2020年高考数学江苏卷

合集下载

专题7 函数的奇偶性和周期性-2020年江苏省高考数学考点探究(原卷版)

专题7  函数的奇偶性和周期性-2020年江苏省高考数学考点探究(原卷版)

专题7 函数的奇偶性和周期性专题知识梳理1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=__0__.(4)若函数f(x)是偶函数,则有__f(|x|)=f(x)__.(5)奇函数在对称区间上的单调性__相同__,偶函数在对称区间上的单调性__相反__.3.周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.注1:函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.注2:函数周期性常用结论对f(x)定义域内任一自变量的值x,(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).考点探究考向1 判断函数的奇偶性【例】判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3; (4)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0)-x 2+x (x >0); (5)f (x )=x 2-|x -a |+2.题组训练1.下列函数中为偶函数的是________.①y =1x②y =lg|x | ③y =(x -1)2 ④y =2x2.下面的定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是________.3.(易错题)试判断函数()f x =的奇偶性.考向2 函数奇偶性与单调性的综合应用【例1】(1)若函数f(x)=xln(x+√a+x2)为偶函数,则a=______.(2)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是______.【例2】(1) 设函数f(x)=a·2x+a-22x+1(x∈R)为奇函数,求实数a的值;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.题组训练1.设函数f(x)=(x+1)(2x+3a)为偶函数,则a=______ .2.已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(−1)=______.3.已知f(x)是定义在R 上的偶函数,且在区间(−∞,0)上单调递增,若实数a 满足f(2|a−1|)>f(−√2),则a 的取值范围是______.4.若函数f(x)={x(x −b),x ≥0ax(x +2),x <0(a,b ∈R)为奇函数,则a +b 的值为______.5.设f(x)=log 21−ax x−1−x 为奇函数,a 为常数.(1)求a 的值;(2)判断并证明函数f(x)在x ∈(1,+∞)时的单调性;(3)若对于区间[2,3]上的每一个x 值,不等式f(x)>2x +m 恒成立,求实数m 取值范围.考向3 函数的奇偶性与周期性的综合应用【例1】定义在R 上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x +1.求f(x)在[-2,2]上的解析式.【例2】(2019·江苏卷)设f(x),g(x)是定义在R 上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x ∈(0,2]时,f(x)=√1−(x −1)2,g(x)={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f(x)=g(x)有8个不同的实数根,则k 的取值范围是______.题组训练1.若f(x)是周期为2的奇函数,当x ∈(0,1)时,f(x)=x 2−8x +30,则f(√10)=______.2.奇函数f(x)的周期为4,且x ∈[0,2],f(x)=2x −x 2,则f(2018)+f(2019)+f(2020)的值为________.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.4.(拔高题)设函数f (x )的定义域关于原点对称,且满足:① f (x 1-x 2)=1221()()1()()f x f x f x f x +- (x 1≠x 2);② 存在正常数a ,使得f (a )=1. 求证:(1) f (x )是奇函数;(2) f (x )是周期为4a 的周期函数.。

2020年江苏省高考数学试卷 试题+答案详解

2020年江苏省高考数学试卷 试题+答案详解
24.在三棱锥 A—BCD 中,已知 CB=CD= 5 ,BD=2,O 为 BD 的中点,AO⊥平面 BCD,AO=2,
E 为 AC 的中点. (1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,
4
设二面角 F—DE—C 的大小为θ,求 sinθ的值.
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任 取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个 黑球的概率为 pn,恰有 1 个黑球的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1 的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .
a1
d 2
q 2
1
aq120
,∴
d
q
4
.
b1 1 q
1
b1 1
12【答案】 4 5
【解析】∵
5x2
y2
y4
1,∴
y
0

x2
1 y4 5y2

x2
y2
1 y4 5y2
y2
1 5y2
+
4y2 5
2
1 4y2 4 , 5y2 5 5
当且仅当
1 5y2
4y2 5
,即
x2
3 , y2 10
等差数列 an 的前 n 项和公式为 Pn
na1
nn 1
d 2
d n2 2
a1
d 2
n

等比数列bn 的前
n

2020年高考(江苏卷)数学附加题训练七(含答案)

2020年高考(江苏卷)数学附加题训练七(含答案)

2020年高考(江苏卷)数学附加题训练七21.已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦.若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线sin()()4l m m R πθ-=∈,圆C 的参数方程为13cos 23sin x t y t =+⎧⎨=-+⎩(t 为参数).当圆心C 到直线l 的距离为时,求m 的值。

1111ABCD -A B C D 中,P 是侧棱1CC 上23.如图,在底面边长为1,侧棱长为2的正四棱柱的一点,CP =m .(1)若m =1,求异面直线AP 与BD 1所成角的余弦;11所成角的正弦值是13?若存在,请求出m (2)是否存在实数m ,使直线AP 与平面AB D 的值;若不存在,请说明理由.24.已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ',连接A 'B .(1)求抛物线C 标准方程;(2)问直线A 'B 是否过定点?若是,求出定点坐标;若不是,请说明理由.数学附加题训练七答案21.【答案】x ,y 的值分别为0 ,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0 , 1.试题解析:由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦,所以24,{22,a b +=-+=解得2,{ 4.a b ==所以1214A ⎡⎤=⎢⎥-⎣⎦.则][][][12221444x x x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+=解得0,{ 1.x y ==所以x ,y 的值分别为0 ,1.22.【答案】m − =1或m − =5 .【解析】根据曲线的极坐标方程、参数方程与普通方程的互化求出曲线的普通方程,利用点到直线的距离公式进行求解,即可得到答案.【详解】直线l 的直角坐标方程为x −y +m =0 ,圆C 的普通方程为(x −1)2 +(y +2)2 =9 ,圆心C 到直线l =1m =-或5m =-.【点睛】本题主要考查了主要考查了参数方程、极坐标方程和普通方程的互化,其中解答中结合点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.23.【答案】(1)3(2)存在,74m =【解析】(1)采用建系法进行求解;(2)假设存在实数m ,使得直线AP 与平面11AB D 所成角的正弦值是13,则用向量法表示出(1,1,)AP m =- ,再求得平面11AB D 的法向量为(2,2,1)n =- ,结合夹角公式即可求得;【详解】解:(1)建立空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,1,)P m ,(0,1,0)C ,(0,0,0)D ,1(1,1,2)B ,1(0,0,2)D .所以1(1,1,2)BD =-- ,(1,1,1)AP =-.111cos ,3||BD AP BD AP BD AP ⋅==⨯ ,即异面直线AP 与1BD所成角的余弦是3.(2)假设存在实数m ,使直线AP 与平面11AB D 所成的角的正弦值等于13,则11(1,1,0)D B = ,1(1,0,2)AD =- ,(1,1,)AP m =- .设平面11AB D 的法向量为(),,n x y z =r ,则由111n D B n AD ⎧⊥⎨⊥⎩ ,得020x y x z +=⎧⎨-+=⎩,取2x =,得平面11AB D 的法向量为(2,2,1)n =- .由直线AP 与平面11AB D 所成的角的正弦值等于13,得13=,解得74m =,因为02m ≤≤,所以74m =满足条件,所以当74m =时,直线AP 与平面11AB D 所成的角的正弦值等于13.【点睛】本题考查建系法在立体几何中的应用,异面直线所成的夹角,由线面角的正弦值反求参数的问题,能正确表示出各向量和平面的法向量是解题的关键,属于中档题24.【答案】(1)x 2 =4y ;(2)(0,1)【解析】试题分析:(1)将点(2,1 )代入抛物线 C 的方程解得 p 即可得到抛物线C 标准方程;(2)设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,利用点斜式写出直线A B '的方程()2221244x x x y x x --=-,再将直线AB 方程与抛物线方程联立方程组,利用韦达定理化简直线A B '的方程得2114x x y x -=+,即证得直线A B '是否过定点()0,1.试题解析:(1)将点()2,1代入抛物线C 的方程得,2p =,所以,抛物线C 的标准方程为24x y =.(2)设直线l 的方程为1y kx =-,又设()()1122,,,A x y B x y ,则()11,A x y '-,由21,41,y x y kx ⎧=⎪⎨⎪=-⎩得2440x kx -+=,则2121216160,4,4k x x x x k ∆=->⋅=+=,所以()222121212112444A Bx x y y x x k x x x x '---===--+,于是直线A B '的方程为()2221244x x x y x x --=-,所以,()22122121444x x x x x y x x x --=-+=+,当0x =时,1y =,所以直线A B '过定点()0,1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。

