【中考试题】2019年北京市高级中等学校招生考试数学试卷及答案
2019年北京市中考数学试卷
2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将439000用科学记数法表示为4.39×105.故选:C.2.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°【分析】根据多边的外角和定理进行选择.【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【分析】根据CO=BO可得点C表示的数为﹣2,据此可得a=﹣2﹣1=﹣3.【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)如果m+n=1,那么代数式(+)•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•(m+n)(m﹣n)=•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10 的人数在0﹣15 之间,当人数为0 时中位数在20﹣30 之间;当人数为15 时,中位数在20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0﹣15,35,15,18,1,当0≤t<10时间段人数为0 时,中位数在10﹣20 之间;当0≤t<10时间段人数为15 时,中位数在10﹣20 之间,故④错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是1.【分析】根据分式的值为零的条件得到x﹣1=0且x≠0,易得x=1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.11.(2分)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积=AC×BD=×6×4=12;故答案为:12.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.(5分)解不等式组:【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,得出AB:BE=AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠ADO==,得出OA=OD,由BD=4,得出OD=2,得出OA=1.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO==,∴OA=OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【分析】(1)利用圆的定义得到图形G为△ABC的外接圆⊙O,由∠ABD=∠CBD得到=,从而圆周角、弧、弦的关系得到AD=CD;(2)如图,证明CD=CM,则可得到BC垂直平分DM,利用垂径定理得到BC为直径,再证明OD⊥DE,从而可判断DE为⊙O的切线,于是得到直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【分析】(1)根据表中的规律即可得到结论;(2)根据题意列不等式即可得到结论;(3)根据题意列不等式,即可得到结论.【解答】解:(1)(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4=14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2≤,∴x1+x2+x3+x4≤+14=,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,从图和表格可以看出位置4和位置6符合要求,即AD的长度为2.3和4.0.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【分析】(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,﹣),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)A(0,﹣)向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称;(3)①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,所以函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;【解答】解:(1)A(0,﹣)点A向右平移2个单位长度,得到点B(2,﹣);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b=﹣2a,∴y=ax2﹣2ax﹣,①a>0时,当x=2时,y=﹣<2,当y=﹣时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax﹣=2,x=或x=当≤2时,a≤﹣;∴当a≤﹣时,抛物线与线段PQ恰有一个公共点;27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP =∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD =NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD =OC=OP+PC=2a+x,MQ=DM+QD=2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC=,D,E分别是AB,AC的中点,画出△ABC的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t=,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE 为直径的半圆,的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,①当t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角∠AEP 满足90°≤∠AEP<135°;②根据题意,t的最大值即圆心P在AC上时求得的t值.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC=,D,E分别是AB,AC的中点,∴BC===4,DE=BC=×4=2,∴弧=×2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t=时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF=根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m≤综上所述,m≤或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM=,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE===,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE=AE由三角形中内弧定义知,PD≤PM∴AE≤,AE≤3,即≤3,解得:t≤,∵t>0∴0<t≤.。
2019年北京市中考数学试卷附答案
解析:D 【解析】 【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.
【详解】∵ x2 2x x2 x 1 1 x
x2 2x 1 x
=
x 1
· x
2
x2 2x x 1
=
· x 1
x2
x x 2 x 1
= x 1 · x2
x 2
=
x
=2x, x
∴出现错误是在乙和丁,
15.如图,添加一个条件:
,使△ADE∽△ACB,(写出一个即可)
16.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2. 17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三 角形三边中点,得图③……按此方法继续下去.
在第 n 个图形中有______个三角形(用含 n 的式子表示)
综合应用,熟练掌握平行四边形的性质,求出 ADB 的度数是解决问题的关键. 11.B
解析:B 【解析】 【分析】 设商品进价为 x 元,则售价为每件 0.8×200 元,由利润=售价-进价建立方程求出其解即 可. 【详解】 解:设商品的进价为 x 元,售价为每件 0.8×200 元,由题意得
12.A
A、B 两点,若点
A的
坐标为(2,1),则点 B 的坐标是( )
A.(1,2)
B.(-2,1)
C.(-1,-2) D.(-2,-1)
10.如图,将▱ABCD 沿对角线 BD 折叠,使点 A 落在点 E 处,交 BC 于点 F,若
ABD 48 , CFD 40 ,则 E 为 ( )
A.102
解析:A 【解析】
试题分析:根据 CD:AD=1:2,AC=3 5 米可得:CD=3 米,AD=6 米,根据 AB=10 米,∠ D=90°可得:BD= AB2 AD2 =8 米,则 BC=BD-CD=8-3=5 米.
2019年北京市中考数学试卷+答案
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910 (B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A )(B )(C )(D )3.正十边形的外角和为(A )180o(B )360o(C )720o(D )1440o4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为(A )3(B )2(C )1(D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ; (3)连接OM ,MN .B根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM =∠COD (B )若OM =MN ,则∠AOB =20°(C )MN ∥CD(D )MN =3CD6.如果1m n +=,那么代数式()22221m nm n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为 (A )3- (B )1- (C )1 (D )37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0(B )1(C )2(D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分) 9.若分式1x x-的值为0,则x 的值为______. 10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm 2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++o().图3图2图118.解不等式组:4(1)2,7.3x xxx-<+⎧⎪+⎨>⎪⎩19.关于x的方程22210x x m-+-=有实数根,且m为正整数,求m的值及此时方程的根.20.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若BD=4,tan G=12,求AO的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l 的上方.请在图中用“d ”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.40/万元22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD =CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.CBA解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________; (3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .(1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定______的长度是自变量,______的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为______cm .25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C . (1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W .①当2k =时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H为射线OA 上一定点,1OH =+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1; (2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.备用图图1BAB28.在△ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC 中,D E ,分别是AB AC ,的中点. ①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.ABCDE AED CB2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7(4)①②22.【答案】(1)∵BD平分∠ABC∴∠=∠ABD CBD∴AD=CD(2)直线DE与图形G的公共点个数为1. 23.【答案】(1)如下图(2)4,5,6(3)2324.【答案】(1)AD,PC,PD;(2)(3)2.29或者3.98 25.【答案】0,1(1)()(2)①6个②10k-≤<或2k=-26.【答案】(1)1 (2,)Ba;(2)直线1x;(3)1a≤2.27.【答案】(1)见图(2)在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM∠=∠-∠=︒-∠OMP OPN∴∠=∠(3)OP=2.28.【答案】(1)如图:1801180180n r l πππ===g (2)①1P y ≥或12P y ≤;②0t <≤BC。
