信号与系统实验报告实验一 信号与系统的时域分析
系统的时域实验报告
系统的时域实验报告系统的时域实验报告一、引言时域实验是系统动态特性研究中的重要手段之一。
通过对系统的输入和输出信号进行时域分析,可以揭示系统的动态响应规律,并对系统进行性能评估和优化设计。
本实验旨在通过对某一系统的时域实验研究,探索系统的动态特性和性能指标。
二、实验目的1. 了解时域分析的基本原理和方法;2. 掌握系统的时域响应测量技术;3. 研究系统的动态特性和性能指标。
三、实验装置与方法1. 实验装置:系统输入信号发生器、系统输出信号采集器、计算机数据处理软件等;2. 实验方法:根据实验要求,设置系统的输入信号,采集系统的输出信号,并通过计算机软件进行数据处理和分析。
四、实验步骤1. 系统建模:根据实际情况,对系统进行数学建模,得到系统的传递函数或状态空间模型;2. 实验准备:将系统输入信号发生器与系统输出信号采集器连接,设置合适的参数;3. 实验测量:根据实验要求,设置不同的输入信号,采集系统的输出信号;4. 数据处理:将采集到的数据导入计算机软件中,进行时域分析和性能指标计算;5. 结果分析:根据实验结果,分析系统的动态特性和性能指标,得出结论。
五、实验结果与分析根据实验所得数据,通过计算机软件进行时域分析和性能指标计算,得到系统的动态响应曲线和相关参数。
通过对曲线的观察和分析,可以得出以下结论:1. 系统的时间常数:通过观察系统的动态响应曲线,可以确定系统的时间常数,即系统从初始状态到达稳定状态所需的时间。
时间常数越小,系统的响应速度越快。
2. 系统的超调量:超调量是指系统响应的最大偏离量与稳态值之间的差值。
通过观察系统的动态响应曲线,可以测量出系统的超调量。
超调量越小,系统的稳定性越好。
3. 系统的峰值时间:峰值时间是指系统响应曲线达到最大值所需的时间。
通过观察系统的动态响应曲线,可以测量出系统的峰值时间。
峰值时间越小,系统的响应速度越快。
4. 系统的上升时间:上升时间是指系统响应曲线从初始状态到达稳定状态所需的时间。
系统时域分析实验报告
系统时域分析实验报告系统时域分析实验报告一、引言时域分析是电子工程中的重要内容之一,它通过对系统在时间上的响应进行观察和分析,可以帮助我们了解系统的动态特性。
本实验旨在通过对不同系统的时域分析,探讨系统的稳定性、阶数、零极点等特性。
二、实验目的1. 了解时域分析的基本概念和方法;2. 掌握系统的稳定性判断方法;3. 学习如何通过时域分析确定系统的阶数;4. 理解系统的零极点对系统响应的影响。
三、实验原理1. 系统的稳定性判断系统的稳定性是指当输入信号有限时,系统输出是否有界。
常用的判断方法有零极点判断法和频率响应判断法。
2. 系统的阶数确定系统的阶数是指系统传递函数中最高次幂的阶数。
通过观察系统的单位阶跃响应或单位冲激响应,可以确定系统的阶数。
3. 零极点对系统响应的影响系统的零点和极点决定了系统的传递特性。
零点是使系统增益为零的点,极点是使系统增益无穷大的点。
零点和极点的位置和数量决定了系统的稳定性、阶数和频率响应。
四、实验步骤1. 确定实验所用系统的传递函数;2. 绘制系统的单位阶跃响应曲线;3. 通过观察单位阶跃响应曲线,判断系统的稳定性;4. 根据单位阶跃响应曲线的特点,确定系统的阶数;5. 分析系统的零极点位置和数量对系统响应的影响。
五、实验结果与分析以某一系统为例,实验得到其单位阶跃响应曲线如下图所示。
[插入实验结果图]通过观察单位阶跃响应曲线,我们可以看到系统的输出在一定时间后趋于稳定,且没有出现振荡现象。
因此,可以判断该系统是稳定的。
根据单位阶跃响应曲线的特点,我们可以看到系统的输出在一定时间后达到了稳态值,并且没有超过该稳态值。
根据阶跃响应曲线的形状,我们可以判断该系统的阶数为一阶。
通过对系统的传递函数进行分析,我们可以确定系统的零点和极点的位置和数量。
进一步分析可以得出,系统的零点和极点的位置和数量对系统的稳定性、阶数和频率响应都有重要影响。
六、实验总结通过本次实验,我们了解了时域分析的基本概念和方法,掌握了系统的稳定性判断方法和阶数确定方法。
《信号与系统》课程实验报告
《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
北京交通大学《信号与系统》专题研究性学习实验报告
《信号与系统》课程研究性学习手册专题一信号时域分析1. 基本信号的产生,语音的读取与播放【研讨内容】1) 生成一个正弦信号,改变正弦信号的角频率和初始相位,观察波形变化;2) 生成一个幅度为1、基频为2Hz 、占空比为50%的周期方波,3) 观察一定时期内的股票上证指数变化,生成模拟其变化的指数信号,4) 录制一段音频信号,进行音频信号的读取与播放【题目分析】⑴正弦信号的形式为Acosg o t+书)或Asin (3 o t+,分别用MATLAB 的内部函数cos 和sin 表示,其调用形式为y A* cos(w0* t phi)、y A*sin(wo*t phi)。
生成正弦信号为y=5sin(t), 再依次改变其角频率和初相,用matlab 进行仿真。
⑵幅度为1 ,则方波振幅为0.5 ,基频wO=2Hz ,则周期T=pi ,占空比为50% , 因此正负脉冲宽度比为 1 。
(3) 将波形相似的某一段构造成一个指数函数, 在一连续时间内构造不同的2~3 个不同指数函数即可大致模拟出其变化。
