植树问题(公式,讲解,及练习含答案)
奥数植树问题(含答案)
植树问题在生活中很有实际运用价值,其基本数量关系和解题的要点是:1.植树问题的基本数量关系:每段距离×段数=总距离.2.在直线上植树要根据以下几种情况,弄清棵数与段数之间的关系:(1)在一段距离中,两端都植树,棵数=段数+1;(2)在一段距离中,两端都不植树,棵数=段数-1;(3)在一段距离中,一端不植树,棵数=段数.3.在封闭曲线上植树,棵数=段数.例题:1 有一条长1000米的公路,在公路的一侧从头到尾每隔25米栽一棵树苗,一共需要准备多少棵树苗?2 公路的一旁每隔40米有木电杆一根(两端都有).共121根.现改为水泥电杆51根(包括两端),求两根相邻水泥电杆之间的距离.3. 两幢大楼相隔115米,在其间以等距离的要求埋设22根电杆,从第1根到第15根电杆之间相隔多少米?4. 工程队打算在长96米,宽36米的长方形工地的四周打水泥桩,要求四角各打一根,并且每相邻两根的距离是4米,共要打水泥桩多少根?5 .一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?6. 红星小学有125人参加运动会的入场式,他们每5人为一行,前后两行的距离为2米,主席台长32米.他们以每分钟40米的速度通过主席台,需要多少分钟? A卷1.学校有一条长80米的走道,计划在走道的一旁栽树,每隔4米栽一棵.(1)如果两端都栽树,那么共需要______棵树.(2)如果两端栽柳树,中间栽杨树,那么共需要______杨树.(3)如果只有一端栽树,那么共需要______棵树.2.一个圆形水池的周长是60米,如果在水池的四周每隔3米放一盆花,那么一共能放______盆花.3.16米的校园大道两边都种上树苗,从路的两头起每隔2米种一棵,共种______棵4.蚂蚁爬树枝,每上一节需要10秒.它从第一节爬到第13节需要_______秒5.一根木料长24分米,现在要将这跟木料锯成长度相等的6段,每锯一次要10秒,共要______秒.6.同学们布置教室,要将一根200厘米长的彩带剪成20厘米长的小段.如果彩带不能折叠,需要剪多少次?7.公园的一个湖的周长是1800米,在这个湖的周围每隔20米种一棵柳树.然后在每两棵柳树之间每隔4米种一棵迎春花,需要柳树多少棵、迎春花多少棵?8.在一幢高25层的大楼里,甲、乙两个比赛爬楼梯.甲到9楼时,乙刚上到5楼.照这样的速度,当甲到了顶层时乙到了几楼?9.一个人以均匀的速度在路上散步,从第1根电线杆走到第7根电线杆用了12分钟,这个人走了30分钟,他走到了第几根电线杆?他走到第30根电线杆处,用了几分钟?10.甲村到乙村,原计划栽树175棵,相邻两棵树距离8米,后决定改为栽树117棵,问相邻两树应相距多少米?11.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后两车相隔5米,问这列车队共长多少米? B卷1.有一条长1000米的公路,在公路两边从头到尾每隔10米栽一棵树,共可栽______棵树.2.两幢楼房相距90米,现在要在两楼之间每隔10米种一棵树,需要种_____树.3.一根木料锯成4段需要18分钟,改成锯8段要_____分钟.4.园林工人放盆花,每7盆花距离12米.照这样计算,36盆花的距离是______米.5.某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是_____米.6.师专附小举行运动会入场仪式,四年级有246名同学排成6路纵队,前后每行间隔2米,主席台长40米.他们以每分钟40米的速度通过主席台.需要______分钟.7.圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?8.有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?9.人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?10.一根木料长4米,锯成每段40厘米,需要36分钟.如果把它锯成每段长50厘米,需要多少时间?11.在铁路一旁,每隔50米有电杆一根.一旅客在行进的火车里,从经过第1根电杆起到第89根电杆为止,恰好经过了4分钟,问火车行进的速度是每小时多少千米?12.有一根长180米厘米的绳子,从它的一端开始,每3厘米作一个记号,每4厘米也作一个记号.然后将有记号的地方剪开,问绳子共可剪成多少段?C卷1.在相距100米的两楼之间栽树,每隔10米栽一棵,共栽了______棵树.2.一个长方形的池塘长120米、宽28米,在池塘边每隔2米种一棵树,一共需要种_____棵树.3.一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.4.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米,这列车队要通过536米长的检阅场地,要______分钟.5.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分钟.如果把这样的钢条锯成半米长的小段,需要______分钟.6.小王要到大厦的36层去上班,一日因停电他步行上楼,他从一层到六层用了100秒.如果用同样的速度走到36层,还需要_____秒.7.马路的一边每隔10米种一棵树,小明乘汽车2分钟共看到201棵树,汽车每小时行多少千米?8.公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少?9.公路两旁距离均匀地栽有一批杨树.清晨琳琳以同一速度在公路一侧跑步,从第1棵树跑到第9棵树用了4分钟.她准备往返跑步30分钟,琳琳应该跑到第几棵树时返回?一条道路的一边,每隔30米有一根电线杆,共有51根.现在要进行线路改造,每隔50米设一根电线杆,改造过程中有多少根电线杆不需要移动?答案1.解1000÷25+1=41(棵).2.分析:公路全长为40×(121-1)解40×(121-1)÷(51-1)=40×120÷50=96(米).3.分析:在相距115米的两幢大楼之间埋设电杆,是两端都不埋电杆的情况,115米应该分成22+1=23段,那么每段长是115÷23=5米,而第1根到第15根电杆间有15-1=14段,所以第1根到第15根电杆之间相隔(5×14)米.解115÷(22+1)×(15-1)=115÷23×14=70(米)4.分析:先求出长方形的周长是(96+36)×2=264米,每4米打一根桩,因为是沿着长方形四周打桩,所以段数和根数相等,可用264÷4来计算.解 (96+36)×2÷4=132×2÷4=66(根).5.分析:沿着封闭的圆形水库四周植树,段数与棵数相等,沿着2430米的四周,每隔9米种柳树一棵,共可种2430÷9=270棵,也就是把水库四周平分成270段.又在相邻两棵柳树之间,每隔3米种杨树一棵,每段可种9÷3-1=2棵,总共可种杨树2×270=540棵.解 (9÷3-1)×(2430÷9)=2×270=540(棵)6.分析:这是一道与植树问题有关的应用题.利用"有125人,每5人为一行"可求出一共有125÷5=25行,行数相当于植树问题中的棵数,"前后两行距离是2米"相当于每两棵树之间的距离,这样可求出队伍的长度是2×(25-1)米.再加上主席台的长度,就是队伍所要走的距离.用队伍所要走的距离,除以队伍行走的速度,可求出所需行走的时间了.解 [2×(125÷5-1)+32]÷40=[2×24+32]÷40=80÷40=2(分钟).植树问题答案:水平测试 4A卷1.(1)21. 80÷4+1=21(棵)(2)19. 80÷4-1=19(棵)(3)20. 80÷4=20(棵)2.20. 这是一个封闭图形.60÷3=20(盆).3.18. 注意这是两边种树.先求一边:16÷2+1=9(棵),9×2=18(棵)4.120. (13-1)×10=120(秒)5.50. (6-1)×10=50(秒)6.9次. 200÷2-1=97.