2019年北京市中考数学试题及答案版-10页精选文档
2019年北京市高级中等学校招生考试数 学 试 卷下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.6-的绝对值等于( ) A .6B .16C .16-D .6-2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,50 5.若一个多边形的内角和等于720o,则这个多边形的边数是( )A .5B .6C .7D .86.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( ) A .15B .25C .12D .357.若20x +=,则xy 的值为( )A .8-B .6-C .5D .68.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )2019年北京市高级中等学校招生考试 数 学 试 卷 9.在函数121y x =-中,自变量x 的取值范围是 . 10.分解因式:32a ab -= .11.如图,在ABC △中,D E ,分别是AB AC ,的中点, 若2cm DE =,则BC = cm .12.一组按规律排列的式子:2b a -,53b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).三、解答题(共5道小题,共25分) 13.(本小题满分5分)1012sin 45(2)3-⎛⎫+-π- ⎪⎝⎭o .解: 14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来. 解: 15.(本小题满分5分)已知:如图,C 为BE 上一点,点A D ,分别在BE 两侧.AB ED ∥,AB CE =,BC ED =. 求证:AC CD =.证明:16.(本小题满分5分) 如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标. 解:17.(本小题满分5分) 已知30x y -=,求222()2x yx y x xy y+--+g 的值. 解:四、解答题(共2道小题,共10分)CA E D BACE B y O P MO M 'MP A .O M 'M P B .O M 'M P C .OM 'M PD .18.(本小题满分5分)如图,在梯形ABCD 中,AD BC ∥,AB AC ⊥,45B ∠=o,AD =BC =求DC 的长. 解: 19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=o ,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O e 的位置关系,并证明你的结论;(2)若:8:5AD AO =,2BC =,求BD 的长.解:(1)(2)五、解答题(本题满分6分) 20.为减少环境污染,自2008年6月1有偿使用制度”(以下简称“限塑令”).某班同学于6卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:(2)六、解答题(共2道小题,共9分) 21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2019年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米? 解: 22.(本小题满分4分)已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿DG DE GF ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.AB C DA“限塑令”实施后,使用各种(11的等边三角形),点A 2所示,请直接写出此时重叠三角形A B ''(2,若重叠三角形A B C'''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用). 解:(1)重叠三角形A'(2)用含m m 的取值范围为. 七、解答题(本题满分23.已知:关于x 0)m >. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.(1)证明: (2)解:(3)解:八、解答题(本题满分7分)24.在平面直角坐标系xOy 中,抛物线y x =(点A 在点B的左侧),与y 轴交于点C ,点B 的坐标为3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标;(3)连结CD ,求OCA ∠与OCD ∠两角和的度数. 解:(1)(2) (3)九、解答题(本题满分8分) 25.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,的中点,连结PG PC ,.若60ABC BEF ∠=∠=o,探究值.图1备用图备用图x小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG与PC的位置关系及PGPC的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEFαα∠=∠=<<o o,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).解:(1)线段PG与PC的位置关系是;PGPC=.(2)2019年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.一律用红钢笔或红圆珠笔批阅,按要求签名.2.第Ⅰ卷是选择题,机读阅卷.3.第Ⅱ卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.第Ⅰ卷(机读卷共32分)一、选择题(共8道小题,每小题4分,共32分)(非机读卷共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(共5道小题,共25分)13.(本小题满分5分)112sin45(2π)3-⎛⎫+-- ⎪⎝⎭o2132=⨯+-····················································································4分DABEFCPG图1D CGPA BEF图22=. ··································································································· 5分14.(本小题满分5分)解:去括号,得51286x x --≤. ···································································· 1分 移项,得58612x x --+≤. ··········································································· 2分 合并,得36x -≤. ······················································································· 3分 系数化为1,得2x -≥. ················································································· 4分·············································································· 5分15.(本小题满分5分)证明:AB ED Q ∥,B E ∴∠=∠. ······························································································· 2分 在ABC △和CED △中,ABC CED ∴△≌△. ···················································································· 4分 AC CD ∴=. ······························································································· 5分 16.(本小题满分5分) 解:由图象可知,点(21)M -,在直线3y kx =-上, ·············································· 1分 解得2k =-.································································································ 2分∴直线的解析式为23y x =--. ······································································· 3分令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ······························································· 4分令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ································································· 5分 17.(本小题满分5分) 解:222()2x yx y x xy y +--+g22()()x yx y x y +=--g ························································································· 2分 2x yx y+=-. ··································································································· 3分 当30x y -=时,3x y =. ·············································································· 4分原式677322y y y y y y +===-. ··············································································· 5分四、解答题(共2道小题,共10分) 18.(本小题满分5分) 解法一:如图1,分别过点A D ,作AE BC ⊥于点E ,DF BC ⊥于点F . ····································· 1分 又AD BC ∥,∴四边形AEFD 是矩形.EF AD ∴== ····································· 2分CF EC EF =-=···················································································· 4分在Rt DFC △中,90DFC ∠=o,DC ∴=== ············································· 5分 解法二:如图2,过点D 作DF AB ∥,分别交AC BC ,于点E F ,. ···················· 1分90AED BAC ∴∠=∠=o .在Rt ABC △中,90BAC ∠=o,45B ∠=o,BC =sin 4542AC BC ∴===o g ································································· 2分在Rt ADE △中,90AED ∠=o,45DAE ∠=o,AD =3CE AC AE ∴=-=. ·················································································· 4分 在Rt DEC △中,90CED ∠=o,DC ∴===. ························································· 5分 19. (本小题满分5分)解:(1)直线BD 与O e 相切. ········································································ 1分 证明:如图1,连结OD .90C ∠=o Q , 90CBD CDB ∴∠+∠=o .