用(1)中的公式,计算:22(21)(421)(23)(469)x x x x x x +-+--++. 解:(1)22x ax a -+ ………………………………3分(2)原式3333(2)1[(2)(3)]x x =+-+-……….…6分 3381827x x =+-+28=…………………………………8分说明:第(2)问没有利用(1)中公式直接相乘计算且答案正确的得2分 本题考查整式的运算,简单题23.(本题满分8分)某高速铁路一路段正在建设中,甲、乙两个工程队计划参与其中一项工程建设,甲队单独施工30天,恰好完成了该项工程的13,若这时乙队加入,则两队还需同时施工15天,才能完成该项工程.(请用方程或不等式的知识解决以下问题)(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少还需施工多少天才能完成该项工程?(请用方程或不等式知识解答以下问题)解:(1)设乙队单独施工,需要x 天才能完成该项工程.工程.解得,30x =经检验,30x =为原方程的根且符合题意.答:乙队单独施工,需要30天才能完成该项工程. …………….….4分 (2)设甲队施工a 天,乙队施工y 天完成该项工程.答:若甲队参与该项工程施工的时间不超过36天,则乙队至少施工18天才能完 成该项工程. …………………………………………………..…….8分 说明:每小题中若没有用方程或不等式知识解决的且答案正确得1分.本题考查分式方程和不等式的实际应用24.(本题满分8分)(1)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++. ① 分解因式:1ab a b --+;② 若,a b ()a b >都是正整数且满足40ab a b ---=,求a b +的值;(2)若,a b 为实数且满足40ab a b ---=,225332s a ab b a b =+++-,求s 的最小值.解:(1)①1()(1)(1)(1)(1)(1)ab a b ab a b a b b a b --+=---=---=--…………………2分 ②由题15ab a b --+=即(1)(1)5a b --= ∵,a b 为正整数且a b >∴1511a b -=⎧⎨-=⎩即62a b =⎧⎨=⎩∴8a b +=………………………………………………………………..…………5分 (2)由题4ab a b =++本题考查因式分解和整式运算的综合运用。
马鞍山市名校2020年七年级第二学期期末教学质量检测数学试题含解析
马鞍山市名校2020年七年级第二学期期末教学质量检测数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题只有一个答案正确)1.如图,一个运算程序,若需要经过两次运算才能输出结果,则x 的取值范围为( )A .1x >B .15x <≤C .15x ≤≤D .15x ≤<【答案】D【解析】【分析】 根据运算流程结合需要经过两次运算可得出关于x 的一元一次不等式组,解不等式组即可得出结论.【详解】解:由题意得:()3x 21733x 2217+<⎧⎨++≥⎩, 解得:15x ≤<故选:D .【点睛】此题主要考查了一元一次不等式组的应用,关键是弄明白图示的意思,列出不等式组.2.如图,已知AE 平分BAC ∠,BE AE ⊥于E ,//ED AC ,若36BAE ∠=︒,则BED ∠为( )A .136︒B .126︒C .124︒D .114︒【答案】B【解析】【分析】 已知AE 平分∠BAC ,ED ∥AC ,根据两直线平行同旁内角互补,可求得∠DEA 的度数,再由三角形外角和为360°求得∠BED 度数.【详解】解:∵AE 平分∠BAC∴∠BAE=∠CAE=36°∵ED∥AC∴∠CAE+∠DEA=180°∴∠DEA=180°-36°=144°∵∠AED+∠AEB+∠BED=360°∴∠BED=360°-144°-90°=126°.故选:B.【点睛】考查平行线的性质和三角形外角和定理.两直线平行,同旁内角互补.3.下列调查活动中适合用全面调查的是()A.“最强大脑”节目的收视率B.调查乘坐飞机的旅客是否带了违禁物品C.某种品牌节能灯的使用寿命D.了解我省中学生课外阅读的情况【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、“最强大脑”节目的收视率,调查范围广适合抽样调查,故A不符合题意;B、调查乘坐飞机的旅客是否带了违禁物品,事关重大的调查适合普查,故B符合题意;C、某种品牌节能灯的使用寿命,调查具有破坏性,适合抽样调查,故C不符合题意;D、了解我省中学生课外阅读的情况,调查范围广适合抽样调查,故D不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B C.2 D.4 【答案】C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.∴.即2m n-的算术平方根为1.故选C.5.2的平方根为()A.4 B.±4 C D.【答案】D【解析】【分析】利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.6.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米2),数据0.0000007用科学记数法表示为()A.6710-⨯B.60.710-⨯C.7710-⨯D.87010-⨯【答案】C【解析】【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.【详解】0.000 000 1=1×10-1.故选C.【点睛】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.若433339x x x x+++=,则x=()A.-2 B.-1 C.0 D.1 4【答案】A 【解析】【分析】43333439x x x x x +++=⨯=,由此可知x 的值. 【详解】 解:43333439x x x x x+++=⨯=,21339x -==,所以2x =-. 故选:A【点睛】 本题考查了负指数幂,熟练掌握负指数幂的性质是解题的关键.8.如图,点E 在AB 的延长线上,下列条件中能判断AD ∥BC 的是( )A .∠1=∠2B .∠3=∠4C .∠C=∠CBED .∠C+∠ABC=180°【答案】B【解析】【详解】 A. ∵∠1=∠2,∴AB ∥CD, 故不正确;B. ∵ ∠3=∠4 , ∴AD ∥BC, 故正确;C. ∵∠C=∠CBE , ∴AB ∥CD, 故不正确;D. ∵∠C+∠ABC=180º, ∴AB ∥CD, 故不正确;故选B.9.8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为8cm ,则每一个小长方形的面积为( )A .28cmB .215cmC .216cmD .220cm【答案】B【解析】【分析】 先设每个小长方形的长为xcm ,宽为ycm ,根据大长方形的宽为8cm ,5个小长方形的宽等于3个小长方形的长,列出方程组,再进行求解即可.【详解】解:设每个小长方形的长为xcm ,宽为ycm ,根据题意得:835x y x y+=⎧⎨=⎩ , 解得:53x y =⎧⎨=⎩, 则每一个小长方形的面积为5×3=15(cm 2);故选:B .【点睛】本题考查二元一次方程组的应用,解题的关键是根据图形找出其中的等量关系,列出方程组,用到的知识点是长方形的面积公式.10.在下列调查中,适合采用全面调查的是( )A .了解市民对北京世博会的关注度B .了解七年级(3)班的学生期末成绩C .调查全网中小学生课外阅读情况D .环境部门调查6月长江某水域的水质情况【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、了解市民对北京世博会的关注度,调查范围广,适合抽样调查,故A 错误;B 、了解七年级(3)班的学生期末成绩,适合普查,故B 正确;C 、调查全网中小学生课外阅读情况,调查范围广,适合抽样调查,故C 错误;D 、环境部门调查6月长江某水域的水质情况,调查范围广,适合抽样调查,故D 错误;故选:B .【点睛】此题主要考查统计调查的方式,解题的关键是熟知普查与抽样调查的适用范围.二、填空题11.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .【答案】1.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A 点出发最后回到出发点A 时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=1米,故答案为:1.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.12.已知 21x y =⎧⎨=-⎩是方程组 36mx y x ny -=⎧⎨-=⎩的解,则mn 的值为_____. 【答案】1【解析】【分析】把21x y =⎧⎨=-⎩代入方程组即可得到关于m,n 的方程组,即可进行求解. 【详解】解:将x =2,y =﹣1代入方程组36mx y x ny -=⎧⎨-=⎩, 得:21326m n +=⎧⎨+=⎩解得14m n =⎧⎨=⎩, 则mn =1.故答案为:1.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法解二元一次方程组.13.已知点(2,27)A a a -+,B 点的坐标为(1,5),直线//AB y 轴,则a 的值是__________.【答案】3【解析】【分析】根据AB ∥y 可知,A 点和B 点横坐标相等,然后把B 点横坐标代入A 点即可求出a 值.【详解】根据AB ∥y 可知,A 点和B 点横坐标相等,都为1,所以a-2=1,a=3【点睛】本题考查直线与坐标的位置关系,学生们掌握当与y 轴平行时,横坐标是相等的.14.将一张长方形纸片按如图所示的方式折叠,已知50ADE ∠=︒,则EFD ∠的度数为__________.【答案】70°【解析】【分析】利用余角的性质可求得∠AED 的度数,依据翻折的性质可求得∠BEF 的度数,然后依据平行线的性质可求得∠EFD 的度数.【详解】∵∠ADE=50°,∠A=90°,∴∠AED=90°-∠ADE =90°-50°=40°,由翻折的性质可知:∠BEF=∠DEF∴∠BEF=∠DEF =()()11180AED 1804022∠︒-=︒-︒=70°, ∵AD ∥BC ,∴∠DFE=∠BEF=70°.故答案为:70°.【点睛】本题主要考查的是翻折的性质,平行线的性质,平角的性质,熟练掌握翻折的性质是解题的关键. 15.把方程2x+5y=7改写成用x 含的式子表示y 的形式是_______________ 【答案】725x y -=【解析】【分析】要用x 的代数式表示y ,先移项,再将系数化为1即可.【详解】将方程2x+5y=7移项,得5y=7-2x , 系数化为1,得725x y -=, 故答案为:725x y -= 【点睛】此题考查解二元一次方程,掌握运算法则是解题关键16.若3x+2与﹣2x+1互为相反数,则x ﹣2的值是_____.【答案】﹣5【解析】【分析】根据互为相反数的两数之和为零即可解题.【详解】解:∵3x+2与﹣2x+1互为相反数,∴3x+2+(﹣2x+1)=0,解得:x=-3,∴x ﹣2=-5.【点睛】本题考查了相反数,属于简单题,熟悉相反数的概念是解题关键.17.已知AD 是△ABC 的高,∠BAD =70°,∠CAD =25°,则∠BAC 的度数是_____【答案】95°或45°.【解析】【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】解:分两种情况:①如图1,当高AD 在△ABC 的内部时,∠BAC =∠BAD+∠CAD =70°+25°=95°;②如图2,当高AD 在△ABC 的外部时,∠BAC =∠BAD ﹣∠CAD =70°﹣25°=45°,综上所述,∠BAC 的度数为95°或45°.故答案为:95°或45°.【点睛】本题考查了三角形的高线,难点在于要分情况讨论.三、解答题18.如图,已知:OA OB =,OC OD =.(1)请找出图中一对全等的三角形,并说明理由;(2)若90O ︒∠=,25C ︒∠=,求BED ∠的度数.【答案】(1)△OAD ≌△OBC ,证明见解析;(2)∠BED=40°【解析】【分析】(1)由SAS 可以判定△OAD≌△OBC(2)△OAD≌△OBC 可得∠D=∠C=25°利用三角形内角和为180°可得∠OBC=65°利用三角形的外角等于与它不相邻的两个内角的和,可得∠BED 的度数.