认识三角形的典型例题三
认识三角形全面经典大题
认识三角形大题
1.在△ABC中,∠B=∠A+10°,∠C=∠B+10°,求△ABC各内角的度数.
2. 在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多
5cm,AB与AC的和为11cm,求AC的长.
3.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.
4.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.
5、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F、已知∠A=30°,∠FCD=80°,求∠D.
6.如图,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.
7.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求
∠DAE的度数.
8.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.
9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC.
10.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,
求∠BOC的度数.。
专题4.1认识三角形(与三角形有关的线段)(知识讲解)-七年级数学下册基础知识专项讲练(北师大版)
专题4.1 认识三角形(与三角形有关的线段)(知识讲解)【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.特别说明:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.2.三角形的分类(1)按角分类:特别说明:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:特别说明:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.特别说明:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB=∠ADC=∠90°.注意:AD 是ΔABC 的高∠ADB=∠ADC=90°(或AD⊥BC 于D);特别说明:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =BC. 特别说明:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部; (3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心; (4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD=2∠DAC) . 特别说明:(1)三角形的角平分线是线段; ⇔21⇔21(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 特别说明:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、与三角形有关线段??三角形的边段??概念??分类1.如图所示,(1)图中有几个三角形?(2)说出CDE ∆的边和角.(3)AD 是哪些三角形的边?C ∠是哪些三角形的角?【答案】(1)图中有:ABD ∆,ADC ∆,ADE ∆,EDC ∆,ACB ∆,共5个;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【分析】(1)分类找三角形,含AB 的,含AD (不含AB )的,含DE (不含AD )的三类即可;(2)根据组成三角形的三条线段一一找出,利用三角形两边的夹角即可找出;(3)观察图形,找出含AD 的三角形,先找AD 左边的,再找AD 右边的即可,根据三角形内角的定义,角的两边是三角形的边,找到第三边,在∠C 的内部在线段看与角的两边是否相交即可解:(1)图中有:以AB 为边的三角形有∠ABD ,∠ABC ,以AD 为边的三角形有∠ADE ,∠ADC ,再以DE 为边三角形有∠DEC ,一共有5个三角形分别为ABD ∆,ABC ∆,ADC ∆,ADE ∆,EDC ∆;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【点拨】本题考查三角形的识别,三角形的基本要素,三角形个数,观察图形找出图中的三角形,三角形的组成,找以固定线段的三角形,和固定角的三角形,掌握利用分类思想找出所有的图形,三角形的边与角,共线段三角形以及共角三角形是解题关键.举一反三:【变式】如图,以BD 为边的三角形有哪些?分别写出来;以∠1为内角的三角形有哪些?分别写出来.【分析】先根据BD 边找三角形,再根据∠1找三角形.解:以BD 为边的三角形有:∠BDC ,∠BDO ,以∠1为内角的三角形有:∠EOC ,∠ACD .【点拨】本题考查了三角形的内角和边的概念,学会分类的方法找三角形是本题的解题关键.2.已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.【答案】ABC 的形状是等边三角形.【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .解:∠22()()0a b b c -+-=,∠0a b -=,0b c -=∠a =b =c ,∠ ABC ∆是等边三角形.【点拨】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.举一反三:【变式】满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)∠ABC 中,∠A =30°,∠C =∠B ;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【分析】根据角的分类对三角形进行分类即可.解:(1)∠∠A =30°,∠C =∠B ,∠A +∠C +∠B =180°,∠∠C =∠B =75°,∠满足条件的三角形是锐角三角形.(2) ∠三个内角的度数之比为1∠2∠3,∠可求得每个内角的度数分别为30°,60°,90°,∠满足条件的三角形是直角三角形.【点拨】本题主要考查了三角形的分类问题.类型二、与三角形有关线段??构成三角形条件??确定第三边取值范围3.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm 、8cm 、4cm ; (2)5cm 、6cm 、11cm ; (3)5cm 、6cm 、10cm ;【答案】(1)不能,因为3cm +4cm <8cm ;(2)不能,因为5cm +6cm =11cm ;(3)能,因为5cm +6cm >10cm【分析】略举一反三:【变式】如图所示三条线段a ,b ,c 能组成三角形吗?你是用什么方法判别的?【答案】三条线段a ,b ,c 能组成三角形,理由见分析【分析】只需要利用作图方法证明b a c b c -<<+即可.解:三条线段a ,b ,c 能组成三角形,理由如下:如图所示,根据线段的和差可知b a c b c -<<+,∠三条线段a ,b ,c 能组成三角形.【点拨】本题主要考查了构成三角形的条件,线段的尺规作图,证明b a c b c -<<+是解题的关键.4.己知三角形的两边长为5和7,第三边的边长a .(1)求a 的取值范围;(2)若a 为整数,当a 为何值时,组成的三角形的周长最大,最大值是多少?【答案】(1) 212a << (2)当11a =时,三角形的周长最大为23【分析】(1)根据三角形三边关系求解即可得到答案;(2)由(1)取最大值即可得到答案.(1)解:由三角形的三边关系可知7575a -<<+,即212a <<,∠a 的取值范围是212a <<;(2)解:由(1)知,a 的取值范围是212a <<,a 是整数,∠当11a =时,三角形的周长最大,此时周长为:571123++=,∠周长的最大值是23.【点拨】本题考查三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边. 举一反三:【变式】已知:ABC 中,5AB =,21BC a =+,12AC =,求a 的范围.【答案】38a <<【分析】根据三角形的三边关系列不等式求解即可.解:∠AB BC AC 、、是ABC 的三边,∠AC AB BC AC AB -<<+,即:a -<+<+12521125,解得:38a <<,故答案为:38a <<.【点拨】本题考查了三角形的三边关系、解不等式组;熟练掌握三角形的三边关系以及解不等式组的方法是解题的关键.类型三、与三角形有关线段??三角形的高??作图??求值(等面积法)5.在如图所示的方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 均在小正方形的顶点上.(1) 画出ABC 中BC 边上的高AD ;(2) 直接写出ABC 的面积为___.【答案】(1)见分析 (2)8【分析】(1)结合网格图,直接利用三角形高线作法得出答案;(2)结合网格图,直接利用三角形的面积求法得出答案.(1)解:如图所示:AD 即为所求;1【变式】如图:(1) 用三角尺分别作出锐角三角形ABC ,直角三角形DEF 和钝角三角形PQR 的各边上的高线.(2) 观察你所作的图形,比较三个三角形中三条高线的位置,与三角形的类型有什么关系?【分析】(1)根据三角形高的画法画图即可;(2)根据(1)所作图形进行求解即可.(1)解;如图所示,即为所求; (2)解:由(1)可知,锐角三角形的三条高线的交点在三角形内部;直角三角形的三条高线的交点为直角顶点;钝角三角形的三条高线的交点在三角形外部.【点拨】本题主要考查了画三角形的高,三角形高线的交点,正确画出三角形的高是解题的关键.6.如图,,AD AE 分别是ABC 的中线和高,3cm AE =,26cm ABD S =△.求BC 和DC 的长.【答案】8cm BC =,4cm CD =ABD S =是ABC 的中线,得到解:由题意,得:BD AE ⋅4cm ,是ABC 的中线,12BD BC =∠4cm,28cm CD BC BD ===.【点拨】本题考查三角形的高线和中线.熟练掌握三角形的中线是三角形的顶点到对边中点所连线段,是解题的关键.举一反三:【变式】如图,AD BE ,分别是ABC 的高,若465AD BC AC ===,,,求BE 的长.2ABC S =分别是ABC 的高,1122ABC S BC AD AC =⨯=⨯45AD BC AC ===,,,462455BC BE ⨯==24BE =【点拨】本题考查了三角形面积的计算公式,掌握等面积法求解是解题的关键.7.如图,在ABC 中()2AB BC AC BC BC >=,,边上的中线AD 把ABC 的周长分成70和50两部分,求AC 和AB 的长.【答案】5636AC AB ==,【分析】先根据2AC BC =和三角形的中线列出方程求解,分类讨论7050AC CD AC CD +=+=①,②,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解:设BD CD x ==,则24AC BC x ==,BC 边上的中线AD 把ABC 的周长分成70和50两部分,AB BC >,①当7050AC CD AB BD +=+=,时,470x x +=,解得:14x =,441456AC x ∴==⨯=,14BD CD ==,50501436AB BD ∴=-=-=,36AB ∴=,36286456BC AB AC +=+=>=,满足三边关系,5636AC AB ∴==,;②当5070AC CD AB BD +=+=,时,450x x +=,解得:10x =,441040AC x ∴==⨯=,10BD CD ∴==,70701060AB BD =-=-=,60AC BC AB +==,不满足三角形三边关系,所以舍去,5636AC AB ∴==,.【点拨】本题考查了三角形中线的性质和三边的关系,解题的关键是找到等量关系,列出方程. 举一反三:【变式】如图,已知AD 、AE 分别是ABC 的高和中线9cm,12cm AB AC ==,15cm BC =,90BAC ∠=︒.试求:(1) ABE 的面积;(2) AD 的长度;(3) ACE △与ABE 的周长的差.2ACE △的周长-ABE 的周长)解:ABC 是直角三角形,2191254(cm )2ABC =⨯⨯,AE 是BC 上的中线,BE EC ∴=,ABE ACE S S ∆∆∴=,2127cm 2ABE ABC S S ∆∆∴=; )解:BAC ∠=,AD 是BC 1122AD BC ∴⋅=AB AC AD BC ⋅∴=)解:AE 是BC BE CE =,ACE 的周长-ABE 的周长和ABE 的周长差是3cm 【点拨】本题考查了三角形的面积公式,以及三角形的中线将三角形分成面积相等的两部分,熟练掌握相关的性质与公式是解决此题的关键.8.如图,ABC 中,90C ∠=︒,8cm AC ,6cm BC ,10cm AB =.若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒2cm .设运动的时间为t 秒.(1) 当t =___________时,CP 把ABC 的周长分成相等的两部分?(2) 当t =___________时,CP 把ABC 的面积分成相等的两部分?(3) 当t 为何值时,BCP 的面积为12?【答案】(1)6(2)6.5(3) 2或6.5秒先求出ABC的周长为把ABC的周长分成相等的两部分时,12cmBC+=速度即可求解;)根据中线的性质可知,点把ABC的面积分成相等的两部分,进而求解即)分两种情况:∠P在AC1)ABC中,∠8cmAC,6cmBC,10cmAB,∠ABC的周长861024cm=++=,∠当CP把ABC的周长分成相等的两部分时,点P在AB上,此时212t=,解得6t=.故答案为:6;)当点P在AB中点时,把ABC的面积分成相等的两部分,此时213t=,解得 6.5t=.故答案为:6.5;)分两种情况:∠当P在AC∠BCP的面积16 2CP⨯⨯4CP=,24t=,t∠当P在AB∠BCP的面积=12=ABC面积的一半,∠P为AB中点,213t=, 6.5.故t为2或6.5秒时,BCP的面积为12.【点拨】本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分【变式】已知ABC的面积为S,根据下列条件完成填空.图1图2图3(1) 1AM 是ABC 的边BC 上的中线,如图1,则1ACM 的面积为 (用含S 的式子表示,下同);2CM 是1ACM 的边1AM 上的中线,如图2,则2ACM △的面积为 ;3AM 是2ACM △的边2CM 上的中线,如图3,则3ACM △的面积为 ;…… )中的求解可得规律,利用规律即可求解.是ABC 的边上的中线,ABC 的面积为11122ACM ABC S S S ==; 2CM 是1ACM 的边AM 2, 12111244ACM ACM ABC S S S S ===;3AM 是2ACM △的边2CM 上的中线,如图3,231128ACM ACM S S S ==, 故答案为:12S ,14S ,1)解:∠112ACM SS =,211124ACM ACM S S S ==2312ACM ACM S S ==,以此类推,可得12n ACM S ⎛⎫= ⎪⎝⎭2022=2022ACM S故答案为:202212⎛⎫ ⎪【点拨】本题考查了三角形中线的性质,熟记三角形的一条中线把三角形的面积分成相等的两部分是9.