又CBD A ∠=∠Q ,∴直线BD 与O e 相切. ·············································分(2)解法一:如图1,连结DE . AE Q 是O e 的直径, 90ADE ∴∠=o . 4cos 5AD A AE ∴==. ······················································································ 3分 4cos 5BC CBD BD ∴∠==. ··············································································· 4分A ABCDFE图2 A BCDF E 图12解法二:如图2,过点O 作OH AD ⊥于点H . 12AH DH AD ∴==.:8:5AD AO =Q ,4cos 5AH A AO ∴==. ··················· 3分 4cos 5BC CBD BD ∴∠==. ································· 4分 52BD ∴=. ·····································································五、解答题(本题满分6分)解:(1)补全图1见下图. ·············································································· 1分 9137226311410546373003⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个). 这100·························· 3分 ·························· 4分 (2)图2·························· 5分 根据图表回答正确给1环保做贡献. ········································ 6分 六、解答题(共221.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ········································································· 1分依题意,得3061(40)602x x +=+. ···································································· 3分 解得200x =. ······························································································ 4分答:这次试车时,由北京到天津的平均速度是每小时200千米. ······························ 5分 22.解:(1)重叠三角形A B C '''. ··················································· 1分(2)用含m 的代数式表示重叠三角形A B C '''2)m -; ······················· 2分m 的取值范围为843m <≤. ··········································································· 4分七、解答题(本题满分7分)23.(1)证明:2(32)220mx m x m -+++=Q 是关于x 的一元二次方程,Q 当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根. ········································································ 2分(2)解:由求根公式,得(32)(2)2m m x m+±+=.A图1 塑料袋数/个“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图m11x ∴=,222m x m+=. ················································································ 4分即2(0)y m m =>为所求. ······················· 5分(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象.····························································· 6分 由图象可得,当1m ≥时,2y m ≤. ··········· 7分 八、解答题(本题满分7分)24.解:(1)y kx =Q 沿y 轴向上平移3个单位长度后经过y 轴上的点C , 设直线BC 的解析式为3y kx =+.(30)B Q ,在直线BC 上,解得1k =-.∴直线BC 的解析式为3y x =-+. ··································································· 1分 Q 抛物线2y x bx c =++过点B C ,,解得43b c =-⎧⎨=⎩,.∴抛物线的解析式为243y x x =-+. ······························································· 2分(2)由243y x x =-+. 可得(21)(10)D A -,,,.可得OBC △是等腰直角三角形.如图1,设抛物线对称轴与x 轴交于点F , 过点A 作AE BC ⊥于点E .可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=o,∠解得2PF =.Q 点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,.····································································· 5分 x图1 0)(3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,. 连结A C A D '',,可得A C AC '==OCA OCA '∠=∠. 由勾股定理可得220CD =,210A D '=. 又210A C '=,A DC '∴△是等腰直角三角形,90CA D '∠=o, 即OCA ∠与OCD ∠两角和的度数为45o. ····················分解法二:如图3,连结BD .同解法一可得CD =AC =在Rt DBF △中,90DFB ∠=o,1BF DF ==, 在CBD △和COA △中,即OCA ∠与OCD ∠两角和的度数为45o. ·······················九、解答题(本题满分8分)25.解:(1)线段PG 与PC 的位置关系是PG PC ⊥;PGPC= ································································································· 2分 (2)猜想:(1)中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH CG ,. P Q 是线段DF 的中点, 由题意可知AD FG ∥. Q 四边形ABCD 是菱形,由60ABC BEF ∠=∠=o,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,可得60GBC ∠=o.Q 四边形BEFG 是菱形,即120HCG ∠=o.PGPC ∴= ······························································································· 6分 (3)PGPC=tan(90)α-o . ············································································· 8分 x x图3D CGPABFH。
2019年北京市高级中等学校招生考试数学试卷(word精华版)
2019年北京市高级中等学校招生考试数学试卷(word精华版)考生须知1. 本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.3. 试题答案一律填涂或书写在答题卡上、在试卷上作答无效.4. 在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5. 考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A. 0.439×106B. 4.39×106C. 4.39×105D. 439×1032. 下列倡导节约的图案中,是轴对称图形的是()3. 正十边形的外角和为()A. 180°B. 360°C. 720°D. 1440°4. 在数轴上,点A、B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A. -3B. -2C. -1D. 15. 已知锐角∠AOB如图,第5题图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ︵,交射线OB 于点D ,连接CD; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ ︵于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A. ∠COM =∠CODB. 若OM =MN ,则∠AOB =20°C. MN ∥CDD. MN =3CD6. 如果m +n =1,那么代数(2m +n m 2-mn +1m )·(m 2-n 2)的值为( )A. -3B. -1C. 1D. 37. 用三个不等式a >b ,ab >0,1a <1b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 3 8. 某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据.以下是根据数据绘制的统计图表的一部分.第8题图下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A. ①③B. ②④C. ①②③D. ①②③④ 二、填空题(本题共16分,每小题2分) 9. 若分式x -1x的值为0,则x 的值为________.10. 如图,已知△ABC ,通过测量、计算得△ABC 的面积约为________cm 2.(结果保留一位小数)第10题图11. 在如图所示的几何体中,其三视图中有矩形的是________.(写出所有正确答案的序号)第11题图12. 如图所示的网格是正方形网格,则∠P AB +∠PBA =________°(点A ,B ,P 是网格交点).第12题图13. 在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x上,则k 1+k 2的值为________.14. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为________.第14题图15. 小天想要计算一组数据92,90,94,86,99,85的方差s 20,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s 21,则s 21=________s 20.(填“>”,“=”或“<”)16. 在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,正确四个结论中,①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是________.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|-3|-(4-π)0+2sin60°+(14)-1.18. 解不等式组:⎩⎪⎨⎪⎧4(x -1)<x +2.x +73>x .19. 关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.20. 如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF . (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =12,求AO 的长.第20题图21. 国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下面给出了部分信息:a. 国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b. 国家创新指数得分在60≤x<70这一组的是:61.762.463.665.966.468.569.169.369.5c. 40个国家的人均国内生产总值和国家创新指数得分情况统计图:d. 中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“○”画出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为________万美元;(结果保留一位小数)(4)下列推断合理的是________.