柳树90棵,迎春花360棵.柳树:1800÷20=90(棵),迎春花:(20÷4-1)×90=360(棵).8.13楼. 甲上到9楼就是上了8层楼梯,乙上到5楼就是上了4层楼梯,这样甲的速度就是乙的2倍.(9-1)÷(5-1)=2,(25-1)÷2+1=13(楼).9.16根,58分钟. 第一根电线杆到第七根电线杆之间有6个间距,走6个间距要12分钟,可知走一个间距所需时间.12÷(7-1)=2(分钟),30÷2+1=16(根),(30-1)×2=58(分钟).10.12米. 先求出两村距离:(175-1)×8=1392(米).再求间距:1392÷(117-1)=12(米).11.265米. 30辆车之间有29个间隔,这个车队的长度包括车长和间隔.30×4+(30-1)×5=265(米).B 卷1.202. (1000÷10+1)×2=202(棵).2.8. 90÷10-1=8(棵).3.42. 锯一段所需时间,18÷(4-1)=6(分钟),6×(8-1)=42(分钟).4.70. 两盆花之间的距离:12÷(7-1)=2(米),(36-1)×2=70(米).5.4. (50-6×5)÷(6-1)=4(米)6.3. 同学们通过主席台所走的路程包括:主席台的长度和队伍本身的长度.队伍长:(246÷6-1)×2=80(米),(80+40)÷40=3(分钟).7.在封闭曲线上,分成段数就是需装灯的盏数.同时,因为每段上放3盆花,所以花的盆数是段数的3倍.400÷40=10(盏)......灯,3×10=30(盆)......花.8.从图可看到,四边共种了16棵,若每边种了(5-1)棵,则4边种了4×4=16棵;若每边种5棵树,四边共5×4=20棵树,去掉四个角上重复的棵数,那么也成了20-1×4=16棵;解法一(5-1)×4=16(棵); 解法二5×4-1×4=16(棵).9.花坛的总长是9×8=72(米),还剩下的米数是168-72=96(米).在封闭曲线上,8个花坛间有8个间隔,每个间隔的距离是96÷8=12(米).(168-9×8)÷8=96÷8=12(米).10.4m=400cm,36÷(400÷40-1)×(400÷50-1)=36÷9×7=28(分钟).11.从第1根到第89根,火车共走了50×(89-1)=50×88=4400米.走这些路程用了4分钟,所以火车每分钟走4400÷4=1100米,那么1小时可走1100×60÷1000=66千米.50×(89-1)÷4×60÷1000=50×88÷4×60÷1000=66(千米/小时).12.180米长的绳子,每隔3厘米做一个记号,记号数比段数少1,有180÷3-1=59个记号.同样每隔4厘米做一个记号,则有180÷4-1=44个记号.由于3×4=12厘米,可以想象,每隔12厘米,3厘米处的记号与4厘米处的记号重复一次,那么在180厘米长的绳子上共重复了180÷12-1=14次,所以绳子上的记号总数为59+44-14=89个,而记号处都要剪开,共剪了89次,剪成了90段(段数比次数多1).(180÷3-1)+(180÷4-1)-[180÷(3×4)-1]+1=59+44-14+1=90(段).C 卷1.9. 100÷10-1=9(棵).2.148. (120+28)×2÷2=148(棵)3.16. 12÷(7-1)=2(分钟),30÷2+1=16(根).4.10. 车队行进的长度包括检阅场地和车队本身长度.(52-1)×6+52×4=514(米),(514+536)÷105=10(分钟).5.140. 1小时20分=80分,80÷(5-1)=20(分钟),(4×2-1)×20=140(分钟).6.600. 100÷(6-1)=20(秒),(36-1)×20=700(秒),700-100=600(秒).7.60千米/时. 小明2分钟经过了201棵树,这之间就有201-1=200(个)间隔,每个间隔10米,就能求出汽车开过的路程.(201-1)×10=2000(米)=2(千米),2÷2×60=60(千米/时). 8.60条,60米. 三棵树之间的间距:3600÷120×2=60(米),也就是每60米要放一张长椅,所以3600÷60=60(条).9.31棵. 4分钟=240秒.240÷(9-1)=30(秒),琳琳30秒跑一个间距.30分钟=1800秒,1800÷30=60(个),琳琳1800秒要跑60个间距,往返各30个间距,所以30+1=31(棵).琳琳跑到第31棵树时返回.10.11根. 道路总长度:30×(51-1)=1500(米).当30米与50米的公倍数150米处时,这根电线杆不需要移动,还有开头的这根也不需要移动.1500÷150+1=11根.11.152米,292米.4cm=40mm,40-4×6=16(mm),40×3+16×2=152(mm).40×5+16×4+(40-12)=292(米).。
小学数学常考植树问题、年龄问题(附例题、解题思路)
植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树棵数=距离÷棵距+1环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距×行距)【解题思路和方法】先弄清楚植树问题的类型,然后可以利用公式。
例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。
例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解400÷4=100(棵)答:一共能栽100棵白杨树。
例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解220×4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。
例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。
例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解(1)桥的一边有多少个电杆?500÷50+1=11(个)(2)桥的两边有多少个电杆?11×2=22(个)(3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共可以安装44盏路灯。
年龄问题【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
小学数学典型应用题9:植树问题(含解析)
小学数学典型应用题9:植树问题(含解析)植树问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】线形植树:一端植树:棵数=间隔数=距离÷棵距两端植树:棵数=间隔数+1=距离÷棵距+1两端都不植树:棵数=间隔数-1=距离÷棵距-1环形植树:棵数=间隔数=距离÷棵距正多边形植树:一周总棵数=每边棵数×边数-边数每边棵树=一周总棵数÷边数+1面积植树:棵数=面积÷(棵距×行距)解题思路和方法先弄清楚植树问题的类型,然后可以利用公式。
例1:植树节到了,少先队员要在相距72米的两幢楼房之间种8棵杨树。
如果两头都不栽,平均每两棵树之间的距离应是多少米?解:1、本题考察的是植树问题中的两端都不栽的情况,解决此类问题的关键是要理解棵数比间隔数少1。
2、因为棵数比间隔数少1,所以共有8+1=9个间隔,每个间隔距离是72÷9=8米。
3、所以每两棵树之间的距离是8米。
例2:佳一小学举行运动会,在操场周围插上彩旗。
已知操场的周长是500米,每隔5米插一根红旗,每两面红旗之间插一面黄旗,那么一共插红旗多少面,一共插黄旗多少面。
解:1、本题考查的是植树问题中封闭图形间隔问题。
本题中只要抓住棵数=间隔数,就能求出插了多少面红旗和黄旗。
2、棵数=间隔数,一共插红旗500÷5=100(面),这一百面红旗中一共有100个间隔,所以一共插黄旗100面。