【详解】解(1)△OAD≌△OBC理由:在△OAD 与△OBC 中OA=OB O=O OD=OC ⎧⎪∠∠⎨⎪⎩∴△OAD≌△OBC(SAS )(2)由(1)可知:△OAD≌△OBC∴∠D=∠C∵∠C=25°∴∠D=25°∵∠O=90°∴∠OBC=180°-∠O -∠C=180°-90°-25°=65°在△BDE 中,∠OBC=∠D+∠BED∴∠BED=∠OBC -∠D=65°-25°=40°【点睛】本题考查了全等的判定及性质,以及三角形内角和和外角和的性质,掌握全等的判定是解题的关键.19.已知:如图,在ABC ∆中,AC=BC ,点D 在AB 边上,DE//AC 交BC 边于点E ,DF AB ⊥,垂足是D ,交直线BC 于点F ,试说明DEF ∆是等腰三角形的理由.【答案】证明见解析.【解析】【分析】由AC BC =与DE AC 得B BDE ∠=∠,根据等角的余角相等,可得F EDF ∠=∠,进而即可得到结论.【详解】 AC BC =,A B ∴∠=∠,DE AC ,BDE A ∴∠=∠,B BDE ∴∠=∠,DF AB ⊥,90BDF ∴∠=︒,90BDE EDF ∴∠+∠=︒,∵180B F BDF ∠+∠+∠=︒,90B F ∴∠+∠=︒,F EDF ∴∠=∠,DE EF ∴=,即DEF ∆是等腰三角形.【点睛】本题主要考查平行线的性质,余角的性质和等腰三角形的性质和判定定理,掌握等角的余角相等,是解题的关键.20. (1)解方程组: 31328x y x y +=-⎧⎨-=⎩(2)解不等式组12(1)11134x x x x -->⎧⎪-+⎨≥-⎪⎩并把它们的解集在如图所示的数轴上表示出来【答案】(1)21x y =⎧⎨=-⎩;(2)51x -≤<,见解析. 【解析】【分析】 (1)利用加减消元法解答即可.(2)利用不等式性质解不等式组,然后在数轴上表示解集即可.【详解】解:(1)31,328x y x y +=-⎧⎨-=⎩①② 3⨯①得:393x y +=-④-②④得:1111y -=解得:1y =-把1y =-代入①,得2x =∴原方程组的解为21x y =⎧⎨=-⎩; (2)解不等式12(1)x x -->,去括号,得:122>x x -+移项合并同类项,得:1x <解不等式11134x x -+≥-, 去分母得:443312x x -≥+-移项合并同类项,得:5x ≥-所以不等式组的解集是51x -≤<解集在数轴上表示如图:.本题考查了解二元一次方程组以及解不等式组,熟练掌握基础计算是解答本题的关键. 21.已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【答案】(1)详见解析;(2)80°【解析】【分析】(1)根据平行线的性质和判定证明即可;(2)利用平行线的性质和判定解答即可.【详解】(1)∵DE∥AC,∴∠2=∠DAC,∵∠l+∠2=180°,∴∠1+∠DAC=180°,∴AD∥GF;(2)∵ED∥AC,∴∠EDB=∠C=40°,∵ED平分∠ADB,∴∠2=∠EDB=40°,∴∠ADB=80°,∵AD∥FG,∴∠BFG=∠ADB=80°.【点睛】此题考查三角形的内角和定理,关键是根据平行线的判定和性质解答.22.(1327-2-52(4)(2)解方程:4-3(x+1)=1-2(1+0.5x)【答案】(1)-2;(2)x=1【分析】(1)利用根式的计算先将三个根式化简,再进行计算(2)先去括号,然后移项,合并同类项,系数化为1,即可【详解】解:(1)原式=-3-4+5=-2;(2)去括号得:4-3x-3=1-2-x,移项得:x-3x=1-2-4+3,合并同类项得:-2x=--2,解得:x=1.【点睛】本题考查根式的运算与一元一次方程的解法,掌握根式的计算和一元一次方程的解法是解题关键23.某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好得了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给的信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?【答案】(1)a=60,b=0.15;(2)补全图形见解析;(3)成绩“优”等的大约有1200名.【解析】分析:(1)利用频率计算公式,频率=频数总数即可求解;(2)根据(1)的结果即可直接补全图形;(3)利用总数3000乘以对应的频率即可求解.详解:(1)a=200×0.30=60,b=30200=0.15;(2)补全频数分布直方图如图:;(3)3000×0.40=1200名.答:成绩“优”等的大约有1200名.点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.为保护环境,增强居民环保意识,某校积极参加即将到来的6月5日的“世界环境日”宣传活动,七年级(1)班所有同学在同一天调查了各自家庭丢弃塑料袋的情况,统计结果的条形统计图如下:根据统计图,请回答下列问题:(1)这组数据共调查了居民有多少户?(2)这组数据的居民丢弃塑料袋个数的中位数是_______个,众数是_______个.(3)该校所在的居民区约有3000户居民,估计该居民区每天丢弃的塑料袋总数大约是多少?【答案】(1)50(2)中位数4 众数4(3)12600【解析】【分析】(1)计算居民总数(2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
2020-2021学年安徽省马鞍山市当涂县七年级(下)期末数学试卷 (解析版)
2020-2021学年安徽省马鞍山市当涂县七年级(下)期末数学试卷一、选择题(共10小题,每题3分,共30分).1.下列各数是无理数的是()A.﹣3B.0C.πD.2.随着科技不断发展,芯片的集成度越来越高,我国企业中芯国际已经实现14纳米量产,14纳米=0.000014毫米,0.000014用科学记数法表示为()A.14×10﹣6B.1.4×10﹣5C.1.4×10﹣7D.0.14×10﹣43.分式在实数范围内有意义,则x的取值范围是()A.x=﹣1B.x≠﹣1C.x≠3D.x≠﹣34.如图,直线AB、CD相交于点O,OE平分∠BOC,若∠AOD=68°,则∠COE的度数是()A.32°B.34°C.36°D.38°5.如图,AC⊥BC于点C,D是线段BC上任意一点,AC=4,则AD的长不可能是()A.B.4C.5D.106.下列式子中,计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(﹣a3)2=a5D.(﹣a2)3=﹣a6 7.若a>b,则下列不等式一定成立的是()A.a>b+2B.a+2>b+1C.﹣a>﹣b D.|a|>|b|8.若不等式(a﹣2)x>a﹣2的解是x<1,则a的取值范围是()A.a<0B.a>2C.a<2D.a<﹣29.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠3=∠410.如图,两个正方形边长分别为a,b,已知a+b=9,ab=11,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共8小题,每小题3分,共24分。
请将答案]接填在后的横线上) 11.﹣的相反数是.12.已知a﹣b=0(b≠0),则分式的值为.13.因式分解:2a2﹣4a=.14.计算﹣12021+20210﹣|﹣|=.15.如图,已知AB∥CD,AD平分∠BAC,∠1=58°,则∠ADC的度数是.16.如图,将长为6,宽为4的长方形ABCD先向右平移2,再向下平移1,得到长方形A'B'CD',则阴影部分的面积为.17.若a+b=﹣2,a2﹣b2=10,则2021﹣a+b的值是.18.若关于x的分式方程+2=的解为正数,则k的取值范围是.三、(本大题共5小题,其中第19题8分,第20、21每小题8分,第22、23每小题,10分共46分)19.解不等式组.20.先化简,再求值(1﹣)÷(1),其中m=2.21.如图,AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°.试说明:∠GDC=∠B,在下列解答中,填空(理由或数学式).解:因为AD⊥BC.EF⊥BC(已知),所以∠ADB=∠EFB=90°().所以EF∥AD().所以+∠2=180°().又因为∠2+∠3=180°(已知),所以∠1=∠3().所以AB∥().所以=∠B().22.某超市有线上和线下两种销售方式,经统计该超市苹果2021年5月份线上销售额为3000元,线下销售额为9000元,线下销售量比线上3倍少300千克,已知线下销售单价是线上销售单价的1.2倍,超市购入苹果单价为4元/千克,5月份该超市线上线下销售苹果的总利润为多少元?23.阅读下列材料:定义任意两个实数a,b,按规则p=ab﹣a+b扩充得到一个新数p,称所得的新数p为a,b的“衍生数”.(1)若a=2,b=﹣3,则a,b的“衍生数”p=.(2)若a=﹣m﹣3,b=m,求a,b的“衍生数”p的最大值.参考答案一、选择题(本大题共10小题,每小题3分,共30分。
马鞍山市名校2019-2020学年七年级第二学期期末学业水平测试数学试题含解析
马鞍山市名校2019-2020学年七年级第二学期期末学业水平测试数学试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1. “垃圾分一分,环境美十分”如果要了解人们进行垃圾分类的情况,则最合适的调查方式是( ) A .普查B .抽样调查C .在社会上随机调查D .在学校里随机调查 【答案】B【解析】【分析】根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案.【详解】解:要了解人们进行垃圾分类的情况,由于人数众多,意义不大,选普查不合适,在社会上和在学校里随机调查,选择的对象不全面,故选抽样调查.故选:B【点睛】本题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.以下所给的数值中,为不等式﹣2x+3<0的解的是( )A .﹣2B .﹣1C .32D .2 【答案】D【解析】解:-2x <-3,x >32,∴不等式的解集是:x >32.故选D . 3.如图,在ABC ∆中,AD 平分BAC ∠且与BC 相交于点D ,40B ∠=,30BAD ∠=,则C ∠的度数是( )A .70B .80C .100D .110【答案】B【解析】【分析】先根据角平分线定义得到∠BAC=2∠BAD=60°,然后在△ABC 中根据三角形内角和定理计算∠C 的度数.【详解】∵AD 平分∠BAC ,∴∠BAC=2∠BAD=2×30°=60°,∴∠B+∠BAC+∠C=180°,∴∠C=180°−∠B−∠BAC=180°−40°−60°=80°故选B.【点睛】此题考查三角形内角和定理,解题关键在于角平分线定义得到∠BAC=2∠BAD=60°.4.将点A 向左平移3个单位长度,再向下平移2个单位长度后对应的坐标为()1,3-,则点A 的坐标为( )A .()1,3-B .()4,3-C .()2,5D .()1,0【答案】C【解析】【分析】根据平移中,点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【详解】设点A 的坐标为(x ,y ),由题意,得:x−3=−1,y−2=3,求得x =2,y =5,所以点A 的坐标为(2,5).故选:C .【点睛】本题考查坐标与图形变化−平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.如果一个角等于它的余角的2倍,那么这个角是它补角的( )A .2倍B .0.5倍C .5倍D .0.2倍 【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.6.若四边形ABCD中,∠A:∠B:∠C=1:2:5,且∠C=150°,则∠D的度数为()A.90°B.105°C.120°D.135°【答案】C【解析】【分析】设四边形3个内角的度数分别是x,2x,5x,通过∠C=150°,求出x,从而求出∠A和∠B,根据四边形的内角和定理,用360°减去这三个角就可求出∠D.【详解】解:设四边形3个内角∠A:∠B:∠C的度数分别是x,2x,5x,则5x=150°,解得x=30°.所以∠A=30°,∠B=60°,∴∠D=360°-30°-150°-60°=120°.故选:C.【点睛】本题考查了四边形的内角和定理:四边形的内角和是360°.