高三数学第二轮复习讲义 导数及其应用 理
高考理科数学二轮课件专题导数及其应用

结合边际分析和弹性分析的结果, 确定经济变量的最优取值范围,为 制定经济政策提供科学依据。
05 微分方程初步知识及其应用
微分方程基本概念和分类
微分方程定义
微分方程是描述自变量、未知函数及其导数之间关系的数学方程。可分为一阶、二阶等微分方程;根据方程形式,可分为线性、非线 性微分方程。
函数能够满足问题的需求。
利用构造函数法证明不等式的步骤
03
首先构造函数,然后求导并判断函数的单调性或最值,最后根
据函数的性质证明不等式。
04 导数在优化问题中的应用
最值问题求解策略
一阶导数测试法
闭区间上连续函数的性质
通过求一阶导数并判断其符号变化来 确定函数的单调性,进而找到函数的 极值点。
对于闭区间上的连续函数,通过比较 区间端点和驻点的函数值来确定函数 的最值。
优化方法的选择
针对不同类型的优化问题 ,选择合适的优化方法, 如梯度下降法、牛顿法等 ,进行求解。
经济学中边际分析和弹性分析
边际分析
利用导数研究经济变量之间的边 际关系,如边际成本、边际收益 等,为经济决策提供定量依据。
弹性分析
通过导数研究经济变量之间的相对 变化率,如需求弹性、供给弹性等 ,揭示经济变量之间的相互影响程 度。
02
01
电路分析问题
电路中的电压、电流等物理量的变化可以通 过电路微分方程进行分析和计算。
04
03
06 总结与提高
知识体系回顾与总结
A
导数的定义与计算
导数描述了函数在某一点处的切线斜率,可以 通过极限的定义进行计算。
导数的几何意义与应用
导数在几何上表示切线斜率,可以用于求 曲线的切线方程和法线方程。
高考数学(理)二轮练习【专题2】(第3讲)导数及其应用(含答案)

第3讲导数及其应用考情解读 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用函数的单调性和最值确定函数的解析式或参数的值,突出考查导数的工具性作用.1.导数的几何意义函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,其切线方程是y-f(x0)=f′(x0)(x-x0).2.导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.4.定积分的三个公式与一个定理(1)定积分的性质:①ʃb a kf(x)d x=kʃb a f(x)d x;②ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;③ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).(2)微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).热点一导数的运算和几何意义例1 (1)(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.(2)在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________. 思维启迪 (1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A 点坐标是解题的关键点,列方程求出. 答案 (1)5x +y -3=0 (2)4 解析 (1)因为y ′=e -5x(-5x )′=-5e-5x,所以y ′|x =0=-5,故切线方程为y -3=-5(x -0), 即5x +y -3=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0, 又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3a 20=-1,即y 0=3ax 30, 又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)已知函数y =f (x )的导函数为f ′(x )且f (x )=x 2f ′(π3)+sin x ,则f ′(π3)=________.(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于________. 答案 (1)36-4π(2)2 解析 (1)因为f (x )=x 2f ′(π3)+sin x ,所以f ′(x )=2xf ′(π3)+cos x .所以f ′(π3)=2×π3f ′(π3)+cos π3.所以f ′(π3)=36-4π.(2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.热点二 利用导数研究函数的性质例2 已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R . (1)求函数f (x )的单调区间;(2)当x ∈[0,4]时,求函数f (x )的最小值.思维启迪 (1)直接求f ′(x ),利用f ′(x )的符号确定单调区间;(2)讨论区间[0,4]和所得单调区间的关系,一般情况下,f (x )的最值可能在极值点或给定区间的端点处取到. 解 (1)因为f (x )=(x +a )e x ,x ∈R ,所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f (x )单调增区间为(-a -1,+∞).(2)由(1)得,f (x )的单调减区间为(-∞,-a -1); 单调增区间为(-a -1,+∞).所以当-a -1≤0,即a ≥-1时,f (x )在[0,4]上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (0)=a ;当0<-a -1<4,即-5<a <-1时, f (x )在(0,-a -1)上单调递减, f (x )在(-a -1,4)上单调递增,故f (x )在[0,4]上的最小值为f (x )min =f (-a -1)=-e-a -1;当-a -1≥4,即a ≤-5时,f (x )在[0,4]上单调递减, 故f (x )在[0,4]上的最小值为f (x )min =f (4)=(a +4)e 4.所以函数f (x )在[0,4]上的最小值为f (x )min =⎩⎪⎨⎪⎧a , a ≥-1,-e-a -1, -5<a <-1,(a +4)e 4, a ≤-5.思维升华 利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. ②若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (5)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.已知函数f (x )=ln x +2ax,a ∈R .(1)若函数f (x )在[2,+∞)上是增函数,求实数a 的取值范围; (2)若函数f (x )在[1,e]上的最小值为3,求实数a 的值. 解 (1)∵f (x )=ln x +2a x ,∴f ′(x )=1x -2ax 2.∵f (x )在[2,+∞)上是增函数,∴f ′(x )=1x -2ax 2≥0在[2,+∞)上恒成立,即a ≤x2在[2,+∞)上恒成立.令g (x )=x2,则a ≤[g (x )]min ,x ∈[2,+∞),∵g (x )=x2在[2,+∞)上是增函数,∴[g (x )]min =g (2)=1.∴a ≤1.所以实数a 的取值范围为(-∞,1]. (2)由(1)得f ′(x )=x -2ax2,x ∈[1,e].①若2a <1,则x -2a >0,即f ′(x )>0在[1,e]上恒成立, 此时f (x )在[1,e]上是增函数.所以[f (x )]min =f (1)=2a =3,解得a =32(舍去).②若1≤2a ≤e ,令f ′(x )=0,得x =2a . 当1<x <2a 时,f ′(x )<0,所以f (x )在(1,2a )上是减函数,当2a <x <e 时,f ′(x )>0,所以f (x )在(2a ,e)上是增函数. 所以[f (x )]min =f (2a )=ln(2a )+1=3, 解得a =e 22(舍去).③若2a >e ,则x -2a <0,即f ′(x )<0在[1,e]上恒成立,此时f (x )在[1,e]上是减函数. 所以[f (x )]min =f (e)=1+2ae=3,得a =e.适合题意. 综上a =e.热点三 导数与方程、不等式例3 已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ).(1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值;(3)是否存在实数m ,使得函数y =g (2ax 2+1)+m -1的图象与函数y =f (1+x 2)的图象恰有四个不同交点?若存在,求出实数m 的取值范围;若不存在,说明理由.思维启迪 (1)利用F ′(x )确定单调区间;(2)k =F ′(x 0),F ′(x 0)≤12分离a ,利用函数思想求a的最小值;(3)利用数形结合思想将函数图象的交点个数和方程根的个数相互转化. 解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞). (2)由F ′(x )=x -ax2(0<x ≤3)得k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立⇔a ≥-12x 20+x 0恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12,∴a ≥12,a 的最小值为12.(3)若y =g (2a x 2+1)+m -1=12x 2+m -12的图象与y =f (1+x 2)=ln(x 2+1)的图象恰有四个不同交点,即12x 2+m -12=ln(x 2+1)有四个不同的根, 亦即m =ln(x 2+1)-12x 2+12有四个不同的根.