例3:多多从一楼爬楼梯到三楼需要6分钟,照这样计算,从三楼爬到十楼需要多少分钟?解:1、本题考查的是植树问题中锯木头、爬楼梯问题的情况。
需要理解爬的楼层、锯的次数与层数、段数之间的关系。
所在楼层=爬的层数+1;木头段数=锯的次数+1。
2、从一楼爬楼梯到三楼,需要爬2层,需要6分钟,所以每层需要6÷2=3(分钟)。
五年级上册数学植树问题公式
五年级上册数学植树问题公式一、植树问题公式1. 两端都栽:棵数 = 间隔数 + 1 ,间隔数 = 棵数 1 ,距离= 间隔数×间距2. 两端不栽:棵数 = 间隔数 1 ,间隔数 = 棵数 + 1 ,距离= 间隔数×间距3. 一端栽一端不栽:棵数 = 间隔数,距离 = 间隔数×间距二、30 题解析1. 在一条长 200 米的小路一旁植树,每隔 5 米栽一棵,两端都栽,一共要栽多少棵树?间隔数:200÷5 = 40(个)棵数:40 + 1 = 41(棵)2. 一条公路长 300 米,在路的一侧从头到尾每隔 6 米栽一棵柳树,一共要栽多少棵柳树?间隔数:300÷6 = 50(个)棵数:50 + 1 = 51(棵)3. 在一条 480 米长的公路两侧每隔 8 米栽一棵树(两端都栽),一共要栽多少棵树?一侧间隔数:480÷8 = 60(个)一侧棵数:60 + 1 = 61(棵)两侧棵数:61×2 = 122(棵)4. 从一楼到二楼有 20 个台阶,小明从一楼走到三楼,一共要走多少个台阶?从一楼到三楼有:3 1 = 2(层)一共台阶数:20×2 = 40(个)5. 一条走廊长 36 米,每隔 4 米放一盆花,两端都不放,一共要放多少盆花?间隔数:36÷4 = 9(个)盆数:9 1 = 8(盆)6. 一根木头长 10 米,要把它平均分成 5 段。
每锯下一段需要8 分钟,锯完一共要花多少分钟?锯的次数:5 1 = 4(次)总时间:4×8 = 32(分钟)7. 在周长为 400 米的圆形池塘边每隔 10 米栽一棵柳树,一共能栽多少棵柳树?间隔数 = 棵数= 400÷10 = 40(棵)8. 一条长 80 米的道路两旁,每隔 5 米种一棵树(两端都种),一共种多少棵树?一侧间隔数:80÷5 = 16(个)一侧棵数:16 + 1 = 17(棵)两侧棵数:17×2 = 34(棵)9. 时钟 4 点钟敲 4 下,6 秒钟敲完,那么 12 点钟敲 12 下,多少秒钟敲完?敲 4 下,间隔数:4 1 = 3(个)每个间隔时间:6÷3 = 2(秒)敲 12 下,间隔数:12 1 = 11(个)总时间:11×2 = 22(秒)10. 小明从 1 楼走到 5 楼用了 80 秒,照这样计算,他从 1 楼走到 9 楼需要多少秒?从 1 楼到 5 楼走的层数:5 1 = 4(层)走一层用时:80÷4 = 20(秒)从 1 楼到 9 楼走的层数:9 1 = 8(层)总时间:20×8 = 160(秒)11. 一条公路的一旁连两端在内共植树 91 棵,每两棵之间的距离是 5 米,这条公路长多少米?间隔数:91 1 = 90(个)公路长:90×5 = 450(米)12. 在一条长 50 米的跑道两旁,从头到尾每隔 5 米插一面彩旗,一共插多少面彩旗?一侧间隔数:50÷5 = 10(个)一侧彩旗数:10 + 1 = 11(面)两侧彩旗数:11×2 = 22(面)13. 有一个圆形花坛,周长是 30 米,每隔 3 米摆一盆菊花,一共需要多少盆菊花?间隔数 = 盆数= 30÷3 = 10(盆)14. 一条林荫道长 18 米,在路的一旁从一端到另一端每隔 2 米放一盆花,一共安放多少盆花?间隔数:18÷2 = 9(个)盆数:9 + 1 = 10(盆)15. 两栋楼之间相距 30 米,每隔 2 米种一棵树,一共能种多少棵树?棵数:15 1 = 14(棵)16. 一根木料锯成 4 段要 12 分钟,如果每锯一段所用的时间相同,那么锯成 8 段要多少分钟?锯成 4 段锯的次数:4 1 = 3(次)锯一次用时:12÷3 = 4(分钟)锯成 8 段锯的次数:8 1 = 7(次)总时间:7×4 = 28(分钟)17. 在一条 100 米长的小路一边植树,每隔 4 米栽一棵(两端都栽),一共要栽多少棵树?间隔数:100÷4 = 25(个)棵数:25 + 1 = 26(棵)18. 一条路长 25 米,少先队员在路的两旁栽树,起点和终点都栽,一共栽了 12 棵树,每两棵树之间相隔多少米?一侧棵数:12÷2 = 6(棵)间隔数:6 1 = 5(个)间距:25÷5 = 5(米)19. 学校门口摆一排菊花,一共 9 盆。
三种公式解决植树问题
三种公式解决植树问题在公务员考试中,有一类植树问题,这种题目没有什么花哨的解题技巧,而是利用对应的公式便可以很容易的解答,那么,接下来就帮考生总结一下植树问题所用到的公式以及怎么应用。
一、植树问题公式:线性植树:棵数=总长÷间隔+1环形植树:棵数=总长÷间隔楼间植树:棵数=总长÷间隔-1二、例题讲解例1、有一条大街长20米,从路的一端起,每隔4米在路的两侧各种一棵树,则共有多少棵树?( )A.5棵B.4棵C.6棵D.12棵解析:我们看这道例题,这是线性植树问题,套用公式棵数=总长÷间隔+1,即棵数=20 ÷4+1=6棵,这是路的一侧,那么两侧都应该种上树,所以总共应种6×2=12棵,所以答案选择D选项。
例2、一个四边形广场,它的四边长分别是60米,72米,96米,84米,现在四边上植树,四角需植树,且每两棵树的间隔相等,那么至少要种多少棵树?( )A.22棵B.25棵C.26棵D.30棵解析:题目中的情况属于环形植树问题。
每两棵树的间隔相等,那么至少要种多少棵树,就需要使得每两棵树之间的间隔最大就可以了,那么就是要求四边长的一个最大公约数,60,72,96,84的最大公约数是12,那么套用公式棵数=总长÷间隔,棵数=(60+72+96+84)÷12=26棵,所以选择C选项。
例3、两棵杨树相隔165米,中间原本没有任何树,现在在这两个树之间等距离种植32棵桃树,第1棵桃树到第20棵桃树之间的距离是多少米?( )A.90B.95棵C.100棵D.ABC都不对解析:题目中的情况属于楼间植树问题。
总长为165米,总共种了32棵桃树,那么可以求出每两棵桃树之间的间隔,套用公式棵数=总长÷间隔-1,32=165÷间隔-1,间隔=5米,那么第1棵桃树到第20棵桃树之间总共包括19个间隔,所以距离为19×5=95米,所以答案选择B选项。
(完整word版)小学数学植树问题公式及练习题
小学数学植树问题公式及练习题植树问题为使其更直观,用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转变为一条非关闭或关闭的线上的“点数” 与相邻两点间的线的段数之间的关系问题。
一、植树问题公式单边植树(两头都植):距离÷间隔数+1=棵数单边植树(只植一端):距离÷间隔数=棵数单边植树(两头都不植):距离÷间隔数-1=棵数双边植树(两头都植):(距离÷间隔数 +1)× 2=棵数双边植树(只植一端):(距离÷间隔数)× 2=棵数双边植树(两头都不植):(距离÷间隔数 -1 )× 2=棵数循环植树:距离÷间隔数 =棵数解说: 1 非关闭线路上的植树问题主要可分为以下三种情况:⑴假如在非关闭线路的两头都要植树, 那么 :株数 =段数 +1=全长÷株距 +1全长 =株距× ( 株数- 1)株距 =全长÷ ( 株数- 1)⑵假如在非关闭线路的一端要植树, 另一端不要植树 , 那么 :株数 =段数 =全长÷株距全长 =株距×株数株距 =全长÷株数⑶假如在非关闭线路的两头都不要植树, 那么 :株数 =段数- 1=全长÷株距- 1全长 =株距× ( 株数 +1)株距 =全长÷ ( 株数 +1)2关闭线路上的植树问题的数目关系以下株数 =段数 =全长÷株距全长 =株距×株数株距 =全长÷株数二、植树问题练习题例 1 长方形场所:一个长 84 米,宽 54 米的长方形苹果园中,苹果树的株距是 2 米,行距是 3 米.这个苹果园共种苹果树多少棵?解法一:①一行能种多少棵? 84÷ 2=42(棵) .|②这块地能种苹果树多少行?54÷3=18(行 ) .③这块地共种苹果树多少棵?42×18=756(棵) .假如株距、行距的方向交换,结果同样:(84 ÷ 3) ×(54 ÷ 2)=28×27=756(棵) .解法二:①这块地的面积是多少平方米呢?84×54=4536(平方米 ) .②一棵苹果树占地多少平方米呢?2×3=6( 平方米 ) .③这块地能种苹果树多少棵呢?4536÷6=756(棵 ) .当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的随意一种来解;当长方形土地的长、宽不可以被株距、行距整除时,就只好用第二种解法来解.但有些问题从表面上看,并无出现“植树”二字,但题目实质上是反应关闭线段或不关闭线段长度、分开点、每段长度三者之间的关系。