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22. 在平面内,给定不在同一条直线一上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD =CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD =CM ,求直线DE 与图形G 的公共点个数.第22题图23. 小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背解答下列问题:(1)填入x 3补全上表:(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为________; (3)7天后,小云背诵的诗词最多为________首.24. 如图,P 是AB ︵与弦AB 所围成的图形的外部的一定点,C 是AB ︵上的一动点,连接PC 交弦AB 于点D .第24题图小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整:(1)对于点C 在AB ︵上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题;当PC =2PD 时,AD 的长度约为________cm.25. 在平面直角坐标系xOy 中,直线l :y =kx +1(k ≠0)与直线x =k ,直线y =-k 分别交于点A ,B ,直线x =k 与直线y =-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①当k =2时,结合函数图象,求区域W 内的整点个数; ②若区域W 内没有整点,直接写出k 的取值范围.26. 在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1a 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点P (12,-1a ),Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27. 已知∠AOB =30°,H 为射线OA 上一定点,OH =3+1,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足∠OMP 为钝角,以点P 为中心,将线段PM 顺时针旋转150°,得到线段PN ,连接ON .(1)依题意补全图①;(2)求证:∠OMP =∠OPN ;(3)点M 关于点H 的对称点为Q ,连接QP ,写出一个OP 的值,使得对于任意的点M 总有ON =QP ,并证明.第27题图28. 在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧.例如,下图中DE ︵是△ABC 的一条中内弧.第28题图(1)如图,在Rt △ABC 中,AB =AC =22,D ,E 分别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ︵,并直接写出此时DE ︵的长;(2)在平面直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0).在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE ︵所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE ︵,使得DE ︵所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.2019北京中考真题解析1. C 【解析】439000=4.39×105.2. C 【解析】3. B 【解析】4. A 【解析】∵将点A 向右平移1个单位长度得到点C ,∴点C 表示的数为a +1.∵A 、B 在原点O 的两侧,且B 表示数字2,CO =BO ,∴点C 表示的数为-2,即a +1=-2.解得a =-3.5. D 【解析】如解图,连接ON ,CM ,DN .由作图过程(2)知,CM =CD =DN ,∴CM ︵=CD ︵=DN ︵.∠COM =∠COD =∠DON .A 正确;由作图过程(1)知OM =ON .又∵OM =MN ,∴OM =ON =MN .∴△OMN 是等边三角形,∠MON =60°.∴∠COD =13∠MON =13×60°=20°,即∠AOB =20°.B 正确;设OA 交MN 于点E .∵OC =OD ,∴∠OCD =∠ODC =180°-∠COD 2.∵OM =ON ,∴∠OMN =∠ONM =180°-∠MON2.∵∠MON =3∠COD ,∴∠OMN =180°-3∠COD2.∵∠OEN 是△OME 的外角,∴∠OEN =∠OMN +∠MOE=∠OMN +∠COD =180°-3∠COD 2+∠COD =180°-∠COD2.∴∠OEN =∠OCD .∴MN ∥CD .C 正确;根据“两点之间,线段最短”可知,MC +CD +DN >MN .∵MC +CD +DN =3CD .即3CD >MN .D 错误.第5题解图6. D 【解析】∵m +n =1,∴原式=[2m +n m (m -n )+1m ]·(m 2-n 2)=2m +n +m -n m (m -n )·(m +n )(m -n )=3(m+n )=3.7. D 【解析】构成的命题有3个,分别为:①若a >b ,ab >0,则1a <1b ;②若a >b ,1a <1b,则ab >0;③若ab >0,1a <1b,则a >b .①②③都是真命题.8. C 【解析】由统计图中男生、女生的条形图可知,男生人均参加公益劳动的时间是24.5小时,女生人均参加公益劳动的时间是25.5小时,∴这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间,所以①正确;由统计表可知,从左到右时间按由小到大的排序排列,其中0≤t <10之间共有7+8=15人,10≤t <20之间共有31+29=60人,20≤t <30之间共有25+26=51人.∵15+60=75<100,15+60+51=126>100,∴第100、101个数据在20≤t <30之间,∴中位数在20≤t <30之间,所以②正确;由统计表可知,在0≤t <10之间初中生人数最多是15人,最少是0人.当0≤t <10之间初中生人数是15时,此时数据为15,25,36,44,11.∵15+25+36+44+11=131,最中间的数是第66个数,而15+25=40<66,15+25+36=76,∴中位数在20≤t <30之间.当0≤t <10之间初中生人数是0时,此时数据为0,25,36,44,11.∵0+25+36+44+11=116,最中间的数是第58、59个数,而0+25=25<58,0+25+36=61>59,∴中位数在20≤t <30之间.∴这200名学生中的初中生参加公益劳动时间的中位数一定在20≤t <30之间,∴③正确;由统计表可知,从左到右第2、3、4、5小组高中生人数分别为31+29-25=35人,25+26-36=15人,30+32-44=18人,4+8-11=1人.当0≤t <10之间高中生人数是0时,此时数据为0,35,15,18,1.∵0+35+15+18+1=69,最中间的数是第35个数,而0+35=35,∴中位数在10≤t <20之间.当0≤t <10之间高中生人数是15人时,∵15+35+15+18+1=84,最中间的数是第42、43个数,而15<42,15+35=50>43,∴中位数在10≤t <20之间.∴这200名学生中的高中生参加公益劳动时间的中位数一定在10≤t <20之间,所以④错误.9. 1 【解析】要使x -1x 有意义,则分母x ≠0.∵x -1x 的值为0,∴x -1=0,解得x =1,∴x 的值为1.10. 度量求解【解析】本题考查三角形面积,直接动手测量即可.11. ①② 【解析】长方体的三视图都是矩形,圆柱的主视图和左视图是矩形.圆锥的三视图中没有矩形.12. 45 【解析】如解图所示,延长AP ,则AP 经过格点C ,连接BC .设网格中小正方形的边长为1,则由勾股定理得PC =BC =12+22=5,PB =12+32=10.∵PC 2+BC 2=(5)2+(5)2=10,PB 2=(10)2=10,∴PC 2+BC 2=PB 2.∴△PBC 是等腰直角三角形.∴∠CPB =45°.∵∠CPB 是△ABP 的外角,∴∠P AB +∠PBA =∠CPB =45°.第12题解图13. 0 【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,∴b =k 1a.∴k 1=ab .∵点A (a ,b )与点B 关于x轴对称,∴B (a ,-b ).∵点B (a ,-b )(a >0,b >0)在双曲线y =k 2x 上,∴-b =k 2a .∴k 2=-ab .∴k 1+k 2=ab +(-ab )=0.14. 12 【解析】设图①中菱形对角线分别为a ,b ,且a >b .由图②得12a +12b =5,即a +b =10.由图③得12a -12b =1,即a -b =2.解方程组⎩⎪⎨⎪⎧a +b =10a -b =2,得⎩⎪⎨⎪⎧a =6,b =4.∴菱形的面积为12ab =12×6×4=12. 15. = 【解析】数据92,90,94,86,99,85的平均数x 0=16×(92+90+94+86+99+85)=91.∴s 20=16×[(92-91)2+(90-91)2+(94-91)2+(86-91)2+(99-91)2+(85-91)2]=683.数据2,0,4,-4,9,-5的平均数x 1=16×(2+0+4-4+9-5)=1.∴s 21=16×[(2-1)2+(0-1)2+(4-1)2+(-4-1)2+(9-1)2+(-5-1)2]=683.∴s 20=s 21. 16. ①②③ 【解析】在矩形ABCD 中,连接AC 、BD 交于点O .作四边形MNPQ ,连接MP 、NQ ,当MP 、NQ 都经过点O 时,如解图.∵矩形ABCD 是中心对称图形,点O 是对称中心,∴OM =OP ,ON =OQ .∵直线MN ,PQ 具有任意性,∴存在无数个四边形MNPQ 是平行四边形,∴①正确;当MP =NQ 时,平行四边形MNPQ 是矩形.∵当MP 确定后,总存在NQ 使得NQ =MP ,∴存在无数个四边形MNPQ 是矩形.∴②正确.当MP ⊥NQ 时,平行四边形MNPQ 是菱形.当MP 确定后,过点O 一定可以画出NQ ⊥MP .∵MP 具有任意性,∴存在无数个四边形MNPQ 是菱形,∴③正确;当MP ⊥NQ 且MP =NQ 时,平行四边形MNPQ 是正方形,当矩形ABCD 的邻边不相等时,不存在四边形MNPQ 是正方形,∴④错误.第16题解图17. 解:原式=3-1+2×32+4 =23+3.18. 解:由4(x -1)<x +2解得x <2.由x +73>x 解得x <72.∴不等式组的解集为x <2.19. 解:∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =(-2)2-4×1×(2m -1)≥0.解得m ≤1. ∵m 为正整数,∴m =1.当m =1时,可得方程x 2-2x +1=0. 解得x 1=x 2=1.20. (1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∴∠BAC =∠DAC . ∵AB =AD ,BE =DF ,∴AB -BE =AD -DF ,即AE =AF . ∴△AEF 是等腰三角形.又∵∠BAC =∠DAC ,∴AC ⊥EF ;(2)解:由题意作解图如下,∵四边形ABCD 是菱形,∴AC ⊥BD ,AB ∥CD ,OB =12BD =12×4=2.∴∠G=∠AEG .由(1)知EF ⊥AC .又∵BD ⊥AC .∴EF ∥BD .∴∠AEG =∠ABO .∴∠G =∠ABO .∵tan G =12,∴tan ∠ABO =AO OB =12.∴AO =OB ·tan ∠ABO =2×12=1.第20题解图21. 解:(1)17 【解法提示】由频数分布直方图可知,根据国家创新指数得分将数据从大到小排列为:2,2,12,9,6,8,1.∵中国的国家创新指数得分为69.5,将国家创新指数得分在60≤x <70这一组从大到小排列为:69.5,69.3,69.1,68.5,66.4,65.9,63.6,62.4,61.7,∴中国在60≤x <70这一分数段排名第一位,∴中国的国家创新指数得分排名世界的名次为:2+2+12+1=17.(2)如解图①所示第21题解图①(3)2.7【解法提示】如解图②所示,过表示中国的点画横轴的平行线,在该平行线的上方且最左边的点的横坐标就是所求的最小值,最小值约为2.7.第21题解图②(4)①②【解法提示】由散点统计图知,点A,B在表示中国的点的上方,∴中国的国家创新指数得分低于点A、B所代表的国家,因此中国提出”加快建设创新型国家”的战略任务,进一步提高国家综合创新能力,①正确;点B、C在表示中国的点的右侧,∴中国的人均国内生产总值低于点B、C所代表的国家,因此中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值,②正确.22. (1)证明:∵点O到点A,B,C的距离均等于a,∴图形G为以点O为圆心,a为半径的圆(如解图所示).∵BD平分∠ABC,∴∠ABD=∠CBD.∴AD=CD;(2)解:如解图所示,连接BM,OD.由(1)得AD=CD.又∵AD=CM,∴CD=CM.∠DBC=∠MBC=∠MDC.∵DM⊥BC,∴∠DBC+∠BDM=90°.∴∠MDC+∠BDM=90°,即∠BDC=90°.∴BC是⊙O的直径.∵OD=OB,∴∠ODB=∠OBD.∵∠OBD=∠ABD,∴∠ODB=∠ABD.∴OD∥AB.∵BE⊥DE,∴OD ⊥DE.∵OD是⊙O的半径,∴DE与⊙O相切.∴直线DE与图形G的公共点个数为1.