2020年江苏卷数学高考试题(详细解析版)

2020年江苏卷数学高考试题(详细解析版)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = ▲.答案:{02},解析:因为A ,B 的公共元素有0,2,由交集的定义可知{02},A B = 2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是▲.答案:3解析:(1i)(2i)12(1)(12)i =3+i z =+-=⨯--+-+,故z 的实部为33.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲.答案:2解析:由平均数的定义可得42(3)5645a a ++-++=,解得2a =4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲.答案:19解析:点数和为5可能的情况有,{1,4},{2,3},{3,2},{4,1},共有4种,样本空间中样本点的个数为36,故点数和为5的概率是41369=5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲.答案:3-解析:因为20x >,而输出的y 的值为负数,故输出的是1x +,即12x +=-,故3x =-6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是▲.答案:32解析:设题中双曲线的焦距为2c ,虚半轴长为b ,则由双曲线的一条渐近线方程可得52b a =,故此双曲心的离心率32c e a ===7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是▲.答案:4-解析:因为y =f (x )是奇函数,所以23(8)(8)84f f -=-=-=-8.已知2sin ()4απ+=23,则sin 2α的值是▲.答案:13解析:因为sin sin cos cos sin (sin cos )4442πππααααα⎛⎫+=+=+⎪⎝⎭,所以22112sin (sin cos )(1sin 2)4223παααα⎛⎫+=+=+= ⎪⎝⎭.所以1sin 23α=.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm 3.答案:2π-解析:正六棱柱的底面面积为cm ,高为2cm ,故正棱柱的体积为cm 3,圆柱的体积为20.522ππ⨯⨯=,故此六角螺帽毛坯的体积是(2π-)cm 310.将函数πsin(32)4y x =+的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是▲.答案:524πx =-解析:将函数πsin(324y x =+的图象向右平移π6个单位长度,得到函数3sin 2()3sin 26412πππy x x ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭的图象,由2122ππx kπ-=+(k ∈Z )可得7224kππx =+,当1k =-时,对称轴离y 轴最近,此时对称轴方程为524πx =-11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和*221()n n S n n n =-+-∈N ,则d +q 的值是▲.答案:4解析:1111a b S +==,当2n ≥时,22111(21)[(1)(1)21]2(1)2n n n n n n n a b S S n n n n n ---+=-=-+-----+-=-+.当n=1时,上式也成立,对任意正整数n ,都有12(1)2n n n a b n -+=-+,因为1(1)n a a n d =+-,11n n b b q -=,。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2020年高考卷理科数学(江苏卷)附答案

2020年高考卷理科数学(江苏卷)附答案

2. 3. 4.已知集合如{一顷封如{M3}则刀口=已知i是虚数单位,贝愎数z=(E)(2t)的实部是已知一组数据4,2a.3・a ,5,6的平均数为4,则a的值是.将一颗质地均匀的正方体骰子先后抛掷2次观察向上的点数,则点数和为5的概率是o4. S.右图是一个算法流程图,若输出y的值为2则输入x的值为ago6.2在平面宜角坐标系xOy中若以仙线/5=l(a>0)的一条渐近线方w程为'一2二则该双曲线的离心率是—o27.已知y=f(x>是奇函数,当x>0时,/⑴二F,则,(一8)的值是。

sin2(—+«)=—.8.已知43,则sm2a的值是_。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,己知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm\* = 3sin 2x + —10.将函数 I 4的图像向右平移M 个单位长度,则T 移后的图像与*轴最近的对称轴方程是—0U.设{■}是公差为〃的等差数列,{如}是公比为q 的等比数列,己知数列 {"心的前项和&顼-"1*^),则d+g 的值是—。

12.已知5xy +/=l(W e/e)t 则x 2+/的最小值是。

13.在△此中,t !B = 4, 4C=3.匕助C=90。

,。

在边AC 延长血坦炉,使得如=9,若是一 O后=血而专_』无(S 为常数),则co 的於度«㈣■14 .在平面直角坐标系H 夕中尸修。

已知I z 4、B 是圆 2)=36上的两个动点,满足PA=PB ,则△ "8的面积的最大值是15.在三棱柱如C —44G 中,ABLAC. B X CL 平面"分别是AC> %7的中点<1)求证:£少〃平面"MG :< 2)求证:平面^C±平面“时16.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=3,c=旧,B=45。

2020年高考(江苏卷)数学附加题训练一 (含答案)

2020年高考(江苏卷)数学附加题训练一 (含答案)