如图,CE 是ABC 的角平分线,EF BC ∥,交AC 于点F ,已知64AFE ∠=︒,求FEC ∠的度数.【答案】32︒ ACB AFE ==∠是ABC 的角平分线,12BCE ACB =∠FEC BCE =∠本题主要考查了平行线的性质,【变式】如图,点E 为直线AB 上一点,B ACB ∠=∠,BC 平分ACD ∠,求证:AB CD .【分析】根据平行线的判定定理求解即可.解:BC 平分ACD ∠,ACB BCD ∴∠=∠,B ACB ∠=∠,B BCD ∴∠=∠,∠AB CD ∥.【点拨】本题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键.10.如图,ABC 中,按要求画图:(1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ;(3) 画出ABC 中AB 边上的高CF .【分析】(1)画出BAC ∠的平分线交BC 于D 即可;(2)取BC 的中点E ,连接AE ,中线AE 即为所求;(3)过点C 作CF BA ⊥交BA 的延长线于F ,CF 即为ABC 中AB 边上的高.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作三角形的角平分线、中线和高线,解决本题的关键是掌握基本作图方法.举一反三:【变式】在边长为1的正方形网格中:''';(1)画出ABC沿CB方向平移2个单位后的A B C'''的重叠部分面积为多少?(2)ABC与A B C重叠部分面积为'''即可;)根据题意画出ABC沿CB个单位后的A B C)正方形的边长为,根据图形进行求解即可.'''如图所示:解:(1)ABC沿CB方向平移2个单位后的A B C(2)∠正方形的边长为1,9.下列图形中哪些具有稳定性?【答案】(1)(4)(6)中的图形具有稳定性.【分析】根据三角形的稳定性可直接进行求解.解:具有三角形稳定性的有(1)(4)(6).【点拨】本题主要考查三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.举一反三:【变式1】(1)下列图形中具有稳定性是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.【答案】(1)∠∠∠;(2)图见分析【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:(1)具有稳定性的是∠∠∠三个.(2)如图所示:【点拨】本题主要考查了三角形的稳定性,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式2】如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:∠三角形木架的形状______,说明三角形具有______;∠四边形木架的形状______说明四边形没有______.【答案】图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠是三角形,稳定性;∠四边形,稳定性.【分析】∠根据三角形的稳定性进行解答即可;∠根据四边形的不稳定性进行解答即可.解:图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠由三角形具有稳定性知,三角形木架的形状不会改变,这说明三角形具有稳定性.故答案为:是三角形,稳定性;∠四边形木架的形状是四边形,四边形具有不稳定性.故答案为:四边形,稳定性.【点拨】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.。
2020-2021学年七年级数学北师大版下册第四章 4.1认识三角形 同步练习题
4.【知识点】1 由____________________的三条线段____________相接所组成的图形叫做三角形,三角形有____________条边、____________个内角和____________个顶点. “三角形”用符号“____________”表示,顶点是A,B,C的三角形,可记作“____________”.2 三角形按内角大小分类,可分为________________、____________________、________________________.3 三角形任意两边之和____________第三边;三角形任意两边之差____________第三边.4 从三角形的一个顶点向它的对边所在的直线作____________,顶点和____________之间的线段叫做三角形的高线,简称三角形的高.三角形三条高所在的直线____________.5 在三角形中,连接一个顶点与它对边____________的线段,叫做这个三角形的中线,三角形的三条中线____________,这一点称为三角形的____________.6 在三角形中,一个内角的________________与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的三条角平分线__________________.【例题讲解】1如图4-1-2,图中有几个三角形?把它们表示出来,并写出∠B的对边.2 如图4-1-4所示的图中共有多少个三角形?请写出这些三角形并指出所有以E为顶点的角.3 在△ABC中,∠A=21°,∠B=34°,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 锐角三角形或钝角三角形4 一个三角形的两边b=4,c=7,试确定第三边a的范围. 当各边均为整数时,有几个三角形?有等腰三角形吗?等腰三角形的各边长各是多少?5 下列四个图形中,线段BE是△ABC的高的是()6 如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 都有可能7 如图4-1-15,已知△ABC 的周长为24 cm ,AD 是BC 边上的中线,AD=85AB ,AD=5 cm ,△ABD 的周长是18 cm ,求AC 的长.8 如图4-1-17,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5 cm ,AB 与AC 的和为13 cm ,求AC 的长.9 如图4-1-19,在△ABC 中,∠B=60°,∠C=30°,AD 和AE 分别是△ABC 的高和角平分线,求∠DAE 的度数.10 如图4-1-21,△ABC 中,AD,AE 分别是△ABC 的高和角平分线,BF 是∠ABC 的平分线,BF 与AE 交于点O ,若∠ABC=40°,∠C=60°,求∠AEC ,∠BOE 的度数.【举一反三】1 如图4-1-3所示的图形中共有三角形( )A. 4个B. 5个C. 6个D. 8个2 如图4-1-5,三角形共有()A.3个B.4个C.5个D.6个3 下列说法正确的是()A. 一个钝角三角形一定不是等腰三角形,也不是等边三角形B. 一个等腰三角形一定是锐角三角形,或直角三角形C. 一个直角三角形一定不是等腰三角形,也不是等边三角形D. 一个等边三角形一定不是钝角三角形,也不是直角三角形4 三角形按边分类,可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形5 若三角形中的两边长分别为9和2,第三边长为偶数,求三角形的周长.6 下列各图中,正确画出AC边上的高的是()7 如图4-1-14,△ABC中BC边上的高是()A.BDB.AEC.BED.CF8 如图4-1-16,在△ABC中(AB>BC),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.9 如图4-1-18,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长多3 cm,BC=8 cm,求边AC的长.10 如图4-1-20,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.11如图4-1-22,在△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD,AC于点F,E,试说明:∠CFE=∠CEF.【知识操练】1 在△ABC中,∠C=90°,点D,E分别是边AC,BC的中点,点F在△ABC 内,连接DE,EF,FD.以下图形符合上述描述的是()2 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形3 下列说法正确的是()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分可分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4 以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,3 cmB.2 cm,5 cm,8 cmC.3 cm,4 cm,5 cmD.4 cm,5 cm,10 cm5 如图4-1-23,已知BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长的差是()A. 2B. 3C. 6D. 不能确定6 如图4-1-24,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F.下列关于高的说法错误的是()A.△ABC中,AD是BC边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高7 如图4-1-25,AD是△ABC的中线,△ABC的面积为10 cm2,则△ABD的面积是()A. 5 cm2B. 6 cm2C. 7 cm2D. 8 cm28 如图4-1-26,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC边上的中线,则下列线段中,最短的是()A.AB B.AE C.AD D.AF9 如图4-1-27,已知∠1=∠2,∠3=∠4,则下列正确的结论有()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个10 如图4-1-28,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.BC是△ABE的高B.BE是△ABD的中线C.BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC11 如图4-1-29,在△ABC中,AD,CE分别为BC,AB边上的高,若BC=6,AD=5,CE=4,则AB的长为____________.12 一个三角形的两边长分别是3和8,周长是偶数,那么第三边的边长是___________.13 一副三角尺如图4-1-9所示叠放在一起,则图中∠α的度数是____________.14 如图4-1-30,已知AE是△ABC的边BC上的高,AD是∠EAC的平分线,交BC于点D.若∠ACB=40°,则∠DAE=__________.15 已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.16 如图4-1-10,点O是△ABC内的一点,试说明:OA+OB+OC>(AB+BC+CA).17 如图4-1-31,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.。
认识全等三角形-性质与判定(SAS-ASA)例题与配套习题-精校版
(1)全等三角形对应相等的角所对的边是对应边,两个对应角所夹的边是对应边.
(2)全等三角形对应相等的边所对的角是对应角,两条对应边所夹的角是对应角.
(3)两个全等三角形有公共边的,公共边一定是对应边.
(4)两个全等三角形有公共角的,公共角一定是对应角.
观察下图中的三角形,先猜一猜,再量一量,哪两个三角形是全等三角形?
画一个三角形△ABC,使得∠A=30°,∠B=60°,AB=2cm.
二、同步题型分析
例10.已知:OP是∠MON的平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别是A、B,△AOC与△BOC全等吗?为什么?
例11.如图,O是AB的中点,∠A=∠B,△AOC和△BOD全等吗?
例7.如果把上题图拉开,成如右图所示形状,若要使得它们全等,还需要什么条件?
例8.如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
例9.已知:如图,点E、F 在CD上,且CE=D F,AE=BF,AE∥BF.求证:△AEC≌△BFD
例3.如图,△ABC≌△ADE,∠B=30°,∠C=60°,BC=3cm,你能确定△ADE中哪些角的大小,哪些边的长度?
例4.如图,△ABC≌△DEF,B与E、C与F是对应顶点,问进行怎样的图形变换可以使这两个三角形重合?
例5.如图是一个边长为4cm的正方形,需将它分成两个全等的图形,你有几种不同的分法?试一试.
供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
4.1认识三角形(3)三角形的中线、角平分线++课件+2023-2024学年北师大版数学七年级下册
巩固提能
1.如图,AD是△ABC的角平分线,则( A )
A.∠1= ∠BAC
B.∠1= ∠ABC
C.∠1=∠BAC
D.∠1=∠ABC
2.如图,AE是△ABC的中线,点D是BE上一点.若BD=5,CD=9,则
CE的长为( C )
A.5
B.6
C.7
D.8
3. 如 图 ,AD 是 △ABC 的 中 线 ,AB=5,AC=3,△ABD 的 周 长 和
B.BD是△ABC的中线
C.AD=DC,BE=EC
D.AD=EC,DC=BE
2.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分
40°
线,则∠CAD的度数为__________.
3.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=
7cm
5cm,△ABD的周长为15cm,则AC的长为_________.
所以∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
(2)在其他条件不变的情况下,若∠A=n°,则∠BOC的度数为多少
(用含n的式子表示)?
解:因为∠ABC与∠ACB的平分线相交于点O,
所以∠OBC+∠OCB= (∠ABC+∠ACB).
在 △OBC 中 , ∠ BOC=180°-( ∠ OBC+ ∠ OCB)=180°- (∠
=
×45°=22.5°.
因为DE∥BC,所以∠EDC=∠BCD=22.5°.
因为∠B+∠BDC+∠BCD=180°,
所以∠BDC=180°-70°-22.5°=87.5°.
五年级数学三角形的认识
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
3
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
3
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
3
2
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
锐角三角形有2个;
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
3
2 1
这个图形中一共有6个三角形。
锐角三角形有2个;直角三角形有3个;
下面图形中一共有多少个三角形?锐角三角形、
直角三角形、钝角三角形各有多少个?