第22题解图23. 解:(1)如表格所示;【解法提示】第3组,第3天背诵第一遍,第3+1=4天背诵第二遍,第3+3=6天背诵第三遍. (2)4,5,6【解法提示】观察表格,可得⎩⎪⎨⎪⎧4≤x 1+x 3+x 4≤144≤x 2+x 4≤144≤x 4≤14,即⎩⎪⎨⎪⎧4≤4+4+x 4≤144≤3+x 4≤144≤x 4≤14,解得4≤x 4≤6.∵x 4为正整数,∴x 4=4或5或6;(3)23【解法提示】依题意可知:⎩⎪⎨⎪⎧x 1+x 2≤14x 2+x 3≤14x 1+x 3+x 4≤14x 2+x 4≤14,则3(x 1+x 2+x 3+x 4)≤70,∴x 1+x 2+x 3+x 4≤703,要小云背诵的诗词最多,则取x 1+x 2+x 3+x 4=23,当x 1=5、x 2=9、x 3=5、x 4=4时符合题意,则最多背诵23首.24. 解:(1)AD ,PC ,PD ;【解法提示】一个自变量值只可能对应一个函数值,∵由表格可知当AD =3.01或4时,PC 均为2.25,∴PC 长是AD 长的函数;∵当AD =1.54或5.11时,PD 均为2.00,∴PD 长是AD 长的函数.(2)函数图象如解图:第24题解图(3)2.30或4.00【解法提示】由函数图象可知,当AD=2.30或4.00时,PC=2PD.25. 解:(1)在y=kx+1中,当x=0时,y=1.∴直线与y轴的交点坐标为(0,1);(2)①如解图所示.当k=2时,直线l表达式为:y=2x+1,直线x=k为x=2,直线y=-k为y=-2.在y=2x+1中,当y=-2时,-2=2x+1,解得x=-32;∴B(-32,-2),当x=2时,y=2×2+1=5.∴A(2,5),C(2,-2),此时区域W内的整点个数为6;第25题解图②-1≤k<0或k=-2【解法提示】当k>0时,区域内必含坐标原点,故不符合题意;当k<0时,W内点的横坐标在k到0之间,故-1≤k<0时,W内无整点,当-2≤k<-1时,W内可能存在的整数点横坐标只能为-1,此时边界上两点坐标为C(-1,-k)和A(-1,-k+1),AC=1,当k不为整数时,其上必有整点,但k=-2时,只有两个边界点为整点,故W内无整点,当k<-2时,横坐标为-2的边界点为(-2,-k)和(-2,-2k+1),线段长度为-k+1>3,故必有整点.综上,-1≤k<0或k=-2.26. 解:(1)在y =ax 2+bx -1a 中,当x =0时,y =-1a.∴A (0,-1a ).∵点A 向右平移2个单位长度得到点B ,∴B (2,-1a);(2)∵点B (2,-1a )在抛物线上,∴-1a =a ×22+b ×2-1a .∴b =-2a .∴对称轴为直线x =-b2a =--2a 2a =1;(3)由(2)知b =-2a .∴y =ax 2+bx -1a =ax 2-2ax -1a.当a >0时,在y =ax 2-2ax -1a 中,当x =12时,y =-34a -1a .∵-34a -1a <-1a ,∴点P (12,-1a )在抛物线的上方.当x =2时,y =-1a .∵-1a <2,∴点Q (2,2)在抛物线的上方.∴抛物线与线段PQ 没有公共点,舍去.当a <0时,∵-34a -1a >-1a ,∴点P (12,-1a )在抛物线的下方.∴当-1a ≤2,即a ≤-12时,Q (2,2)在抛物线上方,此时抛物线与线段PQ 恰好有一个公共点.综上,a 的取值范围是a ≤-12.27. (1)解:如解图①所示.第27题解图①(2)证明:在△OPM 中,∠AOB +∠OMP +∠OPM =180°.又∵∠AOB =30°,∴∠OMP +∠OPM =150°.∵PM 绕点P 顺时针旋转150°得到线段PN ,∴∠MPN =150°,即∠NPO +∠OPM =150°.∴∠OMP =∠OPN ;(3)解:OP =2.证明:如解图②所示,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OB 于点F ,则∠PFN =∠MEP =90°.由(1)知∠OMP =∠OPN .∴∠PME =∠NPF .在△PFN 和△MEP 中,⎩⎪⎨⎪⎧∠PFN =∠MEP ,∠NPF =∠PME ,PN =MP ,∴△PFN ≌△MEP (AAS).∴NF =PE ,PF =ME .在Rt △OPE 中,OP =2,∠AOB =30°,∴PE =1,OE = 3.∵OH =3+1,即OE +EH =3+1,∴EH =1.∵点M 关于点H 的对称点为点Q ,∴QH =MH =1+ME =1+PF .∴EQ=EH +HQ =1+1+PF =2+PF =OP +PF =OF .在△ONF 和△QPE 中,⎩⎪⎨⎪⎧NF =PE ,∠OFN =∠QEP ,OF =QE ,∴△ONF ≌△QPE (SAS).∴ON =QP .第27题解图②28. 解:(1)画出DE ︵如解图①所示,DE ︵与BC 相切时,△ABC 的中内弧最长.此时DE ︵的长为以DE 长为直径的半圆.∵Rt △ABC ,AB =AC =22,∴BC =2AB =2·22=4.∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×4=2.∴lDE ︵=12×π×2=π;第28题解图①(2)①当t =12时,C (2,0).连接DE ,当DE ︵在DE 的下方时,点P 的纵坐标最小时点P 为DE 的中点,如解图②所示.∵A (0,2),∴BA =2.∵点D 是BA 的中点,∴BD =1.∵点D 、E 分别为AB 、AC 的中点,∴DE =12BC =12×2=1.∴⊙P 的半径PD =12.∵12<1,∴DE ︵是△ABC 的中内弧.∴y P ≥1.第28题解图②第28题解图③ 当DE ︵在DE 的上方时,点P 的纵坐标最大时⊙P 与AC 相切于点E .如解图③所示,作DE 的垂直平分线FG 交DE 于点F ,交x 轴于点G ,则四边形DBGF 是矩形,圆心P 在FG 上.∵C (2,0),A (0,2),∴BC =BA =2.∴Rt △ABC 是等腰直角三角形.∴∠ACB =45°.∵点D 、E 分别为AB 、AC 的中点,∴DE ∥BC .∴∠AED =∠ACB .∴∠AED =45°.连接PE ,∵⊙P 与AC 相切于点E ,∴PE ⊥AC .∴∠PEA =90°.∴∠PEF =∠PEA -∠AED =45°.∵PF ⊥DE ,∴∠FPE =45°.∴∠PEF =∠FPE .∴PF =EF .∵FG 平分DE ,∴DF =EF =12DE =12×1=12.∴PF =12.∵FG =BD =1,∴PG =FG -PF =1-12=12.∴P (12,12).∴y P ≤12. 综上,圆心P 的纵坐标y P 的取值范围为y P ≥1或y P ≤12. ②0<t ≤ 2【解法提示】ⅰ. 当P 在DE 上方时,如解图④所示,圆心P 在边AC 上且DE ︵与边BC 相切于点F 时,符合题意.∵C (4t ,0),∴BC =4t .∵D 、E 分别为AB 、AC 的中点,∴DE ∥BC ,DE =12BC =12×4t =2t .连接PF .∵⊙P 与BC 相切于点F ,∴PF ⊥BC .∵DE ∥BC ,∴DE ⊥PF .∴DG =12DE =12×2t =t .∵PF ⊥BC ,∴PF ∥y 轴.∴△EPG ∽△EAD .∴PG AD =EG ED =12.∴PG =12AD =12×1=12.又∵GF =BD =1,∴PF =PG +GF =12+1=32.∴DP =32.在Rt △PDG 中,由勾股定理得DP 2=DG 2+GP 2,即(32)2=t 2+(12)2.解得t =±2.∵t >0,∴t = 2.∴t 的取值范围是0<t ≤ 2.第28题解图④ⅱ. 当P 在DE 下方时,如解图⑤.⊙P 与AC 相切于点E 为临界状态,过P 作PM ⊥DE 于点M ,DE ︵为△ABC 的中内弧,只需PM ≤1即可.此时易得△EMP ∽△ABC ,∴PM BC =EM AB ,即PM 4t =t 2.得PM =2t 2,故0<t ≤22第28题解图⑤综上,t的取值范围为0<t≤ 2.。
2019年北京市中考数学试卷(含答案与解析)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年北京市高级中等学校招生考试数 学一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A .60.43910⨯B .64.3910⨯C .54.3910⨯D .343910⨯ 2.下列倡导节约的图案中,是轴对称图形的是( )AB CD3.正十边形的外角和为( )A .180︒B .360︒C .720︒D .1440︒4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A .3-B .2-C .1-D .15.已知锐角AOB ∠如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .COM COD ∠=∠B .若OM MN =,则20AOB ︒∠=C .MN CD ∥ D .3MN CD =6.如果1m n +=,那么代数式()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭的值为( )A .3-B .1-C .1D .37.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A .0B .1C .2D .38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )A .①③B .②④C .①②③D .①②③④二、填空题(本题共16分,每小题2分) 9.若分式1x x-的值为0,则x 的值为 . 10.如图,已知ABC △,通过测量、计算得ABC △的面积约为 2cm .(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠=+ 。
北京市2019年中考数学试题(解析版)
北京市2019年中考数学试题(解析版)2019年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共30分,每⼩题3分)第1-10题均有四个选项,符合题意的选项只.有.⼀个。
1. 如图所⽰,⽤量⾓器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:⽤量⾓器度量⾓。
解析:由⽣活知识可知这个⾓⼩于90度,排除C、D,⼜OB边在50与60之间,所以,度数应为55°。
2. 神⾈⼗号飞船是我国“神⾈”系列飞船之⼀,每⼩时飞⾏约28 000公⾥。
将28 000⽤科学计数法表⽰应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表⽰形式为10na?形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所⽰,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴⽐较数的⼤⼩。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内⾓和为540的多边形是答案:c考点:多边形的内⾓和。
n-??,当n=5时,内⾓和为540°,所以,选C。
解析:多边形的内⾓和为(2)1805. 右图是某个⼏何体的三视图,该⼏何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原⼏何体。
解析:该三视图的俯视为三⾓形,正视图和侧视图都是矩形,所以,这个⼏何体是三棱柱。
6. 如果,那么代数2()b aaa a b--g的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平⽅差公式。
解析:2()b aaa a b--g=22a b aa a b--g=()()a b a b aa a b-+-+=2。
7. 甲⾻⽂是我国的⼀种古代⽂字,是汉字的早期形式,下列甲⾻⽂中,不是轴对称的是答案:D考点:轴对称图形的辨别。
2019北京中考数学答案精品文档5页