2020年高考(江苏卷)数学附加题训练一21、(本小题满分10分)已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=yy y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22、(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标..23、(本小题满分10分)在四棱锥P-ABCD中,CD⊥平面PAD,∆PAD是正三角形,DC∥AB,DA=DC=2AB=2.(1)求平面PAB与平面PCD所成的锐二面角的大小;(2)点E为线段CD上的一动点,设异面直线BE与直线PA所成角的大小为θ,当cosθ=5时,试5确定点E的位置.24、(本小题满分10分)在直角坐标系xOy中,已知抛物线C:y2=2px(p>0)上一点P(4,m)到焦点F的距离为6,点Q为其准线l上的任意-一点,过点Q作抛物线C的两条切线,切点分别为A,B.(1)求抛物线C的方程;(2)当点Q在x轴上时,证明:∆QAB为等腰直角三角形.(3)证明:∆QAB为直角三角形.数学附加题训练一参考答案21.已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=y y y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标.23、(本小题满分10分)在四棱锥ABCD P -中,⊥CD 平面PAD ,PAD ∆是正三角形,AB DC ∥,22===AB DC DA .(1)求平面PAB 与平面PCD 所成的锐二面角的大小;(2)点E 为线段CD 上的一动点,设异面直线BE 与直线PA 所成角的大小为θ,当55cos =θ时,试确定点E 的位置.24、(本小题满分10分)在直角坐标系xOy 中,已知抛物线px y C 2:2=)0(>p 上一点),4(m P 到焦点F 的距离为6,点Q 为其准线l 上的任意-一点,过点Q 作抛物线C 的两条切线,切点分别为B A ,.(1)求抛物线C 的方程;(2)当点Q 在x 轴上时,证明:QAB ∆为等腰直角三角形.(3)证明:QAB ∆为直角三角形.。

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)

2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。

1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。

2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。

3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。

4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。

5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。

6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。

7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。

8.已知22sin +=43πα(),则sin 2α的值是。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。

10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。

11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。

12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。

13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。

2020年江苏高考数学试题解析

2020年江苏高考数学试题解析
【解析】∵ 三点共线,
∴可设 ,
∵ ,
∴ ,即 ,
若 且 ,则 三点共线,
∴ ,即 ,
∵ ,∴ ,
∵ , , ,
∴ ,
设 , ,则 , .
∴根据余弦定理可得 , ,
∵ ,
∴ ,解得 ,
∴ 的长度为 .
当 时, , 重合,此时 的长度为 ,
当 时, , 重合,此时 ,不合题意,舍去.
故答案为:0或 .
【解析】∵数据 的平均数为4
∴ ,即 .
故答案为:2.
4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.
【答案】
【解析】根据题意可得基本事件数总为 个.
点数和为5的基本事件有 , , , 共4个.
∴出现向上的点数和为5的概率为 .
故答案为: .
5.如图是一个算法流程图,若输出 的值为 ,则输入 的值是_____.
故答案为:
7.已知y=f(x)是奇函数,当x≥0时, ,则f(-8)的值是____.
【答案】
先求 ,再根据奇函数求
【解析】 ,因为 为奇函数,所以
故答案为:
8.已知 = ,则 的值是____.
【答案】
直接按照两角和正弦公式展开,再平方即得结果.
【解析】
故答案为:
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是____cm.
14.在平面直角坐标系xOy中,已知 ,A,B是圆C: 上的两个动点,满足 ,则△PAB面积的最大值是__________.
【答案】
根据条件得 ,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.

2020年江苏高考数学真题(解析版)

2020年江苏高考数学真题(解析版)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡相应位置上....... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.【答案】{}0,2 【解析】 【分析】 根据集合交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B = ∴{}0,2A B =I 故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____. 【答案】3 【解析】 【分析】根据复数的运算法则,化简即可求得实部的值. 【详解】∵复数()()12z i i =+- ∴2223z i i i i =-+-=+ ∴复数的实部为3. 故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____. 【答案】2 【解析】 【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a -的平均数为4 ∴4235620a a ++-++=,即2a =. 故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】 【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可. 【详解】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19. 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3- 【解析】 【分析】根据指数函数的性质,判断出1y x =+,由此求得x 的值. 【详解】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为,则该双曲线的离心率是____. 【答案】32【解析】 【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a -=,故b =.由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 7.已知y =f (x )是奇函数,当x ≥0时,()23f x x = ,则f (-8)的值是____. 【答案】4- 【解析】 【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题. 8.已知2sin ()4πα+ =23,则sin 2α的值是____.【答案】13【解析】 【分析】直接按照两角和正弦公式展开,再平方即得结果.【详解】221sin ())(1sin 2)42παααα+==+Q 121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题. 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】 【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=- 【解析】 【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果. 【详解】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=-故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题. 11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 【答案】4 【解析】 【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】 【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y-+=+=,利用基本不等式即可求解.【详解】∵22451x y y +=∴0y ≠且42215y x y -=∴42222221144+5555y y x y y y y -+=+=≥=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 故答案为:45. 【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立). 13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185. 当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=>. 14.在平面直角坐标系xOy中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.【答案】【解析】 【分析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值. 【详解】PA PB PC AB =∴⊥Q设圆心C 到直线AB 距离为d,则||1AB PC ==所以11)2PAB S d ≤⋅+=V 令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS 取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析. 【解析】 【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB . 【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB . 由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C . (2)由于1B C ⊥平面ABC ,AB Ì平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C , 由于AB Ì平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【答案】(1)sin C ;(2)2tan 11DAC ∠=. 【解析】 【分析】(1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【详解】(1)由余弦定理得2222cos 92235b a c ac B =+-=+-⨯=,所以b =由正弦定理得sin sin sin sin c b c B C C B b =⇒==.(2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5ADC ∠==.