【完整版】植树问题专项讲义(五大类型+方法+练习+答案)六年级数学小升初总复习
植树问题最全应用题(专项讲义)六年级数学小升初总复习(五大类型+方法+练习+答案)植树问题是小数数学应用题的重难点问题,主要分为不封闭路线、封闭路线两种情况,可细分为五大考点。
【考点一】非封闭路线的两端都要植树【方法总结】若题目中要求在非封闭路线的两端都要植树,则植树棵数就比分成段数多1,可得到:植树棵数=间隔个数+1;植树棵数=植树全长÷间隔距离+1;间隔距离=植树全长÷(植树棵数-1);植树全长=间隔距离×(植树棵数-1)。
【典型例题】兴华学校为了建设美丽校园,决定在校园里一条长200米的路的两边从头到尾都种树,且每隔5米种一棵树,一共需要种几棵树?【解题分析】这道题是属于非封闭路线的两端都要植树的问题,那么植树棵数就比分成段数多1。
可直接采用公式:植树棵数=植树全长÷间隔距离+1;代入数据即可求出。
本题需要注意的是“路的两边都种树”,最后的棵数要“×2”。
【解答】300÷5+1=60÷1=61(棵)61×2=122(棵)答:一共需要种122棵树。
【跟踪练习】1、绿茵公园里有一条全长1000米的主干道路,现在打算在这条道路的一侧从头到尾等距离地放置6张长木凳供游人休息,每两张长木凳之间相距是多少米?2、宜安居小区为了打造最美绿化小区,计划在小区里的一条主干道进行绿化升级。
主干道长420米,在主干道的两边从头到尾都植树。
为了对称性美观,路的两边所种的树间隔和棵数一样,都是每隔6米种一棵树,则一共需要种多少棵树?3、在公路的一边立着等距离的电线杆,李华从第1根路灯下走到第9根路灯下用了4分钟。
如果李华走了10分钟,此时他走到了第几根路灯下? 5米 1棵 2棵 3棵0 5米 10米 15米 20米 4棵 5棵 …………4、校园里的林荫小道边上摆着一排花,每隔0.6米摆一盆,加上两端一共摆了82盆花。
现在改成每隔0.9米摆一盆花,那么剩下多少盆花?5、会议大楼从一楼走到四楼一共要走63级台阶。
植树问题知识点公式及例题详解
植树问题知识点公式及例题详解公式直线植树:距离÷间隔 +1 = 棵数四周植树:距离÷间隔 = 棵数楼间植树:单边植树距离÷间隔 -1=棵数双边植树距离÷间隔 -1×2=棵数循环植树距离等于棵树加间距1.植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题;2.为使其更直观,用图示法来说明;树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题;专题分析一、在线段上的植树问题可以分为以下三种情形;1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1;2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数;3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1;~4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二;二、在封闭线路上植树,棵数与段数相等,即:棵数=段数;三、在正方形线路上植树,如果每个顶点都要植树;则棵数=每边的棵数-1×边数;例题:例1长方形场地:一个长84米,宽54米的长方形园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵解:解法一:①一行能种多少棵84÷2=42棵.|②这块地能种苹果树多少行54÷3=18行.③这块地共种苹果树多少棵42×18=756棵.如果株距、行距的方向互换,结果相同:84÷3×54÷2=28×27=756棵.解法二:①这块地的面积是多少平方米84×54=4536平方米.②一棵苹果树占地多少平方米2×3=6平方米.③这块地能种苹果树多少棵4536÷6=756棵.当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系;锯木头问题就是典型的不封闭线段上,两头不植树问题;所锯的段数总比锯的次数多一;上楼梯问题,就是把每上一层楼梯所需的时间看成一个时间间隔,那么:上楼所需总时间 =终点层—起始层×每层所需时间;而方阵队列问题,看似与植树问题毫不相干,实质上都是植树问题;例2直线场地:在一条公路的两旁植树,每隔3米植一棵,植到头还剩3棵;每隔米植一棵,植到头还缺少37棵,求这条公路的长度;解法一:代数解法设一共有x棵树x-3/2-1X3=x+37/2-1x=205公路长:205-3/2-1X3=300得:公路长度为300米解法二:算术解法这道题可以用解盈亏问题的思路来考虑:首先,我们在两边起点处各栽下一棵树,这两棵树与路长没有关系,以后每栽下一棵树,不论栽在哪一侧,植树的路线不是路就增加一个间距,为了简单起见,我们按单侧植树来考虑;当按3米的间距植树时,最后剩下3棵,也就是说植树的路线要比路长出3个间距,3×3=9米,当按米的间距植树时,最后还缺37棵树,也就是说植树的路线比路短了37个间距,×37=米,两次相差9+=米,两次植树的间距相差是3-=米,据此可以求出树的棵数:不包括起点的2棵÷=203个知道了树的棵数,就可以求出植树路线的长度了:3×203-3=600米或×203+37=600米因为是双侧植树,所以路长为:600÷2=300米综合算式为:3×〔3×3+×37÷3--3〕÷2=300米或×〔3×3+×37÷3-+37〕÷2=300米答:略例3圆形场地难题:有一个圆形花坛,绕它走一圈是120米;如果在花坛周围每隔6米栽一株丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花;可栽丁香花多少株可栽月季花多少株每2株紧相邻的月季花相距多少米解:解:根据棵数=全长÷间隔可求出栽丁香花的株数:120÷6=20株由于是在每相邻的2株丁香花之间栽2株月季花,丁香花的株数与丁香花之间的间隔数相等,因此,可栽月季花:2×20=40株由于2株花之间的2株月季花是紧相邻的,而2株丁香花之间的距离被2株月季花分为3等份,因此紧相邻2株月季花之间距离为:6÷3=2米答:可栽丁香花20株,可栽花40株,2株紧相邻月季花之间相距2米;例4在圆形水池边植树,把树植在距离岸边均为3米的圆周上,按弧长计算,每隔2米植一棵树,共植了314棵;水池的周长是多少米适于六年级程度解:先求出植树线路的长;植树线路是一个圆的周长,这个圆的周长是:2×314=628米这个圆的直径是:628÷=200米由于树是植在距离岸边均为3米的圆周上,所以圆形水池的直径是:200-3×2=194米圆形水池的周长是:194×=米综合算式:2×314÷×2×=200-6×=194×=米例5小明家门前有一条10米长的水沟,在沟的一侧每隔2米栽一棵树,一共可栽几棵两端都植树按常规解法,答案应该是610÷2+1棵,同理,如果小光家门前也有一段10米长的水沟,同样可以栽6棵,也就是两家一共可以栽12棵,这并看不出有什么不妥;但是,当小明与小光家是邻居时,我们再计算一下:两家的水沟总长是20米,20÷2+1=11棵,也就是两家一共可以栽11棵树,结果比上次计算少了一棵本人称之为“邻里冲突”,这是因为在端点处有两棵树“重合”了,这两棵树的间距为0,与题中要求间距2米不符,因此,可以看出两端植树是不妥当的;但如果两端都不植树,又会出现公共点没有树邻近的两棵树间距4米的情况,仍与题意不符;那么一端植树又会怎样呢这种要求是无法实现的,因为当一方在与邻家相接的端点上植上树后,就会使邻家地段两端都有树存在,还是不合题意;因此,要求在端点上植树或不植树都会出现矛盾,这样的计算方法也不能正确的反映出各个数量间的关系;数学是一门严谨的科学,出题者固然可以任意给定条件,但用不同的计算方法得出的结果应该是相同的,当计算结果出现矛盾时,应该找出问题的原因所在,不能简单的用“两树重合”来解释解释;再按照“棵树=段数”的方法计算一下:小明家可栽树:10÷2=5棵小光家可栽树:10÷2=5棵两家一共可栽树10棵;当两家是邻居时,可栽树:10+10÷2=10棵两次计算结果相同,因此可以说这种计算方法才能正确的反映出各个数量之间的关系; 