3
2 1
这个图形中一共有6个三角形。
锐角三角形有2个;直角三角形有3个; 钝角三角形有1个。
两个角是锐角
射线
三个角都是锐角
2、( )的三角形叫做锐角三角形。 3、直角三角形中,( )。
只有一个直角 有三个锐角 只有一个钝角
4、一个三角形中,最大的角是150 ,这 个三角形一定是( )。
锐角三角形 直角三角形 钝角三角形
判 断
有三条线段的图形一定是三角 形。 ( )
× 三角形有三条边,三个角,三个 顶点。 (√ )
三角形的认识
温故而知新
锐角<90
0
直角 =90
0
90 < 钝角<180
0
0
看我七十二变
三角形
什么叫做三角形
由三条线段首尾相接围成的图形叫三角形 围成三角形的每条线段叫做三角形的边。 每两条线段的交点叫做三角形的顶点。 顶点
小学数学四年级-认识三角形和四边形(经典例题含答案)
认识三角形和四边形经典例题答案班级小组姓名成绩(满分120)一、图形分类(一)图形的分类(共4小题,每题3分,共计12分)例1.填一填。
(1)平行四边形容易(变形),三角形具有(稳定性)。
(2)三角形是(平面)图形,球形是(立体)图形。
例1.变式1找家。
四边形①②③⑦⑧三角形④⑩立体图形⑥平面图形①②③④⑤⑦⑧⑨⑩例1.变式2按要求分类。
(只填序号)(1)立体图形有(②④⑥)。
(2)平面图形有(①③⑤⑦⑧⑨⑩)。
(3)由线段围成的平面图形有(①③⑤⑦⑧⑩)。
(4)由曲线围成的平面图形有(⑨)。
(5)由四条边围成的平面图形有(①③⑤⑧⑩)。
(6)由三条边围成的平面图形有(⑦)。
例1.变式3哪种围篱笆的方法更牢固?为什么?答:第二种方法更牢固,利用了三角形的稳定性(二)理解三角形的稳定性和四边形的不稳定性及其在生活中的运用(共4小题,每题3分,共计12分)例2.观察下面物体,你发现了什么?答:发现生活中的物品都是由图形构成的,三角形能起到很好的固定作用例2.变式1数一数,下面图中各有几个三角形。
104例2.变式2从一块长方形木板上锯掉一块宽为20厘米的长方形木条,剩下的木板为一个正方形,周长为180厘米,求原来长方形木板的周长和锯下的长方形木条的周长。
原:(180÷4+20+180÷4)×2=220(厘米)锯:(20+180÷4)×2=130(厘米)答:原来长方形木板的周长是220厘米,锯下的长方形木条的周长是130厘米.例2.变式3自行车的三角形车架是利用了三角形的(稳定性)特性.例3.填一填。
(1)三个角都是(锐)角的三角形是锐角三角形,有(一)个角是(直角)的三角形是直角三角形,有(一)个角是(钝角)的三角形是钝角三角形。
(2)有(两)条边相等的三角形是等腰三角形,(三)条边都相等的三角形是等边三角形。
例3.变式1分类。
(1)锐角三角形有(①⑤⑥)。
认识三角形知识点
认识三角形1.三角形有关的概念1 三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,组成三角形的线段叫做三角形的边,相邻两边公共的端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角简称三角形的角.2 三角形的表示三角形用符号“△”表示,顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”;如图7 -4一l,三角形有三个顶点:A 、B 、C ;有三条边:AB 、BC 、AC;有三个角:A ∠、B ∠、C ∠.△ABC 的三边用c b a ,,表示时,A ∠所对的边BC 用a 表示.B ∠所对的边AC 用b 表示.C ∠所对的边AB 用c 表示.2.三角形的分类⎪⎩⎪⎨⎧是钝角)钝角三角形(有一个角是直角)直角三角形(有一个角是锐角)锐角三角形(三个角都形角三注意:根据角的大小来识别三角形的形状时,一般只要考虑三角形中的最大角;若最大角是锐角,则三角形是锐角三角形;若最大角是直角,则三角形直角三角形;若最大角是钝角,则三角形钝角三角形.3.三角形中边的关系1三角形的任意两边之和大于第三边;2三角形的任意两边之差小于第三边如图7 -4 -1中,c b a b a c a b c b c a a c b c b a <-<-<->+>+>+,,;,,;注意:在任意给定的三条线段中,当三条线段中较短的两条线段之和大于另一条线段时,才能组成三角形; 例如:有三条线段的长分别为3、4、6因为3 +4 >6,所以这三条线段能组成三角形.又如:有三条线段的长分别为3、4、8要为3+4 <8,所以这三条线段不能组成三角形.4.三角形的三种主要线段1高:从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足间的线段,叫做三角形的高; 如图7 -4 -2,AD 是△ABC 的高,可表示为AD ⊥ BC 或ADC ∠=90°或ADB ∠= 90°;2中线:在三角形中,连接顶点和它对边中点的线段,叫做三角形的中线;如图7 -4 -3,AE 是△ABC 的中线,表示为BE=EC 或BE = 21BC 或BC= 2EC. 3角平分线:在三角形中,一个内角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线,一个角的平分线是一条射线,而三角形的角平分线是一条线段.如图7-4-4,AF 是ABC ∆的角平分线,可表示为CAF BAF ∠=∠或BAC BAF ∠=∠21或CAF BAC ∠=∠2.一个三角形中三条中线交于一点,三条角平分线交于一点,三条高所在直线交于一点;5.三角形的高、角平分线、中线的画法1三角形高的画法,如图7-4 -5.注意:①锐角三角形、直角三角形、钝角三角形都有三条高.②锐角三角形的三条高交于三角形内部一点.如图7 -4 -5甲,③钝角三角形的三条高交于三角形外部一点.如图7 -4 -5乙,④直角三角形的三条高交于直角顶点.如图7 -4 -5丙.2 三角形的中线的画法:将三角形一边的中点与这边所对角的顶点连接起来,就得到三角形一边上的中线. 3三角形的角平分线的画法:三角形的角平分线的画法与角平分线的画法相同,可以用量角器;防错档案:画钝角三角形的高容易出错,要抓住从三角形一顶点向对边作垂线段.6.面积法解题例如:如图7 -4 -6,在△ABC中,AB =AC,AC 边上的高BD= 10,求AB 边上的高CE 的长.解析:由三角形面积公式有:AC BD AB CE S ABC ⋅=⋅=∆2121 因为AB =AC,BD =10,所以CE= BD= 10.名题诠释例题1如图7 -4 -7,点D是△ABC的边BC上的一点,点E在AD上.1图中共有____个三角形;2以.AC为边的三角形是____;3以∠BDE为内角的三角形是____.解析1AD的左右两侧各有3个三角形,分别是△ABE、△ABD、△EBD、△ACE、△.ACD、△ECD,左右两侧组合又形成2个以BC为边的三角形,它们是△ABC、△EBC.故共有8个三角形.2 以AC为边的三角形有3个,它们是△.ACE、△ACD、△ACB. 3以∠BDE为内角的三角形有2个,它们是△EBD、△ABD.答案18 2△ACE、△ACD、△ACB 3△EBD、△ABD点评数三角形要注意选择恰当的顺序,做到不重不漏,注意最容易漏掉的是最大的三角形.例题2 下列三角形分别是什么三角形1已知一个三角形的两个内角分别是50°和60°;2 已知一个三角形的两个内角分别是35°和55°;3 已知一个三角形的两个内角分别是30°和45°;4 已知一个三角形的周长为16cm,有两边的长分别是6cm和4cm.解析确定三角形的形状,应紧扣定义.答案1 锐角三角形,因为三角形内角和为180°,而两个内角分别是50°和60°,所以第三个内角是70°,即这个三角形是锐角三角形.2 直角三角形,同理.3 钝角三角形,同理.4 等腰三角形.因为第三条边的长为16 -6 -4 =6cm.点评应全面考虑三角形的边和角的条件,再根据定义判别.例题3 下列长度的三条线段能组成三角形的是.A. lcm、2cm、3.5cmB.4cm、5cm、9cmC. 5cm、8cm、15cmD.8cm、8cm、9cm解析因为1+2<3.5,所以lcm、2cm、3.5cm的三条线段不能构成三角形因为4+5 =9,所以4cm、5cm、9cm的三条线段不能构成三角形;因为5+8<15,所以5cm、8cm、15cm的三条线段不能构成三角形;因为8+8 >9,所以8cm、8cm、9cm的三条线段能构成三角形.答案D点评三条线段能否构成三角形的条件是三角形三边的关系,即是否满足任意两边之和大于第三边.简便方法是检验较小的两边之和是否大于最大边.例题4 甲地离学校4km,乙地离学校lkm.记甲、乙两地之间的距离为dkm,则d的取值为.A.3B.5C.3或5 D.3≤d≤5解析本题应分两种情况讨论:1甲、乙两地与学校在一条直线上;2甲、乙两地与学校不在同一条直线上,则构成三角形,可利用三角形三边关系解题.答案D∠,G为AD的中点,延长BG交AC于E.F为例题5 如图7-4 -8,在△ABC中,1∠=2AB上一点,CF⊥AD于H,下面判断正确的有.①AD是△ABE的角平分线;②BE是△ABD边AD上的中线;③CH为△ACD边AD上的高;④AH是△ACF的角平分线和高线.A.l个B.2个 C.3个D.4个∠知AD平分∠BAE.但AD不是△ABE内的线段,故①错,AD应是△ABC的角平分线;同理,BE经解析由1∠=2过△ABD 的边AD 的中点G,但BE 不是△ABD 中的线段,故②不正确,正确的说法应是BG 是△ABD 边AD 上的中线;由于CH ⊥AD 于H,故CH 是△ACD 边AD 上的高,故③正确;AH 平分∠FAC 并且在△ACF 内,故AH 是△ACF 的角平分线,同理AH 也是△ACF 的高,故④正确.答案B点评 三角形的角平分线和角的平分线之间的区别:前者是线段,在三角形的内部,后者是射线,可以无限延伸.例题6在△ABC 中,AB =AC,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 两部分,求三角形各边的长,解析 中线BD 把三角形的周长分为12cm 和15cm 两部分,要分类讨论:1当腰长小于底边时,AB +AD =12,如图7-4 -9①;2当腰长大于底边时,AB +AD =15,如图7-4 -9②.答案设AB=x ,则有:AD= DC=x 21. 1若AB +AD =12,即x + x 21=12,x =8. AB =AC =8,DC =4,故BC= 15 -4= 11.此时AB +AC> BC,所以三角形三边长分别为8cm,8cm,llcm.2若AB+ .4D= 15,即x +x 21=15,x =10. 即AB =AC =10,DC =5,故BC=12 -5 =7.显然,此时三角形存在,所以三角形三边长分别为l0cm,l0cm,7cm .综上所述,此三角形的三边长分别为8cm,8cm .llcm 或l0cm,l0cm,7cm .例题7 如图7-4 -10,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE,其中画法错误的是____________解析 甲图错在把三自形的高线与AC 边的垂线定义相混淆,把“线段”画成“直线”;乙图错在未抓住“垂线”这一特征,画出的BE 与AC 不垂直;丙图错在没有过点B 画AC 的垂线,故不是高;丁图错在没有向点B 的对边画垂线. 答案 甲、乙、丙、丁例题8 如图7—4-11,在△ABC 中,AB =AC,AC 边上高BD=10,P 为边BC 上任意一点,PM ⊥AB,PN ⊥AC,垂足分别为M,N .求PM+PN 的值.解析 连接AP 后,PM 、PN 就转化为△APB 和△APC 的高,从而由面积法可求得PM+ PN 的值.答案 连接AP,由图7-4 -11可知:ABC ACP ABP S S S ∆∆∆=+, 即BD AC PN AC PM AB ⋅=⋅+⋅212121 因为AB =AC,BD =10,所以PM+PN= BD =10.速效基础演练1如图7 -4 -12,图中三角形的个数共有 .A 1个B .2个 C.3个 D .4个2 三角形两边的长分别为lcm 和4cru,第三边的长是一个偶数,则第三边的长是________,这个三角形是___________三角形3如图7 -4 -13.1 AD ⊥BC,垂足为D,则AD 是___________的高,_______=_______= 90°;2 若AE 平分BAC ∠,交BC 于E 点,AE 叫___________的角平分线,BAE ∠ =_______=21________; 3 若AF= FC,则△ABC 的中线是_________;4 若BC= GH= HF .则AG 是________的中线,AH 是_________的中线;4 如图7 -4 -14,在△ABC 中,C ∠ = 90°,D 、E 为AC 上的两点,且AE= DE,CBD ∠ =EBC ∠21,则下列说法中不正确的是 .A .BC 是△ABE 的高B .BE 是△ABD 的中线C .BD 足△EBC 的角平分线D .DBC EBD ABE ==∠5如图7 -4 -15,哪一个图表示AD 为△ABC 的高6 如果三角形的两边分别为3和5,那么这个三角形的周长可能是.A.15 B.16 C.8 D.77 下列长度的三条线段,能组成三角形的是.A. lcm,2cm,3cmB. 2cm,3cm,6cmC. 4cm,6cm,8cmD. 5cm,6cm,12cm8 如图7 -4 -16,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA =15米,OB =10米,A、B间的距离不可能是.A.5米B.10米C.15米D.20米∠的平分线CD;2画出AC边上的中线BM;9 如图7 -4 -17,在△ABC中,1画出C3画出△ABM的边BM上的高AH.10如图7 -4 -18.△ABC是周长为18cm的等边三角形,D是BC上一点,△ABD的周长比△ADC的周长多2cm,求BD、DC的长;11 等腰三角形的周长为30,一腰上的中线把其周长分成差为3的两部分,试求腰长.∠,交AC于点E,DE∥BC,EF∥AB,分别交AB、BC于点D、F,则BE 12已知如图7 -4 -19,在△ABC中,BE平分ABC∠的平分线吗请说明理由.是DEF13在△ABC 中,C ∠= 90°,BC =6,AC =8,AB =10,求边AB 上的高.知能提升突破1 如图7 -4 -20,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 上的中点,且ABC S ∆=42cm , 求阴影部分的面积阴S ;2 如图7 -4 - 21,在△ABC 中,AB= AC,BD 是AC 边上的高,P 为BC 延长线上的一点,AB PM ⊥,AC PN ⊥,垂足分别为M 、N .试问PM 、PN 与BD 之间有何关系3某木材市场上木棒规格和价格如下表: 规格1m 2m 3m 4m 5m 6m价格元/根 10 15 20 25 30 35 小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m 和5m 的木棒,还需要到 某木材市场上购买一根.问:1 有几种规格的木棒可供小明的爷爷选择2 选择哪一种规格的木棒最省钱。