形如本题出现比例关系的计算,可设中间量x,用x表示其它的量,列方程求出x,即可求出其它量.7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-12αB.90°+12αC.2αD.360°-α【答案】C【解析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.8.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.79.410-⨯m B.79.410⨯m C.89.410-⨯m D.89.410⨯m【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.000 000 94=9.4×10-1.故选A.9.已知二元一次方程2x﹣7y=5,用含x的代数式表示y,正确的是()A.257xy+=B.257xy-=C.577yx+=D.572yx-=【答案】B 【解析】试题分析:根据等式的性质可得:7y=2x-5,则两边同除以7可得:y=2x57-,故选择B.10.如图,△ABC≌△ADE,点A,B,E在同一直线上,∠B=20°,∠BAD=50°,则∠C的度数为()A.20°B.30°C.40°D.50°【答案】B【分析】根据全等三角形的性质得到∠BAC=∠DAE ,得到∠CAE=∠BAD=50°,根据三角形的外角的性质计算即可.【详解】∵△ABC ≌△ADE ,∴∠BAC=∠DAE ,∴∠CAE=∠BAD=50°,∴∠C=∠CAE-∠B=30°,故选B .【点睛】本题考查的是全等三角形的性质、三角形的外角的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题11.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打__折.【答案】7【解析】【分析】设打x 折,根据利润率不低于5%就可以列出不等式,求出x 的范围.再求x 的最小值.【详解】设打x 折销售,根据题意可得:1500×10x ≥1000(1+5%), 解得:x≥7,x 的最小值是7.故要保持利润率不低于5%,则至少可打7折.故答案为7【点睛】本题考核知识点:一元一次不等式的应用. 解题关键点:设好未知数,根据题意找出涉及数量关系,列出不等式,根据不等式的解集求出答案.12.分解因式:xy 2﹣9x= __________.【答案】x (y - 3)(y + 3)【解析】【分析】先提取公因式x ,然后再利用平方差公式进行即可.解:xy 2﹣9x= x (y 2﹣9)=x (y+3)(y-3)【点睛】本题考查了因式分解的基本步骤,即:一般情况下,能提取公因式的先提取公因式,然后再使用其他方法. 13.一个长方形的长为a ,宽为b ,面积为8,且满足2248a b ab +=,则长方形的周长为_________.【答案】1【解析】【分析】根据题意可得ab=8,代入22()48a b ab ab a b +=+=,求出a+b ,故可得到周长.【详解】∵一个长方形的长为a ,宽为b ,面积为8,∴ab=8,∵22()48a b ab ab a b +=+=∴a+b=6故长方形的周长为2(a+b )=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是熟知提取公因式法因式分解.14.如图,将8×6网格中的图形F 先向下平移4个单位,再向左平移2个单位.若这两次平移所得的图形可以经过一次平移得到,则平移的距离为_____.【答案】5【解析】【分析】画出平移的路线图,利用勾股定理解答即可.【详解】∵图形F 先向下平移4个单位,再向左平移2个单位,所以其平移路线图为:∵FA=4,BA=2,∴FB=224225+=,故答案为:25.【点睛】本题考查了平移,解题的关键是掌握:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.15.两个人做掷硬币的游戏,掷出正面甲得1分,掷出反而乙得1分,先得3分的人赢得一个大蛋糕,游戏因故中途结束,此时甲得2分,乙得1分,若此时分配蛋糕,甲应分得蛋糕的__________.【答案】3 4【解析】【分析】由于现在甲得到了两分,乙得到1分,再掷一次正面甲获胜,两次反面乙获胜,则最多再掷两次就能分出胜负,然后求出他们各自获胜的概率即可.【详解】根据题意,最多在抛掷2次就能分出胜负,列出树状图可得:所有的结果为(正,正),(正,反),(反,正),(反,反),其中前3种结果都是甲先得到3分,只有最后一种结果才能使乙先得到3分,因此,甲应得34块蛋糕,乙应得14块蛋糕.故答案为:3 4【点睛】本题考查了随机事件的概率这一知识点的应用,掷硬币属于典型的随机事件,掷出正反面的概率均为0.5,根据这一点解答即可.16.如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是___________【答案】12【解析】【分析】由图像中得到大于或等于60的组别人数,相加即可得到答案。
2023-2024学年安徽省马鞍山七中七年级(下)期末数学试卷+答案解析
2023-2024学年安徽省马鞍山七中七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,可由其中一个图形平移得到整个图形的是()A.B.C.D.2.化学原子键长石墨烯具有优异的光学、电学、力学特性,在多个领域具有重要的应用前景,石墨烯中每两个相邻碳原子间的键长为米,此键长用科学记数法表示为()A.B.C.D.3.下面括号内填入后,等式成立的是()A.B. C.D.4.如果单项式与是同类项,那么这两个单项式的积是()A.B. C.D.5.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB ,CD 都与地面l 平行,,,当为度时,AM 与CB 平行A.54B.64C.74D.1146.如图,,则点B 到AC 的距离为()A.线段BD 的长度B.线段AC 的长度C.线段CD 的长度D.线段BC 的长度7.若关于x ,y 的方程组的解满足,则k 的取值范围是()A.B.C.D.8.对于x 取任何实数都有意义的分式为()A.B.C. D.9.如图,将面积为3的正方形一个顶点放在数轴上表示1的位置,以表示实数1的点为圆心,正方形的边长为半径作圆,交数轴于点A 、B ,则点A 表示的数为() A. B.C.D.10.我们知道,同底数幂的乘法法则为其中,m 、n 为正整数,类似地我们规定关于任意正整数m 、n 的一种新运算:;比如,则,若,那么的结果是()A.2024B.C.D.二、填空题:本题共8小题,每小题3分,共24分。
11.因式分解:______.12.已知a 的立方根是2,b 是的整数部分,则的算术平方根是______.13.若式子在实数范围内有意义,则x 的取值范围是______.14.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,将一副学生用三角板按如图所示的方式放置.若,则的度数是______.15.如图,一条公路修在湖边时,需要拐弯绕道而过,第一次的拐角,第二次的拐角,第三次的拐角是,这时的道路恰好和第一次拐弯之前的道路AD 平行,则的度数为______.16.如图所示为一个计算程序,若输入a的值为4,则输出的结果应为______.17.若不等式组的解集为,那么的值等于______.18.若关于x的分式方程无解,则m的值为____________________.三、计算题:本大题共1小题,共6分。
2019-2020学年安徽省马鞍山市七年级(下)期末数学试卷(含答案解析)
2019-2020学年安徽省马鞍山市七年级(下)期末数学试卷1. 下列实数中,是无理数的为( )A. 3.14B. 13C. √3D. √92. 下列各式计算的结果为a 5的是( )A. a 3+a 2B. a 10÷a 2C. a ⋅a 4D. (−a 3)23. 生物具有遗,遗传息大多储存在DN 子上,一个DNA 子直径约为0.000002cm ,个数用科学数法可表示为)A. 0.2×10−6cmB. 2×10−6cmC. 0.2×10−7cmD. 2×10−7cm 4. 若把分式x−y 3xy 中的x 和y 都扩大为原来的3倍,那么分式的值( )A. 变为原来的3倍B. 不变C. 变为原来的13D. 变为原来的19 5. 如图,将一副直角三角板按照图中所示位置摆放,点E 在边AB 上,两条斜边互相平行,∠DEF =∠ABC =90∘,∠A =30∘,∠D =45∘,则∠AED 等于( )A. 15∘B. 20∘C. 25∘D. 30∘6. 若关于x 的二次三项式x 2−4x +b 因式分解为(x −1)(x −3),则b 的值为( )A. 4B. 3C. −4D. −37. 不等式组{x −1>32−2x <4的解集是( ) A. x >4 B. x >−1 C. −1<x <4 D. x <−18. 若a =3−√10,则代数式a 2−6a −2的值是( )A. 0B. 1C. −1D. √109. P 是直线l 外一点,A 、B 、C 分别是l 上三点,已知PA =1,PB =2,PC =3,若点P 到l 的距离是h ,则( )A. ℎ≤1B. ℎ=1C. ℎ=2D. ℎ=3 10. 关于x 的分式方程x+m x−2+3m 2−x =4的解为正实数,则实数m 的取值范围是( )A. m >−4B. m <4C. m <4且m ≠1D. m <4且m ≠211. 比较大小:√15______4(填“>”、“<”或“=”号).12.若|x−2|+√3−y=0,则x+y=______ .13.关于x的不等式mx>2m的解集为x<2,则m的取值范围是______ .14.已知关于x的分式x−ax+1=0无解,则a=______.15.若m−n=3,mn=1,则m2+n2=______ .16.将一个矩形纸片折叠后如图所示,若∠ABC=30∘,则∠ACD等于______ .17.方程2x−1x−1+31−x2=2的解是______ .18.如图,正方形ABCD与正方形CEFG的面积之差是6,那么______.19.计算(−1)2020−√16÷√273+3−2×620.(1)分解因式:a3−ab2(2)解不等式:1−x−13≥2x3+(1+x)21.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90∘∴AD//EG______.∴∠1=∠2______.______=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3______.∴AD平分∠BAC______.22.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)△ABC的面积为______;(2)将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′,补全△A′B′C′;(3)在图中画出△ABC的高CD;(4)能使S△ABC=S△QBC的格点Q(A点除外)共有______个.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:∵m2−2mn+2n2−8n+16=0∴(m2−2mn+n2)+(n2−8n+16)=0∴(m−n)2+(n−4)2=0∴(m−n)2=0,(n−4)2=0∴n=4,m=4.根据上述材料,解答下面的问题:(1)已知x2−2xy+2y2−2y+1=0,求x+2y的值;(2)已知a−b=6,ab+c2−4c+13=0,求a+b+c的值.24.在抗击新冠肺炎疫情期间,某志愿者筹集了24000元购买A、B两种不同型号的口罩共13000个,由快递公司寄往武汉,已知A型口罩的单价是B型口罩单价的1.6倍,且用于购买A型口罩和B型口罩的费用相同.(1)求A、B两种型号口罩的单价各是多少?(2)快递公司有甲、乙、丙三个机器人分配快递,甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求1a+1+1b+1+1c+1的值.答案和解析【答案】1. C2. C3. D4. C5. A6. B7. A8. C9. A10. C11. <12. 513. m<014. −115. 1116. 120∘17. x=218. 319. 解:(−1)2020−√16÷√273+3−2×6=1−4÷3+6 9=1−43+23=13.20. 解:(1)原式=a(a2−b2)=a(a+b)(a−b);(2)1−x−13≥2x3+(1+x),3−(x−1)≥2x+3(1+x),3−x+1≥2x+3+3x,−x−2x−3x≥3−3+1,−6x≥1,x≤−16.21. 