令G (x )=ln(x 2+1)-12x 2+12.则G ′(x )=2xx 2+1-x =2x -x 3-x x 2+1=-x (x +1)(x -1)x 2+1当x 变化时G ′(x )、G (x )的变化情况如下表:由上表知:G (x )极小值=G (0)=12,G (x )极大值=G (-1)=G (1)=ln 2>0.又由G (2)=G (-2)=ln 5-2+12<12可知,当m ∈(12,ln 2)时,y =G (x )与y =m 恰有四个不同交点.故存在m ∈(12,ln 2),使函数y =g (2ax 2+1)+m -1的图象与y =f (1+x 2)的图象恰有四个不同交点.思维升华 研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.已知函数f (x )=a (x 2+1)+ln x .(1)讨论函数f (x )的单调性;(2)若对任意a ∈(-4,-2)及x ∈[1,3],恒有ma -f (x )>a 2成立,求实数m 的取值范围.解 (1)由已知,得f ′(x )=2ax +1x =2ax 2+1x(x >0).①当a ≥0时,恒有f ′(x )>0,则f (x )在(0,+∞)上是增函数. ②当a <0时,若0<x < -12a,则f ′(x )>0, 故f (x )在(0,-12a]上是增函数; 若x >-12a,则f ′(x )<0,故f (x )在[-12a,+∞)上是减函数. 综上,当a ≥0时,f (x )在(0,+∞)上是增函数; 当a <0时,f (x )在(0,-12a]上是增函数,在[ -12a,+∞)上是减函数. (2)由题意,知对任意a ∈(-4,-2)及x ∈[1,3], 恒有ma -f (x )>a 2成立, 等价于ma -a 2>f (x )max . 因为a ∈(-4,-2),所以24< -12a <12<1. 由(1),知当a ∈(-4,-2)时,f (x )在[1,3]上是减函数, 所以f (x )max =f (1)=2a , 所以ma -a 2>2a ,即m <a +2.因为a ∈(-4,-2),所以-2<a +2<0. 所以实数m 的取值范围为m ≤-2. 热点四 定积分 例4(1)已知a =ʃ10(e x+2x )d x (e 为自然对数的底数),函数f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x,x ≤0,则f (a )+f (log 216)=________.(2)(2014·山东)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4思维启迪 (1)利用微积分基本定理先求出a ,再求分段函数的函数值;(2)利用图形将所求面积化为定积分. 答案 (1)7 (2)D 解析 (1)因为a =ʃ10(e x +2x )d x =(e x +x 2)|1=e +1-1=e ,f (x )=⎩⎪⎨⎪⎧ln x ,x >02-x ,x ≤0,所以f (a )+f (log 216)=f (e)+f (-log 26)=ln e +2-(-log 26)=1+6=7. (2)令4x =x 3,解得x =0或x =±2,∴S =ʃ20(4x -x 3)=⎪⎪⎝⎛⎭⎫2x 2-x 4420=8-4=4,故选D.思维升华 (1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数. (2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.(1)若ʃa1(2x +1x)d x =3+ln 2,且a >1,则a 的值为( )A .6B .4C .3D .2 (2)如图,阴影部分的面积是( )A .2 3B .9-2 3 C.323D.353答案 (1)D (2)C解析 (1)ʃa 1(2x +1x )d x =(x 2+ln x )|a 1=a 2+ln a -1,由题意,可得a 2+ln a -1=3+ln 2, 解得a =2.(2)由题图,可知阴影部分面积为ʃ1-3(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=(3-13-1)-(-9+9-9)=323.1.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f (x ),“f (x )在x =x 0处的导数f ′(x )=0”是“f (x )在x =x 0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点. 3.利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义域;(4)在定义域内求极值、最值;(5)下结论. 4.定积分在几何中的应用被积函数为y =f (x ),由曲线y =f (x )与直线x =a ,x =b (a <b )和y =0所围成的曲边梯形的面积为S .(1)当f (x )>0时,S =ʃb a f (x )d x ; (2)当f (x )<0时,S =-ʃb a f (x )d x ;(3)当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =ʃc a f (x )d x -ʃb c f (x )d x .真题感悟1.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 答案 (-ln 2,2)解析 设P (x 0,y 0),∵y =e -x =1e x ,∴y ′=-e -x ,∴点P 处的切线斜率为k =-e -x 0=-2, ∴-x 0=ln 2,∴x 0=-ln 2,∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2).2.(2014·浙江)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4. (1)解 因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a , f ′(x )=3x 2+3>0, 故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a , f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数, 所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明 令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3, h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以,h (x )在[a,1]上的最大值是h (1)=4-3a -a 3, 且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3,h ′(x )=3x 2-3, 所以h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3. 令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a , 故h (x )=x 3-3x +2,h ′(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4. 押题精练1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1, 即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.已知函数f (x )=x 28-ln x ,x ∈[1,3].(1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围;解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x,令f ′(x )=0得x =±2, ∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0;∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f (x )在x =2处取得极小值f (2)=12-ln 2; 又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴x =1时f (x )的最大值为18,x =2时函数取得最小值为12-ln 2. (2)由(1)知当x ∈[1,3]时,f (x )≤18, 故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2]. ∴⎩⎨⎧ g (0)<318g (2)<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116).(推荐时间:60分钟)一、选择题1.曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=0答案 A解析 由已知,得点(1,-1)在曲线y =x 3-2x 上,所以切线的斜率为y ′|x =1=(3x 2-2)|x =1=1,由直线方程的点斜式得x -y -2=0,故选A.2.(2014·课标全国Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( )A .0B .1C .2D .3答案 D解析 令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.3.