为什么说常规的解法不够正确呢那是因为在常规解法中,只考虑了植树路段为一家独有的情况,多栽或少栽一棵都不会出现“争议”,也就无法判定栽法是否妥当;然而当植树路段为多家共有时就会出现一方或双方将树栽到了公共端点上的情况,从理论上讲这是不正确的;相对于“路边加一”,“楼间减一”也无道理,因为完全可以按“间距2米”栽下5棵而不是4棵树,至于端点处的两棵树与楼相距只有1米的情况,与题意并不矛盾:1、要求“间距2米”可以认为每棵树需要2米的生长空间,端点的树和中间的树同样都具有2米的空间;2、如果把“楼”也看做“树”而使间距不足,那么则是因为“他”将树栽倒了公共端点上而侵占了“我”的空间,“我”并没有栽错;点击图片可放大反过来想,如果要将已有的若干棵树平均分给几家,不论这些树是直线分布还是平面分布,无疑是要把分割点端点确定在两棵树之间而不是在某一棵树上,至于在某些情况下比如划分卫生分担区或除雪将端点确定在路边现有标志物如电杆或树上,那是因为分割的对象是“路”而不是“树”,这时以固有标志物为界限,具有简单方便、标志物不易移动和消失的好处;“棵数=段数”的算法不仅适用于“路边”,同样适用于“楼间”、“四周圆周”和“田间”见下图,不同颜色代表不同家庭;实际上“例1”的果园植树就是默认了“段块间”植树;实际教学中,应该按“棵数”=“段块数”作为正规解法,既不用加1,也不用减1,即在每一段块的中点植一棵树,这样就不仅没有“邻里冲突”,也能很好的适应各种情况,而端点植树或不植树只能按特殊情况来介绍;。
植树问题公式及例题
精品文档 . 植树问题【植树问题公式】(a )不封闭线路的植树问题: ①两端都种树空数+1=棵数;棵树-1=空数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数②两端都不种树空数+1=棵数;棵树-1=空数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数(b)封闭线路的植树问题 或一端种树一端不种树 空数=棵数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数(c)在方形线路上植树,如果每个顶点都要植树。
棵数=〔每边的棵数-1〕×边数。
棵树= 每边的棵数×边数-顶点数。
〔d 〕平面植树问题:占地总面积÷每棵占地面积=棵数 〔e 〕特别的植树问题例如:敲钟、锯木头、爬楼梯等与间隔有关的问题。
例题一:学校组织同学们去栽树,在一条小路的一侧从头到尾共种了60棵树,每两个树之间的距离都是6米,问这道条小路长多少米? 分析:首先,这是一道两端都种树问题,求小路长用乘法公式:路长=棵距×空数;6米是棵距,用60-1=59求空数,再用59×6=354〔米〕。
例题二:校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?分析:了解路长肯定用除法,每隔5米栽一棵是棵距为5米,用公式:空数=路长÷棵距 即 80÷5=16〔个〕 得到16个空,再用16+1=17〔棵〕 例题三:两座楼房之间相距56米,每隔4米栽雪松一棵,一直行能栽多少棵? 分析:这是一道两端都不种树问题,56米是公式中的路长,,每隔4米是棵距,用公式:空数=路长÷棵距 即56÷4=14〔个〕 得到14个空,再用空数-1=棵树,即14-1=13〔棵〕 例题四:一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少? 分析:这是一道封闭图形植树问题,这种题空数和棵树相等,40棵树就有40个空,用公式:路长=棵距×空数,即 40×2=80〔米〕 例题五:在一个正方形的池塘四边上种树,每边种10棵〔四个角上都种一棵〕,四边共种多少棵? 分析:这是一道在方形线路上植树,如果每个顶点都要植树的问题。
植树问题公式及例题
植树问题公式及例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】植树问题【植树问题公式】(a)不封闭线路的植树问题:①两端都种树空数+1=棵数;棵树-1=空数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数②两端都不种树空数+1=棵数;棵树-1=空数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数(b)封闭线路的植树问题或一端种树一端不种树空数=棵数;路长=棵距×空数空数=路长÷棵距棵距=路长÷空数(c)在方形线路上植树,如果每个顶点都要植树。
棵数=(每边的棵数-1)×边数。
棵树= 每边的棵数×边数-顶点数。
(d)平面植树问题:占地总面积÷每棵占地面积=棵数(e)特殊的植树问题例如:敲钟、锯木头、爬楼梯等与间隔有关的问题。
例题一:学校组织同学们去栽树,在一条小路的一侧从头到尾共种了60棵树,每两个树之间的距离都是6米,问这道条小路长多少米分析:首先,这是一道两端都种树问题,求小路长用乘法公式:路长=棵距×空数;6米是棵距,用60-1=59求空数,再用59×6=354(米)。
例题二:校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵分析:知道路长一定用除法,每隔5米栽一棵是棵距为5米,用公式:空数=路长÷棵距即 80÷5=16(个)得到16个空,再用16+1=17(棵)例题三:两座楼房之间相距56米,每隔4米栽雪松一棵,一直行能栽多少棵?分析:这是一道两端都不种树问题,56米是公式中的路长,,每隔4米是棵距,用公式:空数=路长÷棵距即56÷4=14(个)得到14个空,再用空数-1=棵树,即14-1=13(棵)例题四:一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少分析:这是一道封闭图形植树问题,这种题空数和棵树相等,40棵树就有40个空,用公式:路长=棵距×空数,即40×2=80(米)例题五:在一个正方形的池塘四边上种树,每边种10棵(四个角上都种一棵),四边共种多少棵分析:这是一道在方形线路上植树,如果每个顶点都要植树的问题。
植树问题(公式,讲解,及练习含答案)
植树问题的公式1.非封闭线路上的植树问题主要可分为以下三种情形:1.1.如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数1.3.如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数例题1、学校圆形花坛的周长是36米,每隔4米摆一盆兰花,一共要摆()盆兰花?分析:圆形为封闭路线的问题,株数=段数=全长÷株距36÷4=9(棵)例题2、在一条长30米的小路两旁每隔3米植一棵树,首尾都要植,一共要准备多少棵树苗?分析:先分清是非封闭路线问题,并且,首尾都要栽,株数=段数+1=全长÷株距+130÷3+1=11( 棵),但是,题目中是小路的两旁植树,所以,11×2=22(棵)综合:(30÷3+1)×2例题3、公园的一条边长48米,每隔4米,插一面彩旗,后来改为每隔6米插一面,如果第一面彩旗不动,共有多少面彩旗不需要移动?分析:这里仅仅考虑公园的一条边长,其他的不考虑,所以,认为是非封闭问题,原来,每隔4米,插一面彩旗,后来改为每隔6米插一面,第一面不需要移动的是4和6的最小公倍数12,就是第12面不移动,所以问题,转化为,48里面有多少个12,就有几面彩旗不移动。