同位角相等,两直线平行两直线平行,内错角相等∠E等量代换角平分线的定义22. 8 523. 解:(1)∵x2−2xy+2y2−2y+1=x2−2xy+y2+y2−2y+1=(x−y)2+ (y−1)2=0,∴x−y=0,y−1=0,∴y=1,x=1,∴x+2y=1+2=3;(2)∵a−b=6,即a=b+6,代入得:b(b+6)+c2−4c+13=0,整理得:(b2+6b+9)+(c2−4c+4)=(b+3)2+(c−2)2=0,∴b+3=0,c−2=0,解得b=−3,c=2,则a=3,则a+b+c=3−3+2=2.24. 解:(1)24000÷2=12000(元).设B型口罩的单价为m元,则A型口罩的单价为1.6m元,依题意得:120001.6m +12000m=13000,解得:m=1.5,经检验,m=1.5是原方程的解,且符合题意,∴1.6m=2.4.答:A型口罩的单价为2.4元,B型口罩的单价为1.5元.(2)设甲单独完成的效率为x,乙单独完成的效率为y,丙单独完成的效率为z,依题意得:1x =ay+z,∴a=y+zx,∴a+1=x+y+zx ,即1a+1=xx+y+z.同理1b+1=yx+y+z,1c+1=zx+y+z,∴1a+1+1b+1+1c+1=x+y+zx+y+z=1.【解析】1. 解:A、B、D中3.14,13,√9=3是有理数,C中√3是无理数.故选:C.A、B、C、D根据无理数的概念“无理数是无限不循环小数,其中有开方开不尽的数”即可判定选择项.此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数.2. 解:A、a3+a2,无法计算,故此选项错误;B、a10÷a2=a8,故此选项错误;C、a⋅a4=a5,正确;D、(−a3)2=a6,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及合并同类项法则分别判断得出答案.此题主要考查了同底数幂的乘除运算以及合并同类项,正确掌握相关运算法则是解题关键.3. 解:0.000000=2×0cm.故D.小1的正也可以利用科学记数法表示,般式为a1−n,较大的学记数法不同的是所使用的是数幂,指数由数左边起第一个不为的数字前面0的数所决.本考查用科记数法表示较的数.般形式a×10−n,其中1≤|a|0,n为由原边起第一个不为零的字前面0个数所决.4. 解:原式=3x−3y3×3x×3y=3(x−y) 27xy=x−y 9xy=13×x−y3xy,所以把分式x−y3xy 中的x和y都扩大为原来的3倍,那么分式的值变为原来的13.故选:C.根据分式的基本性质即可求出答案.本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.5. 解:∵DF//AC,∴∠CGE=∠D=45∘,∵∠A=30∘,∴∠AED=15∘,故选:A.利用平行线的性质可得∠CGE=∠D=45∘,再利用三角形的外角与内角的关系可得答案.此题主要考查了平行线的性质,关键是掌握平行线的性质定理,掌握三角形的外角等于与它不相邻的两个内角的和.6. 解:由题意得:x2−4x+b=(x−1)(x−3)=x2−4x+3,∴b=3,故选:B.将因式分解的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件求出b的值.此题考查了因式分解的意义,以及多项式相等的条件,熟练掌握多项式乘以多项式的法则是解本题的关键.7. 解:,由①得:x>4,由②得:x>−1,不等式组的解集为:x>4,故选:A.首先求出不等式组中每一个不等式的解集,再求出其公共解集.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8. 解:a2−6a−2,=a2−6a+9−9−2,=(a−3)2−11,当a=3−√10时,原式=(3−√10−3)2−11,=10−11,=−1.故选:C.先根据完全平方公式整理,然后把a的值代入计算即可.熟记完全平方公式:(a−b)2=a2−2ab+b2,利用完全平方公式先化简再代入求值更加简便.9. 解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离ℎ≤PA,即ℎ≤1.故选:A.根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.本题主要考查了点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键.10. 解:方程两边都乘以x−2,得:x+m−3m=4(x−2),解得x=8−2m3,∵分式方程的解为正实数,∴8−2m3>0且8−2m3≠2,解得m<4且m≠1,故选:C.先解分式方程求得x=8−2m3,根据分式方程的解为正实数列出关于m的不等式(注意隐含的条件x≠2),解之可得.本题主要考查分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.11. 解:∵4=√16,√15<√16,∴√15<4.故答案为:<.先把4变形为√16,再与√15进行比较,即可得出答案.此题考查了实数的大小比较,要掌握实数大小比较的方法,关键是把有理数变形为带根号的数.12. 解:|x−2|+√3−y=0,∴x−2=0,3−y=0,解得,x=2,y=3,∴x+y=2+3=5,故答案为:5.根据非负数的性质求出x、y,根据有理数的加法法则计算,得到答案.本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.13. 解:∵不等式mx>2m的解集为x<2,∴不等号的方向已改变,∴m<0,故答案为:m<0.这是一个含有字母系数的不等式,仔细观察mx>2m,要想求得解集x<2,需把m看作x的系数,然后运用不等式的性质求出.给出的解集,不等号的方向已改变,说明运用的是不等式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,从而求出m的范围.本题考查了不等式的基本性质.含有字母系数的不等式是近年来中考的热点问题,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,为此需熟练掌握不等式的基本性质,它是正确解一元一次不等式的基础.14. 解:两边都乘以x+1,得x−a=0,由方程无解,得x=−1.当x=−1时,−1−a=0,解得a=−1,故答案为:−1.分式方程去分母转化为整式方程,根据分式方程无解得到x+1=0,将x的值代入整式方程即可求出a的值.此题考查了分式方程的解.解题的关键是明确分式方程无解即为最简公分母为0,能够利用分式方程无解得出关于a的方程.15. 【分析】直接利用完全平方公式将原式变形进而将已知代入求出答案.此题主要考查了完全平方公式,正确将原式变形是解题关键.【解答】解:∵m−n=3,mn=1,∴m2+n2=(m−n)2+2mn=32+2×1=11,故答案为11.16. 解:∵AB//CD,∴∠ABC+∠BCD=180∘,∠1=∠ABC,∵∠ABC=30∘,∴∠BCD=150∘,∠1=30∘,由折叠得:∠ACB=30∘,∴∠ACD=120∘,故答案为:120∘.利用平行线的性质可得∠BCD=150∘,∠1=30∘,再结合折叠可得答案.此题主要考查了平行线的性质,关键是掌握平行线的性质定理.17. 解:方程两边同时乘以1−x2,得−(2x−1)(x+1)+3=2(1−x2)整理,得−2x2−x+4=2−2x2,所以x=2.检验:把x=2代入1−x2=1−4=−3≠0,所以x=2是原方程的根.故答案为:x=2.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程注意要检验.18. 解:设正方形ABCD与正方形CEFG的边长分别为a和b,由题意得:b2−a2=6.由图形可得:=12ab−12a2+12b2−12ab=12(b2−a2)=12×6=3.故答案为:3设正方形ABCD与正方形CEFG的边长分别为a和b,由题意得b2−a2=6.再根据图形写出的表达式,将b2−a2=6整体代入计算即可.本题考查了整式的乘法在几何图形面积计算中的应用,根据图形正确列出算式是解题的关键.19. 直接利用有理数的乘方,算术平方根,立方根,负整数指数幂的性质,分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20. (1)先提公因式a,再利用平方差进行二次分解即可;(2)首先乘以3去分母,然后再去括号、移项、合并同类项,最后把未知数的系数化为1即可.此题主要考查了分解因式和解一元一次不等式,关键是掌握分解因式的步骤,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21. 解:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90∘∴AD//EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.根据平行线的判定与性质进行解答即可.本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.22. 解:(1)S△ABC=1×4×4=8.2故答案为:8;(2)如图所示,△A′B′C′即为所求;(3)如图所示,CD即为所求;(4)如图所示,能使S△ABC=S△QBC的格点Q(A点除外)共有5个,故答案为:5.(1)直接根据三角形的面积公式即可得出结论;(2)根据图形平移的性质画出图形即可;(3)过点C向AB的延长线作垂线即可.(4)作BC的平行线,则经过的格点即为点Q的位置.本题考查了利用平移变换作图,三角形的面积,等底等高的三角形的面积相等,以及三角形的高线的定义,熟记各性质是解题的关键.23. (1)将x2−2xy+2y2−2y+1=0的左边分组配方,然后根据偶次方的非负性,可求出x,y的值,代入代数式即可得到结论;(2)由a−b=6,得到a=b+6,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a+b+c的值.本题考查了配方法的应用,结合偶次方的非负性求值的问题,本题属于中档题.24. (1)设B型口罩的单价为m元,则A型口罩的单价为1.6m元,根据数量=总价÷单价,结合购买A、B两种不同型号的口罩共13000个,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)设甲单独完成的效率为x,乙单独完成的效率为y,丙单独完成的效率为z,根据甲单独完成的时间是乙丙合作完成时间的a倍,可得出1x =ay+z,进而可得出1a+1=xx+y+z,同理可得出1b+1=yx+y+z,1c+1=zx+y+z,代入后即可求出1a+1+1b+1+1c+1的值.本题考查了分式方程的应用以及分式的加减法,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据三个机器人所用时间之间的关系,找出1a+1=xx+y+z,1b+1=yx+y+z 和1c+1=zx+y+z.。
七年级下册马鞍山数学期末试卷测试题(Word版 含解析)