七年级认识三角形
七年级认识三⾓形认识三⾓形(1)1:三⾓形三边关系:“三⾓形任意两边之和⼤于第三边;三⾓形任意两边之差⼩于第三边”. 2:1、能从右图中找出4个不同的三⾓形吗?2、这些三⾓形有什么共同的特点?⼀、新课:1、在右下图中你能⽤符号表⽰上⾯的三⾓形吗?2、它的三个顶点分别是___________________,三条边分别是______________________,三个内⾓分别是____________________.3、分别量出这三⾓形三边的长度,并计算任意两边之和以及任意两边之差.你发现了什么?结论:三⾓形任意两边之和⼤于第三边三⾓形任意两边之差⼩于第三边例:有两根长度分别为5cm 和8cm 的⽊棒,⽤长度为2cm 的⽊棒与它们能摆成三⾓形吗?为什么?长度为13cm 的⽊棒呢?长度为7cm 的⽊棒呢?⼆、巩固练习:1、下列每组数分别是三根⼩⽊棒的长度,⽤它们能摆成三⾓形吗?为什么?(单位:cm )(1)1,3,3;(2)3,4,7;(3)5,9,13;(4)11,12,22;(5)14,15,30.2、已知⼀个三⾓形的两边长分别是3cm 和4cm ,则第三边长X 的取值范围是____________________.若X 是奇数,则X 的值是_______________,这样的三⾓形有_______个;若X 是偶数,则X 的值是_______________,这样的三⾓形⼜有_______个A BCDEFGABCabc3、⼀个等腰三⾓形的⼀边是2cm ,另⼀边是9cm ,则这个三⾓形的周长是___________cm4、⼀个等腰三⾓形的⼀边是5cm ,另⼀边是7cm ,则这个三⾓形的周长是________________________________cm5.2 认识三⾓形(2)⼀、复习: 1、填空:(1)当0o<α<90o时,α是______⾓;(2)当α=______o时,α是直⾓;(3)当90o<α<180o时,α是______⾓;(4)当α=______o时,α是平⾓. 2、如右图,∵AB ∥CE ,(已知)∴∠A =_____,(_________________________)∴∠B =_____,(_________________________)练习1: 1、判断:(1)⼀个三⾓形的三个内⾓可以都⼩于60o.()(2)⼀个三⾓形最多只能有⼀个内⾓是钝⾓或直⾓.() 2、在△ABC 中,(1)∠C =70o,∠A =50o,则∠B =_______度;(2)∠B =100o,∠A =∠C ,则∠C =_______度;(3)2∠A =∠B +∠C ,则∠A =_______度.3、在△ABC 中,∠A =3x o∠=2x o∠=x o,求三个内⾓的度数.解:∵∠A +∠B +∠C =180o,(______________________)∴3x +2x +x =_______ ∴6x =_______ ∴x =从⽽,∠A =_______,∠B =_______,∠C =_______.三、猜⼀猜:.⼀个三⾓形中三个内⾓可以是什么⾓?(提醒:⼀个三⾓形中能否有两个直⾓?钝⾓呢?)按三⾓形内⾓的⼤⼩把三⾓形分为三类.锐⾓三⾓形(acute trangle ):三个内⾓都是锐⾓;直⾓三⾓形(right triangle ):有⼀个内⾓是直⾓.钝⾓三⾓形(obtuse triangle ):有⼀个内⾓是钝⾓.练习2:1、观察三⾓形,并把它们的标号填⼊相应的括号内:AB CD E 123锐⾓三⾓形();直⾓三⾓形();钝⾓三⾓形().2、⼀个三⾓形两个内⾓的度数分别如下,这个三⾓形是什么三⾓形?(1)30o和60o();(2)40o和70o();(3)50o和30o();(4)45o和45o().四、猜想结论:简单介绍直⾓三⾓形,和表⽰⽅法,Rt △.思考:直⾓三⾓形中的两个锐⾓有什么关系?结论:直⾓三⾓形的两个锐⾓互余举例(略)练习3:1、图中的直⾓三⾓形⽤符号写成_________,直⾓边是______和______,斜边是_______.2、如图,在Rt △BCD ,∠C 和∠B 的关系是______,其中∠C =55o,则∠B =________度.3、如图,在Rt △ABC 中,∠A =2∠B ,则∠A =_______度,∠B =_______度;⼩结:1、三⾓形的三个内⾓的和等于180o;2、三⾓形按⾓分为三类:(1)锐⾓三⾓形;(2)直⾓三⾓形;(3)钝⾓三⾓形.直⾓三⾓形的两个锐⾓互余.5.1 认识三⾓形(3)三⾓形⼀个⾓的⾓平分线和这个⾓的对边相交,这个⾓的顶点和对边交点之间的线段叫做三⾓形中这个⾓的⾓平分线.简称三⾓形的⾓平分线.如图:∵AD 是三⾓形ABC 的⾓平分线,∴∠BAD =∠CAD =∠BAC ,或:∠BAC =2∠BAD =2∠CAD .⼀个三⾓形共有三条⾓平分线,它们都在三⾓形内部,⽽且相交于⼀点.例题:△ABC 中,∠B =80o∠C =40o,BO 、CO 平分∠B 、∠C ,则∠BOC =______.连结三⾓形⼀个顶点和它对边中点的线段,叫做三⾓形这个边上的中线.简称三⾓形的中线.如图:∵AD 是三⾓形ABC 的中线,∴BD =DC =21BC ,或:BC =2BD =2DC .⼀个三⾓形共有三条中线,它们都在三⾓形内部,⽽且相交于⼀点.已知,AD 是BC 边上的中线,AB =5cm ,AD =4cm ,▲ABD 的周长是12cm ,求BC 的长.AB C BC D巩固练习:1、AD 是△ABC 的⾓平分线(D 在BC 所在直线上),那么∠BAD =_______=21______.△ABC 的中线(E 在BC 所在直线上),那么BE =___________=_______BC . 2、在△ABC 中,∠BAC =60o,∠B =45o,AD 是△ABC 的⼀条⾓平分线,求∠ADB 的度数.⼩结:(1)三⾓形的⾓平分线的定义;(2)三⾓形的中线定义.(3)三⾓形的⾓平分线、中线是线段.(1)已知AD 是三⾓形ABC 的⾓平分线,则∠B =∠C ;( )5.1 认识三⾓形(4)1、★三⾓形的⾼:从三⾓形的⼀个顶点向它的对边所在直线作垂线,顶点和垂⾜之间的线段叫做三⾓形的⾼线,简称三⾓形的⾼.如图,线段AM 是BC 边上的⾼.∵AM 是BC 边上的⾼,∴AM ⊥BC .锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点. 1、直⾓三⾓形的三条⾼交于直⾓顶点处.2、钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部. 4、练习:如图,(1)共有___________个直⾓三⾓形;(2)⾼AD 、BE 、CF 相对应的底分别是_______,_____,____;(3)AD =3,BC =6,AB =5,BE =4.则S △ABC =___________,CF =_________,AC =_____________. 5、⼩结:(1)锐⾓三⾓形的三条⾼在三⾓形的内部且交于⼀点.(2)直⾓三⾓形的三条⾼交于直⾓顶点处.(3)钝⾓三⾓形的三条⾼所在直线交于⼀点,此点在三⾓形的外部.5.2图形的全等1.把下列两组图形投影出来:(1)(2说出两组图形中上、下两个图形的异同之处2.形状相同且⼤⼩也相同的两个图形能够重合,反之亦然.形状不同或⼤⼩不同的两个图形不能重合,不能重合的两个图形⼤⼩⼀定不相同.3.能够重合的两个图形称为全等图形.全等图形的形状和⼤⼩都相同5.3图案设计在⽣活中,我们经常看到由全等图形拼成的美丽图案.例如在给定的三⾓形上,画出⼩鱼形状的图形,利⽤它就可以拼成下⾯这个美丽的图案.2、根据课本中的图形设计出相应的图案:5.4全等三⾓形(1)⼀个三⾓形共有______个顶点,_________个⾓,_______条边;(2)已知△ABC,它的顶点是_______,它的⾓是___________,它的边是___________;(3)两个图形完全重合指的是它们的形状___________,⼤⼩___________;(4)完全重合的两条线段_________(填“相等”或“不相等”);(5)完全重合的两个⾓_________(填“相等”或“不相等”).1.全等三⾓形的定义及有关概念和性质.(1)定义:全等三⾓形是能够完全重合的两个三⾓形或形状相同、⼤⼩相等的两个三⾓形.2.全等三⾓形的符号表⽰及读法和写法.”≌”读作全等如图,∵△ABC≌DFE,(已知)∴AB=DF,AC=DE,BC=FE,(全等三⾓形的对应边相等)∠A=∠D,∠B=∠F,∠C=∠E.(全等三⾓形的对应⾓相等)(1)全等⽤符号_________表⽰,读作__________.(2)三⾓形ABC全等于三⾓形DEF,⽤式⼦表⽰为______________.(3)已知△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′∠C=∠C′;AB=A′B′,BC=B′C′,AC=A′C′,则△ABC_______△A′B′C′.(4)如右图△ABC≌△BCD,∠A的对应⾓是∠D,∠B的对应⾓∠E,则∠C与____是对应⾓;AB与_____是对应边,BC与_____是对应边,AC与____是对应边.(5)判断题:①全等三⾓形的对应边相等,对应⾓相等.()②全等三⾓形的周长相等.()③⾯积相等的三⾓形是全等三⾓形.()④全等三⾓形的⾯积相等.()三、性质应⽤举例1.性质的基本应⽤.例1 已知:△ABC≌△DFE,∠A=96o,∠B=25o,DF=10cm.求∠E的度数及AB的长.例2 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C=20o,AB=10,AD=4,G为AB延长线上⼀点.求∠EBG的度数和CE的长.5.5探索三⾓形全等的条件(1)1、全等三⾓形的__________相等,__________相等.2、如图1,已知△AOC≌△BOD,则∠A=∠B,∠C=_______,______=∠2,对应边有AC=________,_______=OB,_______=OD.3、如图2,已知△AOC≌△DOB,则∠A=∠D,∠C=_______,______=∠2,对应边有AC=________,OC=_______,AO=_______.4、如图3,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA.则△________≌△___________5、判定两个三⾓形全等,依定义必须满⾜()(A)三边对应相等(B)三⾓对应相等(C )三边对应相等和三⾓对应相等(D )不能确定1、画出⼀个三⾓形,使它的三个内⾓分别为40o,60o,80o,结论:_________________________________________________________. 2、画出⼀个三⾓形,使它的三边长分别为3cm ,4cm ,7cm ,结论:_________________________________________________________.⼆、巩固练习:1、下列三⾓形全等的是________________________________________.2、三边对应相等的两个三⾓形全等,简写为_______或__________.3、如图,AB =AC ,BD =DC ,求证:△ABD ≌△ACD .4、如图,AM =AN ,BM =BN ,求证:△AMB ≌△ANB .5、如图,AD =CB ,AB =CD ,求证:∠B =∠D .6、如图,P A =PB ,PC 是△P AB 的中线,∠A =55o,求:∠B 的度数.第5题第6题1、如图,AB =DC ,BF =CE ,AE =DF ,你能找到⼀对全等的三⾓形吗?2、如图,A 、C 、F 、D 在同⼀直线上,AF =DC ,AB =DE ,BC =EF 你能找到哪两个三⾓形全等?3、如图,已知AC =AD ,BC =BD ,CE =DE ,则全等三⾓形共有______对,5.5 探索三⾓形全等的条件(2)1、三边对应相等的两个三⾓形全等,简写为________或_______.2、如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AD 能平分∠BAC 吗?你能说明理由吗?3、如图,(1)∵AC ∥BD (已知),∴∠_____=∠_____(___________________).