一、选择题2019 年北京市高级中等学校招生考试数学试卷参考答案1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.A 二、填空题9.a(b -2)210.x2 +111.20 12.-3,-1,0,-12 3三、解答题13.证明:∵DE ∥AB∴∠CAB =∠ADE在△ABC 与△DAE 中⎧∠CAB =∠ADE⎪AB =DA⎪∠B =∠DAE∴△ADE ≌△BAC (ASA)∴BC =AE14.解:原式=1 +=5 2 - 2 ⨯2+ 4 215.解:由3x >x - 2 ,得x >-1由x +1> 2x ,得3x <15∴-1 <x <1516.代数式化简得:4x2 -12x + 9 -x2 +y2 -y2= 3x2 -12x +9= 3(x2 - 4x +3)∵x2 - 4x =1代入得∴原式=1217.设每人每小时的绿化面积为x 平方米.则有:180-180= 3 6x解得x =2.5(6 + 2)x经检验:x = 2.5 是原方程的解答:每人每小时的绿化面积为2.5 平方米18.(1)△= 4 - 4(2k - 4) = 20 -8k∵方程有两个不等的实根∴△>0即20 -8k >0∴k <52(2)∵k为整数∴0 <k <5即k =1或2,2x1、2=-1±5 -2k∵方程的根为整数,∴5 - 2k 为完全平方数当k =1时,5 - 2k =3k = 2 时,5 - 2k =1∴k =219.(1)在ABCD 中,AD∥BC∵F 是AD 中点.∴DF =1AD ,又∵CE =1BC .2 2∴DF =CE 且DF ∥CE∴四边形CEDF 为平行四边形(2)过D 作DH ⊥BE 于H在ABCD 中∵∠B =60︒∴∠DCE =60︒∵AB =4∴CD =4∴CH =2,DH = 2 3在CEDF 中,CE =DF =1AD = 3 2∴EH =1在Rt△DHE 中DE = (2 3)2 +12 =1320.(1)∵PA 、PC 与O 分别相切于点A 、C∴∠APO =∠EPD 且PA ⊥AO 即∠PAO =90︒∵∠AOP =∠EOD ,∠PAO =∠E =90︒∴∠APO =∠EDO即∠EPD =∠EDO(2)连结OC∴PA =PC =6∵tan ∠PDA =34∴在Rt△PAD 中AD = 8 ,PD =10∴CD =4∵tan ∠PDA =34∴在Rt△OCD 中,OC =OA = 3 ,OD =5∵∠EPD =∠EDO∴△OED ∽△DEP∴PD=D E=10=2 OD OE 5 1在Rt△OED 中OE2 +DE2 =52∴OE =521.(1)0.03(2)陆地面积3.6水面面积1.5图略(3)370022.(1)a(2)四个等腰直角三角形面积和为a2正方形ABCD 的面积为a2∴S正方形MNPQ =S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE= 4 ⨯1⨯12 2=2(3)2323.解:(1)当x = 0 时,y =-2 .∴A(0,-2)抛物线对称轴为x =--2m=1 2m∴B(1,0)(2)易得A 点关于对称轴的对称点为A(2 ,-2)则直线l 经过A 、B .没直线的解析式为y =kx +b⎧2k +b =-2⎩k +b = 0,解得⎧k =-2⎩b = 2∴直线的解析式为y =-2x +2(3)∵抛物线对称轴为x =1抛物体在2 <x < 3 这一段与在-1 <x < 0 这一段关于对称轴对称结合图象可以观察到抛物线在-2 <x <-1这一段位于直线l 的上方在-1 <x < 0 这一段位于直线l 的下方∴抛物线与直线l 的交点横坐标为-1 ;当x =-1时,y =-2x(-1) + 2 =+4则抛物线过点(-1,4)当x =-1时,m + 2m - 2 = 4 ,m =2∴抛物线解析为y = 2x2 - 4x - 2 .24.解:(1)30︒-1 α 2(2)△ABE 为等边三角形证明连接AD 、CD 、ED∵线段BC 绕点B 逆时针旋转60︒得到线段BD则BC =BD ,∠DBC =60︒又∵∠ABE =60︒∴∠ABD = 60︒-∠DBE =∠EBC = 30︒-1α 2且△BCD 为等边三角形.在△ABD 与△ACO 中⎧AB =AC⎪AD =AD⎪BD =CD∴△ABD ≌△ACD (SSS)∴∠BAD =∠CAD =1∠BAC =1α 2 2∵∠BCE =150︒∴∠BEC =180︒- (30︒-1α)-150︒=1α 2 2在△ABD 与△EBC 中A ⎧∠BEC =∠BAD⎪∠EBC =∠ABD⎪BC =BD D∴△ABD ≌△EBC (AAS)E ∴AB =BEB C∴△ABE 为等边三角形(3)∵∠BCD = 60︒,∠BCE =150︒∴∠DCE =150︒- 60︒=90︒又∵∠DEC =45︒∴△DCE 为等腰直角三角形∴DC =CE =BC∵∠BCE =150︒∴∠EBC =(180︒ -150︒)=15︒2而∠EBC = 30︒-1α=15︒ 2∴α = 30︒25. 解:(1) ① D 、E ;② 由题意可知,若 P 点要刚好是圆 C 的关联点;需要点 P 到圆 C 的两条切线 PA 和 PB 之间所夹的角度为 60︒ ; 由图1 可知 ∠APB = 60︒ ,则 ∠CPB = 30︒ ,连接 BC ,则 PC = BCsin ∠CPB = 2BC = 2r ;∴若 P 点为圆 C 的关联点;则需点 P 到圆心的距离 d 满足 0 ≤ d ≤ 2r ; 由上述证明可知,考虑临界位置的 P 点,如图 2; P 点 P 到原点的距离 OP = 2⨯1= 2 ; 过 O 作 x 轴的垂线 OH ,垂足为 H ;t a n ∠OGF = OF = 2 3 = 3 ; AB OG 2∴ ∠OGF = 60︒ ;C ∴ OH = O G ⋅sin 60︒ = 3 ;∴ sin ∠OPH = OH = 3 ;OP 2 ∴ ∠OPH = 60︒ ; 易得点 P 1 与点 G 重合,过 P 2 作 P 2 M ⊥ x 轴于点 M ; 易得 ∠P 2 OM = 30︒ ;∴ OM = O P 2 ⋅cos30︒ = 3 ; 图1 y G (P 1) HO MF x图2从而若点 P 为圆 O 的关联点,则 P 点必在线段 P 1 P 2 上; ∴0 ≤ m ≤ 3 ; (2) 若线段 EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小, 则这个圆的圆心应在线段 EF 的中点; 考虑临界情况,如图 3;即恰好 E 、F 点为圆 K 的关联时,则 KF = 2KN = 1 EF = 2 ;2∴此时 r =1 ;y故若线段 EF 上的所有点都是某个圆的关联点,F这个圆的半径 r 的取值范围为 r ≥1.x KNE图3。
北京市2019年中考数学试题(含答案)
2019年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1. 4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点 439 000米.将439 000用科学记数法表示应为 (A)0.439 1063(D) 439 1034.在数轴上,点 A ,B 在原点O 的两侧,分别表示数 a ,2,将点A 向右平移1个单位长度,得到点C .若CO = BO ,贝U a 的值为(C ) 4.39 1052. 3•正十边形的外角和为(A) 180°(B ) 360 ° (C ) 720° (D )(D ) 1440(B) 4.39 106(A)- 3(B)- 2(C )- 1 ( D ) 15.已知锐角/ AOB 如图, (1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作-, 交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交|1打耳于点M ,N ;(3) 连接 OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是(A )Z COM = Z COD (C ) MN // CD(B) 若 OM = MN ,则/ AOB=20 (D) MN=3CD2m n 16 •如果m n 1,那么代数式厂m mn mm 2 n 2的值为(A)F 列倡导节约的图案中,(C )(A)- 3(B)- 1(C) 1 (D) 31 17 •用三个不等式a b , ab 0, 中的两个不等式作为题设,余下的一个不等式作为结论组a b成一个命题,组成真命题的个数为(A)0 (B)1 (C) 2 (D)3&某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分..A数^x 学生类别时间0 < t v 1010 < t v 2020W t v 3030W t v 40t > 40性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是(A)①③(B)②④(C)①②③(D [①②③④二、填空题(本题共16分,每小题2分)9 •若分式乞」的值为0,则x的值为 __________ .x10•如图,已知△ ABC,通过测量、计算得厶ABC的面积约为_________ cm2.(结果保留一位小数)11 •在如图所示的几何体中,其三视图中有矩形的是__________ .(写出所有正确答案的序号)对称点B 在双曲线y 上,则k 1 k 2的值为x14•把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 __________ .215.小天想要计算一组数据 92, 90, 94, 86, 99, 85的方差S 。
北京市2019年中考数学试题(WORD版,有答案)
北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。
1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o360 (B )o540 (C )o720 (D )o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。
下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
2019年北京市中考数学试题及答案解析
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910(B )64.3910(C )54.3910(D )3439102.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180 (B )360 (C )720 (D )14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠COM=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN∠CD(D )MN=3CDB6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:∠这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∠这200名学生参加公益劳动时间的中位数在20-30之间∠这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间学生类别5∠这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∠∠(B )∠∠(C )∠∠∠ (D )∠∠∠∠二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∠存在无数个四边形MNPQ 是平行四边形; ∠存在无数个四边形MNPQ 是矩形; ∠存在无数个四边形MNPQ 是菱形; ∠至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.图3图2图120.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF .(1)求证:AC∠EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息: a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数) (4)下列推断合理的是______.∠相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∠相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∠将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∠对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∠每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PCCBA交弦AB 于点D .小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.∠当2k=时,结合函数图象,求区域W内的整点个数;∠若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.已知30AOB ∠=︒,H 为射线OA上一定点,1OH=+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∠ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∠ABC 的内部或边上,则称为∠ABC 的中内弧.例如,下图中是∠ABC 的一条中内弧.(1)如图,在Rt∠ABC中,AB AC D E ==,分别是AB AC ,的中点.画出备用图图1BAOB ABCDE∠ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∠ABC 中,D E ,分别是AB AC ,的中点.∠若12t =,求∠ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∠若在∠ABC 中存在一条中内弧,使得所在圆的圆心P 在∠ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∠∠ 12. 45°13. 0 14. 12 15. =16. ∠∠∠三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∠四边形ABCD为菱形∠AB=AD,AC平分∠BAD∠BE=DF∠AB BE AD DF-=-∠AE=AF∠∠AEF是等腰三角形∠AC平分∠BAD∠AC∠EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∠∠ 22. 【答案】 (1)∠BD 平分∠ABC ∠∠=∠ABD CBD∠AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组3x 3x3x(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∠6个 ∠10k -≤<或2k =-26. 【答案】(1)1(2,)B a ; (2)直线1x;(3)1a ≤2.27. 【答案】 (1)见图(2) 在∠OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∠1P y ≥或12P y ≤; ∠02t<≤BCD E。