由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以cos C == 所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅3455⎛⎫=+-= ⎪⎝⎭由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以cos DAC ∠==所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题. 17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低? 【答案】(1)120米(2)20O E '=米 【解析】 【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果. 【详解】(1)由题意得2311||40640||8040800O A O A ''=-⨯+⨯∴= ||||||8040120AB O A O B ''∴=+=+=米(2)设总造价为()f x 万元,21||8016040O O '=⨯=,设||O E x '=, 32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x '∴=+-∴=-=∴=(0舍去)当020x <<时,()0f x '<;当2040x <<时,()0f x '>,因此当20x =时,()f x 取最小值,答:当20O E '=米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥ ∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x = ∴()4,Q Q y∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d . ∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+ ∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==⨯⨯⨯=⋅ ∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[], D m n =⊆⎡⎣,求证:n m -【答案】(1)()2h x x =;(2)[]0,3k ∈;(3)证明详见解析 【解析】 【分析】(1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式. (2)先由()()0h x g x -≥,求得k 的一个取值范围,再由()()0f x h x -≥,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由()()f x h x ≥,求得t 的取值范围,由方程()()0g x h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =. 又()1x F x k x-'=⋅. 若k 0<,则()F x 在()0,1上递增,在()1,+?上递减,则()()10F x F ≤=,即()()0h x g x -≤,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意. 当0k >时, ()F x 在()0,1上递减,在()1,+?上递增,则()()10F x F ≥=,即()()0h x g x -≥,符合题意. 综上所述,0k ≥.由()()()21f x h x x x kx k -=-+--()()2110x k x k =-+++≥当102k x +=<,即1k <-时,()211y x k x k =-+++在()0,+?为增函数,因为()()0010f h k -=+<,故存在()00,x ∈+∞,使()()0f x h x -<,不符合题意.当102k x +==,即1k =-时,()()20f x h x x -=≥,符合题意. 当102k x +=>,即1k >-时,则需()()21410k k ∆=+-+≤,解得13k -<≤. 综上所述,k 的取值范围是[]0,3k ∈.(3)因为()423422243248x x t t x t t x -≥--+≥-对任意[,][x m n ∈⊂恒成立,()423422432x x t t x t t -≥--+对任意[,][x m n ∈⊂恒成立,等价于()222()2320x t xtx t -++-≥对任意[,][x m n ∈⊂恒成立.故222320x tx t ++-≥对任意[,][x m n ∈⊂恒成立 令22()232M x x tx t =++-,当201t <<,2880,11t t ∆=-+>-<-<,此时1n m t -≤<<,当212t ≤≤,2880t ∆=-+≤,但()234248432x t t x t t -≥--+对任意的[,][x m n ∈⊂恒成立.等价于()()()2322443420x t t x t t --++-≤对任意的[,][x m n ∈⊂恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-⋅=,所以12=n m x x --==令[]2,1,2t λλ=∈,则n m -=构造函数()[]()325381,2P λλλλλ=-++∈,()()()23103331P λλλλλ'=-+=--,所以[]1,2λ∈时,()0P λ'<,()P λ递减,()()max 17P P λ==.所以()max n m -=n m -≤【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk kn n n SS a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由, 【答案】(1)1(2)21,134,2n n n a n -=⎧=⎨⋅≥⎩(3)01λ<< 【解析】 【分析】(1)根据定义得+11n n n S S a λ+-=,再根据和项与通项关系化简得11n n a a λ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1)3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ; (3)根据定义得111333+11n n n SS a λ+-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/Q (2)11221100n n n n na S S S S ++>∴>∴->Q111222+1+1)n nn n S S S S -=-Q 1111112222222+1+1+11()()()3n n n n n n S S S S S S ∴-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -∴-=+∴∴∴= 111S a ==,14n n S -=1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n n S S ∴=或11221123333333+1+1+1()()n n n n n n S S S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n SS S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去.综上,01λ<<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域..................内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =⎧⎨=⎩;(2)121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【解析】 【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值; (2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点()2,1A -在矩阵 11 a M b ⎡⎤=⎢⎥-⎣⎦对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦∴21324a b -=⎧⎨--=-⎩,解得22a b =⎧⎨=⎩(2)设1m n Mc d -⎡⎤=⎢⎥⎣⎦,则12 2 1 0=2 20 1m c n d MM m c n d -++⎡⎤⎡⎤=⎢⎥⎢⎥-+-+⎣⎦⎣⎦∴21202021m c n d m c n d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得25151525m n c d ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩∴121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2))4π【解析】 【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B为直线6πθ=上,故其直角坐标方程为y x =,又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=. (2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=, 当4πθ=时ρ= 当54πθ=时0ρ=-<,舍;即所求交点坐标为当),4π 【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题. C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤. 【答案】22,3⎡⎤-⎢⎥⎣⎦【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CDBD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.【答案】(1(2【解析】【分析】 (1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果. 详解】(1)连,CO BC CD BO OD CO BD ==∴⊥Q以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴(1,0,2),(1,1,1)cos ,15AB DE AB DE ∴=-=∴<>==-uu u r uuu r uu u r uuu r从而直线AB 与DE所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =11200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩ 令112,1(2,1,1)y x z n =∴=-=∴=-u r设平面DEF 一个法向量为2111(,,),n x y z =u u r 11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩ 令111272,5(2,7,5)y x z n =-∴==∴=-u ur12cos ,n n ∴<>==u r u u r 因此sin θ== 【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题. 25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1·q 1和p 2·q 2; (2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) .【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+ 【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯ (2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯, 111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯, 因此112122+333n n n n p q p q --+=+, 从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-, 即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+. 又n X 的分布列为故1()213n n n nE X p q =+=+. 【点睛】本题考查古典概型概率、概率中递推关系、构造法求数列通项、数学期望公式,考查综合分析求解能力,属难题.。