(2)∵AD ∥BC (已知),∴∠_____=∠_____(___________________).4、如图3,∵EA ⊥AD ,FD ⊥AD (已知),∴∠_________=∠________=90o(___________________).教学过程:⼀、探索练习:1、如果”两⾓及⼀边”条件中的边是两⾓所夹的边,⽐如三⾓形的两个内⾓分别是60A BCD1234ABCDEFABCDo和80o,它们所夹的边为2cm ,你能画出2个三⾓形吗?你画的三⾓形⼀定全等吗?结论:___________________________________________________________. 2、如果”两⾓及⼀边”条件中的边是其中⼀⾓的对边,⽐如三⾓形两个内⾓分别是60o和45o,⼀条边长为3cm .你画的三⾓形⼀定全等吗?结论:___________________________________________________________.⼆、巩固练习:1、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________.2、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_________.3、如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?4、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD =BC ,你能说明BO =DO 吗?5、如图,∠B =∠C ,AD 平分∠BAC ,你能证明△ABD ≌△ACD ?若BD =3cm ,则CD 有多长?6、如图,在△ABC 中,BE ⊥AD 于E ,CF ⊥AD 于F ,且BE =CF ,那么BD 与DC 相等吗?你能说明理由吗?.7、如图,已知AB =CD ,∠B =∠C ,你能说明△ABO ≌△DCO 吗?ABB ABCD EFA BCDO三、提⾼练习:1、如图,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110o,求∠DCF 的度数.2、如图,在Rt △ACB 中,∠C =90o,BE 是⾓平分线,ED ⊥AB 于D ,且BD =AD ,试确定∠A 的度数.5.5《边⾓边》第1课时1.三⾓形全等的判定Ⅰ(1)全等三⾓形具有”对应边相等、对应⾓相等”的性质.如图2,AC 、BD 相交于O ,AO 、BO 、CO 、DO 的长度如图所标,△ABO 和△CDO 是否能完全重合呢?不难看出,这两个三⾓形有三对元素是相等的: AO =CO ,∠AOB =∠COD , BO =DO .如果把△OAB 绕着O 点顺时针⽅向旋转,因为OA =OC ,所以可以使OA 与OC 重合;⼜因为∠AOB =∠COD ,OB =OD ,所以点B 与点D 重合.这样△ABO 与△CDO 就完全重合.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE =45o,②在AD 、AE 上分别取B 、C ,使AB =3.1cm ,AC =2.8cm .③连结BC ,得△ABC .④按上述画法再画⼀个△A 'B 'C '.(2)把△A 'B 'C '剪下来放到△ABC 上,观察△A 'B 'C '与△ABC 是否能够完全重合?3.边⾓边公理.有两边和它们的夹⾓对应相等的两个三⾓形全等(简称”边⾓边”或”SAS ”)ABCDEAEF⼆、三⾓形全等判定Ⅰ的应⽤1.填空:(1)如图3,已知AD∥BC,AD=CB,要⽤边⾓边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,⼀是AD=CB(已知),⼆是()=();还需要⼀个条件()=()(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要⽤边⾓边公理证明△ABD≌ACE,需要满⾜的三个条件中,已具有两个条件:()=(),()=()(这个条件可以证得吗?).2.例题例1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.⼩结:1.根据边⾓边公理判定两个三⾓形全等,要找出两边及夹⾓对应相等的三个条件.2.找使结论成⽴所需条件,要充分利⽤已知条件(包括给出图形中的隐含条件,如公共边、公共⾓等),并要善于运⽤学过的定义、公理、定理.3.证明的书写格式:(1)通过证明,先把题设中的间接条件转化成为可以直接⽤于判定三⾓形全等的条件;(2)再写出在哪两个三⾓形中:具备按边⾓边的顺序写出可以直接⽤于判定全等的三个条件,并⽤括号把它们括起来;(3)最后写出判定这两个三⾓形全等的结论.作业:1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同⼀条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.5.6作三⾓形(1)如图,使⽤直尺作图,看图填空.①②③④①过点____和_______作直线AB;②连结线段___________;③以点_______为端点,过点_______作射线___________;④延长线段__________到_________,使得BC=2AB.(2)如图,使⽤圆规作图,看图填空:①在射线AM上__________线段________=___________.②以点______为圆⼼,以线段______为半径作弧交_________于点___________.以点______为圆⼼,以任意长为半径作弧,分别交∠AOB两边,交_________于点___________,交________于点__________.这部分内容是为让学⽣熟悉作法的语⾔表达⽽设的.教师应该让学⽣慢慢理解这种语⾔表达的意思.逐步学会⾃⼰⼝述表达⾃⼰的作图过程.内容⼆(作⼀个三⾓形与已知三⾓形全等)1、已知三⾓形的两边及其夹⾓,求作这个三⾓形.已知:线段a,c,∠α.求作:ΔABC,使得BC=a,AB=c,∠ABC=∠α.作法与过程:(1)作⼀条线段BC=a,(2)以B为顶点,BC为⼀边,作⾓∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三⾓形.2、已知三⾓形的两⾓及其夹边,求作这个三⾓形.已知:线段∠α,∠β,线段c.求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.作法:(1)作____________=∠α;(2)在射线______上截取线段_________=c;(3)以______为顶点,以_________为⼀边,作∠______=∠β,________交_______于点_______.ΔABC就是所求作的三⾓形.3、已知三⾓形的三边,求作这个三⾓形.已知:线段a,b,c.求作:ΔABC,使得AB=c,AC=b,BC=a.⼩结:能根据题⽬给出的条件作出三⾓形.能⼝述作图过程.5.7 利⽤三⾓形全等测距离1、三边对应相等的两个三⾓形全等,简写为___________或__________;2、两⾓和它们的夹边对应相等的两个三⾓形全等,简写成_______或_________;3、两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等,简写成_______或_______;4、两边和它们的夹⾓对应相等的两个三⾓形全等,简写成_______或_______;5、全等三⾓形的性质:两三⾓形全等,对应边_______,对应⾓_______;6、如图;△ADC ≌△CBA ,那么∠ABC =∠____,AB =_____;7、如图;△ABD ≌△ACE ,那么∠BDA =∠____,AD =_____.⼀、探索练习:如图:A 、B 两点分别位于⼀个池塘的两端,⼩明想⽤绳⼦测量A ,B 间的距离,但绳⼦不够长.他叔叔帮他出了⼀个这样的主意:先在地上取⼀个可以直接到达A 点和B 点的点C ,连接AC 并延长到E ,使CD =AC ;连接BC 并延长到E ,使CE =CB ;连接DE 并测量出它的长度;(1)DE =AB 吗?请说明理由(2)如果DE 的长度是8m ,则AB 的长度是多少?⼆、巩固练习:1.如图,⼭脚下有A 、B 两点,要测出A 、B 两点的距离.(1)在地上取⼀个可以直接到达A 、B 点的点O ,连接AO 并延长到C ,使AO =CO ,ACBDC你能完成下⾯的图形?(2)说明你是如何求AB的距离.2.如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在⼀条直线上,这时测得DE的长就是AB 的长,试说明理由.3.如图,A,B两点分别位于⼀个池塘的两端,完成右图并求出A、B的距离.三、提⾼练习:1.在⼀座楼相邻两⾯墙的外部有两点A、C,如图所⽰,请设计⽅案测量A、C两点间的距离.2.如图,⼀池塘的边缘有A、B两点,试设计两种⽅案测量A、B两点间的距离5.8探索直⾓三⾓形全等的条件1、判定两个三⾓形全等的⽅法:_____、_____、_____、_______2、如图,Rt△ABC中,直⾓边是_________、________,斜边是____________3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(3)若AB=DE,BC=EF,则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(4)若AB=DE,BC=EF,AC=DF则△ABC与△DEF___________(填”全等”或”不全等”)根据______________(⽤简写法)(⼀)探索练习:(动⼿操作):已知线段a,c(a1、按步骤作图:①作∠MCN=∠α=90o,②在射线CM 上截取线段CB =a ,③以B 为圆⼼,C 为半径画弧,交射线CN 于点A ,④连结AB .2、与同桌重叠⽐较,是否重合?3、从中你发现了什么?__________________________________ 三、巩固练习:1、如图,△ABC 中,AB =AC ,AD 是⾼,则△ADB 与△ADC ___________(填”全等”或”不全等”)根据______________(⽤简写法).2、如图,CE ⊥AB ,DF ⊥AB ,垂⾜分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据______;(2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据______;(3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据______;(4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据__________;(5)若AC =BD ,CE =DF (或AE =BF ),则△ACE ≌△BDF ,根据________. 3、判断两个直⾓三⾓形全等的⽅法不正确的有()(A )两条直⾓边对应相等(B )斜边和⼀锐⾓对应相等(C )斜边和⼀条直⾓边对应相等(D )两个锐⾓对应相等4、如图,B 、E 、F 、C 在同⼀直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB =DC ,BE =CF ,你认为AB 平⾏于CD 吗?说说你的理由.5、如图,⼴场上有两根旗杆,已知太阳光线AB 与DE 是平⾏的,经过测量这两根旗杆在太阳光照射下的影⼦是⼀样长的,那么这两根旗杆⾼度相等吗?说说你的理由.四、提⾼练习:1、判断题:(1)⼀个锐⾓和这个锐⾓的对边对应相等的两个直⾓三⾓形全等.()(2)⼀个锐⾓和锐⾓相邻的⼀直⾓边对应相等的两个直⾓三⾓形全等()(3)⼀个锐⾓与⼀斜边对应相等的两个直⾓三⾓形全等()(4)两直⾓边对应相等的两个直⾓三⾓形全等()(5)两边对应相等的两个直⾓三⾓形全等()(6)两锐⾓对应相等的两个直⾓三⾓形全等()(7)⼀个锐⾓与⼀边对应相等的两个直⾓三⾓形全等()(8)⼀直⾓边和斜边上的⾼对应相等的两个直⾓三⾓形全等() 2、如图,∠D =∠C =90o,请你再添加⼀个条件,使△ABD ≌△BAC ,并在添加的条件后的()内写出判定全等的依据.(1)________();(2)________();(3)________();(4)________(). 3、如上图,AD ⊥DB ,BC ⊥CA ,AC 、BD 相交于点O ,AC =BD ,试说明AD =BC4、如图,∠BAC =∠DCA =90o,AD =BC ,∠1=20o,你能求出∠D 的度数吗?说说你的理由.5、如图,AB //DC ,AD //BC ,AE ⊥BD ,CF ⊥BD ,垂⾜分别为E 、F ,试说明AE =CF。
【名师点睛】人教版-八年级数学上册-三角形认识-例题同步练习测试题
第01课三角形认识1。
三角形定义:在同一平面内,由条线段形成的图形叫做三角形。
三角形有个内角,对外角。
2.三角形分类:(1)按角度分类:、、。
(2)按边分类:、.3.三角形三边关系定理:4.三角形的高线:过顶点作的,顶点与的长度叫做三角形的高线。
任意三角形有条高线,它们的交点叫做。
位置:5.三角形的中线:顶点与中点的线段叫做三角形的中线。
任意三角形有条中线,它们的交点叫做。
中线的性质:。
6。
三角形的角平分线:三角形内角的平分线与此内角的的交点的线段叫做三角形的角平分线。
任意三角形有条角平分线,它们的交点叫做。
7.三角形的稳定性:8。
三角形内角和度数为:;外角和度数为。
9.三角形内角与外角的关系:(1);(2)。