48÷12=4(面)加上第一面不移动的彩旗所以共为4+1=5面算式:4和6的最小公倍数是1248÷12+1=5面练习:1、在长1千米的万安大桥两侧安装路灯,每隔50米安装一盏(两端都要安装),一共需要准备多少盏路灯?分析:为大桥安装路灯,为非封闭问题,并且两端都要安装的,株数=段数+1=全长÷株距+1(1000÷50+1)×2=201×2=402(盏)2、公路上一排电线杆,共25根,每相邻两根电线杆间的距离原来都是45米,现在要改为60米,可以有几根不需要移动?分析:电线杆之间为分封闭问题,并且是两头都安装电线杆全长=株距×(株数-1) 即(25-1)×45=1080米找45和60的最小公倍数是180,1080÷180+1=7根其中的1表示第一根是不移动的,并且也不是45和60的最小公倍数拓展3、一段木料锯成4段要6分钟,如果要锯成9段需要几分钟?分析: 锯木料问题,时间花在次数上,类同植树问题的株数(两头都不栽树的情况)锯成4段,需要锯4-1=3次,锯成9段,需要锯9-1=8次所以,6÷(4-3)×(9-1)4、钟楼上的大钟整点时敲相应的点数,早晨6点时敲钟用了40秒,那么12点时敲钟共用多少秒?分析:钟表敲钟,时间花在敲相应的点数上,类同植树问题,敲钟为株数,两次敲钟之间的时间为株距,时间就是用在“株距”。
五年级数学上册必考植树问题,解题公式及例题汇总
五年级数学上册《植树问题》公式+应用题解析1、只栽一端(封闭线路植树问题)如图:或间隔数=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长2、两端都栽:如图:间隔数+1=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长全长÷间隔长+1=棵数全长÷(棵树-1)=间隔长3、两端都不栽如图:间隔数-1=棵树间隔长×间隔数=全长全长÷间隔长=间隔数全长÷间隔数=间隔长全长÷间隔长-1=棵数全长÷(棵树+1)=间隔长1、学校要在五边形的水池边摆上花盆,使每边都有9盆花,五个角都摆,需要几盆花?解:(9﹣1)×5=8×5=40(盆)答:需要40盆花。
2、政府要在一条长480米的道路间种树,每隔3米种一棵(两端都种树),一共能种多少棵树?解:480÷3+1=160+1=161(棵)答:一共能种161棵树。
3、滨海公园内一条林荫大道全长600米,在它的一侧从头到尾每隔50米放一个垃圾桶,一共需要多少个垃圾桶?600÷50+1=12+1=13(个)答:一共需要13个垃圾桶。
4、有一段路长720米,在路的一边每间隔3米种1棵树。
问这样可以种多少棵树?解:根据棵数=全长÷间隔+1的关系,可得:720÷3+1=240+1=241(棵)答:可以种241棵树。
5、在某城市一条柏油马路上,从始发站到终点站共有14个车站,每两个车站间的平均距离是1200米。
这条马路有多长?解:根据全长=间隔×(棵数-1)的关系,可得:1200×(14-1)=1200×13=15600(米)答:这条马路长15600米。
6、要在612米长的水渠的一岸植树154棵。
每相邻两棵树间的距离是多少米?解:根据“间隔=全长÷(棵数-1)”的关系,可得:612÷(154-1)=612÷153=4(米)答:每相邻两棵树间的距离是4米。
植树问题知识点公式及例题详解完整版
植树问题知识点公式及例题详解HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】植树问题知识点公式及例题详解公式直线植树:距离÷间隔 +1 = 棵数四周植树:距离÷间隔 = 棵数楼间植树:单边植树距离÷间隔 -1=棵数双边植树(距离÷间隔 -1)×2=棵数循环植树距离等于棵树加间距1.植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。
2.为使其更直观,用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
专题分析一、在线段上的植树问题可以分为以下三种情形。
1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1。
2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数。
3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1。
~4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二。
二、在封闭线路上植树,棵数与段数相等,即:棵数=段数。
三、在正方形线路上植树,如果每个顶点都要植树。
则棵数=(每边的棵数-1)×边数。
例题:例1长方形场地:一个长84米,宽54米的长方形园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵?解:解法一:①一行能种多少棵?84÷2=42(棵).|②这块地能种苹果树多少行?54÷3=18(行).③这块地共种苹果树多少棵?42×18=756(棵).如果株距、行距的方向互换,结果相同:(84÷3)×(54÷2)=28×27=756(棵).解法二:①这块地的面积是多少平方米?84×54=4536(平方米).②一棵苹果树占地多少平方米?2×3=6(平方米).③这块地能种苹果树多少棵?4536÷6=756(棵).当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系。
在池塘栽树的植树问题公式
在池塘栽树的植树问题公式一、池塘栽树(封闭线路植树问题)公式。
在封闭线路(如池塘周围栽树)上植树,棵数与间隔数相等,其公式为:棵数 = 间隔数 = 总距离÷间隔长度。
二、20道练习题及解析。
(一)题目1 - 5。
1. 题目1。
- 一个圆形池塘周长是120米,每隔6米栽一棵树,一共可以栽多少棵树?- 解析:根据封闭线路植树公式,棵数 = 总距离÷间隔长度。
这里总距离为池塘周长120米,间隔长度是6米,所以棵数 = 120÷6 = 20(棵)。
2. 题目2。
- 池塘的周长为300米,要在池塘边每隔10米种一棵柳树,能种多少棵柳树?- 解析:同样运用公式,棵数 = 总距离÷间隔长度。
总距离300米,间隔长度10米,可得棵数 = 300÷10 = 30(棵)。
3. 题目3。
- 有一个椭圆形池塘,周长48米,每隔4米栽一棵杨树,共栽多少棵杨树?- 解析:按照封闭线路植树公式,棵数 = 48÷4 = 12(棵)。
4. 题目4。
- 圆形池塘的周长是200米,如果每隔5米栽一棵桃树,这个池塘边一共可以栽多少棵桃树?- 解析:由公式可得,棵数 = 200÷5 = 40(棵)。
5. 题目5。
- 池塘周长为150米,每隔3米栽一棵樱花树,能栽多少棵樱花树?- 解析:根据公式,棵数 = 150÷3 = 50(棵)。
(二)题目6 - 10。
6. 题目6。
- 一个周长为90米的池塘,计划每隔9米栽一棵树,问一共要栽几棵树?- 解析:利用封闭线路植树公式,棵数 = 90÷9 = 10(棵)。
7. 题目7。
- 池塘周长80米,每隔8米种一棵柏树,共种多少棵柏树?- 解析:棵数 = 80÷8 = 10(棵)。
8. 题目8。
- 有个圆形池塘,周长160米,每隔2米栽一棵槐树,可栽多少棵槐树?- 解析:根据公式,棵数 = 160÷2 = 80(棵)。
植树问题专项练习(含参考答案)
植树问题专项练习(含参考答案)一、植树问题基本形式1.在直线(或道路)上种树:①两端都种树。
②一端种,一端不种。
③两端都不种。
2.在封闭路线中种树:①正方形、长方形路线等首尾重合,②环形道上栽树。