七年级下册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.实数4的算术平方根是()A .2B .2C .2±D .162.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.在平面直角坐标系中,点A (1,﹣2021)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角5.已知,如图,点D 是射线AB 上一动点,连接CD ,过点D 作//DE BC 交直线AC 于点E ,若84ABC ∠=︒,20CDE ∠=︒,则ADC ∠的度数为( )A .104︒B .76︒C .104︒或76︒D .104︒或64︒ 6.下列说法正确的是( ) A .9的立方根是3 B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是2 7.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=50°,∠2=40°,则∠3等于( )A .80°B .70°C .90°D .100°8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )A .()1011,1010B .()1012,1010C .()1010,1009-D .()2020,2021二、填空题9.49的算术平方根是___.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.12.如图:已知AB ∥CD ,CE ∥BF ,∠AEC =45°,则∠BFD =_____.13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.16.在平面直角坐标系xoy 中,对于点(,)P x y 我们把(1,1)P y x -++叫做点P 的伴随点,已知1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到123,,,n A A A A ⋯,若点1A 的坐标为(3,1),则点2021A 的坐标为_______三、解答题17.计算下列各题:(1)327-+2(3)--31-(2)3331632700.1251464---++-. 18.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-. 19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C .证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC ;(2)将ABC 向下平移2个单位长度,再向左平移2个单位长度得到三角形111A B C ,画出平移后的图形并写出1A 、1B 、1C 的坐标.21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.二十二、解答题22.有一块面积为100cm 2的正方形纸片.(1)该正方形纸片的边长为 cm (直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm 2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?二十三、解答题23.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.24.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.25.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.26.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B .【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E ,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵点A(1,-2021),∴A点横坐标是正数,纵坐标是负数,∴A点在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D【分析】根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D 在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC=104°或64°.故选:D.【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.6.C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:939A项错误;算术平方根等于它本身的数是1和0,故B项错误;﹣2是4的一个平方根,故C项正确;42D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键. 7.C【分析】根据AB ∥CD 判断出∠1=∠C =50°,根据∠3是△ECD 的外角,判断出∠3=∠C +∠2,从而求出∠3的度数.【详解】解:∵AB ∥CD ,∴∠1=∠C =50°,∵∠3是△ECD 的外角,∴∠3=∠C +∠2,∴∠3=50°+40°=90°.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),第4次跳动至点4A 的坐标是(3,2),第6次跳动至点6A 的坐标是(4,3),第8次跳动至点8A 的坐标是(5,4),⋯第2n 次跳动至点2n A 的坐标是(1,)n n +,则第2020次跳动至点2020A 的坐标是(1011,1010),故选:A .【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.7【详解】试题分析:因为,所以49的算术平方根是7.故答案为7.考点:算术平方根的定义.解析:7【详解】试题分析:因为2749,所以49的算术平方根是7.故答案为7.考点:算术平方根的定义.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是解析:8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.12.45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,解析:45°【分析】根据平行线的性质可得∠ECD=∠AEC,∠BFD=∠ECD,等量代换即可求出∠BFD.【详解】解:∵AB∥CD,∴∠ECD=∠AEC,∵CE∥BF,∴∠BFD=∠ECD,∴∠BFD =∠AEC ,∵∠AEC =45°,∴∠BFD =45°.故答案为:45°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键.13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE .∴EB 1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB 的中位线从而得出答案.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 15.(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),A解析:(0,2)、(﹣4,﹣2).【分析】由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.【详解】解:∵点A(a﹣2,a),AB⊥x轴,AB=2,∴|a|=2,∴a=±2,∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.∴点A的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.16.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A解析:()3,1【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505…1,∴2021A的坐标与A1的坐标相同,为(3,1).故答案是:(3,1).【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1 (2)11 4 -【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=3311-++=;(2)原式=-3-0-12+0.5+14 =114- 18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD 平分∠BA C .【详解】证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC =EGC ∠=90°(垂直定义)∴AD ∥EG (同位角相等,两直线平行)∴∠1=E ∠(两直线平等行,同位角相等) ∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E (已知)∴1∠=∠2(等量代换)∴AD 平分∠BAC (角平分线的定义)故答案是:∠EGC ;AD ;∠E ;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4)35.【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用253<的范围进而得出a ,b 的值,即可得出答案.【详解】 解:(2319(6)27--3630=-+=;()2331121(2)2789⎛-+-⨯- ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.二十二、解答题22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm ;故答案为:10;(2)∵长方形纸片的长宽之比为4:3,∴设长方形纸片的长为4xcm ,则宽为3xcm ,则4x •3x =90,∴12x 2=90,∴x 2=304,解得:x 或x = ∴长方形纸片的长为,∵56,∴10<∴小丽不能用这块纸片裁出符合要求的纸片.【点睛】本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.二十三、解答题23.(1)PB′⊥QC′;(2)当射线PB 旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠BEQ =∠CQC ′,即12t ﹣180=45+3t ,解得,t =25;③当30<t ≤45时,如图,则∠BPB ′=12t ﹣360°,∠CQC ′=3t +45°,∵AB ∥CD ,PB ′∥QC ′,∴∠BPB ′=∠BEQ =∠CQC ′,即12t ﹣360=45+3t ,解得,t =45;综上,当射线PB 旋转的时间为5秒或25秒或45秒时,PB ′∥QC ′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【详解】解:(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.26.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
新人教版】人教版安徽省马鞍山市2014-2015年七年级下期末数学试卷(解析版)
新人教版】人教版安徽省马鞍山市2014-2015年七年级下期末数学试卷(解析版)分析:将不等式组中的每个不等式在数轴上表示出来,然后求出它们的交集或并集即可.解答:解:将每个不等式在数轴上表示出来,得到:A、解集为[-3,1)∪(3,∞),表示为:B、解集为(-∞,-3)∪[1,3),表示为:C、解集为(-∞,1]∪(3,∞),表示为:D、解集为(-∞,-3]∪[1,∞),表示为:故选A.点评:此题考查了在数轴上表示不等式解集的方法,需要注意符号的转换和交集、并集的求法.5.(3分)(2010•南昌)如图,在平面直角坐标系中,点A(﹣1,2)、B(1,2)、C(﹣2,﹣1)、D(2,﹣1)依次连成一条折线,这条折线的周长为()A.8B.10C.12D.14考点:坐标系中的距离计算.分析:根据坐标系中两点间的距离公式计算出各线段的长度,然后求和即可.解答:解:AB的长度为2,BC的长度为√10,CD的长度为4,DA的长度为√10,因此周长为2+√10+4+√10=6+2√10,故选B.点评:此题考查了坐标系中两点间距离的计算方法,需要熟练掌握距离公式的运用.6.(3分)(2011•池州)已知函数f(x)=2x﹣1,g(x)=x2﹣4,则f[g(3)]的值为()A.B.C.D.考点:函数的复合运算.分析:先计算出g(3),再将g(3)代入f(x)中计算即可.解答:解:g(3)=32﹣4=5,因此f[g(3)]=f(5)=2×5﹣1=9,故选C.点评:此题考查了函数的复合运算,需要掌握函数复合的基本方法和计算规则.7.(3分)(2012•淮北)一个正方形的面积是36平方米,它的周长是()A.6mB.12mC.18mD.24m考点:正方形的性质.分析:根据正方形的面积和周长的公式计算即可.解答:解:设正方形的边长为a,则a2=36,解得a=6,因此周长为4a=24,故选D.点评:此题考查了正方形的基本性质,需要掌握正方形的面积和周长的计算方法.8.(3分)(2013•宣城)下列各组数中,互质的是()A.15,25B.18,27C.21,28D.24,32考点:互质的概念.分析:判断两个数是否互质,可以求它们的最大公约数,若最大公约数为1,则它们互质.解答:解:A、15=3×5,25=5×5,最大公约数为5,不互质;B、18=2×3×3,27=3×3×3,最大公约数为3,不互质;C、21=3×7,28=2×2×7,最大公约数为7,不互质;D、24=2×2×2×3,32=2×2×2×2×2,最大公约数为8,不互质.故选无.点评:此题考查了互质的概念和最大公约数的求法,需要掌握最大公约数的计算方法.1A.B.﹣1可以将其转化为增广矩阵的形式:left(\begin{matrix}1 & 1 & 1 &2 \\1 & m & 3 & 0 \\1 &2 & 1 & -1 \\end{matrix}\right)$$对矩阵进行初等行变换,化为行简化阶梯形矩阵:left(\begin{matrix}1 & 0 & 0 & \frac{2m-3}{m+1} \\0 & 1 & 0 & \frac{3m-1}{m+1} \\0 & 0 & 1 & \frac{2m+1}{m+1} \\end{matrix}\right)$$由此可知,当$m\neq -1$时,方程组有唯一解,且解为:x=\frac{2m-3}{m+1},\quad y=\frac{3m-1}{m+1},\quadz=\frac{2m+1}{m+1}$$当$m=-1$时,方程组无解.故选A.点评:本题考查了解三元一次方程组的方法,需要熟练掌握初等行变换及矩阵的相关知识.9.2013年5月至10月,中国锦州将举办世界园林博览会,主题为“城市与海,和谐未来”,在这个主题的英文中,字母a出现了3次。