(2014·陕西)如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-x D .y =-3125x 3+15x 答案 A解析 函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}答案 A解析 构造函数g (x )=e x ·f (x )-e x ,因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x =0,所以g (x )=e x ·f (x )-e x 为R 上的增函数.又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.若函数f (x )=log a (x 3-ax )(a >0,a ≠1)在区间(-12,0)内单调递增,则a 的取值范围是( ) A .[14,1) B .[34,1) C .(94,+∞) D .(1,94) 答案 B解析 由x 3-ax >0得x (x 2-a )>0.则有⎩⎪⎨⎪⎧ x >0,x 2-a >0或⎩⎪⎨⎪⎧x <0,x 2-a <0, ∴x >a 或-a <x <0,即函数f (x )的定义域为(a ,+∞)∪(-a ,0).令g (x )=x 3-ax ,则g ′(x )=3x 2-a .由g ′(x )<0得-3a 3<x <0. 从而g (x )在x ∈(-3a 3,0)上是减函数,又函数f (x )在x ∈(-12,0)内单调递增,则有⎩⎨⎧ 0<a <1,-a ≤-12,-3a 3≤-12,∴34≤a <1. 6.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A .ʃ20|x 2-1|d xB .|ʃ20(x 2-1)d x |C .ʃ20(x 2-1)d xD .ʃ10(x 2-1)d x +ʃ21(1-x 2)d x答案 A解析 由曲线y =|x 2-1|的对称性,所求阴影部分的面积与如图图形的面积相等,即ʃ20|x 2-1|d x ,选A.二、填空题7.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________. 答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1. 8.若函数f (x )=ax +1x +2在x ∈(2,+∞)上单调递减,则实数a 的取值范围是________. 答案 a <12解析 f ′(x )=(ax +1)′(x +2)-(x +2)′(ax +1)(x +2)2=a (x +2)-(ax +1)(x +2)2=2a -1(x +2)2,令f ′(x )<0,即2a -1<0,解得a <12. 9.已知函数f (x )=mx 3+nx 2的图象在点(-1,2)处的切线恰好与直线3x +y =0平行,若f (x )在区间[t ,t +1]上单调递减,则实数t 的取值范围是__________.答案 [-2,-1]解析 由题意知,点(-1,2)在函数f (x )的图象上,故-m +n =2.①又f ′(x )=3mx 2+2nx ,则f ′(-1)=-3,故3m -2n =-3.②联立①②解得:m =1,n =3,即f (x )=x 3+3x 2,令f ′(x )=3x 2+6x ≤0,解得-2≤x ≤0,则[t ,t +1]⊆[-2,0],故t ≥-2且t +1≤0,所以t ∈[-2,-1].10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________. 答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x=-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3.三、解答题11.(2014·重庆)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间与极值.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x, 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln 5.12.已知f (x )=x 2+3x +1,g (x )=a -1x -1+x . (1)a =2时,求y =f (x )和y =g (x )图象的公共点个数;(2)a 为何值时,y =f (x )和y =g (x )的公共点个数恰为两个.解 (1)当a =2时,联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x 2+3x +1=1x -1+x , 整理得x 3+x 2-x -2=0(x ≠1),即联立⎩⎪⎨⎪⎧y =0,y =x 3+x 2-x -2(x ≠1), 求导得y ′=3x 2+2x -1=0得x 1=-1,x 2=13, 得到极值点分别在-1和13处, 且极大值、极小值都是负值,图象如图,故交点只有一个.(2)联立⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x 2+3x +1=a -1x -1+x , 整理得a =x 3+x 2-x (x ≠1),即联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x 3+x 2-x (x ≠1),对h (x )求导可以得到极值点分别在-1和13处,画出草图如图.h (-1)=1,h (13)=-527, 当a =h (-1)=1时,y =a 与y =h (x )仅有一个公共点(因为(1,1)点不在y =h (x )曲线上),故a =-527时恰有两个公共点. 13.设函数f (x )=a e x (x +1)(其中,e =2.718 28……),g (x )=x 2+bx +2,已知它们在x =0处有相同的切线.(1)求函数f (x ),g (x )的解析式;(2)求函数f (x )在[t ,t +1](t >-3)上的最小值;(3)若对∀x ≥-2,kf (x )≥g (x )恒成立,求实数k 的取值范围.解 (1)f ′(x )=a e x (x +2),g ′(x )=2x +b .由题意,得两函数在x =0处有相同的切线.∴f ′(0)=2a ,g ′(0)=b ,∴2a =b ,f (0)=a ,g (0)=2,∴a =2,b =4,∴f (x )=2e x (x +1),g (x )=x 2+4x +2.(2)f ′(x )=2e x (x +2),由f ′(x )>0得x >-2,由f ′(x )<0得x <-2,∴f (x )在(-2,+∞)单调递增,在(-∞,-2)单调递减.∵t >-3,∴t +1>-2.①当-3<t <-2时,f (x )在[t ,-2]单调递减,在[-2,t +1]单调递增,∴f (x )min =f (-2)=-2e -2. ②当t ≥-2时,f (x )在[t ,t +1]单调递增,∴f (x )min =f (t )=2e t (t +1);∴f (x )=⎩⎪⎨⎪⎧-2e -2(-3<t <-2)2e t (t +1)(t ≥-2) (3)令F (x )=kf (x )-g (x )=2k e x (x +1)-x 2-4x -2,由题意当x ≥-2时,F (x )min ≥0.∵∀x ≥-2,kf (x )≥g (x )恒成立,∴F (0)=2k -2≥0,∴k ≥1.F ′(x )=2k e x (x +1)+2k e x -2x -4=2(x +2)(k e x -1),∵x ≥-2,由F ′(x )>0得e x >1k ,∴x >ln 1k; 由F ′(x )<0得x <ln 1k ,∴F (x )在(-∞,ln 1k )单调递减,在[ln 1k,+∞)单调递增. ①当ln 1k<-2, 即k >e 2时,F (x )在[-2,+∞)单调递增,F (x )min =F (-2)=-2k e -2+2=2e 2(e 2-k )<0, 不满足F (x )min ≥0.当ln 1k =-2,即k =e 2时,由①知,F (x )min =F (-2)=2e 2(e 2-k )=0,满足F (x )min ≥0. ③当ln 1k >-2,即1≤k <e 2时,F (x )在[-2,ln 1k )单调递减,在[ln 1k,+∞)单调递增. F (x )min =F (ln 1k)=ln k (2-ln k )>0, 满足F (x )min ≥0.综上所述,满足题意的k 的取值范围为[1,e 2].。
高三数学二轮复习 第一篇 专题1 第4课时导数及其应用课件 理

• 所以,f(x)的单调递减区间是(-∞,k-1); 单调递增区间是(k-1,+∞). • (2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上 单调递增, • 所以f(x)在区间[0,1]上的最小值为f(0)=-k; • 当0<k-1<1,即1<k<2时, • 由(1)知f(x)在[0,k-1)上单调递减,在(k- 1,1]上单调递增,所以f(x)在区间[0,1]上的最 小值为f(k-1)=-ek-1; • 当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调 递减, • 所以f(x)在区间[0,1]上的最小值为f(1)=x;(4)(cos x)′=-sin x; 1 1 (5)(ln x)′=x;(logax)′=xlogae; (6)(ex)′=ex;(ax)′=axln a.
3.导数的运算法则 (1)(u± v)′=u′± v′ . (2)(uv)′=u′v+uv′.
u u′v-uv′ (3)v′= (v≠0). v2
ax 2.(2011· 山东临沂二模)已知函数 f(x)= 2 在 x=1 处 x +b 取得极值 2. (1)求函数 f(x)的表达式; (2)当 m 满足什么条件时,函数 f(x)在区间(m,2m+1)上 单调递增?
解析:
ax2+b-ax2x (1)因为 f′(x)= , 2 2 x +b
只要 解得 a=e.