2019年北京市中考数学试题(Word版,解析版)含答案
12019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B3))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题.故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5学生类别下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误故,选C二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.【解析】本题考查分式值为0,则分子01=-x,且分母0≠x,故答案为1510.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 cm 2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为45第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA713.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数图3图2图1据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。
2019年北京市高级中等学校招生考试
2019年北京市高级中等学校招生考试数 学 试 卷1. 34-的绝对值是( )A. 43-B. 43C. 34- D. 342. 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。
将665 575 306用科学记数法表示(保留三个有效数字)约为( )A. 766.610⨯B. 80.66610⨯C. 86.6610⨯D. 76.6610⨯ 3. 下列图形中,即是中心对称又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 梯形 D. 矩形4. 如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AOCO的值为( )A. 12B. 13C. 14D. 195. 北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的人数和中位数分别是( )A. 32,32B. 32,30C. 30,32D. 32,316. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( )A. 518B. 13C. 215D. 1157. 抛物线265y x x =-+的顶点坐标为( ) A. (3,4-) B. (3,4) C. (3-,4-) D. (3-,4) 8. 如图在Rt △ABC 中,90ACB ∠=︒,30BAC ∠=︒,B C C合),过点D 作CD 的垂线交射线CA 于点E 。
设AD x =,CE y =,则下列图象中,能表示y 与x 的函数关系图象大致是( )A B C D9. 若分式8x x-的值为0,则x 的值等于________。
10. 分解因式:321025a a a -+=______________。
11. 若右图是某几何体的表面展开图,则这个几何体是____________。
12. 在右表中,我们把第i 行第j 列的数记为,i j a (其中i ,j 都是不大于5的正整数),对于表中的每个数,i j a ,规定如下:当i j ≥时,,1i j a =;当i j <时,,0i j a =。
2019年北京市中考数学试卷(带解析)
(2)求证:∠OMP=∠OPN; (3)点 M 关于点 H 的对称点为 Q,连接 QP.写出一个 OP 的值,使得对于任意的点 M 总有 ON=QP,并证明.
28.(7 分)在△ABC 中,D,E 分别是△ABC 两边的中点,如果 上的所有点都在△ABC 的内部或边上,则称 为△ABC 的中内弧.例如,图 1 中 是△ABC 的一条中内弧.
b.国家创新指数得分在 60≤x<70 这一组的是: 61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c.40 个国家的人均国内生产总值和国家创新指数得分情况统计图:
第 5页(共 34页)
d.中国的国家创新指数得分为 69.5.
(以上数据来源于《国家创新指数报告(2018)》)
2019 年北京市中考数学试卷
一、选择题(本题共 16 分,每小题 2 分) 1.(2 分)4 月 24 日是中国航天日.1970 年的这一天,我国自行设计、制造的第一颗人造地
球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距
地球最近点 439000 米,将 439000 用科学记数法表示应为(
D.3
7.(2 分)用三个不等式 a>b,ab>0, < 中的两个不等式作为题设,余下的一个不等式
作为结论组成一个命题,组成真命题的个数为( )
A.0
B.1
C.2
D.3
8.(2 分)某校共有 200 名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加
公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分
③这 200 名学生中的初中生参加公益劳动时间的中位数一定在 20~30 之间
2019年北京市中考数学试卷-答案
2019年北京市高级中等学校招生考试数学答案解析一、选择题 1.【答案】C【解析】本题考察科学记数法较大数,10N a ⨯中要求1||10a ≤<,此题中 4.39,5a N ==,故选C 2.【答案】C【解析】本题考察轴对称图形的概念,故选C 3.【答案】B【解析】多边形的外角和是一个定值360︒,故选B 4.【答案】A【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为1a +,由题意可知,0a <,∵CO BO =,∴|1|2a +=,解得1a =(舍)或3a =-,故选A 5.【答案】D【解析】连接ON ,由作图可知COM DON △≌△.A.由COM DON △≌△.,可得COM COD ∠=∠,故A 正确.B.若OM MN =,则OMN △为等边三角形,由全等可知20COM COD DON ︒∠=∠=∠=,故B 正确C.由题意,OC OD =,∴180COD 2OCD ︒-∠∠=.设OC 与OD 与MN 分别交于R ,S ,易证MOR NOS △≌△,则OR OS =,∴180COD2ORS ︒-∠∠=,∴OCD ORS ∠=∠.∴MN CD ∥,故C 正确.D.由题意,易证M C C D D N ==,∴3MC CD DN CD ++=.∵两点之间线段最短.∴3MN MC CD DN CD ++=<,故选D6.【答案】D【解析】:()22221m nm n m m mn +⎛⎫+⋅- ⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D7.【答案】D【解析】本题共有3种命题:命题①,如果,0a b ab >>,那么11a b<. ∵a b >,∴0a b ->,∵0ab >,∴0a bab->,整理得11b a >,∴该命题是真命题.命题②,如果11,,a b a b><那么0ab >.∵11,a b <∴110,0.b a a b ab--<<∵a b >,∴0b a -<,∴0ab >. ∴该命题为真命题.命题③,如果110,ab a b><,那么a b >. ∵11,a b <∴110,0.b a a b ab--<<∵0ab >,∴0b a -<,∴b a < ∴该命题为真命题. 故,选D 8.【答案】C【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5 h ,女生为25.5 h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确. ③由统计表计算可得,初中学段栏010t ≤<的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当010t ≤<时间段人数为0时,中位数在10~20之间;当010t ≤<时间段人数为15时,中位数在10~20之间,故④错误 故,选C 二、填空题 9.【答案】1【解析】本题考查分式值为0,则分子10x -=,且分母0x ≠,故答案为1 10.【答案】测量可知【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知” 11.【答案】①②【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①② 12.【答案】45【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算PQ BQ PB ===,∴222PQ BQ PB +=,即PBQ △为等腰直角三角形,∴45BPQ ︒∠=,∵45PAB PBA BPQ ︒∠+∠=∠=,故答案为4513.【答案】0【解析】本题考查反比例函数的性质,(,)A a b 在反比例1k y x=上,则1k ab =,A 关于x 轴的对称点B 的坐标为(,)a b -,又因为B 在2k y x=上,则2k ab =-,∴120k k += 故答案为0 14.【答案】12【解析】设图1中小直角三角形的两直角边分别为a ,()b b a >,则由图2,图3可列方程组5,1a b b a +=⎧⎨-=⎩解得23a b =⎧⎨=⎩,所以菱形的面积14612.2S =⨯⨯=故答案为12. 15.【答案】=【解析】本题考查方差的性质。
2019年北京市中考数学试题(Word版,解析版)
2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C3.正十边形的外角和为( )A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO ,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( ) A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN ∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM ≌△DON.A. 由△COM ≌△DON.,可得∠COM=∠COD ,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR ≌△NOS ,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN ∥CD ,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN <MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( )A.-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭B))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0B.1C.2D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题.故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.5学生类别下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h,女生为25.5h,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误故,选C二、填空题(本题共16分,每小题2分)9.若分式1xx-的值为0,则x的值为______.【解析】本题考查分式值为0,则分子01=-x,且分母0≠x,故答案为110.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为 cm 2.(结果保留一位小数)【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为45第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数图3图2图1据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)【解析】本题考查方差的性质。
2019年北京市中考数学试题(Word版,含答案)