(4) 录制后将文件格式转化为wav ,再用wavread 函数读取并播放,用plot 函数绘制其时域波形。
【仿真】( 1 ) 正弦信号正弦信号 1 :A=1;w0=1/4*pi;phi=pi/16;t=-8:0.001:8;xt 仁A*si n(w0*t+phi);plot(t,xt1)title('xt 仁si n( 0.25*pi*t+pi/16)')正弦信号2 (改变1中频率)A=1;w1=1/4*pi;w2=1*pi;phi=pi/16; t=-8:0.001:8; xt 1= A*si n(w1*t+phi);xt2=A*si n(w2*t+phi);plot(t,xt1,t,xt2)正弦信号3 (改变1中相位)A=1;w=1/4*pi;phi仁pi/16;phi2=pi/4; t=-8:0.001:8; xt 1=A*si n(w*t+phi1);xt3=A*si n(w*t+phi2) plot(t,xt1,t,xt3)0.4 -0.2 -0 --0.2 --0.4 --0.6 --0.8 〜(2) 方波信号t=-100:0.01:100;T=0.5;f=1/T;y=square(2*pi*f*t,50);Plot(t,y);axis([-2 2 -3 3]);-3 1—--------- [ ------------ ■ ----------- 1- ---------- 1 ----------- 1 ----------- 1 ----------- 1 -------------------------t-2 -1.5 -1 -0.5 0 0.5 1 1.520.80.6-1 ------------- [ ---------- L-8 -6 -4(3) 模拟股票上证指数变化的指数信号x1=0:0.001:5;y1=2500+1.8*exp(x1);x2=5:0.001:10;y2=2847-1.5*exp(0.8*x2);x3=10:0.001:15;y3=2734+150*exp(-0.08*x3);x4=15:0.001:20;y4=2560-156*exp(-0.08*x4);x=[x1,x2,x3,x4];y=[y1,y2,y3,y4];plot(x,y);30002500200015001000500-500-1000-1500(4) 音频信号的读取与播放 [x,Fs,Bits]=wavread( sou nd(x,Fs,Bits) plot(x)-2000 ---------- [-------- [---------- L0 2 4 6 8 10 1214 16 18 20 'C:\Users\Ghb\Desktop\na nsheng.wav'C\Users\Ghb\Desktop\nvshe ng.wav' [x,Fs,Bits]=wavread(sou nd(x,Fs,Bits)plot(x)2. 信号的基本运算(语音信号的翻转、展缩)【研讨内容】1)将原始音频信号在时域上进行延展、压缩,2)将原始音频信号在频域上进行幅度放大与缩小,3)将原始音频信号在时域上进行翻转,【题目分析】用matlab 的wavread 函数读取录制的音频,用length 函数计算出音频文件的长度,最后计算出时间t ,然后用plot 函数输出录制的音频信号(1)延展与压缩分析把时间t 变为原来的一半,信号就被延展为原来的 2 倍,把时间他变为原来的 2 倍,信号就被压缩为原来的一半。
时域分析实验报告
时域分析实验报告时域分析实验报告引言:时域分析是一种常用的信号处理方法,通过观察信号在时间上的变化,可以得到信号的时域特性。
本实验旨在通过对不同信号进行时域分析,探究信号的频率、幅度和相位等特性,并研究信号在不同系统中的传输和变换过程。
一、实验目的1. 了解时域分析的基本原理和方法;2. 掌握使用示波器进行时域分析的操作技巧;3. 研究不同信号的时域特性,并分析其频率、幅度和相位等参数;4. 分析信号在不同系统中的传输和变换过程。
二、实验仪器和材料1. 示波器2. 信号发生器3. 电阻、电容、电感等元件4. 连接线三、实验步骤1. 将信号发生器输出的正弦信号连接到示波器的输入端,调节信号发生器的频率和幅度;2. 使用示波器观察信号的波形,并记录下波形的周期、幅度和相位等参数;3. 将信号发生器的输出信号经过一个电阻、电容或电感等元件,再连接到示波器的输入端,观察信号在不同系统中的变换过程;4. 根据观察到的波形和参数,分析信号在不同系统中的传输特性和变换规律。
四、实验结果与分析1. 在观察正弦信号的时域波形时,我们可以发现信号的周期与信号发生器的频率有关,频率越高,周期越短;幅度与信号发生器的幅度设置有关,幅度越大,波形的振幅越大;相位则反映了信号的起始相位,可以通过示波器上的相位测量功能进行测量。
2. 当信号经过电阻、电容或电感等元件时,信号的波形和参数会发生变化。
例如,当信号经过电阻时,波形会变得衰减,幅度减小;当信号经过电容时,波形会发生相位移动,相位会发生改变;当信号经过电感时,波形会发生振荡,频率会发生改变。
3. 通过对不同系统中信号的观察和分析,我们可以得出不同系统对信号的影响规律。
例如,电阻对信号的影响主要体现在幅度的衰减上,电容和电感对信号的影响主要体现在相位和频率上。
这些规律对于电路设计和信号处理具有重要意义。
五、实验总结通过本次实验,我们深入了解了时域分析的原理和方法,并通过实际操作掌握了使用示波器进行时域分析的技巧。
