混凝土和砌体结构考试简答题汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 单向板与双向板的定义:按受力特点,混凝土楼盖中的周边支撑板可分为单向板和双向板两类。只在一个方向弯曲或者主要在一个方向弯曲的板,称为单向板;在两个方向完全,且不能忽略人一个方向弯曲的板称为双向板。
2. 现浇单向板肋梁楼盖的设计步骤:1、结构平面布置并初步拟定板厚和主、次梁的截面尺寸;2、确定梁、板得计算简图;3、梁、板得内力分析;4、截面配筋及构造措施;5、绘制施工图。
3. 简化假定:1、支座可以自由转动,但没有竖向位移;2、不考虑薄膜相应对板内力的影响;3、在确定板传给次梁的荷载一级次梁传给主梁的荷载时,分别忽略板、次梁的连续性;4、跨熟超过五跨的连续梁、板,当各跨荷载相同,且跨度相差不超过10%时,可按五跨的等跨连续梁、板计算。
4. 假定支座处没有竖向位移,实际上忽略了次梁、主梁、柱的竖向变形对板、次梁、主梁的影响。柱子的竖向位移主要由轴向变形引起,在通常的内力分析中都是可以忽略的。忽略主梁变形,将导致次梁跨中弯矩偏小、主梁跨中弯矩偏大。当主梁的线刚度比次梁的线刚度大得多时,主梁变形对次梁内力的影响才比较小。次梁变形对板内力的影响也是这样,如果考虑这种影响,内力分析就相当复杂。
5. 计算单元:为减少计算工作量,结构内力分析时,常常不是对整个结构进行分析,而是从实际结构中选取有代表性的某一部分作为计算的对象,成为计算单元。
6. 塑性内力重分布的过程,假定支座截面和跨内截面的截面尺寸和配筋相同。梁的手里全过程大致可以分为三个阶段:1、弹性内力阶段;2、截面间弯曲刚度比值改变阶段;3、塑性铰阶段。
7. 考虑塑性内力重分布是以形成塑性铰为前提的,因此下列情况不宜采用:1、在使用阶段不允许出现裂缝或对裂缝开展有校验过限制的结构,如水池池壁,自防水屋面,一级处于侵蚀性环境中的结构;2、直接承受动力和重复荷载的结构;3、预应力结构和二次受力叠合结构;4、要求有较高安全储备的结构。
8. 截面弯矩的调整幅度用弯矩调幅系数β来表示:β=(Me-Ma)/Me,式中Me安弹性理论算得的弯矩值;Ma调幅后的弯矩值。
9. 在相等均布荷载的间距相同、大小相等的集中荷载作用下,等跨连续梁各跨跨中和支座截面的弯矩设计值M可分辨按下列公式计算:承受均布荷载时M=αm(g+q)L02,承受集中荷载时M=ηαm(G+Q)L0;(g恒荷载设计值,q活荷载设计值,G和Q为集中荷载恒荷载和活荷载,αm连续梁考虑塑性内力重分布的弯矩计算系数,η集中荷载修正系数,L计算跨度。)
10. αm取值:边跨跨中时,梁板搁支在墙上1/11、板和梁1/14、梁与柱整浇连接1/14;离端第二支座,二跨连续-1/10、三跨以上连续-1/11。11. 连续单向板中的构造钢筋除了计算配置受力钢筋外,还有5种:分布钢筋、温度钢筋、与主梁垂直的附加腹筋、与承重砌体墙垂直的附加腹筋、板角附加短钢筋。
12. 破话结构的确定,就是要确定塑性铰线的位置。判别塑性铰线的位置可以依据以下四个原则进行:对称结构具有对称的塑性铰线分布、正弯矩部位出现正塑性铰线、塑性铰线应满足转动要求、塑性铰线的数量应使整块板称为一个几何可变体系。
13.
14. 纵向地位轴线:纵向定位轴线一般用编号圈A、圈B、圈C…表示。对已无吊车或吊车起重量不大于30t的厂房,边柱外边缘、纵墙内缘、纵向定位轴线三者相重合,形成封闭结合。
15. 纵向地位轴线之间的距离L和吊车轨距Lk之间一般有如下关系:L=Lk+2e,e=B1+B2+B3;e为吊车轨道中心线至纵向定位轴线的距离,一般取750mm;B1为吊车轨道中心线至吊车桥架外边缘的距离,B2为吊车桥架外边缘至上柱内边缘的净空宽度;B3为边柱上柱截面高度或中柱边缘至其纵向定位轴线的距离。
16. 单层厂房的支撑,就整体而言,支撑的主要作用是:1、保证结构构件的稳定与正常工作;2、增强厂房的整体稳定性和空间刚度;3、把纵向风荷载、吊车纵向水平荷载及水平地震作用等传递到主要承重构件;4、保证在施工安装阶段结构构件的稳定。
17. 厂房支撑分屋盖支撑和柱间支撑两类。屋盖支撑通常包括上、下弦水平支撑、垂直支撑及纵向水平系杆。柱间支撑一般包括上部柱间支撑、中部及下部柱间支撑。
18. 内力组合:控制截面,是指构件某一区段内对截面配筋起控制作用的那些截面。
19. 不同种类内力的组合:控制截面的内力种类有轴向压力N、弯矩M和水平剪力V。牌价柱是偏心受压构件,其纵向受力钢筋的计算主要取决于轴向压力N和弯矩M,根据可能需要的最大的配筋量,一般可考虑以下四种内力的不利组合:1、+Mmax及相应的N和V;2、-Mmax及相应的N和V;3、Nmax及相应的M和V;4、Nmin及相应的M和V。当柱截面采用对称配筋及
采用对称基础时,第1、2两种内力组合并为一种。通常,按上述四种内力组合已能满足设计要求,但在某些情况下,他们可能都不是最不利的,因此,有事M虽然不是最大值而比最大值略小,而它所对应的N若减小很多,纳闷这组合内力所要求的配筋量反而会更大些。
20. 牛腿的实验研究结果:破坏形态:弯曲破坏、剪切破坏、局部受压破坏、牛腿在竖向力和水平拉力同时作用下的手里情况。
21.砖全国标准统一规格为240mm*115mm*53mm
22. 砌体受压的手里全过程。实验标兵,轴心受压的砌体短柱从开始加载到破坏,也和钢筋混凝土构件一样经历了未裂阶段、裂缝阶段和破坏阶段三个阶段。1、未裂阶段:当荷载小于50%~70%破坏荷载时,压应力与压应变近似为线性关系,砌体中没有裂缝。2、裂缝阶段:当荷载达到50%~70%破坏荷载是,并单个块体内出现竖向裂缝,时间就进入裂缝阶段,这时如果挺住加载,裂缝就停止发展,继续加载,单个块体的裂缝增多,比企鹅开始贯通,这时如果停止加载,裂缝扔将继续发展。3、破坏阶段:党和在增大至80%~90%破坏荷载是,砌体上已形成几条上下连续贯通的裂缝,试件就进入破坏阶段,这是的裂缝已把砌体分成几个1/2跨提的小立柱,砌体外鼓,最后由于胳臂块体被压碎或小立柱失稳而破坏。
23. 砌体受压时块体的受力机理,实验表明,砌体的受压强度远低于块体的抗压强度,这主要是砌体的受压机理造成的。1、块体在砌体中处于压、腕的负载手里状态;2、砂浆使块体在横向受拉;3、竖向灰缝中存在应力集中。
24. 偏心受压:受压构件的稳定系数ψ0=1/(1+αβ方)。α与砂浆强度