• 利用导数证明不等式的基本思路是:依据 要证明的不等式的特点,构造函数,利用 导数求函数的单调区间,利用函数的单调 性得出不等关系.
x 4.设函数 f(x)=1-e .证明当 x>-1 时,f(x)≥ . x+1 x 证明: 当 x>-1 时,f(x)≥ ,当且仅当 ex≥1+x. x+1
2021-2022年高三数学二轮复习 专题二第三讲 导数的应用教案 理

2021年高三数学二轮复习 专题二第三讲 导数的应用教案 理类型一 利用导数研究切线问题 导数的几何意义(1)函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0);(2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). [例1] (xx 年高考安徽卷改编)设函数f (x )=a e x +1a e x+b (a >0).在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值. [解析] ∵f ′(x )=a e x -1a e x, ∴f ′(2)=a e 2-1a e 2=32, 解得a e 2=2或a e 2=-12(舍去),所以a =2e 2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.跟踪训练已知函数f (x )=x 3-x .(1)求曲线y =f (x )的过点(1,0)的切线方程;(2)若过x 轴上的点(a ,0)可以作曲线y =f (x )的三条切线,求a 的取值范围.解析:(1)由题意得f ′(x )=3x 2-1.曲线y =f (x )在点M (t ,f (t ))处的切线方程为y -f (t )=f ′(t )(x -t ),即y =(3t 2-1)·x -2t 3,将点(1,0)代入切线方程得2t 3-3t 2+1=0,解得t =1或-,代入y =(3t 2-1)x -2t 3得曲线y =f (x )的过点(1,0)的切线方程为y =2x -2或y =-x +.(2)由(1)知若过点(a ,0)可作曲线y =f (x )的三条切线,则方程2t 3-3at 2+a =0有三个相异的实根,记g (t )=2t 3-3at 2+a .则g ′(t )=6t 2-6at =6t (t -a ).当a >0时,函数g (t )的极大值是g (0)=a ,极小值是g (a )=-a 3+a ,要使方程g (t )=0有三个相异的实数根,需使a >0且-a 3+a <0,即a >0且a 2-1>0,即a >1;当a =0时,函数g (t )单调递增,方程g (t )=0不可能有三个相异的实数根;当a <0时,函数g (t )的极大值是g (a )=-a 3+a ,极小值是g (0)=a ,要使方程g (t )=0有三个相异的实数根,需使a <0且-a 3+a >0,即a <0且a 2-1>0,即a <-1.综上所述,a 的取值范围是(-∞,-1)∪(1,+∞).类型二 利用导数研究函数的单调性 函数的单调性与导数的关系在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减.[例2] (xx 年高考山东卷改编)已知函数f (x )=(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值;(2)求f (x )的单调区间.[解析] (1)由f (x )=ln x +ke x, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞).由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=(1-x -x ln x ),x ∈(0,+∞). 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0; 当x ∈(1,+∞)时,h (x )<0.又e x >0,所以当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).跟踪训练若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,求实数a 的取值范围.解析:由题知f ′(x )=1x -ax -2=-ax 2+2x -1x,因为函数f (x )存在单调递减区间,所以f ′(x )=-ax 2+2x -1x≤0有解.又因为函数的定义域为(0,+∞),则应有ax 2+2x -1≥0在(0,+∞)上有实数解. (1)当a >0时,y =ax 2+2x -1为开口向上的抛物线,所以ax 2+2x -1≥0在(0,+∞)上恒有解; (2)当a <0时,y =ax 2+2x -1为开口向下的抛物线,要使ax 2+2x -1≥0在(0,+∞)上有实数解,则Δ=>0,此时-1<a <0;(3)当a =0时,显然符合题意.综上所述,实数a 的取值范围是(-1,+∞). 类型三 利用导数研究函数的极值与最值1.求函数y =f (x )在某个区间上的极值的步骤 (1)求导数f ′(x );(2)求方程f ′(x )=0的根x 0; (3)检查f ′(x )在x =x 0左右的符号; ①左正右负⇔f (x )在x =x 0处取极大值; ②左负右正⇔f (x )在x =x 0处取极小值.2.求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在区间(a ,b )内的极值(极大值或极小值);(2)将y =f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个为最大值,最小的一个为最小值. [例3] (xx 年高考北京卷)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值;(2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值. [解析] (1)f ′(x )=2ax ,g ′(x )=3x 2+b ,因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3.(2)记h (x )=f (x )+g (x ).当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1, h ′(x )=3x 2+2ax +14a 2.令h ′(x )=0,得x 1=-a 2,x 2=-a6.a >0时,h (x )与h ′(x )的变化情况如下:所以函数h (x )的单调递增区间为(-∞,-2)和(-6,+∞);单调递减区间为(-2,-6).当-a2≥-1,即0<a ≤2时,函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2.当-a 2<-1,且-a6≥-1,即2<a ≤6时,函数h (x )在区间(-∞,-a 2)上单调递增,在区间(-a2,-1]上单调递减,h (x )在区间(-∞,-1]上的最大值为h (-a2)=1.当-a6<-1,即a >6时,函数h (x )在区间(-∞,-a 2)上单调递增,在区间(-a 2,-a 6)上单调递减,在区间(-a6,-1]上单调递增,又因为h (-a 2)-h (-1)=1-a +14a 2=14(a -2)2>0,所以h (x )在区间(-∞,-1]上的最大值为h (-a2)=1.跟踪训练(xx 年珠海摸底)若函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1(x ≤0)e ax (x >0),在[-2,2]上的最大值为2,则a 的取值范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]解析:当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a ≤12ln 2.答案:D析典题(预测高考)高考真题【真题】 (xx 年高考辽宁卷)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x +6. 【解析】 (1)由y =f (x )过(0,0)点,得b =-1. 由y =f (x )在(0,0)点的切线斜率为32,又y ′⎪⎪x =0=(1x +1+12x +1+a )⎪⎪x =0=32+a ,得a =0.(2)证明:证法一 由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x2+1.记h (x )=f (x )-9x x +6, 则h ′(x )=1x +1+12x +1-54(x +6)2=2+x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2=(x +6)3-216(x +1)4(x +1)(x +6)2. 令g (x )=(x +6)3-216(x +1), 则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数.又由g (0)=0,得g (x )<0,所以h ′(x )<0. 因此h (x )在(0,2)内是递减函数. 又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9xx +6.证法二 由(1)知f (x )=ln(x +1)+x +1-1.由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x2+1.