3.在直线(或道路)的两边都种上树。
二、图解植树问题基本形式:(一)、在线段上的植树问题可以分为以下三种情形。
1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1。
(如图所示)说明:“5米”是间隔米,5个“5米”公式:2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:从图中我们可以看到:从起点到结束平公式:3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:从图中可以看出这条路段一共被平均分成公式:4、在以上三种形式的植树问题上,如果要两边都栽树的话,就先求出一边的棵数后再乘2,即可。
(二)、在封闭线路上植树,棵数与段数相等,即:棵数=间隔数。
1.在正方形线路上植树。
①如果每个顶点不种树,则棵数=每边的棵数×边数②如果每个顶点都要植树。
则棵数=(每边的棵数-1)×边数。
如图:(三)类似植树问题的,还有上楼问题和据木头问题。
1.上楼问题要注意:上楼层数=楼层数-1。
2.锯木头问题要注意:①锯的次数=锯的段数-1。
②锯的段数=锯的次数+1。
③求把木头锯成n段要的时间=每段要用的时间×(n-1)[说明:n为段数]。
三植树问题中求总距离与间隔距离的方法:四、教学相长。
米植一棵,两端都要植,一共植了例题1.同学们在道路的一边植树,每隔2巩固练习11 在道路的一侧插彩旗,每隔3米插一面,从起点到终点,共插了12面,这条道路有多长?2 在公园门前道路两边,每隔4米放一盆月季花,从起点到终点一共放了20盆,这条道路长多少米?3 在一条20米长的绳子上挂气球,从一端起,每隔5米挂一个气球,一共可以挂多少个气球?例题2在一条长50米的道路两边植树,两端都种,一共种了22棵,那么巩固练习21 在一条长36米的道路的一侧植树,从起点到终点共植了10棵树,平均每两棵树之间的距离是多少米?2 在长25米的走廊两侧插彩旗,两端都插,一共插了12面,那么平均每两面彩旗之间相距多少米?3 再长6米的空地上种树,每两棵树之间相距2米,两端都要种,那么3行共种了多少棵树?例题3 把一根木头锯成小段,共花了24分钟,每锯一段需要3分钟,你知道这根木头被锯成了多少段吗?巩固练习31 把一根钢管锯成4段,每锯开一处要5分钟,全部锯完要多少分钟?2 把一根木头锯成5段,每锯一次,要2分钟,一共要锯多少分钟?3 一根方木锯成2米长的小段,一共花了15分钟,已知每锯下一段要3分钟,这根方木长多少米?4.一根木头锯成5段16分钟,如果每锯一次的时间相等,那么截7段要几分钟?每截一次要:16÷(5-1)=4(分)截成7段需要:7-1=6(次)截成7段一共要:4×(7-1)=24(分)例题4 小淘气和哥哥比赛爬楼梯,哥哥跑到5楼时,小淘气恰好跑到3楼,巩固练习41 小虎和小刚两人爬楼梯比赛,小虎跑到第4层时,小刚跑到第5层,照这样计算,当小虎跑到第16层时,小刚跑到了第几层?2 王明和张华比赛爬楼梯,王明跑到第6层时,张华跑到了第9层,照这样的速度计算,当王明跑到第11层时,张华应跑到第几层?3 爸爸的爬楼梯速度是儿子的2倍,当儿子爬到了第6层时,爸爸爬到第几层?3. 从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么,1楼到6楼共要走多少级台阶?例题5 一个圆形湖的周长是400米,沿湖的周围,每隔8米种一棵柳树,巩固练习51 一个圆形跑道长300米,沿跑道周围每隔3米插一面红旗,每两面红旗,中间插一面黄旗,跑到周围各插了多少面红旗和黄旗?2 有一个正方形花圃,周长是200米,每隔10米栽一棵月季花,再在两棵月季花中间种4棵菊花,花圃周围一共种了多少棵月季花?多少棵菊花?3 一条道路长480米,在两边植树,两端都植,每隔12米栽一棵杨树,每两棵杨树之间栽3棵松树,那么杨树和松树各栽了多少棵?4.一个圆形水池,它的周长是150米,每隔3米种一棵树。
植树问题练习题答案
植树问题练习题答案植树问题是一种常见的数学问题,通常涉及到在一定长度的路径上以一定的间隔种植树木。
以下是一些植树问题的练习题答案:1. 题目一:在一条长100米的直路上,两端都要植树,每棵树之间的间隔是5米。
问需要多少棵树?答案:首先计算间隔数,100米除以5米得到20个间隔。
由于两端都要植树,所以需要的树的数量是间隔数加1,即20+1=21棵树。
2. 题目二:在一个圆形花坛周围植树,花坛周长为120米,每棵树之间的间隔是6米。
问需要多少棵树?答案:由于是圆形花坛,植树的间隔数等于树的数量。
120米除以6米得到20个间隔,因此需要20棵树。
3. 题目三:在一条长200米的河岸两边植树,每边的树间距是10米,两端都要植树。
问每边需要多少棵树?答案:首先计算一边的间隔数,200米除以10米得到20个间隔。
两端都要植树,所以每边需要的树的数量是间隔数加1,即20+1=21棵树。
由于有两边,所以总共需要21*2=42棵树。
4. 题目四:在一条长150米的街道上植树,两端不植树,每棵树之间的间隔是7.5米。
问需要多少棵树?答案:首先计算间隔数,150米除以7.5米得到20个间隔。
由于两端不植树,所以需要的树的数量是间隔数减1,即20-1=19棵树。
5. 题目五:在一个正方形的公园四周植树,公园每边长50米,每棵树之间的间隔是5米。
问需要多少棵树?答案:首先计算一边的间隔数,50米除以5米得到10个间隔。
由于是正方形,所以每边的树的数量是间隔数加1,即10+1=11棵树。
由于有四边,所以总共需要11*4=44棵树。
但是,四个角上的树被重复计算了一次,所以实际需要的树的数量是44-4=40棵树。
这些练习题涵盖了植树问题的基本类型,包括直线、圆形和正方形等不同形状的路径。
解题的关键在于理解植树的间隔数与树的数量之间的关系,以及如何根据题目要求调整计算方法。
(完整word版)小学数学植树问题公式及练习题
小学数学植树问题公式及练习题植树问题为使其更直观,用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
一、植树问题公式单边植树(两端都植):距离÷间隔数+1=棵数单边植树(只植一端):距离÷间隔数=棵数单边植树(两端都不植):距离÷间隔数-1=棵数双边植树(两端都植):(距离÷间隔数+1)×2=棵数双边植树(只植一端):(距离÷间隔数)×2=棵数双边植树(两端都不植):(距离÷间隔数-1)×2=棵数循环植树:距离÷间隔数=棵数解释:1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数二、植树问题练习题例1长方形场地:一个长84米,宽54米的长方形苹果园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵?解法一:①一行能种多少棵?84÷2=42(棵).|②这块地能种苹果树多少行?54÷3=18(行).③这块地共种苹果树多少棵?42×18=756(棵).如果株距、行距的方向互换,结果相同:(84÷3)×(54÷2)=28×27=756(棵).解法二:①这块地的面积是多少平方米呢?84×54=4536(平方米).②一棵苹果树占地多少平方米呢?2×3=6(平方米).③这块地能种苹果树多少棵呢?4536÷6=756(棵).当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系。
植树练习题及答案
植树练习题及答案植树问题是一种常见的数学问题,通常涉及到树木的排列和间隔问题。
以下是一些植树练习题及答案,供学生练习和参考。
练习题1:在一个长100米的直线上植树,如果两端都要植树,那么至少需要多少棵树?答案:根据植树问题的基本公式:植树棵数 = 间隔数 + 1。
首先计算间隔数,间隔数 = 总长度÷ 每棵树之间的距离。
假设每棵树之间的距离为1米,那么间隔数= 100 ÷ 1 = 100。