2020年江苏省高考数学最后一卷 (含答案解析)

2020年江苏省高考数学最后一卷 (含答案解析)

2020年江苏省高考数学最后一卷一、填空题(本大题共14小题,共70.0分)1.已知集合A={0,1,2},B={x|−1<x<1},则A∩B=________.2.若复数z=i(2−z),则z=______ .3.读如下两个伪代码,完成下列题目.(1)Ⅰ输出的结果为________.(2)若Ⅰ、Ⅱ输出的结果相同,则伪代码Ⅱ输入x的值为________.4.已知样本2000个,其频率分布直方图如下,那么在[2,8)之间的有__________个.5.用红、黄、蓝三种不同的颜色给A,B两点涂色,每个点只涂一种颜色,则点A,点B颜色不同的概率为____________.6.函数f(x)=Asin(ωx+φ)(A>0,ω>0)在R上的部分图象如图所示,则ω的值为______ .7. 在平面直角坐标系xOy 中,双曲线x 2m+1−y 2=1的离心率为2,则实数m 的值是_________. 8. 已知等差数列{a n }的前n 项和为S n ,若a1+a 200=1,则S 200=_____ 9. 若一个圆锥的母线与底面所成的角为π6,体积为125π,则此圆锥的高为_______。

10. 如图,在圆C 中,C 为圆心,AC 为圆的半径,AB 是弦,若|AB ⃗⃗⃗⃗⃗ |=6,则AC⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =______.11. 若sinα=45,则sin(α−π4)+√22cosα=__________. 12. 在平面直角坐标系xOy 中,已知圆M :x 2+y 2−4x −8y +12=0,圆N 与圆M 外切于点(0,m),且过点(0,−2),则圆N 的标准方程为______________.13. 已知函数f(x)={k(x +2),x ≤0−lnx,x >0(k <0),若函数y =f(f(x))−1有3个零点,则实数k 的取值范围为______ .14. 已知△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且满足2a 2+bc =6,则△ABC 面积的最大值为______.二、解答题(本大题共11小题,共142.0分)15. 如图,在三棱锥ABC −A 1B 1C 1中,AB =AC ,,,D ,E 分别是AB 1,BC的中点.求证:(1)DE//平面ACC 1A 1;(2)AE ⊥平面BCC 1B 1.16.如图,在△ABC中,∠B=30°,AC=2√5,D是边AB上一点.(Ⅰ)求△ABC的面积的最大值;(Ⅱ)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.17.某社区有一块直角三角形的闲置土地MON,OM=ON=60米,该区域内有处P,点P到边界OM的距离PC=20米,点P到边界ON的距离PD=10米.社区为改善居民生活环境,决定将其改造为居民休闲广场.方案为:经过点P修建一条笔直小路(两端A,B分别在边界OM,ON上,宽度不计)将该区域分为两部分,在区域AOB内安装健身器材,平均每平方米造价600元,剩余区域种植草皮,每平方米造价100元.(1)当OP ⊥AB 时,求休闲广场的总造价为多少元?(2)求休闲广场总造价的最低费用为多少元?18. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为,F 1和F 2,上顶点为B ,BF 2,延长线交椭圆于点A ,△ABF 的周长为8,且BF 1⃗⃗⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =0.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l ⊥AB 且与椭圆C 相交于两点P ,Q ,求|PQ|的最大值.19.已知函数f(x)=lnx.(1)若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,求实数p的值.(2)若函数g(x)=x−mx−2f(x)(m∈R)有两个极值点,求实数m的取值范围.20.已知数列{a n}中,a1=1,其前n项和为S n,且满足a n=2S n22S n−1(n≥2,n∈N+).(Ⅰ)求证:数列{1S n}是等差数列;(Ⅱ)证明:13S1+15S2+17S3+⋯+12n+1S n<12.21.已知矩阵[122a ]的属于特征值b的一个特征向量为[11],求实数a、b的值.22.已知曲线C的极坐标方程为,直线l:θ=a(a∈[0,π),ρ∈R)与曲线C相交于M、N两点.以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系.(Ⅰ)求曲线C的参数方程;(Ⅱ)记线段MN的中点为P,若|OP|⩽λ恒成立,求实数λ的取值范围.23.设实数a,b,c满足a+2b+3c=4,求证:a2+b2+c2≥8.724.如图,已知正方体ABCD−A1B1C1D1的棱长为2,点M,N分别为A1A和B1B的中点.(Ⅰ)求异面直线CM与D1N所成角的余弦值;(Ⅱ)求点D1到平面MDC的距离.25.设随机变量X的分布列为P(X=k)=1,k=1,2,3,4,5.求E(X+2)2,V(2X−1).5-------- 答案与解析 --------1.答案:{0}解析:【分析】本题考查集合的交集运算,属于基础题.直接利用交集定义即可求得答案.【解答】解:根据交集的定义可得A∩B={0}.故答案为{0}.2.答案:1+i解析:解:复数z=i(2−z),则z=2i1+i =2i(1−i)(1+i)(1−i)=1+i.故答案为:1+i.化简已知条件,利用复数的除法的运算法则化简求解即可.本题考查复数的代数形式的混合运算,基本知识的考查.3.答案:(1)6(2)0解析:【分析】本题考查算法中的赋值语句,(1)根据题中的伪代码直接写出答案;(2)利用两个伪代码输出结果相同,得到关于x的方程,即可求出x的值,属基础题.【解答】解:(1)第一次赋值:x=1;第二次赋值:x=2×1=2;第三次赋值:x=3×2=6,输出:6.(2)由伪代码可知Ⅱ输出的结果是x2+6,若Ⅰ、Ⅱ输出的结果相同,则x2+6=0,解得x=0.故答案为(1)6(2)0.4.答案:880解析:本题考查频率分布直方图的应用,属于简单题。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD 上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x ∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”, 又是“P(3)数列”, 证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k 次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A ∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==, 故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=, =, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m, n ∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50, =(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n ∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD ⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面, 所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为,两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ), 由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=,∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F 1重合, 不满足题意,当m≠1时, =, =,由l 1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或, 无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N 作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:由数列{a n }是“P (2)数列”则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , ① 数列{a n }是“P (3)数列”a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , ②由①可知:a n ﹣3+a n ﹣2+a n +a n +1=4a n ﹣1, ③a n ﹣1+a n +a n +2+a n +3=4a n +1, ④由②﹣(③+④):﹣2a n =6a n ﹣4a n ﹣1﹣4a n +1,整理得:2a n =a n ﹣1+a n +1,∴数列{a n }是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0, b ∈R )有极值, 且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P (A 2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=,k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0), D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷及答案详解,