时域分析实验报告
时域分析实验报告引言时域分析是一种信号处理技术,用于研究信号在时间上的变化。
通过时域分析,我们可以观察信号的幅度、频率、相位和周期等特征。
本实验旨在通过使用适当的时域分析方法,对给定的信号进行分析,并探讨不同方法的优缺点。
实验目的1.了解时域分析的基本概念和原理;2.掌握常见的时域分析方法,并理解它们的适用范围;3.通过实验验证不同的时域分析方法的有效性。
实验步骤1.准备实验所需的信号。
可以选择不同类型的信号,如正弦信号、方波信号或脉冲信号等。
确保信号的采样频率足够高,以避免采样失真。
2.使用示波器或数据采集卡等设备,将信号输入计算机中进行处理和分析。
3.基本时域分析方法:–平均值和标准差:计算信号的平均值和标准差,以了解信号的中心位置和离散程度。
–自相关函数:计算信号与自身的相关性,用于分析信号的周期性。
–傅里叶变换:将信号转换到频域,以获得信号的频谱信息。
–卷积:用于信号的滤波和信号与系统的响应分析。
4.根据实验需要选择适当的时域分析方法进行信号处理和分析。
可以结合不同的方法,以获得更全面的信号特征信息。
实验结果与讨论1.绘制信号的波形图,并观察信号的幅度、频率和相位特征。
2.计算信号的平均值和标准差,并分析信号的中心位置和离散程度。
3.计算信号的自相关函数,并观察信号的周期性。
根据自相关函数的峰值位置和间距,可以估计信号的周期。
4.对信号进行傅里叶变换,并观察信号的频谱特征。
可以通过傅里叶变换结果分析信号的频率成分和能量分布。
5.使用卷积方法对信号进行滤波,并观察滤波效果。
可以选择合适的滤波器来去除信号中的噪声或不需要的频率成分。
6.对比不同的时域分析方法,分析它们在信号处理和分析中的优缺点。
根据实验结果,选择适合特定场景的方法。
结论通过时域分析实验,我们深入了解了时域分析的基本概念和原理,并掌握了常见的时域分析方法。
通过对信号的处理和分析,我们可以获得信号的重要特征信息,如幅度、频率、相位和周期等。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
信号与系统实验报告连续时间信号的时域分析
信号与系统实验报告连续时间信号的时域分析实验目的:通过对连续时间信号的时域分析,进一步加深对信号的理解和掌握时域分析的方法和技巧。
实验原理:连续时间信号在时域上可以用其函数形式表示。
通常所说的时域分析即指对该函数形式进行各种数学性质的分析,如:波形特征、奇偶性、对称性、周期性等等。
实验设备:计算机、MATLAB软件。
实验步骤:1. 打开MATLAB软件,新建空白文件,在文件中输入以下代码:t = -10:0.01:10;y = sin(t);subplot(2,1,1);xlabel('t'),ylabel('y');title('原始信号');grid on;plot(-t,-y);2. 点击运行,得到以下结果:图1 连续时间正弦信号及其翻折信号3. 对上述代码进行说明:t表示时间变量,取值范围为-10到10,以0.01为步长。
y表示信号变量,为sin(t)。
subplot(2,1,1)表示将画布分为两个部分,第一个部分为上部分。
plot(t,y)表示绘制t变量与y变量之间的图形。
xlabel('t')表示将x轴标注为t。
title('翻折信号')表示将图形命名为翻折信号。
4. 分别观察原始信号和翻折信号,并进行分析。
原始信号是一条正弦波,周期为2π。
该信号的奇偶性、对称性、周期性均为偶函数。
实验结论:本实验通过对连续时间信号的时域分析,掌握了分析信号的方法和技巧,并同时对信号的奇偶性、对称性、周期性等属性有了更深入的了解,为以后更深入的信号分析工作奠定了基础。
实验一离散时间信号与系统时域分析
实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。
实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。
其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。
一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。
(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。
(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。
这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。
常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。
利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。
三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。
信号实验报告 2
信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。
二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统实验报告实验一 信号与系统的时域分析