10.与三角形角平分线有关的公式:两内角平分线形成的夹角与第三个内角之间的关系三角形两外角平分线形成的夹角与第三个内角的关系三角形一个内角与一个外角平分线形成的夹角与第三个内角关系已知OB、OC平分∠ABC、∠ACB,则∠BOC与∠A的关系已知PB、PC是△ABC外角∠CBD、∠BCE平分线,则∠BPC与∠A关系已知PB、PC是△ABC一内角和一外角的平分线,则∠BPC与∠A关系结论:结论:结论:多边形内角和:1.在同一平面内,有条线段形成的图形,叫做多边形.多边形分为多边形和多边形。
2。
从多边形一个顶点引出的对角线条数公式为;多边形对角线条数总数公式: .从多边形一个顶点引出的对角线将多边形分成的三角形个数公式为。
3.多边形内角和度数公式:;外角和度数:.4。
相等,相等的多边形叫做正多边形。
5.正多边形每个外角度数公式: ;每个内角度数公式:。
【例1】已知三角形三边分别为4,2a—1,8,求a的取值范围。
【例2】已知等腰三角形的周长为48cm,一腰上的中线将此三角形的周长分为1:3,求此三角形的三边长。
【例3】已知等腰三角形一个内角是另一个内角的2倍少100,则这个三角形的内角度数为。
【例4】如图,已知在△ABC中,∠C=760,∠B=480,AD⊥BC于D点,AE平分∠BAC.求∠DAE的度数。
北师大数学七年级下册第三章-认识三角形
第03讲_全等三角形辅助线的作法知识图谱三角形的内角(北师版)知识精讲概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形表示三角形有三条边、三个内角和三个顶点,“三角形”可以用符号“”表示如图,顶点是A ,B ,C 的三角形,记作,的三边,有时也用a ,b ,c 来表示.顶点A 所对的边BC 用a 表示,边AC 、边AB 分别用b ,c 来表示.按角分类直角三角形三角形中有一个角是直角 斜三角形锐角三角形 三角形中三个角都是锐角 钝角三角形 三角形中有一个角是钝角思考:如何按边分类?内角和定理三角形三个内角的和等于.证明过点A 作BC 的平行线DE ∴∠B=∠1,∠C=∠3 ∵D 、A 、E 三点共线 ∴∠1+∠2+∠3=180° ∴∠B+∠2+∠C=180°直角三角形的性质直角三角形的两个锐角互余.表示在Rt △ACB 中,∠C=90°,则∠A+∠B=90°,即两个锐角互余.五.易错点1.求角度过程中计算错误.2.注意导角计算等角的补角相等,等角的余角相等. 3.会利用三角形内角和定理判定三角形形状.三点剖析一.考点:1.按角分类;2.内角和定理;3.直角三角形的性质二.重难点:利用内角和定理求角度.三.易错点:求角度过程中计算错误.按角分类例题1、 在△ABC 中,∠A :∠B :∠C=1:1:2,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.锐角三角形D.等腰直角三角形231DBCA ECBA【答案】 D【解析】 设三个内角的度数分别为k°,k°,2k°,则 k°+k°+2k°=180°, 解得k°=45°, ∴2k°=90°,∴这个三角形是等腰直角三角形.随练1、 现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A.3B.4或5C.6或7D.8【答案】 A【解析】 由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时, ∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形; 故还有11﹣5﹣3=3个锐角三角形.内角和定理例题1、 如图,在△ABC 中,46B ∠=︒,54C ∠=︒,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A.45°B.54°C.40°D.50°【答案】 C【解析】 ∵46B ∠=︒,54C ∠=︒,∴180180465480BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分∠BAC ,∴11804022BAD BAC ∠=∠=⨯︒=︒,∵DE ∥AB ,∴40ADE BAD ∠=∠=︒.故选:C .例题2、 如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC 等于( )A.44°B.60°C.67°D.77°【答案】 C【解析】 △ABC 中,∠ACB =90°,∠A =22°, ∴∠B =90°-∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∠BDC =∠EDC , ∴∠ADE =∠CED -∠A =46°,∴180672ADEBDC ︒-∠∠==︒.例题3、 (1)如图①,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于点D ,AE 平分∠BAC ,求∠EAD 的度数;EDC B A(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.【答案】(1)20°(2)①1122EAD y x∠=-;理由见解析②1122EFM y x∠=-;理由见解析【解析】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°∵AE平分∠BAC,∴1302CAE BAC∠=∠=︒∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)①∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C=180°-x-y∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-;②过A作AD⊥BC于D,∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-∵AD⊥BC,FM⊥BC,∴AD∥FM,∴∠EFM=∠EAD,∴1122 EFM y x ∠=-.随练1、如果将一副三角板按如图方式叠放,那么∠1=____________.【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.随练2、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_________-.【答案】130°或90°【解析】∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°.直角三角形的性质例题1、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个.例题2、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°.【答案】 135【解析】 观察图形可知:△ABC ≌△BDE , ∴∠1=∠DBE ,又∵∠DBE +∠3=90°, ∴∠1+∠3=90°. ∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.例题3、 如图,ABC △中,AD 是高,AE 、BF 分别是BAC ∠和ABC ∠的平分线,它们相交于点O ,60A ∠=︒,70C ∠=︒.求DAC ∠,BOA ∠.【答案】 20︒;125︒【解析】 9020DAC C ∠=︒-∠=︒∵180C BAC ABC ∠+∠+∠=︒,70C ∠=︒,60BAC ∠=︒,∴50ABC ∠=︒∵AE ,BF 是角平分线,∴12302BAC ∠=∠=︒,13252ABC ∠=∠=︒∵23180BOA ∠+∠+∠=︒,∴125BOA ∠=︒.随练1、 如果一个直角三角形斜边上的中线与斜边成50°角,那么这个直角三角形的较小的内角是________度. 【答案】 25【解析】 暂无解析随练2、 图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt △ABC 的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A.9个B.8个C.7个D.6个【答案】 A【解析】 暂无解析三角形的边知识精讲按角分直角三角形三角形中有一个角是直角斜三角形锐角三角形三角形中三个角都是锐角钝角三角形三角形中有一个角是钝角按边分不等边三角形三边都不相等的三角形等腰三角形底边和腰不相等的三角形有两条边相等的三角形等边三角形(正三角形)三边相等的三角形三角形任意两边的和大于第三边三角形任意两边的差小于第三边如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征叫做三角形的稳定性.除了三角形外,其他多边形不具备稳定性,因此在生产建设中,为达到巩固的目的,把一些构件都做成三角形结构.四.易错点1.在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最能否组成三角形.2.在应用三边关系判断三条线段能否组成三角形时,要注意“任意”二字.三点剖析考点:1. 按边分类;2. 三边关系;3. 稳定性重难点:1. 在应用三边关系判断能否组成三角形时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.2. 由三角形三边关系可得,如果a, b, c三条线段能够组成三角形,那么b c a b c-<<+.易错点:在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最终能否组成三角形.按边分类例题1、若下列各组值代表线段的长度,以它们为边能构成三角形的是()A.6、13、7B.6、6、12C.6、10、3D.6、9、13【答案】D【解析】A、6+7=13,则不能构成三角形,故此选项错误;B、6+6=12,则不能构成三角形,故此选项错误;C、6+3<10,则不能构成三角形,故此选项错误;D、6+9>13,则能构成三角形,故此选项正确.例题2、各边长度都是整数、最大边长为11的三角形共有________个.【解析】 设另外两边长为x ,y ,且不妨设1≤x≤y≤11,要构成三角形,必须x +y≥12. 当y 取值11时,x =1,2,3,…,11,可有11个三角形; 当y 取值10时,x =2,3,…,10,可有9个三角形;当y 取值分别为9,8,7,6时,x 取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.三边关系例题1、 下列长度的三根小木棒能构成三角形的是( ) A.2cm ,3cm ,5cm B.7cm ,4cm ,2cm C.3cm ,4cm ,8cm D.3cm ,3cm ,4cm 【答案】 D【解析】 A 、因为2+3=5,所以不能构成三角形,故A 错误; B 、因为2+4<6,所以不能构成三角形,故B 错误; C 、因为3+4<8,所以不能构成三角形,故C 错误; D 、因为3+3>4,所以能构成三角形,故D 正确.例题2、 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.11 D.16 【答案】 C【解析】 设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选:C .例题3、 如图,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:12AB AE BC AD AC ++>+【答案】 见解析【解析】 ∵AD BC ⊥∴AB AD >,在△AEC 中,AE EC AC +>.又∵AE 为中线,∴12EC BC =即12AE BC AC +>,∴12AB AE BC AD AC ++>+随练1、 已知一个三角形的第一条边长为(a+2b )厘米,第二条边比第一条边短(b ﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长. 【答案】 (1)3a+4b+1 (2)19【解析】 (1)第二条边长为:a+2b ﹣(b ﹣2)=(a+b+2)厘米, 第三条边长为:a+b+2﹣3=(a+b ﹣1)厘米, 则周长为:a+2b+a+b+2+a+b ﹣1=3a+4b+1; (2)当a=2,b=3时, 周长为:3×2+4×3+1=19.随练2、 在△ABC 中,若AB =5,BC =2,且AC 的长为奇数,则AC =________.ED CBA【解析】暂无解析随练3、如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.【答案】3【解析】暂无解析稳定性例题1、下列图形中,不具有稳定性的是()A. B. C. D.【答案】B【解析】本题考查的是三角形稳定性.A可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;B可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确;C可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;D可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选B.随练1、王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【答案】B【解析】本题考查的是三角形稳定性.加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.三角形的高、中线、角平分线知识精讲一.三角形的高线、中线、角平分线概念从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线三.