2020年江苏省高考数学试卷一、填空题1. 已知集合B={0,2,3},A={−1,0,1,2},则A∩B=________.2. 已知i是虚数单位,则复数z=(1+i)(2−i)的实部是________.3. 已知一组数据4,2a,3−a,5,6的平均数为4,则a的值是________.4. 将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.5. 下图是一个算法流程图,若输出y值为−2,则输入x的值是________.6. 在平面直角坐标系xOy中,若双曲线x2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是________.7. 已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(−8)的值是________.8. 已知sin2(π4+α)=23,则sin2α的值是________.9. 如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正________cm 2.10. 将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是________.11. 设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是________.12. 已知5x 2y 2+y 4=1(x,y ∈R ),则x 2+y 2的最小值是________.13. 在△ABC 中,AB =4, AC =3, ∠BAC =90∘,D 在边BC 上,延长AD 到P ,使得AP =9.若PA →=mPB →+(32−m)PC →(m 为常数),则CD 的长度是________.14. 在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C:x 2+(y −12)2=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________. 二、解答题15. 在三棱柱ABC −A 1B 1C 1中, AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证: EF//平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16. 在△ABC中,角A,B,C的对边分别为a,b,c,己知a=3,c=√2,∠B=45∘.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=−45,求tan∠DAC的值.17. 某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF. 且CE为80米,其中C,E在AB上(不包括端点). 桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?18. 在平面直角坐标系xOy中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →⋅QP →的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19. 已知关于x 的函数y =f (x ) ,y =g (x )与ℎ(x )=kx +b (k,b ∈R )在区间D 上恒有f (x )≥ℎ(x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=−x 2+2x ,D =(−∞,+∞),求ℎ(x )的表达式;(2)若f (x )=x 2−x +1,g (x )=k ln x ,ℎ(x )=kx −k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4−2x 2,g (x )=4x 2−8,ℎ(x )=4(t 3−t )x −3t 4+2t 2(0<|t|≤√2),D =[m,n ]⊂[−√2,√2],求证:n −m ≤√7.20. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k=λa n+11k成立,则称此数列为“λ−k ”数列. (1)若等差数列是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.参考答案与试题解析2020年江苏省高考数学试卷一、填空题1.【答案】{0,2}【考点】交集及其运算【解析】集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素组成的集合,叫做集合A与集合B的交集,记作A∩B.【解答】解:集合B={0,2,3},A={−1,0,1,2},则A∩B={0,2}.故答案为:{0,2}.【点评】此题暂无点评2.【答案】3【考点】复数代数形式的混合运算复数的基本概念【解析】此题暂无解析【解答】解:z=(1+i)(2−i)=3+i,则实部为3.故答案为:3.【点评】此题暂无点评3.【答案】2【考点】众数、中位数、平均数【解析】此题暂无解析【解答】=4,解:由4+2a+(3−a)+5+65可知a=2.故答案为:2.此题暂无点评4.【答案】19【考点】列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:总事件数为6×6=36,满足条件的事件为(1, 4),(2, 3),(3, 2),(4, 1)为共4种,则点数和为5的概率为436=19.故答案为:19.【点评】此题暂无点评5.【答案】−3【考点】程序框图【解析】此题暂无解析【解答】解:由题可知当y=−2时,当x>0时,y=2x=−2,无解;当x<0时,y=x+1=−2,解得:x=−3. 故答案为:−3.【点评】此题暂无点评6.【答案】32【考点】双曲线的渐近线双曲线的离心率【解析】此题暂无解析【解答】解:由x 2a2−y25=1得渐近线方程为y=±√5ax.∴c2=a2+5=9,∴c=3,∴离心率e=ca =32.故答案为:32. 【点评】此题暂无点评7.【答案】−4【考点】函数奇偶性的性质函数的求值【解析】此题暂无解析【解答】解:y=f(x)是奇函数,当x≥0时,f(x)=x 2 3,则f(−8)=−f(8)=−823=−4.故答案为:−4.【点评】此题暂无点评8.【答案】13【考点】二倍角的余弦公式运用诱导公式化简求值【解析】此题暂无解析【解答】解:因为sin2(π4+α)=23,由sin2(π4+α)=12[1−cos(π2+2α)]=12(1+sin2α)=23,解得sin2α=13.故答案为:13.9.【答案】12√3−π2【考点】柱体、锥体、台体的体积计算【解析】此题暂无解析【解答】解:记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,内孔的体积为V2,则V1=6×12×2×2×sin60∘×2=12√3,V2=π×(0.5)2×2=π2,所以V=V1−V2=12√3−π2.故答案为:12√3−π2.【点评】此题暂无点评10.【答案】x=−5π24【考点】函数y=Asin(ωx+φ)的图象变换正弦函数的对称性【解析】此题暂无解析【解答】解:因为f(x)=3sin(2x+π4),将函数f(x)=3sin(2x+π4)的图象向右平移π6个单位长度得:g(x)=f(x−π6)=3sin(2x−π3+π4)=3sin(2x−π12),则y=g(x)的对称轴为2x−π12=π2+kπ,k∈Z,即x=7π24+kπ2,k∈Z.当k=0时,x=7π24,当k=−1时,x=−5π24,故答案为:x =−5π24. 【点评】 此题暂无点评 11.【答案】 4【考点】等差数列与等比数列的综合 数列的求和【解析】 此题暂无解析 【解答】解:因为{a n +b n }的前n 项和为: S n =n 2−n +2n −1(n ∈N ∗), 当n =1时,a 1+b 1=1,当n ≥2时,a n +b n =S n −S n−1 =2n −2+2n−1, 所以当n ≥2时,a n =2(n −1),b n =2n−1,且当n =1时,a 1+b 1=0+1=1成立, 则d =a 2−a 1=2−0=2, q =b 2b 1=21=2,则d +q =4. 故答案为:4. 【点评】 此题暂无点评 12. 【答案】45【考点】基本不等式在最值问题中的应用 【解析】 此题暂无解析 【解答】解:4=(5x 2+y 2)⋅4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2, 即x 2=310,y 2=12时取(x 2+y 2)min =45.【点评】 此题暂无点评 13. 【答案】 185【考点】二倍角的正弦公式 正弦定理 向量的共线定理 【解析】 此题暂无解析 【解答】解:由向量系数m +(32−m)=32为常数, 结合等和线性质可知|PA →||PD →|=321,故PD =23PA =6,AD =PA −PD =3=AC ,故∠C =∠CDA ,故∠CAD =π−2C . 在△ABC 中,cos C =ACBC =35.在△ADC ,由正弦定理CDsin ∠CAD =ADsin C , 即CD =sin (π−2C)sin C⋅AD =sin 2C sin C⋅AD =2AD cos C=2×35×3=185.故答案为:185. 【点评】 此题暂无点评 14. 【答案】10√5 【考点】与圆有关的最值问题 利用导数研究函数的最值【解析】 此题暂无解析 【解答】解:如图,作PC 所在直径EF ,交AB 于点D ,∵PA=PB,CA=CB=R=6,∴PC⊥AB.∵EF为直径,要使面积S△PAB最大,则P,D位于C点两侧,并设CD=x,计算可知PC=1,故PD=1+x, AB=2BD=2√36−x2,故S△PAB=12AB⋅PD=(1+x)⋅√36−x2.令x=6cosθ,其中θ∈(0, π2),S△PAB=(1+x)√36−x2=(1+6cosθ)⋅6sinθ=6sinθ+18sin2θ.记函数f(θ)=6sinθ+18sin2θ,则f′(θ)=6cosθ+36cos2θ=6(12cos2θ+cosθ−6).令f′(θ)=6(12cos2θ+cosθ−6)=0,解得cosθ=23或cosθ=−34<0(舍去),显然,当0≤cosθ<23时,f′(θ)<0,f(θ)单调递减;当23<cosθ<1时,f′(θ)>0,f(θ)单调递增.结合cosθ在(0,π2)递减,故cosθ=23时,f(θ)最大,此时sinθ=√1−cos2θ=√53,故f(θ)max=6×√53+36×√53×23=10√5,即△PAB面积的最大值是10√5.故答案为:10√5.【点评】此题暂无点评二、解答题15.【答案】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【考点】平面与平面垂直的判定直线与平面平行的判定【解析】此题暂无解析【解答】证明:(1)因为E,F分别是AC,B1C的中点,所以EF//AB1.因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF//平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂面ABC,所以B1C⊥AB.又因为AB⊥AC,AC∩B1C=C,AC⊂面AB1C,B1C⊂面AB1C,所以AB⊥面AB1C.因为AB⊂面ABB1,所以平面AB1C⊥平面ABB1.【点评】此题暂无点评16.