实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MA TLAB求解LTI 系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号和离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。
在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。
信号与系统分析实验报告
信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。
本实验报告将对信号与系统分析实验进行详细的描述和分析。
实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。
首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。
然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。
实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。
实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。
我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。
实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。
通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。
实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。
通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。
实验结果显示,不同频率的信号在频域上有不同的分布特性。
我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。
实验四:系统辨识本实验旨在研究系统的辨识方法。
我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。
实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。
结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。
实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。
这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。
通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。
信号与系统的实验报告
信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。
在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。
实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。
然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。
通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。
实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。
首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。
通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。
然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。
通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。
实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。
然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。
通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。
通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。
实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。
首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。
然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。
离散信号与系统的时域分析实验报告
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
信号与系统实验报告-1(常用信号的分类与观察)
信号与系统实验报告-1(常用信号的分类与观察)实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。
1、信号:指数信号可表示为f(t)=Ke at。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。
其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。
Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。
其信号如下图所示:f(t)…………0 t图1-6 脉冲信号7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)…………0 t图1-7 方波信号四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。
信号与系统(连续系统的时域分析)实验报告1
信号与系统(连续系统的时域分析)实验报告1本次实验内容是关于连续信号和系统的时域分析,我将按照实验操作流程、实验结果、实验分析和实验总结四个方面进行本次实验报告。
实验操作流程:1、根据实验指导书,找到实验需要使用的硬件设备和软件平台。
3、进行连续信号的产生和输入,根据实验指导书中的要求,选择不同的信号类型,改变其频率、振幅、相位等参数。
5、通过实验软件平台对产生的信号和系统进行采样和采集,并进行大量的数据处理和分析。
6、根据实验结论和实验指导书中的要求,编写实验报告。
实验结果:在本次实验中,我成功产生了三种不同类型的连续信号,分别是正弦信号、方波信号和三角波信号,同时我也成功搭建了两种不同类型的连续系统,分别是低通滤波器和高通滤波器,随着不同的输入信号对系统的测试,产生了一系列不同的实验结果。
主要的实验结果如下:首先是正弦信号的生成和输入,通过改变其频率和幅值,观察到了信号的变化过程及其在系统中被处理的效果,在低通滤波器中,信号的频率被截止,经过系统后的信号相比于输入信号更加平滑;在高通滤波器中,信号的低频部分被丢弃,经过系统后的信号比输入信号更加尖锐。
其次是方波信号的生成和输入,由于方波信号富含基频及其谐波,我们可以在低通滤波器中观察到对基频和谐波的处理效果,在低通滤波器中,我们可以观察到基频及其谐波被通过,而高于截止频率的谐波则被丢掉;在高通滤波器中,方波信号的低频部分被丢掉,越高的谐波被通过,产生重音类的声音。
最后是三角波信号的生成和输入,我们发现三角波信号的频率变化相对于方波信号更加平缓,变化更加连续,因此在经过低通滤波器进行处理的时候,我们可以观察到频率更加平滑,而高通滤波器将产生一个类似于单谐波的效果,快速上升和下降的部分被丢掉,产生一个非常平滑的信号。
实验分析:通过本次实验,我们了解了连续信号和系统的时域分析方法,对不同类型的信号和系统有了更深入的了解,同时也提升了我们对实验平台的掌握能力和实际操作的经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MA TLAB求解LTI 系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号和离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。
在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。
但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。
前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。
而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。
系统通常是由若干部件或单元组成的一个整体(Entity)。
系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。
然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。
1. 信号的时域表示方法1.1将信号表示成独立时间变量的函数例如x(t)=sin(ωt) 和x[n]=n(0.5)n u[n]分别表示一个连续时间信号和一个离散时间信号。
在MA TLAB中有许多内部函数,可以直接完成信号的这种表达,例如:sin():正弦信号cos():余弦信号exp():指数信号1.2用信号的波形图来描述信号用函数曲线表示一个信号,图1.1就是一个连续时间信号和一个离散时间信号的波形图。
图1.1 连续时间信号与离散时间信号的波形图1.3将信号用一个数据序列来表示对于离散时间信号,还可以表示成一个数的序列,例如:x[n]={...., 0.1, 1.1, -1.2, 0, 1.3, ….}↑n=0在《信号与系统》和《数字信号处理》课程中,上述三种信号的描述方法是经常要使用的。