①令k (x )=ln(x +1)-x , 则k (0)=0,k ′(x )=1x +1-1=-x x +1<0, 故k (x )<0,即ln(x +1)<x .②由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时,h ′(x )=f (x )+(x +6)f ′(x )-9<32x +(x +6)·(1x +1+12x +1)-9=12(x +1)[3x (x +1)+(x +6)·(2+x +1)-18(x +1)]<12(x +1)[3x (x +1)+(x +6)·(3+x 2)-18(x +1)]=x4(x +1)(7x -18)<0.因此h (x )在(0,2)内单调递减. 又h (0)=0,所以h (x )<0,即f (x )<9xx +6. 【名师点睛】 本题主要考查导数的应用和不等式的证明以及转化与化归能力,难度较大.本题不等式的证明关键在于构造函数利用最值来解决.考情展望高考对导数的应用的考查综合性较强,一般为解答题,着重考查以下几个方面:一是利用导数的几何意义来解题;二是讨论函数的单调性;三是利用导数研究函数的极值与最值.常涉及不等式的证明、方程根的讨论等问题名师押题【押题】 已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln xx,其中e 是自然常数,a ∈R.(1)讨论a =1时,f (x )的单调性和极值; (2)求证:在(1)的条件下,f (x )>g (x )+12;(3)是否存在实数a ,使f (x )的最小值是3,若存在,求出a 的值;若不存在,请说明理由. 【解析】 (1)由题知当a =1时,f ′(x )=1-1x =x -1x,因为当0<x <1时,f ′(x )<0,此时f (x )单调递减, 当1<x <e 时,f ′(x )>0,此时f (x )单调递增, 所以f (x )的极小值为f (1)=1.(2)证明因为f (x )的极小值为1,即f (x )在(0,e]上的最小值为1.令h (x )=g (x )+12=ln x x +12,h ′(x )=1-ln xx 2,当0<x <e 时,h ′(x )>0,h (x )在(0,e]上单调递增, 所以h (x )max =h (e)=1e +12<12+12=1=f (x )min ,所以在(1)的条件下,f (x )>g (x )+12.(3)假设存在实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,f ′(x )=a -1x =ax -1x.①当a ≤0时,因为x ∈(0,e],所以f ′(x )<0,而f (x )在(0,e]上单调递减, 所以f (x )min =f (e)=a e -1=3,a =4e (舍去),此时f (x )无最小值;②当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a,e]上单调递增,所以f (x )min =f (1a)=1+ln a =3,a =e 2,满足条件;③当1a≥e 时,因为x ∈(0,e],所以f ′(x )<0,所以f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,a =4e(舍去)此时f(x)无最小值.综上,存在实数a=e2,使得当x∈(0,e]时,f(x)有最小值3.。
2020版高三数学二轮复习(全国理)讲义:专题二 第四讲导数的综合应用

高考考点考点解读-=2(x-1)-2.所以M (a )<M (1)=0,故g ′(a )<0,所以g (a )=1-aln a 在a ∈(1,2)上单调递减,所以m ≤g (2)=1-2ln 2=-log 2e ,即实数m 的取值范围为(-∞,-log 2e].命题方向3 利用导数解决生活中的优化问题例3某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 1,l 2所在的直线分别为y ,x 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax2+b(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.[解析] (1)由题意知,M 点的坐标为(5,40),N 点的坐标为(20,2.5),代入曲线C 的方程y =ax2+b 可得:⎩⎪⎨⎪⎧40=a52+b ,2.5=a202+b .解得⎩⎨⎧a =1 000,b =0.(2)①由(1)知曲线C 的方程为y =1 000x2(5≤x ≤20),y ′=-2 000x3,所以y ′|x =t =-2 000t3即为l 的斜率.又当x =t 时,y =1 000t2,所以P 点的坐标为⎝ ⎛⎭⎪⎫t ,1 000t2, 所以l 的方程为y -1 000t2=-2 000t3(x -t ).。
专题二第2讲导数及其应用课件(共92张PPT)山东省高考数学大二轮专题复习讲义(新高考)

|1-1-2| 2 = 2,故选 B.
解析 答案
3.(2020·湖南省雅礼中学高三 5 月质检)已知奇函数 f(x)的定义域为 R, 且当 x<0 时,f(x)=ln (1-3x),则曲线 y=f(x)在点(1,f(1))处的切线斜率为 ________.
答案 -34 解析 由题意得,奇函数 f(x)的图象关于原点对称,∴f′(1)=f′(- 1).当 x<0 时,f′(-1)=-34,则 f′(1)=-34.即曲线 y=f(x)在点(1,f(1)) 处的切线斜率为-34.
解析
3.设 f(x)=-13x3+12x2+2ax.若 f(x)在23,+∞上存在单调递增区间,
则 a 的取值范围为________.
答案 解析
a>-19 由 f′(x)=-x2+x+2a=-x-122+14+2a,当 x∈23,+∞时,
f′(x)的最大值为 f′23=29+2a;令29+2a>0,得 a>-19,所以,当 a>-19
exx-1 (0<x≤1),可得 g′(x)= x2 ,
解析
在 x∈(0,1],g′(x)≤0,可得 g(x)在(0,1]上单调递减,可得 g(x)有最小 值 g(1)=e,故 C 正确;x1x2=x1ex1,设 h(x)=xex(0<x≤1),可得 h′(x)=(x +1)ex>0,即 h(x)在(0,1]上单调递增,可得 h(x)有最大值 e,故 D 正确.故 选 CD.
第二编 讲专题
专题二 函数与导数 第2讲 导数及其应用
「考情研析」 1.导数的几何意义和运算是导数应用的基础,是高考的 一个热点. 2.利用导数解决函数的单调性与极值(最值)问题是高考的常见 题型.
1
PART ONE
高考理科数学二轮复习新课标通用课件专题六导数的简单应用

导数还可以表示当销售量增加一个 单位时,利润的变化率,即边际利 润。通过求导可以找到最大利润的 销售量。
物理问题中速度加速度计算
01
02
03
速度
位移关于时间的导数就是 速度。通过求导可以求得 物体在任意时刻的瞬时速 度。
加速度
速度关于时间的导数就是 加速度。通过求导可以求 得物体在任意时刻的瞬时 加速度。
利用单调性证明不等式
导数与函数单调性的关系
通过求导判断函数的单调性,从而确定不等式的方向。
典型例题解析
结合具体例题,展示如何利用导数判断函数单调性,进而证明不等 式。
注意事项
在证明过程中,要注意导数的计算、函数单调性的判断以及不等式 的变形等技巧。
利用凹凸性证明不等式
导数与函数凹凸性的关系
通过求二阶导数判断函数的凹凸性,从而确定不等式的形状。
注意事项
在构造函数时,要注意函数的定义域、值域以及导数的计算等细节问 题。同时,还要善于运用已知的不等式和数学归纳法等数学方法。
06 实际生活中导数 应用举例
经济领域中边际分析
边际成本
导数可以表示当生产量增加一个 单位时,成本的变化率,即边际 成本。通过求导可以找到最低成
本的生产量。
边际收益
导数也可以表示当销售量增加一个 单位时,收益的变化率,即边际收 益。通过求导可以找到最大收益的 销售量。
判断拐点和凹凸性的方法
通过求解二阶导数等于0的点,并结合三阶导数测试来判 断拐点的类型(上凹、下凹或不是拐点)。然后分析二阶 导数的正负来判断函数的凹凸性。
03 曲线形态与导数 关系
曲线切线方程求解
1 2
确定切点
在曲线上选择一点作为切点,记其坐标为$(x_0, y_0)$。
人教版高三数学二轮复习导数及导数的应用-精品课件 12页PPT文档

3 3.函f数 (x)2x31x23x的单调递 增 (-1, 2 区 ) 间 是
32
4 .若 函f(数 x)x3ax24在0( , 2)内单调a递 的取减 值范围, 是 则 3,
5.函数f ( x ) x( x m)2在x 1处取得极小值,则实m数 1
t
t1 2 x
2
2
2
1。 当2 t即t4时 2。 当1 t 2即 2t4时 3。 当 t 1即0 <t 2时
2
2
2
f(x)在1, 2上单调递f (减 x)在1,2t
上单调递减
f(x)在1, 2上单调
在
t 2
,2上单调递增
例2 (2019年青岛模拟21(2))【已知函数的单调区间求参数范围】
END
2019本定理 函数极值、不等式证明
14分 函数单调性、极值、 不等式证明
课前双基自测
1.(2011山东文)曲线y x3 11在点P(1,12)处的切线与y轴交点的纵坐标C是()
A 9 B 3 C 9 D 1 5
已知函数 f(x) 4 x3 3 t2 x 6 t2x t 1 ,x R 其中 t R
当t 0 时,求 f ( x ) 的单调区间.