安徽省马鞍山市2022届初一下期末学业质量监测数学试题含解析
安徽省马鞍山市2022届初一下期末学业质量监测数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个答案正确)1.现定义一种运算“⊕”,对任意有理数m 、n,规定:m ⊕n=mn(m−n),如1⊕2=1×2(1−2)=−2,则(a+b) ⊕ (a−b)的值是( )A .2ab 2−2b 2B .2ab 2+2b 2C .2a 2b−2b 3D .2ab−2ab 2【答案】C【解析】【分析】根据题目中的新运算可以求得(a+b )⊕(a-b )的值,本题得以解决.【详解】∵m ⊕n=mn(m −n),∴(a+b) ⊕ (a −b)=(a+b)(a −b)[(a+b)−(a −b)]=(a 2−b 2)×2b=2a 2b −2b 3,故选C.【点睛】本题考查整式的混合运算和有理数的混合运算,解题的关键是掌握整式的混合运算和有理数的混合运算. 2.已知一次函数 y 2x 4=+ 与 y x 2=-- 的图象都经过点A ,且与y 轴分别交于点B ,C ,若点()D m,2在一次函数 y 2x 4=+ 的图象上,则BCD 的面积为A .3B .4C .6D .8 【答案】A【解析】【分析】首先根据题意,分别求出点A 、B 、C 、D 的坐标,即可判定BCD 的底为6,高为1,则可求出面积.【详解】解:根据题意,联立方程 242y x y x =+⎧⎨=--⎩解得20x y =-⎧⎨=⎩即点A 的坐标为(-2,0)又根据题意,可得点B (0,4),点C 的坐标为(0,-2),点D 的坐标为(-1,2) BCD 中,BC=6,其高为点D 的横坐标的长度,即为1,则16132BCD S =⨯⨯=△ 故答案为A.【点睛】此题主要考查利用一次函数解析式求解点的坐标以及其构成的三角形的面积,关键是利用坐标找出三角形的底和高,即可解题.3.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A .3B .23C .12-D .无法确定【答案】B【解析】【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得, 13a =,211132a ==--, 312131()2a ==--, 413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.4.如图,装修工人向墙上钉木条,若165︒∠=,//a b ,则2∠的度数等于()A .65B .105C .115D .不能确定【答案】C【解析】【分析】 根据平行线的性质即可求解.【详解】165︒∠=,//a b ,则2∠=180°-∠1=115故选C.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同旁内角互补.5.下列不是二元一次方程组的是( )A .14{1y x x y +=-=B .436{24x y x y +=+=C .4{4x y x y +=-=D .3525{1025x y x y +=+= 【答案】A【解析】A 选项中1x项分母中含有未知数,故不是二元一次方程组. 6.如图所示,下列结论中不正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是同位角D .2∠和4∠是内错角【答案】A【解析】【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】A 、∠1和∠2是同旁内角,故本选项错误,符合题意;B 、∠2和∠3是同旁内角,故本选项正确,不符合题意;C 、∠1和∠4是同位角,故本选项正确,不符合题意;D 、∠2和∠4是内错角,故本选项正确,不符合题意;故选A .【点睛】考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.已知实数a 在数轴上的位置如图所示,则化简2a 1a -+的结果是( )A .-1B .1C .1-2aD .2a-1 【答案】B【解析】【分析】先判断出a 的取值范围,继而根据绝对值的性质以及二次根式的性质进行化简即可.【详解】∵由数轴上a 点的位置可知,0<a <1,∴a-1<0,∴原式=1-a+a=1,故选C .【点睛】本题考查了二次根式的性质与化简,准确识图,熟练掌握和灵活运用相关知识是解题的关键.8.如图,长方形ABCD 的边//AB CD ,沿EF 折叠,使点B 落在点G 处,点C 落在点H 处,若80EFD ∠=︒,则DFH ∠=( )A .100︒B .80︒C .30D .20︒【答案】D【解析】【分析】 利用平角的定义结合翻折变换的性质得出∠EFC=∠EFH=100°,即可得出答案.【详解】解:∵∠EFD=80°,∴∠EFC=180°-80°=100°由折叠得:∠EFC=∠EFH=100°∴∠DFH 的度数为:100°-80°=20°.故选:D .【点睛】此题主要考查了矩形的性质和翻折变换的性质,得出∠EFC=∠EFH=100°是解题关键.9.原子是化学反应中不可再分的基本微粒,由原子核和电子组成.某原子的直径约为0.000000000196m ,可用科学记数法表示为( )A .101.9610m ⨯B .1119.610m ⨯C .1119.610m -⨯D .101.9610m -⨯【答案】D【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000000196m 可用科学记数法表示为101.9610m -⨯,故选:D.【点睛】此题考查科学记数法,解题关键在于掌握一般形式.10.如图:DE 是△ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则△EBC 的周长为( )厘米.A.16 B.18 C.26 D.28【答案】B【解析】【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选:B.【点睛】本题考查了线段垂直平分线的性质,灵活利用这一性质进行线段的等量转化是解题的关键.二、填空题11.计算:18°26′+20°46′=_________________【答案】39°12′【解析】【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点睛】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.12.已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=4,BC=6,则EF=_____.【答案】2【解析】因为AD ∥BC ,所以∠AEB=∠CBE ,因为BE 平分∠ABC ,所以∠ABE=∠CBE ,所以∠AEB=∠CBE,所以AE=AB=4,同理DC=DF ,因为CD=AB ,所以DF=4,因为BC=6,所以AD=6,所以EF=AE+DF-AD=4+4-6=2,故答案为2.13.已知等腰三角形一个角是100︒,则它的底角等于________________.【答案】40︒,40︒;【解析】【分析】先确定100°的内角是顶角,再根据等腰三角形两底角相等列式计算即可【详解】根据三角形的内角和定理,100°的内角是顶角,所以两个底角为: 1801()200︒-︒ =40.故两个底角为40︒,40︒.【点睛】本题考查了等腰三角形的性质,判断出100°的内角是顶角是解题的关键。
2020-2021学年安徽省马鞍山市和县七年级(下)期末数学试卷(解析版)
2020-2021学年安徽省马鞍山市和县七年级(下)期末数学试卷一、选择题(共10个小题,每小题4分).1.计算的平方根为()A.±4B.±2C.4D.±2.下列调查中:①了解某班学生学习中国共产党党史的情况;②选出某校1000米跑的最快的学生;③了解全国中学生视力情况;④了解长江中鱼的种类.适合采取抽样调查的是()A.①③B.②④C.①②D.③④3.为了迎接端午节,某校食堂推出四种粽子新款(分别以A,B,C,D表示),请学生代表免费试吃选出最喜欢的品种,结果反馈如下:CDDBABABBBACCBABABCDCD通过以上数据,你能获得的信息是()A.A款粽子最受欢迎B.B款粽子最受欢迎C.喜欢C、D两款粽子的人加起来占样本的一半D.D款粽子受欢迎程度仅次于C款4.如图,AE∥BD,∠1=120°,∠2=40°,则∠C的度数是()A.10°B.20°C.30°D.40°5.已知a<b,则下列各式不成立的是()A.a﹣2<b﹣2B.3a+b<4b C.1﹣2a<1﹣2b D.ac<bc(c>0)6.关于x的一元一次方程x+m﹣2=0的解是负数,则m的取值范围是()A.m>2B.m<2C.m>﹣2D.m<﹣27.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为()A.75元,100元B.120元,160元C.150元,200元D.180元,240元8.已知是关于x、y的二元一次方程组的解,则2m﹣n的立方根是()A.1B.±1C.D.±9.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠7+∠4﹣∠1=180°,⑤∠7=∠2+∠3,⑥∠2=∠3中能判断直线a∥b的有()A.3个B.4个C.5个D.6个10.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)二、填空题(本题共4小题,每小题5分,计20分)11.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是.12.若不等式(a﹣2)x>a﹣2的解集为x>1,那么字母a的取值范围是.13.已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第象限;14.在《九章算术》中,二元一次方程组是通过“算筹”摆放的.若图中各行从左到右列出的三组算筹分别表示未知数x,y的系数与相应的常数项,如图1表示方程组是,则如图2表示的方程组是.三、(本大题共8个题,计90分)15.解方程组:.16.x取哪些整数值时,不等式4(x﹣0.3)<0.5x+5.8与x+1≥﹣7﹣x都成立?17.如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,求证:∠AGF=∠ABC.试将下面的证明过程补充完整(填空):证明:∵DE⊥AC,BF⊥AC(已知)∴∠AFB=∠AED=90°()∴BF∥DE(同位角相等,两直线平行),∴∠2+∠3=180°(两直线平行,同旁内角互补),又∵∠1+∠2=180°(已知),∴∠1=,(同角的补角相等)∴GF∥(内错角相等,两直线平行),∴∠AGF=∠ABC.()18.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y﹣)x的值.19.如图,在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出点D的坐标.20.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元(1)求购买1个篮球和1个足球各需多少元?(2)若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?21.为了解男生报考综合素质评价体育测试项目的意向,某校从七年级各班男生随机抽取若干人组成调查样本,根据收集整理到的数据绘制成不完全统计图.根据以上信息,解答下列问题:项目男生体育测试项目A类1000米1分钟跳绳立定跳远B类1000米立定跳远实心球C类1000实心球1分钟跳绳(1)该校采用的调查方式是,被调查的样本容量是.(2)请补充完整图中的条形统计图和扇形统计图;(3)该校共有七年级男生600名,请估计报考C类的男生人数.22.(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.参考答案一、选择题(本大题共10个小题,每小题4分,计40分。
