实验三 图像的滤波及增强

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三图像的滤波及增强

一、实验目的

1进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。

2了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。

3 熟悉傅立叶变换的基本性质;

4 熟练掌握FFT变换方法及应用;

二、实验要求

(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。

(2)利用MATLAB软件实现空域滤波的程序:

I=imread('electric.tif');

J = imnoise(I,'gauss',0.02); %添加高斯噪声

J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声

ave1=fspecial('average',3); %产生3×3的均值模版

ave2=fspecial('average',5); %产生5×5的均值模版

K = filter2(ave1,J)/255; %均值滤波3×3

L = filter2(ave2,J)/255; %均值滤波5×5

M = medfilt2(J,[3 3]); %中值滤波3×3模板

N = medfilt2(J,[4 4]); %中值滤波4×4模板

imshow(I);

figure,imshow(J);

figure,imshow(K);

figure,imshow(L);

figure,imshow(M);

figure,imshow(N);

(3) 应用傅立叶变换进行图像处理

傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。

(4) 傅立叶(Fourier )变换的定义

对于二维信号,二维Fourier 变换定义为:

2()(,)(,)j ux uy F u v f x y e dxdy π∞∞

-+-∞-∞=

⎰⎰

逆变换: 2()(,)(,)j ux uy f x y F u v e

dudv π∞∞+-∞-∞=

⎰⎰ 二维离散傅立叶变换为: 11

2()001(,)(,)i k N N j m n N N i k F m n f i k e N

π---+===∑∑

逆变换: 11

2()001(,)(,)i k N N j m n N N

m n f i k F m n e N π--+===∑∑ 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。

(5)利用MATLAB 软件实现数字图像傅立叶变换的程序:

I=imread(‘原图像名.gif’); %读入原图像文件

imshow(I); %显示原图像

fftI=fft2(I); %二维离散傅立叶变换

sfftI=fftshift(fftI); %直流分量移到频谱中心

RR=real(sfftI); %取傅立叶变换的实部

II=imag(sfftI); %取傅立叶变换的虚部

A=sqrt(RR.^2+II.^2); %计算频谱幅值

A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化

figure; %设定窗口

imshow(A); %显示原图像的频谱

三、实验设备与软件

(1) IBM-PC 计算机系统

(2) MatLab 软件/语言包括图像处理工具箱(Image Processing Toolbox)

(3) 实验所需要的图片

四、实验内容与步骤

1)模板滤波

a) 调入并显示原始图像Sample2-1.jpg 。

b) 利用imnoise 命令在图像Sample2-1.jpg 上加入高斯(gaussian) 噪声

c)利用预定义函数fspecial 命令产生平均(average)滤波器

111191111---⎡⎤⎢⎥--⎢⎥⎢⎥---⎣

⎦ d )分别采用3x3和5x5的模板,分别用平均滤波器以及中值滤波器,对加入噪声的图像进行处理并观察不同噪声水平下,上述滤波器处理的结果;

e )选择不同大小的模板,对加入某一固定噪声水平噪声的图像进行处理,观察上述滤波器处理的结果。

f )利用imnoise 命令在图像Sample2-1.jp

g 上加入椒盐噪声(salt & pepper)

g )重复c)~ e )的步骤

h )输出全部结果并进行讨论。

实验代码:

I=imread('eight.tif');

J = imnoise(I,'gauss',0.02);

J = imnoise(I,'salt & pepper',0.02);

ave1=fspecial('average',3);

ave2=fspecial('average',5);

K = filter2(ave1,J)/255;

L = filter2(ave2,J)/255;

M = medfilt2(J,[3 3]);

N = medfilt2(J,[4 4]);

imshow(I);

figure,imshow(J);

figure,imshow(K);

figure,imshow(L);

figure,imshow(M);

figure,imshow(N);

实验结果:

图表 1 :原图 图表 2:加入噪声

相关文档
最新文档