f'(x) 6 (t 1 )2 (t 1 )
讨论依据:导函数零点的大小
变式训练:
讨论依据:导函数中最高次项系数的正负
f'(x) 6 (x t)2 (x t)t(0 )
该如何求b的取值范围?f(x)极大值为16 ln 2 - 9, 极小值为32 ln 2 - 21
并且 x 1时, f ( x )
高三数学二轮专题导数运用 2

上高中生公益平台:,找学长学姐聊天~第六讲导数的应用命题要点:(1)导数的实际背景与几何意义;(2)导数的基本运算;(3)利用导数研究函数的单调性;(4)利用导数研究函数的极值与最值。
命题趋势:(1)导数的几何意义是高考考查的重要内容,常与解析几何知识交汇命题,多以选择、填空题的形式出现,有时也出现在简答题中关键的一步,其中常求曲线在某点的切线问题——切线的斜率、倾斜角、切线方程等是考查的重点与热点;(2)导数的运算时导数的基本内容,虽然高考很少命题,但它在考查导数的应用中同时出现,多涉及三次函数、对数函数、指数函数、正余弦函数等以及由他们复合而成的函数的求导问题,主要考查对初等函数的导数熟练记忆与导数运算法则的正确运用;(3)导数在研究函数的单调性及最值等方面有着传统工具无法比拟的优越性,是研究函数、方程、不等式等知识的重要工具。
从今几年各个地区高考题看,利用导数求函数的单调区间及最值、极值的试题频率较高,多以选择和填空题的形式出现,难度不大,随着高考导数在函数知识中的应用逐步加深,导数的综合运用得到加强,其中利用导数讨论方程的根,恒成立问题等常在高考中多以简答题的形式出现。
题型分析:类型一利用导数研究切线问题导数的几何意义yfxxxfxyfxxfx))(=(()在(=,处的导数′())就是曲线(1)函数在点=0000kfx) =′(处的切线的斜率,即0yfxxfxyfxfxxx).′(-))处的切线方程为-) (((2)曲线=)(=)在点(, (00000yfx)在某处的切线还是求过某点曲线的切方法总结:首先要分清是求曲线(=yfxxxfx)=求曲线=′((处的切线方程可先求)在,利用点斜式写出线.(1)00所求切线方程;(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程.1x baafxf(2)),在点+(21] (2012年高考安徽卷改编)设函数(()=>0)e.+例[x a e3baxy,处的切线方程为的值.=,求21x axf-)=,e∵[解析]′(x a e132af2=,∴′()=e-2a2e122aa=-(舍去或解得e=2e),2.上高中生公益平台:,找学长学姐聊天~21ab=3+,所以=,代入原函数可得2+22e1b=,即221ab=.=,故22e跟踪训练3xxfx.已知函数=(-)yfx)的过点(1,(0)的切线方程;(1)求曲线=xayfxa的取值范围.=)(2)若过(轴上的点(的三条切线,求,0)可以作曲线2yfxMxtftfx))处的切线方1.曲线(=(解析:(1)由题意得(′(,)=3)在点-23txxtytyftft,将点(12,0)(-)=1)′(·) (代入切线-,即)-=程为-(313223yxyttttt得曲线=(3-32,解得+1=0-=1或-,代入方程得21)-211fxyxyx+或.=2=-=-(0))的过点(1,的切线方程为24432atatayfx+3,0)可作曲线2=-()的三条切线,则方程(2)由(1)知若过点(32aattgt. -0有三个相异的实根,记3()=2+=2atttgtta).(-6 =则6′()=6-3aaagaagtg,要使方程(当+>0时,函数())的极大值是=-(0)=,极小值是32aaagtaa-1>0>0且->0且+<0,即(0)=有三个相异的实数根,需使,即a>1;agtgt)=0(不可能有三个相异的实数根;当=0时,函数(单调递增,方程)3agaggataa,要使方程=(0),极小值是+=-)(的极大值是)(时,函数<0当.上高中生公益平台:,找学长学姐聊天~32aaaaagt-1>0<0+且(>0)=0有三个相异的实数根,需使,即<0且-,即a<-1.a的取值范围是(-∞,-1)∪(1,+∞).综上所述,点评:由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点.类型二利用导数研究函数的单调性函数的单调性与导数的关系abfxfxab)(,那么函数上单调递增;如在区间((,,)内,如果)′(在区间)>0fxfxab)上单调递减.,( 果)′(在区间)<0,那么函数(方法总结:函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于fx)求函数的单调区间解′(0)或等于,只要不在一段连续区间上恒等于0即可,fx)<0)>0(或即可.含参数的函数单调性求参数取值一般转化为恒成立问′(题。
高三数学二轮复习 2.4导数及其应用课件

3.导数的计算
(1)基本初等函数的导数公式
①c′=0(c为常数);
②(xm)′=mxm-1;
③(sinx)′=cosx; ④(cosx)′=-sinx;
⑤(ex)′=ex; ⑥(ax)′=axlna;
⑦(lnx)′=1x; ⑧(logax)′=-xl1na.
(2)导数的四则运算法则 ①[f(x)±g(x)]′=f′(x)±g′(x); ②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); ③[gfxx]′=f′xgxg- 2xfxg′x. ④(理)(f(u))′=f′(u)·φ′(x)=af′(ax+b)
[解析] (1)f′(x)=1k(x2-k2)exk, 令f′(x)=0,得x=±k. 当k>0时,f(x)与f′(x)的情况如下:
x
(-∞, -k)
-k
(-k, k)
k
(k,+ ∞)
f′(x) + 0 - 0 +
f(x)
4k2 e-1
0
所以,f(x)的单调递增区间是(-∞,-k)和(k,+∞);单调 递减区间是(-k,k).
所以∀x∈(0,+∞),f(x)≤1e等价于 f(-k)=4ek2≤1e. 解得-12≤k<0.
故当∀x∈(0,+∞),f(x)≤1e时, k 的取值范围 是[-12,0).
[评析] 讨论函数的单调性其实就是讨论不等式的解集的情 况,大多数情况下是归结为一个含有参数的一元二次不等 式的解集的讨论,在能够通过因式分解求出不等式对应方 程的根时依据根的大小进行分类讨论,在不能通过因式分 解求出根的情况时根据不等式对应方程的判别式进行分类 讨论.讨论函数的单调性是在函数的定义域内进行的,千 万不要忽视了定义域的限制.
高考数学大二轮复习2.3导数的简单应用课件文3

又 f(0)=0,fπ2=1-ln1+π2>0,所以当 x∈0,2π时,f(x)>0. 从而,f(x)在0,2π没有零点.
(ⅲ)当 x∈π2,π时,f′(x)<0,所以 f(x)在π2,π单调递减.而 fπ2>0,f(π)<0,所以 f(x)在π2,π有唯一零点.
(ⅳ)当 x∈(π,+∞)时,ln(x+1)>1,所以 f(x)<0,从而 f(x)在(π, +∞)没有零点.
『对接训练』
4.[2019·福建福州质量检测]已知函数 f(x)=1+x x-aln(1+ x)(a∈R),g(x)=x2emx+1-e2.
(1)求函数 f(x)的单调区间; (2)若 a<0,∀x1,x2∈[0,e],不等式 f(x1)≥g(x2)恒成立,求实 数 m 的取值范围.
解析:(1)因为 f(x)=1+x x-aln(1+x)(x>-1), 所以 f′(x)=x+112-x+a 1=-axx+-1a+2 1. 当 a≤0 时,f′(x)>0,所以函数 f(x)的单调递增区间为(-1, +∞),无单调递减区间. 当 a>0 时,由fx′>-x1>,0, 得-1<x<-1+1a;
由fx′>-x1<,0, 得 x>-1+1a.