易错点1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.特别是钝角三角形的高,有两条是在三角形外.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.3.三角形的中线是线段4.三角形边上的高是线段,而该边的垂线是直线三点剖析考点:1.三角形的高、中线、角平分线;2.面积问题;重难点:1.锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;直角三角形两条高分别与两条直角边重合,三条高的交点也在三角形的直角顶点处;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部.2.三角形三条中线的交点一定在三角形内部.3.每个三角形都有三条角平分线且交于一点,这个点叫三角形的内心,它也一定在三角形内部.易错点:1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.三角形的高、中线、角平分线例题1、如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别为()A.2cm、2cm、2cmB.3cm、3cm、3cmC.4cm、4cm、4cmD.2cm、3cm、5cm【答案】A【解析】∵△ABC中,∠C=90°,AB=10cm,BC=8cm,CA=6cm,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴12×6×8=12OF×10+12OE×6+12OD×8,∴5x+3x+4x=24,∴x=2,即点O到三边AB,AC和BC的距离都等于2.故选A.例题2、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到'''A B C,图中标出了点B 的对应点'B.(1)补全'''A B C根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)'''A B C的面积为________【答案】(1)如图所示:'''A B C即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)8.【解析】(1)连接BB',过A、C分别做BB'的平行线,并且在平行线上截取AA CC BB'='=',顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)4421628⨯÷=÷=.故'''A B C的面积为8.随练1、如图,在△ABC中,CD是高线,点E在CD上,且∠ACD=∠DBE,则有()A.BE⊥ACB.BE平分∠ABCC.∠BCD=∠CBED.∠CBD=∠BED【答案】A【解析】延长BE到AC上一点F,∵CD是高线,∴∠BED=∠CEF,∠BDE=90°,则∠DEB+∠EBD=90°,∵∠ACD=∠DBE,∴∠ACE+∠CEF=90°,∴∠CFB=180°-(∠ACE+∠CEF)=90°,即BE⊥AC,故A选项正确;随练2、如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于H.下面判断正确的有________.(1)AD是在△ABC的角平分线(2)BE是的△ABD的AD边上的中线(3)CH为△ACD边AD上的中线(4)AH是△ACF的角平分线和高线.【答案】(1)(4)【解析】(1)根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法正确;(2)根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;(3)根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法不正确;(4)根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.面积问题例题1、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S l,△ACE的面积为S2,若S△ABC=12,则S1+S2=________.【答案】14【解析】∵BE=CE,∴1112622ACE ABCS S==⨯=,∵AD=2BD,∴2212833ACD ABCS S==⨯=,∴S1+S2=S△ACD+S△ACE=8+6=14.例题2、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.【答案】 1.5或5或9【解析】如图1,当点P在AC上,∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵△APE的面积等于10,∴1124622APES AP CE t==⨯⨯=△,∴t=1.5;如图2,当点P在线段CE上,∵E是DC的中点,∴BE=CE=4.∴PE=4-(t-3)=7-t,∴11(7)6622S EP AC t==-⨯=,∴t=5,如图3,当P在线段BE上,同理:PE=t-3-4=t-7,∴11(7)6622S EP AC t==-⨯=,∴t=9,综上所述,t的值为1.5或5或9.例题3、如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.143C.3D.72【答案】A【解析】如图,连接AB1,BC1,CA1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB1=S △ABC ,S △A1AB1=S △ABB1=S △ABC ,∴S △A1BB1=S △A1AB1+S △ABB1=2S △ABC ,同理:S △B1CC1=2S △ABC ,S △A1AC1=2S △ABC ,∴△A 1B 1C 1的面积=S △A1BB1+S △B1CC1+S △A1AC1+S △ABC =7S △ABC =14.∴S △ABC =2.随练1、 如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2 【答案】 B 【解析】 2111cm 24BCE ABC S S S ===△△阴影. 随练2、 如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD ︰CD =2︰3,AD ,BE 交于点O ,若S △AOE -S △BOD=1,则△ABC 的面积为________.【答案】【解析】 ∵点E 为AC 的中点,∴S △ABE=12S △ABC . ∵BD :CD=2:3, ∴S △ABD=25S △ABC , ∵S △AOE -S △BOD=1,∴S △ABE -S △ABD=12S △ABC -25S △ABC=1, 解得S △ABC=10.故答案为:10随练3、 阅读下列材料:某同学遇到这样一个问题:如图1,在ABC ∆中,AB AC =,BD 是ABC ∆的高.P 是BC 边上一点,PM ,PN 分别与直线AB ,AC 垂直,垂足分别为点M ,N .求证:BD PM PN =+.他发现,连接AP ,有ABC ABP ACP S S S ∆∆∆=+,即111222AC BD AB PM AC PN ⋅=⋅+⋅.由AB AC =,可得BD PM PN =+. 他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD ,PM ,PN 之间的数量关系是:请回答:(1)请补全以下该同学证明猜想的过程;∵ABC APC S S ∆∆=-___________,∴1122AC BD AC ⋅=⋅_____12AB -⋅______, ∵AB AC =,∴BD PN PM =-.(2)参考该同学思考问题的方法,解决下列问题:在ABC ∆中,AB AC BC ==,BD 是ABC ∆的高.P 是ABC ∆所在平面上一点,PM ,PN ,PQ 分别与直线AB ,AC ,BC 垂直,垂足分别为点M ,N ,Q .图3,若点P 在ABC ∆的内部,则BD ,PM ,PN ,PQ 之间的数量关系是:_________________;②若点P 在如图4所示的位置,利用图4探究得出此时BD ,PM ,PN ,PQ 之间的数量关系是:________________________.【答案】 (1)见解析(2)①BD PM PN PQ =++②BD PM PQ PN =+-【解析】 该题考查的是等面积方法的应用.(1)由图可知∵ABC APC APB S S S ∆∆∆=-∴111222AC BD AC PN AB PM ⋅=⋅-⋅, ∵AB AC =∴BD PN PM =-(2)①连接AP 、BP 、CP参考该同学思考问题的方法,则有∵ABC APB APC BPC S S S S ∆∆∆∆=++,∴11112222AC BD AB PM AC PN BC PQ ⋅=⋅+⋅+⋅,∵AB AC BC ==,∴BD PM PN PQ =++.②过点P 分别作直线AB ,AC ,BC 的垂线P ,垂足分别为点M ,N ,Q ,分别连接接AP 、BP 、CP ,参考以上的思考方法,则有∵ABC APB BPC APC S S S S ∆∆∆∆=+-, ∴11112222AC BD AB PM BC PQ AC PN ⋅=⋅+⋅-⋅, ∵AB AC BC ==,∴BD PM PQ PN =+-.拓展1、 若一个三角形的三个内角的度数之比为3:4:2,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】 A【解析】 ∵三个内角的度数之比为3:4:2,∴三个内角的度数分别是60︒,80︒,40︒;∴该三角形是锐角三角形.2、 如图,将三角尺的直角顶点放在直线a 上,a b ∥,150∠=︒,260∠=︒,则3∠的度数为( )A.50︒B.60︒C.70︒D.80︒【答案】 C 【解析】 由题意:354∠=∠=∠,由124180∠+∠+∠=︒,故123180∠+∠+∠=︒,故370∠=︒。
小学三年级三角形的认识练习题
小学三年级三角形的认识练习题题目1:三角形的性质1. 小雪画了一个三角形,三个角分别是35°、75°和70°,根据这些信息,判断这个三角形的性质。
2. 请列举出三角形的两个边长,分别是5 cm和8 cm,还有一个角度是40°,画出对应的三角形。
3. 设三角形ABC中,AB = BC,∠ACB = 45°,请画出这个三角形。
题目2:三角形的分类1. 根据边长,将三角形分为哪几类?举例说明。
2. 根据角度,将三角形分为哪几类?举例说明。
3. 判断以下三角形属于哪类:等腰三角形、等边三角形、直角三角形、钝角三角形、锐角三角形。
题目3:三角形的周长和面积计算1. 一张地图上,两个城市A、B的距离为12千米,另外一个城市C 距离A城市8千米,距离B城市10千米,求三角形ABC的周长。
2. 小明制作了一个等边三角形的广告牌,每边的长度是10米,求广告牌的周长和面积。
3. 若一个三角形的底边长为6 cm,高为4 cm,求这个三角形的面积。
题目4:三角形分类的判断1. 以下三组边长分别是:(3 cm, 5 cm, 7 cm),(7 cm, 7 cm, 7 cm),(6 cm, 4 cm, 7 cm),判断它们分别构成什么类型的三角形。
2. 以下三组角度分别是:(60°, 60°, 60°),(30°, 60°, 90°),(110°, 30°, 40°),判断它们分别构成什么类型的三角形。
3. 一个三角形的三个角分别是60°、70°和50°,判断它是怎样的三角形。
题目5:三角形的性质综合运用1. 有一个三角形ABC,其三个角分别是55°、75°和50°,请画出这个三角形,并判断它是哪种类型的三角形。
2. 一个三角形有两边分别是7 cm和8 cm,还有一个角度是90°,请画出对应的三角形,并判断它是哪种类型的三角形。
初中数学知识点精讲精析 认识三角形
1 认识三角形学习目标1. 认识三角形的概念及其基本要素。
2. 掌握三角形三条边之间的关系。
3. 认识等腰三角形和等边三角形。
知识详解1. 由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
2. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180°;(三角形的内角和定理)。
(2)直角三角形的两个锐角互余。
3.三角形的分类4.通常,我们用符号“Rt△ABC”表示直角三角形ABC。
把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边。
5.有两边相等的三角形叫做等腰三角形。
三边都相等的三角形叫做等边三角形,也叫做正三角形。
两条直角边相等的直角三角形叫做等腰直角三角形。
三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。
注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边。
6.三角形的主要线段(1)连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。
简称三角形的中线。
三角形的三条中线交于一点,这个点叫做三角形的重心。
(2)三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。
简称三角形的角平分线。
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点。