2020年马鞍山市七年级第二学期期末复习检测数学试题含解析
2020年马鞍山市七年级第二学期期末复习检测数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确) 1.若代数式1x -有意义,则x 的取值范围是 ) A .1x ≥ B .2x ≠C .1x ≥且2x ≠D .2x >【答案】C 【解析】 【分析】根据二次根式有意义的条件可得x -1≥0,根据分式有意义的条件可得x ﹣1≠0,再解即可. 【详解】由题意得:x -1≥0且x ﹣1≠0,解得:x ≥1且x ≠1. 故选C . 【点睛】本题考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零. 2.某次考试中,某班的数学成绩统计图如图所示,下列说法错误的是( )A .得分在7080-分之间的人数最多B .该班的总人数为40C .得分在90100-分之间的人数最少D .不及格(60<分)人数是6【答案】D 【解析】 【分析】A 、根据条形统计图找出人数最多的分数段即可做出判断;B 、各分数段人数相加求出总人数即可做出判断;C 、根据条形统计图找出人数最少的分数段即可做出判断;D 、找出不低于60分的人数即可做出判断.【详解】-分之间的人数最多,A选项正确;解:由频数分布直方图知得分在7080++++=,B选项正确;该班的总人数为412148240-分之间的人数最少,C选项正确;得分在90100<分)人数是4,D选项错误;不及格(60故选:D.【点睛】此题考查了频数(率)分布直方图,弄清题意是解本题的关键.3.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.若三角形的两边长分别为3和8,则第三边的长可能是()A.3 B.4 C.5 D.6【答案】D【解析】【分析】根据三角形的三边关系即可求解.【详解】∵三角形的两边长分别为3和8∴第三边的取值为8-3<x<8+3,即5<x<11,故选D【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形的两边之和大于第三边.5.关于x、y 的二元一次方程组5313 2x yax y+=⎧⎪⎨-+=⎪⎩的解也是二元一次方程x-y=-1 的解,则a 的值是( )A.12 B.3 C.20 D.5【答案】A【解析】【分析】由题意建立关于x,y的新的方程组,求得x,y的值,再代入a2x+3y=13中,求得a的值即可.【详解】由题意得51x yx y+=⎧⎨-=-⎩解得x=2,y=3代入方程a2x+3y=13中,解得a=12故选A.【点睛】本题考查二元一次方程的解,熟练掌握计算法则是解题关键.6.如图,函数4y x=-和y kx b=+的图象相交于点()8A m-,,则关于x的不等式()40k x b++>的解集为()A.2x>B.02x<<C.8x>-D.2x<【答案】A【解析】【分析】直接利用函数图象上点的坐标特征得出m的值,再利用函数图象得出答案即可.【详解】解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),∴−8=−4m,解得:m=1,故A点坐标为(1,−8),∵kx+b>−4x时,(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>1.故选:A.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.7.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】【详解】解:根据抽样调查的适用情况可得:①、②和③都适合抽样调查.故应选D考点:调查方法的选择8.下列计算正确的是()A.x2+x3=2x5B.x2 x3=x6C.(﹣x3)2=﹣x5D.x6÷x3=x3【答案】D【解析】【分析】根据同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方对各选项进行判断即可;【详解】解:选项A中,不是同底数幂的乘法指数不能相加,故选项A错误;选项B中,x2 x3=x5,同底数幂的乘法底数不变指数相加,故选项B错误;选项C中,(﹣x3)2=x5,故选项C错误;选项D中,x6÷x3=x3同底数幂的除法底数不变指数相减,故选项D正确;故选D.【点睛】本题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,掌握同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方是解题的关键.9.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为()A.105元B.106元C.108元D.118元【答案】C【解析】试题分析:设进价为x,则依题意:标价的9折出售,仍可获利10%,可列方程解得答案.解:设进价为x,则依题意可列方程:132×90%﹣x=10%•x,解得:x=108元;故选C.考点:一元一次方程的应用.10.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.x2{x1>≤-B.x2{x1<>-C.x2{x1<≥-D.x2{x1<≤-【答案】C【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年安徽省马鞍山市七年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分。
将正确答案字母填在括号内)1.(3分)9的算术平方根为()A.3B.±3C.﹣3 D.81考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.解答:解:∵=3,而9的算术平方根即3,∴9的算术平方根是3.故选A.点评:此题主要考查了算术平方根的定义,特别注意:应首先计算的值,然后再求算术平方根.2.(3分)(2009•临沂)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(3分)下列调查最适合于抽样调查的是()A.老师要知道班长在班级中的支持人数状况B.某单位要对食堂工人进行体格检查C.语文老师检查某学生作文中的错别字D.烙饼师傅要知道正在烤的饼熟了没有考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、人数不多,容易调查,故适合全面调查;B、人数不多,关系到职工的健康,故必须全面调查;D、调查具有破坏性,因而适合抽查.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)(2009•邵阳)不等式组的解集在数轴上可以表示为()A.B.C.D.考点:在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上,即可.解答:解:解不等式得:1≤x<3,即表示1与3之间的数且包含3.表示在数轴上:故选B.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)如图,将四边形ABCD先向左平移2个单位长度,再向上平移1个单位长度,那么点B的对应点B′的坐标是()A.(4,﹣1)B.(﹣4,﹣1)C.(4,1)D.(5,1)考点:坐标与图形变化-平移.分析:由于将四边形ABCD先向左平移2个单位,再向上平移1个单位,则点B也先向左平移2个单位,再向上平移1个单位,据此即可得到点B′的坐标.解答:解:∵四边形ABCD先向左平移2个单位,再向上平移1个单位,∴点B也先向左平移2个单位,再向上平移1个单位,∵由图可知,B点坐标为(6,﹣2),∴B′的坐标为(4,﹣1).故选A.点评:本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)如图,直线a,b被直线c所截,则下列推理中,正确的是()A.因为∠1+∠2=90°,所以a∥b B.因为∠1=∠2,所以a∥bC.因为a∥b,所以∠1=∠2D.因为a∥b,所以∠1+∠2=180°考点:平行线的判定与性质.分析:根据平行线的判定以及性质定理即可作出解答.解答:解:A、因为∠1+∠2=180°,所以a∥b,选项错误;B、因为∠1=∠3即,∠1+∠2=180°,所以a∥b,故选项错误;C、因为a∥b,所以∠1=∠3,即∠1+∠2=180°,故选项错误;D、正确.故选D.点评:本题考查了平行线的判定以及性质定理,理解定理是关键.7.(3分)如果方程组的解x、y的值相同,则m的值是()A.1B.﹣1 C.2D.﹣2考点:解三元一次方程组.分析:由题意将方程组中的两个方程相减,求出y值,再代入求出y值,再根据x=y求出m的值.解答:解:由已知方程组的两个方程相减得,y=﹣,x=4+,∵方程组的解x、y的值相同,∴﹣=4+,解得,m=﹣1.故选B.点评:此题主要考二元一次方程组的解法,一般先消元求出x,再代入其中一个方程求出y值,比较简单.8.(3分)在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:每组人数乘以组数加上剩余的人数或减去缺少的人数等于总人数.解答:解:若每组7人,则7y=x﹣3;若每组8人,则8y=x+5.故选C.点评:本题难点为:根据每组的人数与人数总量的关系列出方程.二、填空题(共8小题,每小题3分,满分24分,把答案写在题中的横线上)9.(3分)2013年5月至10月世界园林博览会将在中国锦州召开,这是世界上第一个海上世界园林博览会,其主题是:City and sea,Harmonious in Future(城市与海,和谐未来),在这句英文中,字母a出现的频数是 3 .考点:频数与频率.分析:根据频数的定义:每个对象出现的次数,求解即可.解答:解:在“City and sea,Harmonious in Future”这个句子的所有字母中,字母“a”出现了3次,故字母“a”出现的频数为3.故答案为:3.点评:本题考查了频数的定义,解答本题的关键是掌握频数是指每个对象出现的次数.10.(3分)在实数3.14,﹣,﹣,,﹣π,中,无理数有 3 个.考点:无理数.分析:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.解答:解:无理数有,,﹣π,共3个,故答案为:3.点评:本题考查了对无理数的定义的应用,注意:无理数是指无限不循环小数11.(3分)在同一平面内,如果直线b和c都与直线a垂直,那么直线b和c的位置关系是平行.考点:垂线.分析:根据在同一平面内,两条直线都与同一条直线垂直,则这两直线平行作答.解答:解:∵在同一平面内,b⊥a,c⊥a,∴b∥c,即直线b和c的位置关系是平行.故答案为:平行.点评:此题考查了平行线的判定这一知识点,本题利用了:在同一平面内,两条直线都与同一条直线垂直,则这两直线平行.12.(3分)(2011•沈阳)在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是﹣4或6 .考点:坐标与图形性质.专题:计算题.分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x﹣1|=5,解得x=﹣4或6.故答案为:﹣4或6.点评:本题是基础题,考查了坐标与图形的性质,当两点的纵坐标相等时,则这两点在平行于x轴的直线上.13.(3分)不等式组的整数解是0、1、2、3 .考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:,由①得,x>﹣1,由②得,x≤3,所以,不等式组的解集是﹣1<x≤3,不等式组的整数解为0、1、2、3.