【答案】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【考点】两角和与差的正弦公式余弦定理正弦定理同角三角函数间的基本关系【解析】此题暂无解析【解答】解:(1)由余弦定理,得cos B=cos45∘=a2+c2−b22ac=26√2=√22,因此b2=5,即b=√5.由正弦定理csin C =bsin B,得√2sin C=√5√22,因此sin C=√55.(2)因为cos∠ADC=−45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2, π),所以C∈(0, π2),所以cos C=√1−sin2∠C=2√55,所以sin∠DAC=sin(π−∠DAC)=sin(∠ADC+∠C) =sin∠ADC cos C+cos∠ADC sin C=2√525.因为∠DAC∈(0, π2),所以cos∠DAC=√1−sin2∠DAC=11√525,故tan∠DAC=sin∠DACcos∠DAC =211.【点评】此题暂无点评17.【答案】解:(1)过A,B分别作MN的垂线,垂足为A1,B1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【考点】利用导数研究函数的最值 函数模型的选择与应用【解析】 此题暂无解析 【解答】解:(1)过A ,B 分别作MN 的垂线,垂足为A 1,B 1,则AA 1=BB 1=−1800×403+6×40=160. 令140a 2=160,得a =80,所以AO ′=80,AB =AO ′+BO ′=80+40=120(米). 故桥AB 的长度为120米.(2)设O ′E =x ,则CO ′=80−x , 由{0<x <40,0<80−x <80, 解得:0<x <40, 则总造价y =3k 2[160−140(80−x )2]+k [160−(−1800x 3+6x)] =k 800(x 3−30x 2+160×800)(0<x <40),则y ′=k800(3x 2−60x )=3k800x (x −20).因为k >0,所以令y ′=0,得x =0或20, 所以当0<x <20时, y ′<0,y 单调递减; 当20<x <40时, y ′>0,y 单调递增,所以,当x =20时,y 取最小值155k ,此时造价最低. 答: O ′E 为20米时,桥墩CD 与EF 的总造价最低. 【点评】 此题暂无点评 18.【答案】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32), 设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0, 所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点.设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95,所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0,或{x M =−27,y M =−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4). 联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127).【考点】圆锥曲线中的定点与定值问题 椭圆中的平面几何问题 直线与椭圆结合的最值问题【解析】 此题暂无解析 【解答】解:(1)由题意知,△AF 1F 2的周长l =2a +2c =6. (2)由椭圆方程得A (1,32),设点P (t,0),则直线AP 方程为y =321−t(x −t ).令x =a 2c=4,得y Q =6−32t 1−t,即Q(4,12−3t 2−2t),则QP →=(t −4,12−3t 2t−2),所以OP →⋅QP →=t 2−4t =(t −2)2−4≥−4, 即OF →⋅QP →的最小值为−4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2. 若S 2=3S 1,则12×|AB|×d 2=12×|AB|×d 1×3, 即d 2=3d 1.由题意可得直线AB 方程为y =34(x +1),即3x −4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点. 设平行于AB 的直线l 为3x −4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =−6或12. 当m =−6时,直线l 为3x −4y −6=0,即y =34(x −2). 联立{y =34(x −2),x 24+y 23=1,可得(x −2)(7x +2)=0,即{x M =2,y M =0或{x M =−27,y M=−127,所以M(2,0)或(−27,−127).当m =12时,直线l 为3x −4y +12=0,即y =34(x +4).联立{y =34(x +4),x 24+y 23=1,可得214x 2+18x +24=0,Δ=9×(36−56)<0,所以无解. 综上所述,M 点坐标为(2,0)或(−27,−127). 【点评】 此题暂无点评 19. 【答案】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为由函数y=f x的图像可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84,所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【考点】利用导数研究不等式恒成立问题函数与方程的综合运用利用导数研究曲线上某点切线方程利用导数研究函数的单调性导数的几何意义【解析】此题暂无解析【解答】(1)解:由f(x)=g(x),得x=0,f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图像为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x符合题意.(2)解:ℎ(x)−g(x)=k(x−1−ln x),设φ(x)=x−1−ln x,则φ′(x)=1−1x =x−1x,可得φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0.令p(x)=f(x)−ℎ(x)=x2−x+1−(kx−k) =x2−(k+1)x+(1+k)≥0,得当x=k+1≤0时,f(x)在(0,+∞)上递增,所以p(x)>p(0)=1+k≥0,所以k=−1;当k+1>0时,Δ≤0,即(k+1)2−4(k+1)≤0,(k+1)(k−3)≤0,−1<k≤3.综上,k∈[0,3].(3)证明:因为f(x)=x4−2x2,所以f′(x)=4x3−4x=4x(x+1)(x−1),所以函数y=f(x)的图像在x=x0处的切线为y=(4x03−4x0)(x−x0)+(x04−2x02)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图像在x=t(0<|t|≤√2)处的切线.又因为当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2].又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0.设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t4−8)=√t6−5t4+3t2+8.令t2=λ,则λ∈[1,2],由图像可知n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√φ(λ)max=√7,即n−m≤√7.【点评】此题暂无点评20.【答案】解:(1)k=1时,a n+1=S n+1−S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1.(2)√S n+1−√S n=√3√a n+1,3a n+1=S n+1−S n=√3√a n+1(√S n+1+√S n),3因此√S n+1+√S n=√3√a n+1,√3a n+1,即√S n+1=23S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n }; ④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β, 则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【考点】数列递推式一元二次方程的根的分布与系数的关系 等比数列的通项公式等差数列的性质【解析】此题暂无解析【解答】解:(1)k =1时,a n+1=S n+1−S n =λa n+1, 由n 为任意正整数,且a 1=1,a n ≠0, 可得λ=1.(2)√S n+1−√S n =√33√a n+1, a n+1=S n+1−S n =√33√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3√a n+1, 即√S n+1=23√3a n+1, S n+1=43a n+1=43(S n+1−S n ), 所以S n+1=4S n .又S 1=a 1=1,S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2.综上,a n ={1,n =1,3⋅4n−2,n ≥2.(n ∈N ∗) (3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ). 由a 1=1,a n ≥0,且S n >0, 令p n =(S n+1S n )13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0可得p n =1,则S n+1=S n ,即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n }; λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0,①t ≤1时,p n 2+(1−t)p n +1>0,则p n =1,同理不存在三个不同的数列{a n };②1<t <3时,Δ=(1−t)2−4<0,p n 2+(1−t)p n +1=0无解,则p n =1,同理不存在三个不同的数列{a n }; ③t =3时,(p n −1)3=0, 则p n =1,同理不存在三个不同的数列{a n };④t >3即0<λ<1时,Δ=(1−t)2−4>0, p n 2+(1−t)p n +1=0有两解α,β. 设α<β,α+β=t −1>2,αβ=1>0, 则0<α<1<β,则对任意n ∈N ∗,S n+1S n =1或S n+1S n =α3或S n+1S n =β3,此时S n =1,S n ={1,n =1,α3,n ≥2,S n ={1,n =1,2β3,n ≥3均符合条件, 对应a n ={1,n =1,0,n ≥2,a n ={1,n =1,α3−1,n =2,0,n ≥3,a n ={1,n =1,β3−1,n =3,0,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0. 综上,0<λ<1.【点评】此题暂无点评。