2 用MATLAB仿真连续时间信号和离散时间信号在MATLAB中,无论是连续时间信号还是离散时间信号,MATLAB都是用一个数字序列来表示信号,这个数字序列在MATLAB中叫做向量(vector)。
通常的情况下,需要与时间变量相对应。
如前所述,MA TLAB有很多内部数学函数可以用来产生这样的数字序列,例如sin()、cos()、exp()等函数可以直接产生一个按照正弦、余弦或指数规律变化的数字序列。
2.1连续时间信号的仿真程序Program1_1是用MATLAB对一个正弦信号进行仿真的程序,请仔细阅读该程序,并在计算机上运行,观察所得图形。
% Program1_1% This program is used to generate a sinusoidal signal and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')常用的图形控制函数axis([xmin,xmax,ymin,ymax]):图型显示区域控制函数,其中xmin 为横轴的显示起点,xmax 为横轴的显示终点,ymin 为纵轴的显示起点,ymax 为纵轴的显示终点。
有时,为了使图形具有可读性,需要在所绘制的图形中,加上一些网格线来反映信号的幅度大小。
MA TLAB 中的grid on/grid off 可以实现在你的图形中加网格线。
grid on :在图形中加网格线。
grid off :取消图形中的网格线。
x = input(‘Type in signal x(t) in closed form:’)在《信号与系统》课程中,单位阶跃信号u(t) 和单位冲激信号δ(t) 是二个非常有用的信号。
它们的定义如下0,0)(1)(≠==⎰∞-∞=t t dt t t δδ 1.1(a) ⎩⎨⎧≤>=0,00,1)(t t t u 1.1(b)这里分别给出相应的简单的产生单位冲激信号和单位阶跃信号的扩展函数。
产生单位冲激信号的扩展函数为:function y = delta(t)dt = 0.01;y = (u(t)-u(t-dt))/dt;产生单位阶跃信号的扩展函数为:% Unit step functionfunction y = u(t)y = (t>=0); % y = 1 for t > 0, else y = 0请将这二个MA TLAB 函数分别以delta 和u 为文件名保存在work 文件夹中,以后,就可以像教材中的方法使用单位冲激信号δ(t) 和单位阶跃信号u(t)。
2.2离散时间信号的仿真程序Program1_2用来产生离散时间信号x[n]=sin(0.2πn)。
% Program1_2% This program is used to generate a discrete-time sinusoidal signal and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsn = -10:10; % Specify the interval of timex = sin(0.2*pi*n); % Generate the signalstem (n,x) % Open a figure window and draw the plot of x[n]title ('Sinusoidal signal x[n]')xlabel ('Time index n')请仔细阅读该程序,比较程序Program1_1和Program1_2中的不同之处,以便自己编程时能够正确使用这种方法方针连续时间信号和离散时间信号。
程序Program1_3用来仿真下面形式的离散时间信号:x[n]={...., 0.1, 1.1, -1.2, 0, 1.3, ….}↑n=0% Program1_3% This program is used to generate a discrete-time sequence% and draw its plotclear, % Clear all variablesclose all, % Close all figure windowsn = -5:5; % Specify the interval of time, the number of points of n is 11.x = [0, 0, 0, 0, 0.1, 1.1, -1.2, 0, 1.3, 0, 0]; % Generate the signalstem(n,x,'.') % Open a figure window and draw the plot of x[n]grid on,title ('A discrete-time sequence x[n]')xlabel ('Time index n')由于在程序的stem(n,x,'.') 语句中加有'.'选项,因此绘制的图形中每根棒条线的顶端是一个实心点。
如果需要在序列的前后补较多的零的话,可以利用函数zeros(),其语法为:zeros(1, N):圆括号中的1和N 表示该函数将产生一个一行N 列的矩阵,矩阵中的所有元素均为零。
利用这个矩阵与序列x[n]进行组合,从而得到一个长度与n 相等的向量。
例如,当 x[n]={ 0.1, 1.1, -1.2, 0, 1.3} 时,为了得到程序Program1_3中的序列, ↑n=0可以用这个MA TLAB 语句x = [zeros(1,4) x zeros(1, 2)] 来实现。