2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)二、第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为 (A )60.43910´(B )64.3910´(C )54.3910´(D )343910´2.下列倡导节约的图案中,是轴对称图形的是(A ) (B ) (C ) (D )3.正十边形的外角和为(A )180o (B )360o (C )720o (D )1440o4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3-(B )2-(C )1-(D )15.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∠=∠COD (B )若OM=MN ,则∠AOB=20°(C )MN ∥CD(D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )3B7.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )①③ (B )②④(C )①②③(D )①②③④二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC !,通过测量、计算得ABC !的面积约为______cm2.(结果保留一学生类别5位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).13.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______20s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).第10题图CBA第11题图③圆锥②圆柱①长方体第12题图BA图3图2图1对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()01142604sin π----++o ().18.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF . (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“d ”圈出代表中国的点; (3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值./万元22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD . (1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数.23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分成4组,第i 组有i x 首,i =1,2,3,4;②对于第i 组诗词,第i 天背诵第一遍,第(1i +)天背诵第二遍,第(3i +)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;CBA(3)7天后,小云背诵的诗词最多为______首.24.如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和______的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;AB(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为______cm.25. 在平面直角坐标系xOy中,直线l:()10y kx k=+≠与直线x k=,直线y k=-分别交于点A,B,直线x k=与直线y k=-交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA,,围成的区域(不含边界)为W.①当2k=时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.在平面直角坐标系xOy中,抛物线21y ax bxa=+-与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2P a -,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,1OH=+,P 为射线OB 上一点,M为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在△ABC 中,D ,E 分别是ABC !两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC 的中内弧.例如,下图中是△ABC 的一条中内弧.备用图图1BAOB ABCDE(1)如图,在Rt △ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在△ABC中,D E ,分别是AB AC ,的中点.①若12t =,求△ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ②若在△ABC 中存在一条中内弧,使得所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.AED CB2019年北京市中考数学答案一. 选择题.二. 填空题.9. 1 10. 测量可知11. ①②12. 45°13. 0 14. 12 15. =16. ①②③三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∴AB=AD,AC平分∠BAD∵BE=DF∴AB BE AD DF-=-∴AE=AF∴△AEF是等腰三角形∵AC平分∠BAD∴AC⊥EF(2)AO =1.21.【答案】(1)17(2)(3)2.7 (4)①② 22. 【答案】 (1)∵BD 平分∠ABC ∴∠=∠ABD CBD ∴AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组 3x3x3x第4组(2)4,5,6(3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)①6个 ②10k -≤<或2k =-26. 【答案】(1)1(2,)B a -; (2)直线1x =;(3)1a -≤2.27. 【答案】 (1)见图(2) 在△OPM中,=180150OMP POM OPM OPM∠︒-∠-∠=︒-∠150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===g(2)①1P y ≥或12P y ≤;②0t <≤BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考试题】2019年北京市高级中等学校招生考试数学试卷及答案
考生须知
1. 本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.
2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号.
3. 试题答案一律填涂或书写在答题卡上、在试卷上作答无效.
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.
5. 考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共16分,每小题2分)
第1-8题均有四个选项,符合题意的选项只有一个.
1. 4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )
A. 0.439×106
B. 4.39×106
C. 4.39×105
D. 439×103
2. 下列倡导节约的图案中,是轴对称图形的是( )
3. 正十边形的外角和为( ) A. 180° B. 360° C. 720° D. 1440°
4. 在数轴上,点A 、B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO =BO ,则a 的值为( )
A. -3
B. -2
C. -1
D. 1 5. 已知锐角∠AOB 如图,
第5题图
(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ︵
,交射线OB 于点D ,连接CD; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ ︵
于点M ,N ; (3)连接OM ,MN .
根据以上作图过程及所作图形,下列结论中错误的是( ) A. ∠COM =∠COD
B. 若OM =MN ,则∠AOB =20°
C. MN ∥CD
D. MN =3CD
6. 如果m +n =1,那么代数(2m +n m 2-mn +1
m )·(m 2-n 2)的值为( )
A. -3
B. -1
C. 1
D. 3
7. 用三个不等式a >b ,ab >0,1a <1
b 中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,
组成真命题的个数为( )
A. 0
B. 1
C. 2
D. 3 8. 某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)
第8题图
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是( )
A. ①③
B. ②④
C. ①②③
D. ①②③④ 二、填空题(本题共16分,每小题2分) 9. 若分式x -1
x
的值为0,则x 的值为________.
10. 如图,已知△ABC ,通过测量、计算得△ABC 的面积约为________cm 2.(结果保留一位小数)
第10题图
11. 在如图所示的几何体中,其三视图中有矩形的是________.(写出所有正确答案的序号)
第11题图
12. 如图所示的网格是正方形网格,则∠P AB +∠PBA =________°(点A ,B ,P 是网格交点).
第12题图
13. 在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =k 1
x 上,点A 关于x 轴的对称点B 在双
曲线y =k 2
x
上,则k 1+k 2的值为________.
14. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为________.
第14题图
15. 小天想要计算一组数据92,90,94,86,99,85的方差s 20,在计算平均数的过程中,将这组数据
中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s 21,则s 21=________s 2
0.(填“>”,“=”或“<”)
16. 在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,正确四个结论中,
①存在无数个四边形MNPQ 是平行四边形; ②存在无数个四边形MNPQ 是矩形; ③存在无数个四边形MNPQ 是菱形; ④至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是________.
三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)
解答应写出文字说明、演算步骤或证明过程.
17. 计算:|-3|-(4-π)0+2sin60°+(14)-
1.
18. 解不等式组:⎩⎪⎨⎪
⎧4(x -1)<x +2.x +73
>x .
19. 关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.
20. 如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF . (1)求证:AC ⊥EF ;
(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =1
2
,求AO 的长.
第20题图
21. 国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下面给出了部分信息:
a. 国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);
b. 国家创新指数得分在60≤x<70这一组的是:
61.762.463.665.966.468.569.169.369.5
c. 40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d. 中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“○”画出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为________万美元;(结果保留一位小数)
(4)下列推断合理的是________.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
22. 在平面内,给定不在同一条直线一上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD;
(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD =CM,求直线DE与图形G的公共点个数.
第22题图
23. 小云想用7天的时间背诵若干首诗词,背诵计划如下:
①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;
②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背诵第三遍,三遍后完成背
解答下列问题:
(1)填入x 3补全上表:
(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为________; (3)7天后,小云背诵的诗词最多为________首.
24. 如图,P 是AB ︵与弦AB 所围成的图形的外部的一定点,C 是AB ︵
上的一动点,连接PC 交弦AB 于点D .
第24题图
小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整:
(1)对于点C 在AB ︵
上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度的几组值,如下表:
在PC ,PD ,AD 的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;。