由于两端都要植树,所以植树棵数 = 间隔数 + 1 = 100 + 1 = 101棵。
练习题2:一个公园的圆形花坛周围要植树,花坛的周长是200米,如果每隔5米植一棵树,需要多少棵树?答案:在圆形上植树,植树棵数等于间隔数。
间隔数 = 周长÷ 每棵树之间的距离。
所以植树棵数= 200 ÷ 5 = 40棵。
练习题3:一个学校操场的四周要植树,操场是一个长方形,长150米,宽100米。
如果四个角上都要植树,且长边上每隔10米植一棵树,宽边上每隔5米植一棵树,需要多少棵树?答案:首先计算长边和宽边上的植树棵数。
长边上植树棵数 = 长边长度÷每棵树之间的距离 - 1(因为两端的树被计算了两次),即150 ÷ 10 - 1 = 14棵。
同理,宽边上植树棵数= 100 ÷ 5 - 1 = 19棵。
由于四个角上的树被重复计算了,所以总共需要的树= (14 + 19) × 2 - 4 = 56棵。
练习题4:一个正方形的花坛四周要植树,每边长50米,如果四个角上都要植树,且每隔5米植一棵树,需要多少棵树?答案:正方形四周植树,植树棵数 = 每边长度÷ 每棵树之间的距离 - 1。
所以每边植树棵数= 50 ÷ 5 - 1 = 9棵。
由于四个角上的树被重复计算了,所以总共需要的树= 9 × 4 - 4 = 32棵。
希望这些练习题和答案能够帮助学生更好地理解和掌握植树问题的解决方法。
小学数学二年级奥数植树问题锯木头问题知识讲解+练习题+答案(已整理)
二年级植树问题:知识点+练习题+答案一、知识点讲解。
1、“植树问题”又称为“锯木头”问题。
2、植树问题的基本数量关系:每段距离x段数=总距离。
总距离÷每段距离=段数总距离÷段数=每段距离3、分情况解决问题。
①在一段距离中,两端都植树,棵数=段数+1; 段数=棵树-1适用于弯曲路段练习题:(1)公园门前的一条路长42米,在路的一边从头到尾栽树,每6米栽一棵,一共能栽多少棵?(2)同学们植树,8棵树之间的距离是14米,照这样计算,16棵树间的距离是多少米?(3)两根同样长的彩带上,每隔2米挂一个灯笼,起点和终点都挂,一共挂了12个,每根绳子长多少米?答案:(1)42÷6+1=8(棵)答:一共能栽8棵。
(2)8-1=7(段) 14÷7=2(米)16-1=15(段) 2×15=30(米)答:16棵树间的距离是30米。
(3)12÷2=6(个) 6-1=5(段) 2×5=10(米)答:每根绳子长10米。
②在一段距离中,两端都不植树,棵数=段数-1; 段数=棵树+1适用于弯曲路段练习题:(1)在一条长200米的公路一侧植树,每隔5米植一棵,若两端都不植树,共需多少棵树?(2)两座楼房之间相距56米,每隔 4 米栽一棵雪松,一行能栽多少棵?答案:(1)200÷5=40(段) 40-1=39(棵)答:共需39棵树。
(2)56÷4=14(段) 14-1=13(棵)答:一行能栽13棵。
③在一段距离中,一端不植树,棵数=段数;分右端不植树和左端不植树两种情况。
练习题(1)志愿者在路的一旁每隔5米栽一棵树,从起点开始栽,终点不栽,一共栽了 8棵树,这条路长多少米?(2)在一段长18米的道路上摆放花盆,每隔2米摆一盆花,头摆尾不摆,一共摆了多少盆花?答案:(1)5×8=40(米)答:这条路长40米。
(2)18÷2=9(盆)答:一共摆了9盆花。
植树问题公式总结
植树问题公式总结
1. 两端都种树。
公式:棵数 = 间隔数+1;间隔数 = 全长÷间隔长度;全长 = 间隔长度×(棵数1);间隔长度 = 全长÷(棵数 1)。
题目:在一条长20米的小路一旁种树,每隔5米种一棵(两端都种),一共要种多少棵树?
解析:首先求间隔数,根据公式间隔数 = 全长÷间隔长度,这里全长是20米,间隔长度是5米,所以间隔数为20÷5 = 4个。
因为两端都种树,根据棵数 = 间隔数+1,所以棵数为4 + 1=5棵。
2. 两端都不种树。
公式:棵数 = 间隔数 1;间隔数 = 全长÷间隔长度;全长 = 间隔长度×(棵数+1);间隔长度 = 全长÷(棵数 + 1)。
题目:在一条长30米的小路一旁种树,每隔6米种一棵(两端都不种),一共要种多少棵树?
解析:先求间隔数,间隔数 = 全长÷间隔长度,全长30米,间隔长度6米,间隔数为30÷6 = 5个。
因为两端都不种,棵数 = 间隔数 1,所以棵数为5-1 = 4棵。
3. 一端种树(封闭线路种树类似一端种树情况)
公式:棵数 = 间隔数;间隔数 = 全长÷间隔长度;全长 = 间隔长度×棵数;间隔长度 = 全长÷棵数。
题目:在一个周长为40米的圆形花坛边种树,每隔4米种一棵,一共要种多少棵树?
解析:圆形属于封闭线路,类似一端种树的情况,棵数 = 间隔数。
先求间隔数,间隔数 = 全长÷间隔长度,这里全长就是圆形花坛的周长40米,间隔长度4米,所以间隔数为40÷4 = 10棵,也就是种树的棵数是10棵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植树问题的公式
令狐采学
1.非封闭线路上的植树问题主要可分为以下三种情形: 1.1.如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
1.2.如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
1.3.如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2.封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
例题1、学校圆形花坛的周长是36米,每隔4米摆一盆兰花,一共要摆()盆兰花?
分析:圆形为封闭路线的问题,株数=段数=全长÷株距
36÷4=9(棵)
例题2、在一条长30米的小路两旁每隔3米植一棵树,首尾都要植,一共要准备多少棵树苗?
分析:先分清是非封闭路线问题,并且,首尾都要栽,株数=段数+1=全长÷株距+1
30÷3+1=11( 棵),但是,题目中是小路的两旁植树,所以,11×2=22(棵)
综合:(30÷3+1)×2
例题3、公园的一条边长48米,每隔4米,插一面彩旗,后来改为每隔6米插一面,如果第一面彩旗不动,共有多少面彩旗不需要移动?
分析:这里仅仅考虑公园的一条边长,其他的不考虑,所以,认为是非封闭问题,
原来,每隔4米,插一面彩旗,后来改为每隔6米插一面,第一面不需要移动的是4和6的最小公倍数12,就是第12面不移动,所以问题,转化为,48里面有多少个12,就有几面彩旗不移动。
48÷12=4(面)
加上第一面不移动的彩旗所以共为4+1=5面
算式:4和6的最小公倍数是12
48÷12+1=5面
练习:
1、在长1千米的万安大桥两侧安装路灯,每隔50米安装一盏(两端都要安装),一共需要准备多少盏路灯?
分析:为大桥安装路灯,为非封闭问题,并且两端都要安装的,株数=段数+1=全长÷株距+1
(1000÷50+1)×2
=201×2
=402(盏)
2、公路上一排电线杆,共25根,每相邻两根电线杆间的距离原来都是45米,现在要改为60米,可以有几根不需要移动?
分析:电线杆之间为分封闭问题,并且是两头都安装电线杆全长=株距×(株数-1) 即(25-1)×45=1080米
找45和60的最小公倍数是180,
1080÷180+1=7根其中的1表示第一根是不移动的,并且也不是45和60的最小公倍数
拓展
3、一段木料锯成4段要6分钟,如果要锯成9段需要几分钟?分析: 锯木料问题,时间花在次数上,类同植树问题的株数(两头都不栽树的情况)
锯成4段,需要锯4-1=3次,锯成9段,需要锯9-1=8次
所以,6÷(4-3)×(9-1)
4、钟楼上的大钟整点时敲相应的点数,早晨6点时敲钟用了40秒,那么12点时敲钟共用多少秒?
分析:钟表敲钟,时间花在敲相应的点数上,类同植树问题,敲钟为株数,两次敲钟之间的时间为株距,时间就是用在“株距”。
所以,敲6下,6棵树,却是6-1=5个株距,所以,40秒与5有联系,与6没联系,同理,敲12下,有12-1=11段40÷(6-1)×(12-1)
=88秒。