(3)三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。
三角形 知识点+考点+典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
认识三角形精品练习题
认识三角形1、三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三形。
如右的图形就是一个三角形2、三角形的各组成部分3. 三角形表示:“△”来表示一个三角形,如上图中,此三角形可以表示为△ABC,或△ACB或△ BAC等等。
A4、三角形的分类1)按角分2)按边分BC5.三角形三边性质:三角形任意两边之和大于第三边;两边之差 <第三条边 <两边之和试一试:1. △AB C中,已知a=8, b=5,则c为( )A. c=3B.c=13C. c 可以是任意正实数D. c 可以是大于 3 小于 13 的任意数值2.下列长度的 4 根木条中,能与 4cm和 9cm 长的 2 根木条首尾依次相接围成一个三角形的是()A、 4cmB、 9cmC、 5cmD、 13cm3. 有下列长度的三条线段能构成三角形的是( )A.1 cm 、 2 cm、 3 cmB.1 cm、4 cm、2 cmC.2 cm 、 3 cm、 4 cmD.6 cm、2 cm、3 cm4 、如图,以∠ C 为内角的三角形有和在这两个三角形中,∠ C 的对边分别为和5、等腰三角形的一边长为 3 ㎝,另一边长是 5 ㎝,则它的第三边长为6、三角形的三边长为3,a,7,则 a 的取值范围是;如果A这个三角形中有两条边相等,那么它的周长是;B D C7 一个三角形的两边长分别为 2 ㎝和 9 ㎝, 第三边长是一个奇数, 则第三边的长为 ___________, 此三角形的周长为 _________.8 一个等腰三角形的两边分别为 2.5 和 5,求这个三角形的周长。
9、画一个三角形,使它的三条边长分别为 3 cm、 4 cm 、6 cm.三条重要线段;1、高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段称为三角形的高。
注:( 1)三角形的高必为线段;(2)三角形的高必过顶点垂直于对边;(3)三角形有三条高。
精选新版2019年七年级下册数学单元测试题《三角形的初步认识》完整考题(含答案)
2019年七年级下册数学单元测试题第一单元三角形的初步认识一、选择题1.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm 则△ADC的周长为()A.14 cm B.13 cm C.11 cm D.9 cm答案:B2.下列6组长度的线段中,可以首尾相接组成三角形的是()①3,4,5;②1,1,3;③1,2,3;④5,5,5;⑤2,2,5;⑥3,7,4A.①②③④⑤⑥B.①④⑤C.①③④D.①②③④答案:D3.下列条件中,不能作出唯一..三角形的是()A.已知两边和夹角B.已知两边和其中一边的对角C.已知两角和夹边D.已知两角和其中一角的对边答案:B4.如图所示,已知∠1=∠2,AD=CB,AC,BD相交于点0,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对答案:C5.如图所示,若根据“SAS”来说明△ABC≌△DBC,已知BC是公共边,需要补充的条件是()A.AB=DB,∠l=∠2 B.AB=DB,∠3=∠4C.AB=DB,∠A=∠D D.∠l=∠2,∠3=∠4答案:B6.如图所示,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是()A 10° B.20° C.30° D.40°答案:B7.如图所示是跷跷板的示意图,支柱0C与地面垂直,点0是横板AB的中点,AB可以绕着点0上下转动,当A端落地时,∠0AC=20°.跷跷板上下可转动的最大角度(即∠A′OA)是()A.800 B.60°C.40°D.20°答案:C8.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有()A 1个 B.2个 C.3个 D.4个答案:D二、填空题9.如图,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF = .解析:20010.若一个三角形的两条高在这个三角形的外部,那么这个三角形的形状是___________三角形.解析:钝角11.已知:△ABC 中,∠A=100°,∠B -∠C =60°,则∠C=__________.解析:10°12.如图,在△ABC 中,AD 是BC 边上的中线,若△ABC 的周长为20,BC=11,且△ABD 的周长比△ACD 的周长大3,则AB= ,AC= . 6,313.,AC=CD ,∠ACD=60°, 则∠ACB= .解析:30°14.已知△ABC ≌△A ′B ′C ′,AB+AC=18 cm ,BC=7 cm ,则△A ′B ′C ′的周长是 .解析:25 cm15.如图所示,将两块相同的直角三角板的直角顶点重合放在一起,若∠AOD=110°,则∠BOC= .请你用符号表示图中的全等三角形: .解析:70°,△AOB ≌△COD16.如图所示,△ABC 中,∠B=∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD=155°,则∠EDF= .解析:65°17.直角三角形的两个锐角的平分线AD ,BE 交于点0,则∠AOB= .解析:135°三、解答题18. 如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四 D B种不同的分法,把4×4的正方形分割成两个全等图形.解析:19.如图,AB⊥BD于B,DE⊥BD于D,已知AB=CD,BC=ED,求∠ACE的度数.解析:△ABC≌△CDE(SAS),则∠ACB=∠E,由于∠ACB+∠ACE =∠E+∠D, 则∠ACE=∠D=90°.20.如图,在△ABC和△DEF中,AC=DF,AE=BD,BC=EF,则∠C=∠F,请说明理由(填空).解:∵ AE=BD(已知)∴ =∴ =在△ABC和△DEF中===∴△ABC≌△DEF ( )∴∠C=∠F ( )解析:AE-BE,BD-BE,AB,DE,AC,DF,AB,DE,BC,EF,SSS,全等三角形的角相等.21.画一个三角形,使两个内角分别为45°和60°,它们的夹边为2.5cm.解析:略22.如图所示,已知AB=CD,BE=CF,E、F在直线AD上,并且AF=DE,说明△ABE≌△DCF的理由.解析:略23.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?解析:略24.把大小为4×4的正方形方格图形分割成两个全等图形,如右图所示,请在下图中,沿着虚线再画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形解析:略25.如图所示,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=34°,求∠DAE的大小.解析:18°26.如图所示,在△ABC中,∠ABC=∠ACB,且∠ACB=2∠A,BD⊥AC于D,求∠DBC的度数.解析:18°27.如下表,“谢氏三角”是波兰著名数学家谢尔宾斯基在1915年~l916年期间提出的,它的作法是:第一步:取一个等边三角形(记为P 1),连结各边的中点,得到完全相同的小正三角形,挖掉中间的一个;第二步:将剩下的三个小正三角形(记为P 2),按上述办法各自取中点,各自分成4个小三角形,去掉各自中间的一个小正三角形;依次类推,不断划分出小的正三角形,同时去掉中间的一个小正三角形.试求P 4的“黑”三角形的个数,“黑”三角形的总边数,边长,周长和面积,并将结果填入下表中.解析:27,81,118a ,1818a ,12764S 28.如图所示,已知△ABC 的边AB 和BC 边上的中线AD ,请把△ABC 补画完整.解析:连结BD,并延长BD到C,使DC=BD,连结AC29.在△ABC中,∠A+∠C=120°,∠B+∠C=110°,求三角形各内角的度数.解析:∠A=70°,∠B=60°,∠C=50°30.如图,从建筑物顶端A处拉一条宣传标语条幅到地面C处,为了测量条幅AC的长,在地面另一处选一点D,使D、C、B(B为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC的度数.解析:40°AB CD。
1.1认识三角形(知识清单+经典例题+夯实基础+提优训练+中考链接)
A.至少有一个直角
B. 至少有一个钝角 C. 至多有两个锐角
D.至少有两个锐角
3.如图,在△ABE 中,∠C=90°,CD⊥AB,垂足为点 D,有如下结论:①图中只有两个直角三角形;②∠1=∠2;③
∠1=∠B;④∠A 与∠B 互余.其中正确的个数为( )
A.1
B.2
C.3
D.4
4.能将一个三角形分成面积相等两部分的线是( )
三角形.
8.现有长度分别为 3cm,5cm,7cm,9cm 的木棒,从中任取三根,制成三角形支架的个数为
.
9.若三角形的三条高所在的直线的交点不在外部,则这样的三角形是
三角形.
10.将一副三角板的直角顶点 A 如图叠放在一起,则∠DAC+∠BAE=
°.
11.如图,在△ABC 中,作出 BC 边上的高线 AD(要求:标出垂足符号,写出垂足字母);作出∠B 的平分线 BE;作
B.三角形三条边上高线的交点
C.三角形三条边垂直平分线的交点 D.三角形三条内角平行线的交点
9.(2018 浙江萧山)若线段 AM、AN 分别是△ABC 的 BC 边上的高线和中线,则( )
A. AM>AN B.AM≥AN
C.AM<AN
D.AM≤AN
参考答案: 例 1 12 例 2 C 例 3 △ABE 的周长比△ACE 的周长大 4cm. △ABE 的面积等于△ACE 的面积. 例 4 ∠BOC=128°. ∠BOC=128°. BOC = 90 + 1 BAC 2
∴∠ADC=90°,
∴∠CAD=14°.
(2)∵CE 是∠BCA 的平分线, ∴ ACE = 1 ACB = 38 . 2 ∴ AEC =180 − BAC − ACE
七年级数学下册《认识三角形》例题解析(含答案)
《认识三角形》例题解析例1(1)已知:如图1,D是BC上一点,∠C=62°,∠CAD=32°,则∠ADB=_______度.(2)(黑龙江)一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A.14B.15C.16D.17(3)用7根火柴首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为________.解:(1)∠ADB=∠CAD+∠C=32°+62°=94°.故应填94°.(2)∵这个三角形第三边应满足4<x<10,∴最小边为5.则周长最小值为3+5+7=15.故应选B.(3)7根火柴可分为:1,1,5;1,2,4;1,3,3;2,2,3四种,其中能摆成三角形的是:1,3,3;2,2,3两种.故应填2.评析:第(3)小题要分类讨论,并要用三角形三边关系来检验每种情况能否构成三角形.例2如图2,在△ABC中,AD平分∠BAC,BE是高,∠BAC=60°,∠EBC=20°,试求∠ADC的度数.解:因为∠BAC=60°,AD平分∠BAC,所以∠BAD=30°.又因为BE是高,所以∠ABE=30°.而∠EBC=20°,所以∠ABD=50°.所以∠ADC=∠ABD+∠BAD=50°+30°=80°.评析:解这类题目要明确所求的角属于哪一个三角形的内角或外角,抓住题目中存在的等量关系列式计算即可.有时运用列方程解会更简捷.例3如图3,已知:在直角三角形ABC中,∠A=90°,BP平分∠ABC,若CP平分∠ACB且交BP于P,求∠BPC的度数.解:因为BP、CP分别平分∠ABC、∠ACB,所以∠PBC=12∠ABC,∠PCB=12∠ACB.因为∠BPC=180°-(∠PBC+∠PCB),又∠ABC+∠ACB=180°-∠A,所以∠BPC=180°-12(∠ABC+∠ACB)=90°+12∠A.即∠BPC=90°+12×90°=135°.跟踪练习:1.如图4所示,∠1和∠2是A、B两木板与地面的夹角,∠3是两木板间的夹角.若∠3=110°,则∠2-∠1=________.2.如图5,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.3.如图7,已知DE分别交△ABC的边AB、AC于D、E,交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.4.如图8,BP、CP分别平分△ABC的内角∠ABC和外角∠ACD,BP、CP交于P点,若∠A=80°,试求∠P的度数.参考答案:1.702.603.874.40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识三角形的典型例题三
例 三角形一个角是第二个角的
23倍,第三个角比这两个角的和大30°,求这个三角形的三个角.
分析:如果设第二个角是︒x ,则有第一个角是︒)23(x ,第三个角是︒++)3023(x x ,由三角形内角和等于180°可以列出方程,从而求出各个角.
解:设第二个角是︒x ,则第一个角是︒)23(x ,第三个角是︒++
)3023(x x ,根据三角形三个内角和是180°,得︒=++++
180)3023(23x x x x 解这个方程,得30=x 所以105302
3,4523=++=x x x . 答:这个三角形第一个角是45°,第二个角是30°,第三个角是105°.
说明:一般在三角形求内角问题时,我们首先应考虑应用三角形三个内角间的关系.。