故答案为:0、1、2、3.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(3分)两数a,b的平方和不小于这两数的积的两倍,用不等式表示为ɑ2+b2≥2ɑb.考点:由实际问题抽象出一元一次不等式.分析:根据已知表示出两数a,b的平方和,进而得出这两数的积的两倍,即可得出答案.解答:解:根据题意得出:ɑ2+b2≥2ɑb.故答案为:ɑ2+b2≥2ɑb.点评:此题主要考查了由实际问题抽象出一元一次不等式,根据已知得出两数的平方和两数的积是解题关键.15.(3分)吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=70 度.(易拉罐的上下底面互相平行)考点:平行线的性质;对顶角、邻补角.专题:应用题.分析:本题主要利用两直线平行,同旁内角互补以及对顶角相等进行解题.解答:解:因为易拉罐的上下底面互相平行,所以∠2与∠1的对顶角之和为180°.又因为∠1与其对顶角相等,所以∠2+∠1=180°,故∠2=180°﹣∠1=180°﹣110°=70°.点评:考查了平行线的性质及对顶角相等.16.(3分)小红解方程组的解为,由于她太粗心滴上了墨水,遮上了两个数●和☆,请你想办法帮她找回这两个数●=8 ,☆=﹣2 .考点:二元一次方程组的解.专题:计算题.分析:将x=5代入方程组中第二个方程求出y的值,得到☆表示的数;将x与y的值代入第一个方程求出结果,即为●表示的数.解答:解:将x=5代入2x﹣y=12中得:10﹣y=12,即y=﹣2,将x=5,y=﹣2代入得:2x+y=10﹣2=8.则●=8,☆=﹣2.故答案为:8;﹣2点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题(共3小题,满分12分)17.(4分)计算:﹣+3×﹣.考点:实数的运算.分析:先根据数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣+6+2=.点评:本题考查的是实数的运算,熟知数的开方法则是解答此题的关键.18.(4分)已知和都是方程y=ax+b的解,求a和b的值.考点:二元一次方程的解.解答:解:把和代入方程y=ax+b得,,解得a=1,b=1.点评:此题主要考查了二元一次方程解的定义以及解二元一次方程组的基本方法.19.(4分)解不等式组,并把解集表示在数轴上.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:求出每个不等式的解集,找出不等式组的解集即可.解答:解:,∵解不等式①得:x>﹣2,解不等式②得:x≤﹣∴不等式组的解集为:﹣2<x≤﹣,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.四、解答题(共3小题20题5分,21题5分,22题7分,共17分)20.(5分)①在平面直角坐标系中,画出顶点为A(﹣3,﹣1)、B(1,3)、C(2,﹣2)的△ABC.②若将此三角形经过平移,使B的对应点B′坐标为(﹣1,0),试画出平移后的△A′B′C′.③求△A′B′C′的面积.考点:作图-平移变换.专题:作图题.分析:(1)根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可;(2)根据网格结构找出点A、C平移后的对应点A′、C′的位置,然后顺次连接即可;(3)利用△A′B′C′所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:(1)△ABC如图所示;(2)△A′B′C′如图所示;(3)△A′B′C′的面积=5×5﹣×4×4﹣×1×5﹣×1×5=25﹣8﹣﹣=17﹣5=12.点评:本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.(5分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为126 度;(2)共抽查了80 名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比10% ;(5)估计现有学生中,有287 人爱好“书画”.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由“电脑”部分的百分比乘以360即可得到结果;(2)由“电脑”部分的人数除以占的百分比即可求出调查的学生总数;(3)由总学生数减去其他的人数求出“体育”部分的人数,补全统计图即可;(4)由“书画”部分的学生数除以总人数即可得到结果;(5)由求出“书画”部分的百分比乘以2870即可得到结果.解答:解:(1)根据题意得:360°×35%=126°;(2)根据题意得:28÷35%=80(人);(3)“体育“部分的是80﹣(28+24+8)=20人,补全统计图,如图所示:(4)根据题意得:8÷80=10%;(5)根据题意得:2870×10%=287(人).故答案为:(1)126;(2)80;(4)10%;(5)287.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(7分)请把下列证明过程补充完整.已知:如图,BCE,AFE是直线,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD证明:∵AD∥BC(已知)∴∠3=∠CAD (两直线平行,内错角相等)∵∠3=∠4(已知)∴∠4=∠CAD (等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAF=∠CAD∴∠4=∠BAF (等量代换)∴AB∥CD(同位角相等,两直线平行)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定以及性质定理即可作出解答.解答:证明:∵AD∥BC(已知)∴∠3=∠CAD(两直线平行,内错角相等)∴∠4=∠CAD(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式性质)即∠BAF=∠CAD∴∠4=∠BAF(等量代换)∴AB∥CD(同位角相等,两直线平行).点评:本题考查了平行线的判定以及性质定理,理解定理是关键.五、解答题(共3小题,共23分)23.(8分)(2012•广陵区二模)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:营业员甲乙月销售件数(件)200 150月总收入(元)1400 1250(1)列方程(组),求营业员的月基本工资和销售每件的奖金;(2)营业员丙月总收入不低于1800元,这位营业员当月至少要卖服装多少件?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设营业员月基本工资为b元,销售每件奖励a元,因为月总收入=基本工资+计件奖金,且计件奖金=销售每件的奖金×月销售件数,根据表格中提供的数据可列方程组求解.(2)设营业员丙当月要卖服装x件,根据月总收入=基本工资+计件奖金,营业员丙月总收入不低于1800元,可列不等式求解.解答:解:(1)设营业员月基本工资为b元,销售每件奖励a元.依题意,得,解得a=3,b=800.(2)设营业员丙当月要卖服装x件.依题意,3x+800≥1800,解得.答:小丙当月至少要卖服装334件.点评:本题考查理解题意的能力,关键是根据题目所提供的等量关系和不等量关系,列出方程组和不等式求解.24.(7分)在平面直角坐标系中,设坐标的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题.(1)填表:P从点O出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2)(2,0)(1,1) 33秒(0,3)(3,0)(2,1)(1,2) 4(2)当点P从点O出发12秒,可得到整数点的个数是13 个.(3)当点P从点O出发13 秒时,可得到整数点(8,5).考点:规律型:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移8个单位,用8秒;再向上移动5个单位用5秒;(4)可将图向右移m个单位,用8秒;再向上移动n个单位用5秒.解答:解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间P点可能到的位置(整数点的坐标)1秒(0,1)或(1,0)2秒(0,2)、(1,1)、(2,0)3秒(0,3)、(1,2)、(2,1)、(3,0)(2)∵1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么12秒时,应达到13个整数点;(3)横坐标为8,需要从原点开始沿x轴向右移动8秒,纵坐标为5,需再向上移动5秒,所以需要的时间为13秒.(4)横坐标为m,需要从原点开始沿x轴向右移动m秒,纵坐标为n,需再向上移动n秒,所以需要的时间为(m+n)秒.故答案为:(0,2)、(1,1)、(2,0);3,(0,3)、(1,2)、(2,1)、(3,0),4;13;13;(m+n).点评:此题主要考查了点的变化规律,解决本题的关键是掌握所给的方法,得到相应的可能的整数点的坐标.25.(8分)为了庆祝“七一”党的生日,育新街道办事处要制作一批宣传材料,蓝天广告公司报价:每份材料收费20元,另收设计费1000元;福康公司报价:每份材料费40元,不收设计费.(1)什么情况下选择蓝天公司比较合算;(2)什么情况下选择福康公司比较合算;(3)什么情况下两公司的收费相同.考点:一元一次不等式的应用;一元一次方程的应用.分析:设制作宣传材料数为x,则甲广告公司的收费为50x+2000,乙广告公司收费为70x,利用不等式及方程的知识,即可作答.解答:解:设制作宣传材料数为x件,则蓝天广告公司的收费为(20x+1000)元,福康广告公司的收费为40x元,(1)当20x+1000<40x,即x>50时,选择蓝天广告公司比较合算;(2)当20x+1000>40x,即x <50时,选择福康广告公司比较合算;(3)当20x+1000=40x,即x=50时,两公司的收费相同.答:当制作宣传材料数为50件时,两公司的收费相同.点评:本题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是表示出两家公司的收费,利用不等式及方程求解.六、附加题(共2小题,选做1题,20分)26.(10分)已知关于x的不等式组的所有整数解的和为﹣9,求m的取值范围.考点:一元一次不等式组的整数解.专题:计算题;分类讨论.分析:首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.解答:解:∵,由①得,x<﹣,∵不等式组有解,∴不等式组的解集为﹣5<x<﹣,∵不等式组的所有整数解的和为﹣9,∴不等式组的整数解为﹣4、﹣3、﹣2或﹣4、﹣3、﹣2、﹣1、0、1.当不等式组的整数解为﹣4、﹣3、﹣2时,有﹣2<﹣≤﹣1,m的取值范围为3≤m<6;当不等式组的整数解为﹣4、﹣3、﹣2、﹣1、0、1时,有1<﹣≤2,m的取值范围为﹣6≤m<﹣3.点评:正确解出不等式组的解集,并会根据整数解的情况确定m的取值范围是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.27.(10分)如图,l1∥l2,MN分别和直线l1,l2交于点A,B,ME分别和直线l1,l2交于点C,D,点P在MN上(P与A,B,M三点不重合)①如果点P在A,B两点之间运动时,∠α,∠β,∠γ之间有何数量关系?请说明理由.②如果点P在A,B两点外运动时,∠α,∠β,∠γ之间有何数量关系?(只要求写出结论).考点:平行线的性质.分析:(1)根据平行线的性质可求出它们的关系,从点P作平行线,平行于AC,根据两直线平行内错角相等可得出;(2)分类讨论,①点P在点AB延长线上时,②点P在BA延长线上时,分别过点P作PO∥l1∥l2,利用平行线的性质,可得出答案.解答:解:(1)如图,过点P作PO∥AC,则PO∥l1∥l2,如图所示:∴∠α=∠DPO,∠β=∠CPO,∴∠γ=∠α+∠β;(2)若点P在BA延长线上,过点P作PO∥AC,则PO∥l1∥l2,如图所示:则∠βα=∠α+∠γ.(3)若点P在BA延长线上,过点P作PO∥AC,则PO∥l1∥l2,如图所示:则∠α=∠β+∠γ.点评:本题考查了平行线的性质,解答本题的关键是掌握:两直线平行内错角相等,同位角相等,同胖内角互补.。