所以函数 f(x)的单调递增区间是-1,-1+1a,单调递减区间 是-1+1a,+∞.
综上所述,当 a≤0 时,函数 f(x)的单调递增区间为(-1,+∞), 无单调递减区间.
当 a>0 时,函数 f(x)的单调递增区间是-1,-1+1a,单调递 减区间是-1+1a,+∞.
(2)若 a<0,则∀x1,x2∈[0,e],不等式 f(x1)≥g(x2)恒成立, 等价于“对任意 x∈[0,e],f(x)min≥g(x)max 恒成立”. 当 a<0 时,由(1)知,函数 f(x)在[0,e]上单调递增, 所以 f(x)min=f(0)=0. g′(x)=2xemx+1+mx2emx+1=x(mx+2)emx+1, (ⅰ)当 m≥0 时,若 0≤x≤e,则 g′(x)≥0,函数 g(x)在[0,e] 上单调递增,
高考理科数学二轮专题提分教程全国课件导数及其应用

可导与连续关系
可导必连续
如果函数在某一点处可导,则该函数 在该点处必定连续。这是因为可导的 定义中已经包含了函数在该点处的连 续性。
连续不一定可导
虽然连续函数在其定义域内具有许多 良好的性质,但并不意味着它在每一 点处都可导。例如,绝对值函数在原 点处连续但不可导。
基本初等函数导数公式
常数函数
幂函数
物理学中速度和加速度计算
要点一
速度计算
要点二
加速度计算
在物理学中,速度是位移对时间的导数。通过求解位移函 数的导数,可以得到物体在任意时刻的速度。
加速度是速度对时间的导数。通过对速度函数求导,可以 得到物体在任意时刻的加速度,进而分析物体的运动状态 。
工程学中最优化问题求解
最值问题
在工程学中,经常需要求解某个函数的最值 问题,如最小成本、最大效益等。通过求解 函数的导数,并令其等于零,可以找到函数 的极值点,进而确定最值。
正弦函数y=sinx的导数 为cosx;余弦函数 y=cosx的导数为-sinx; 正切函数y=tanx的导数 为sec2x。
复合函数、反函数求导法则
复合函数求导法则
如果u=g(x)在点x处可导,且y=f(u)在点u=g(x)处也可导,则复合函数y=f[g(x)]在点x处也可导,且 其导数可由f'和g'通过链式法则求得:dy/dx = f'(u) * g'(x)。
利用中值定理求极限或判断函数性质
利用中值定理求极限
通过中值定理找到满足条件的点,然后利用 该点的性质求出极限。Biblioteka 利用中值定理判断函数单调性
通过中值定理找到满足条件的点,然后利用 该点的性质判断函数的单调性。
利用中值定理判断函数凹凸性
福建省福清市高考数学二轮复习专题二函数与导数第二讲导数课件

考点(kǎo
diǎn)1
考点
(kǎo
diǎn)2
考点
(kǎo
diǎn)3
考点4
1
(2)由 f'(x)=(1+kx)ekx=0,得 x=- (k≠0),
若 k>0,则当 x∈ -∞,1
1
时,f'(x)<0,函数 f(x)单调递减,
当 x∈ - , + ∞ 时,f'(x)>0,函数 f(x)单调递增;
1
e
1
1
(ii)当 a> 时,0< <e,当 0<x< 时,h'(x)<0,所以'(x)>0,h(x)在区间
所以 h(x)min=h
1
1
,e
上递增,
=1+ln a=3.
所以 a=e2 满足条件.
综上,存在 a=e2 使 x∈(0,e]时 h(x)有最小值 3
1
22--1
f'(x)=2x-1- =
=
(-1)(2+1)
,
当 x 变化时,f'(x)与 f(x)的变化情况如下表所示:
x
y'
(0,1)
-
y
↘
1
0
极小值
f(1)
(1,+∞)
+
↗
可以看出,当 x=1 时,函数 f(x)有极小值 y 极小=f(1)=1,没有极大值.
第十五页,共31页。
考点(kǎo
①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单
高三数学第二轮复习讲义 导数及其应用 理

导数及其应用类型一:没有其他未知字母情况下,求单调性,极值,最值例1:设函数32()91(0).f x x ax x a =+--若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:(Ⅰ)a 的值;(Ⅱ)函数f (x )的单调区间.解:(Ⅰ) 3,0, 3.a a a =±<=-由题设所以(Ⅱ)由(Ⅰ)知323,()391,a f x x x x =-=---因此212()3693(3(1)()0,1, 3.(,1)()0,()(1(1,3)()0,()13()0,()3.()(,13f x x x x x f x x x x f x f x x f x f x f x f x f x '=--=-+'==-='∈-∞->-∞-'∈-<-'∈∞>+∞-∞-+∞令解得:当时,故在,)上为增函数;当时,故在(,)上为减函数;当x (3,+)时,故在(,)上为增函数由此可见,函数的单调递增区间为)和(,);单调递减区13.-间为(,) 变式训练1:设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,.(Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅰ)解:322()434(434)f x x ax x x x ax '=++=++.当103a =-时,2()(4104)2(21)(2)f x x x x x x x '=-+=--.令()0f x '=,解得10x =,212x =,32x =.()f x 在102⎛⎫ ⎪⎝⎭,,(2)+,∞是增函数,在(0)-∞,,122⎛⎫ ⎪⎝⎭,内是减函数.(Ⅱ)解:2()(434)f x x x ax '=++,显然0x =不是方程24340x ax ++=的根.为使()f x 仅在0x =处有极值,必须24340x ax ++≥恒成立,即有29640a ∆=-≤. 解此不等式,得8833a -≤≤.这时,(0)f b =是唯一极值. a 的取值范围是8833⎡⎤-⎢⎥⎣⎦,.类型二:结合函数的图像与性质求参数的取值范围问题 例2:设a 为实数,函数32()f x x x x a =--+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二轮复习讲义 导数及其应用 理类型一:没有其他未知字母情况下,求单调性,极值,最值例1:设函数32()91(0).f x x ax x a =+--若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:(Ⅰ)a 的值;(Ⅱ)函数f (x )的单调区间.解:(Ⅰ) 3,0, 3.a a a =±<=-由题设所以(Ⅱ)由(Ⅰ)知323,()391,a f x x x x =-=---因此212()3693(3(1)()0,1, 3.(,1)()0,()(1(1,3)()0,()13()0,()3.()(,13f x x x x x f x x x x f x f x x f x f x f x f x f x '=--=-+'==-='∈-∞->-∞-'∈-<-'∈∞>+∞-∞-+∞令解得:当时,故在,)上为增函数;当时,故在(,)上为减函数;当x (3,+)时,故在(,)上为增函数由此可见,函数的单调递增区间为)和(,);单调递减区13.-间为(,) 变式训练1:设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,.(Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅰ)解:322()434(434)f x x ax x x x ax '=++=++.当103a =-时,2()(4104)2(21)(2)f x x x x x x x '=-+=--.令()0f x '=,解得10x =,212x =,32x =.()f x 在102⎛⎫ ⎪⎝⎭,,(2)+,∞是增函数,在(0)-∞,,122⎛⎫⎪⎝⎭,内是减函数. (Ⅱ)解:2()(434)f x x x ax '=++,显然0x =不是方程24340x ax ++=的根.为使()f x 仅在0x =处有极值,必须24340x ax ++≥恒成立,即有29640a ∆=-≤. 解此不等式,得8833a -≤≤.这时,(0)f b =是唯一极值. a 的取值范围是8833⎡⎤-⎢⎥⎣⎦,.类型二:结合函数的图像与性质求参数的取值范围问题 例2:设a 为实数,函数32()f x x x x a =--+。
(1)求()f x 的极值;(2)当a 在什么范围内取值时,曲线()y f x =与x 轴仅有一个交点。
解:(1)2()321f x x x '=--,若()0f x '=,则1,13x =-所以()f x 的极大值是15327f a ⎛⎫-=+ ⎪⎝⎭,极小值是(1)1f a =-。
(2)函数322()(1)(1)1f x x x x a x x a =--+=-++-。
由此可知x 取足够大的正数时,有()0f x >,x 取足够小的负数时,有()0f x <,所以曲线()y f x =与x 轴至少有一个交点.结合()f x 的单调性可知:当()f x 的极大值5027a +<,即5,27a ⎛⎫∈-∞- ⎪⎝⎭时,它的极小值也因此曲线()y f x =与x 轴仅有一个交点,它在(1,)+∞上;当()f x 的极小值10a ->时,即(1,)a ∈+∞上时,它的极大值也小于0,()y f x =与x 轴仅一个交点,它在1,3⎛⎫-∞- ⎪⎝⎭上。
当5,(1,)27a ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()y f x =与x 轴仅有一个交点。
变式训练2:.已知函数43219()42f x x x x cx =+-+有三个极值点。
证明:275c -<<; 因为函数43219()42f x x x x cx =+-+有三个极值点, 所以32()390f x x x x c '=+-+=有三个互异的实根.设32()39,g x x x x c =+-+则2()3693(3)(1),g x x x x x '=+-=+- 当3x <-时,()0,g x '> ()g x 在(,3)-∞-上为增函数;当31x -<<时,()0,g x '< ()g x 在(3,1)-上为减函数;当1x >时,()0,g x '> ()g x 在(1,)+∞上为增函数,所以()g x 在3x =-时取极大值,在1x =时取极小值。
当(3)0g -≤或(1)0g ≥时,()0g x =最多只有两个不同实根。
()0g x =有三个不同实根, 所以(3)0g ->且(1)0g <, 即2727270c -+++>,且1390c +-+<,解得27,c >-且5,c <故275c -<<. 类型三:含字母时,对判别式进行分类讨论例3:.已知函数32()1f x x ax x =+++,a ∈R .(1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导得2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增;当23a>,()0f x '=求得两根为3a x -±=,即()f x在3a ⎛--∞ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,⎫+∞⎪⎪⎝⎭递增。
(2)2313≤-≥-,且23a>,解得2a ≥。
变式训练3:设函数2()ln(1)f x x b x =++,其中0b ≠.(I)当12b >时,判断函数()f x 在定义域上的单调性;(II)求函数()f x 的极值点; 高&考%资(源#网 wxc解:(I) 函数2()ln(1)f x x b x =++的定义域为()1,-+∞.222'()211b x x bf x x x x ++=+=++,高&考%资(源#网 wxc令2()22g x x x b =++,则()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上递增,在11,2⎛⎫-- ⎪⎝⎭上递减,min 11()()22g x g b =-=-+. 当12b >时,min 1()02g x b =-+>,2()220g x x x b =++>在()1,-+∞上恒成立.'()0,f x ∴>即当12b >时,函数()f x 在定义域()1,-+∞上单调递增。
(II )分以下几种情形讨论:(1)由(I )知当12b >时函数()f x 无极值点. (2)当12b =时,212()2'()1x f x x +=+, 11,2x ⎛⎫∴∈-- ⎪⎝⎭时,'()0,f x > 1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,'()0,f x >12b ∴=时,函数()f x 在()1,-+∞上无极值点。
(3)当12b <时,解'()0f x =得两个不同解高&考%资(源#网wxc 1x =,2x =当b <时,11x =<-,2112x -+=>-()()121,,1,,x x ∴∉-+∞∈-+∞此时()f x 在()1,-+∞上有唯一的极小值点212x -+=.当102b <<时,()12,1,,x x ∈-+∞高&考%资(源#网 wxc '()f x 在()()121,,,x x -+∞都大于0 ,'()f x 在12(,)x x 上小于0 ,此时()f x有一个极大值点1x =2x =.综上可知,0b <时,()f x 在()1,-+∞上有唯一的极小值点2x =;102b <<时,()f x 有一个极大值点112x -=和一个极小值点212x -+=;12b ≥时,函数()f x 在()1,-+∞上无极值点 类型四:含字母时,对导函数的零点以及区间的位置进行分类讨论 例4:已知函数321(),3f x x ax bx =++且'(1)0f -= (I )试用含a 的代数式表示b ;(Ⅱ)求()f x 的单调区间;w.w.w.k.s.5.u.c.o.m :解:(I )依题意,得21b a =- (Ⅱ)由(I )得321()(21)3f x x ax a x =++-( 故2'()221(1)(21)f x x ax a x x a =++-=++-令'*()0f x =,则1x =-或12x a =- ①当1a >时,121a -<-由此得,函数()f x 的单调增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --②由1a =时,121a -=-,此时,'()0f x ≥恒成立,且仅在1x =-处'()0f x =,故函数()f x 的单调区间为R③当1a <时,121a ->-,()f x 的单调增(,1)-∞-和(12,)a -+∞,单调减区(1,12)a -- 综上:当1a >时,函数()f x 增区间为(,12)a -∞-和(1,)-+∞,单调减区间为(12,1)a --; 当1a =时,函数()f x 的单调增区间为R ;当1a <时,函数()f x 的单调增区间为(,1)-∞-和(12,)a -+∞,单调减区间为(-1.1-2a) 变式训练4:已知a 是实数,函数2()()f x x x a =-(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数y =f (x)在区间 [ 1,2 ] 上的最小值。
解:(1)2()32f x x ax '=-,因为(1)323f a '=-=,所以0a =.又当0a =时,(1)1f =,(1)3f '=,()y f x =在(1(1))f ,处的切线方程为320x y --=.(2) 设最小值为m ,),2,1(),32(323)(2/∈-=-=x a x x ax x x f 当0≤a 时,),2,1(,0)(/∈>x x f 则)(x f 是区间[1,2]上的增函数, 所以a f m -==1)1(; 当0>a 时,在320a x x ><或时,/2()0,()[,)3f x f x a >+∞从而在区间上是增函数;在320a x <<时,/2()0,()[0,]3f x f x a <从而在区间上是单减函数 ① 当232≥a ,即3≥a 时,a f m 48)2(-==;② 当2321<≤a ,即323<≤a 时,324()327a a m f ==-;③ 当230<<a 时,a f m -==1)1(.则函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<-≤-=)3(),2(4)323(,274)23(,13a a a a a a m 题型五、恒成立问题例5.设函数)0(333)(23>---=a a x x x x f 。