2020年江苏省高考数学试卷(含详细解析)

2020年江苏省高考数学试卷(含详细解析)

保密★启用前2020年江苏省高考数学试卷—.■总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分1.已知集合A=(—l,0,l,2},g=(0,2,3},则AC\B=.2.己知i是虚数单位,则复数Z=(l+i)(2-i)的实部.3.己知一组数据4.2劣3—",5,6的平均数为4,则。

的值是______.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是______.5.如图是一个算法流程图.若输出)'的值为-2,则输入.1的值是•6.在平而直角坐标系X。

),中,若双曲线竺-22=l(a>0)的一条渐近线方程为y=2^/52 x,则该双曲线的离心率是—・7.己知.汽心)是奇函数,当官时,门刁=指,则直罚的值是8.已知sin'U+a)=二.则sin2tz的值是____.439.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.己知螺帽的底面正六边形边长为2cm.高为2cm.内孔半轻为0.5cm.则此六角螺帽右坯的体枳是—cm.10,将函数y=3sin(2wf)的图象向右平移兰个单位长度,则平移后的图象中与y轴最46近的对称轴的方程是—.11.设{叫}是公差为,的等差数列,(加J是公比为g的等比数列.已知数列{”〃+“}的前〃项和/一〃+2〃一1(〃£FT),则d+q的值是12.已知5亍八寸=1(矽苗),则J2的最小值是________.13.在△ABC中,仙=4AC=3,ZBAC=90°,D在边8C上,延长AO到F,使得AP=9.14.在平而直角坐标系xOy中.己知,0),1△是圆G”+。

-或)・=36上的两个动点,满足PA=PB,则△用8而积的最大值是二、解答题评卷人得分15.在三棱柱ABC-A\B\C}中,AB1AC.&C1平而ABC,E,F分别是AC,3C的中点......O...........O.....I-.....O.....滨......O............O ※※寒※※即※※田※※s?I※※II※※堞※※I※※群※※点※※军浓※(1)求证:段〃平而/IF i C i:(2)求证:平面AB.CL平而ABB,.16.在△ABC中,角A. B.C的对边分别为〃,b,c,己知”=3.c=JI b=45Q.1)⑴求sinC的值:4(2)在边8C上取一点。

2020年江苏省徐州市高考数学春季联考数学试卷(5月份)(附答案详解)

2020年江苏省徐州市高考数学春季联考数学试卷(5月份)(附答案详解)

2020年江苏省徐州市高考数学春季联考数学试卷(5月份)一、单空题(本大题共14小题,共70.0分)1.设全集,集合A={−1,0,1,2,3},B={x|x≥2},则A∩∁U B=______ .2.复数i1−i的虚部是______ .3.某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这100名同学中学习时间在6~8小时内的同学为______ 人.4.如图是一个算法的流程图,若输入的x的值为1,则输出的S的值为______5.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为______.6.设正四棱锥的底面边长为4√2,侧棱长为5,则该四棱锥的体积为______.7.若将函数f(x)=sin(2x+π3)的图象沿x轴向右平移φ(φ>0)个单位后所得的图象关于y轴对称,则φ的最小值为______.8.已知{a n}为等差数列,其公差为2,且a7是a3与a9的等比中项,S n为{a n}前n项和,则S10的值为______.9.双曲线x2a2−y2b2=1的一条渐近线与圆C:(x−1)2+y2=1相交于A,B两点且10. 函数y =√−x 2−3x+4ln(x+1)的定义域是______ .11. 已知x ,y ∈R ,且x >1,若(x −1)(y −2)=1,则xy +6x +y +6的最小值为______.12. 在△ABC 中,若∠BAC =120°,BA =2,BC =3,BM ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ ,则MA ⃗⃗⃗⃗⃗⃗ ⋅MC ⃗⃗⃗⃗⃗⃗ =______.13. 已知圆O :x 2+y 2=4,直线l 与圆O 交于P ,Q 两点,A(2,2),若AP 2+AQ 2=40,则弦PQ 的长度的最大值为______.14. 函数f(x)满足f(x)=f(x −4),当x ∈[−2,2)时,f(x)={2x +3x 2+a,−2≤x ≤a 1−x,a <x <2,若函数f(x)在[0,2020)上有1515个零点,则实数a 的取值范围为______.二、解答题(本大题共11小题,共150.0分)15. 已知向量m ⃗⃗⃗ =(cosx,sinx),n ⃗ =(√3sinx,sinx),函数f(x)=m⃗⃗⃗ ⋅n ⃗ . (1)求函数f(x)的最小正周期.(2)若α∈(0,π2),f(α2)=1310,求sinα的值.16. 如图,在直三棱柱ABC −A 1B 1C 1中,AC ⊥BC ,M 是棱CG 上的一点.(1)求证:BC ⊥AM ;(2)若M ,N 分别是CC 1,AB 的中点,求证:CN//平面AMB 1.17.如图,某生态农庄内有一直角梯形区域ABCD,AB//CD,AB⊥BC,AB=6百米,CD=4百米.该区域内原有道路AC,现新修一条直道DP(宽度忽略不计),点P在道路AC上(异于A,C两点),∠BAC=π6,∠DPA=θ.(1)用θ表示直道DP的长度;(2)计划在△ADP区域内修建健身广场,在△CDP区域内种植花草.已知修建健身广场的成本为每平方百米4万元,种植花草的成本为每平方百米2万元,新建道路DP 的成本为每百米4万元,求以上三项费用总和的最小值(单位:万元).18.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)过点(0,1),椭圆C的离心率e=√32.(1)求椭圆C的标准方程;(2)如图,设直线l与圆x2+y2=r2(1<r<2)相切于点A,与椭圆C相切于点B,当r为何值时,线段AB长度最大?并求出最大值.19.已知函数f(x)=xlnx+a和函数g(x)=lnx−ax.(1)若曲线f(x)在x=1处的切线过点A(2,−2),求实数a的值.(2)求函数ℎ(x)=g(x)+x2的单调区间.(3)若不等式f(x)+g(x)>0对于任意的x>1恒成立,求实数a的最大值.20.已知等差数列{a n}和等比数列{b n}的各项均为整数,它们的前n项和分别为S n,T n,且b1=2a1=2,b2S3=54,a2+T2=11.(1)求数列{a n},{b n}的通项公式;(2)求M n=a1b1+a2b2+a3b3+⋯+a n b n;(3)是否存在正整数m,使得S m+T m+1恰好是数列{a n}或{b n}中的项?若存在,求出所S m+T m有满足条件的m的值;若不存在,说明理由.21.已知二阶矩阵M=[a13b ]的特征值λ=−1所对应的一个特征向量e1⃗⃗⃗ =[1−3].(1)求矩阵M;(2)设曲线C在变换矩阵M作用下得到的曲线C′的方程为xy=1,求曲线C的方程.22.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若直线l的极坐标方程为ρsin(θ−π4)=3√2.(1)把直线l的极坐标方程化为直角坐标方程;(2)已知P为椭圆C:x23+y2=1上一点,求P到直线l的距离的最小值.23.已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.24.已知A(x1,y1),B(x2,y2)是抛物线C:x2=2py(p>0)上不同两点.(1)若抛物线C的焦点为F,D(x0,y0)为AB的中点,且AF+BF=4+2y0,求抛物线C的方程;(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=p24,是否存在直线AB,使得1PA +1PB=3PQ?若存在,求出直线AB的方程;若不存在,请说明理由25.已知数集A={a1,a2,…,a n},其中0≤a1<a2<⋯<a n,且n≥3,若对∀i,j(1≤i≤j≤n),a j+a i与a j−a i两数中至少有一个属于A,则称数集A具有性质P.(Ⅰ)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P,说明理由;(Ⅱ)已知数集A={a1,a2…a8}具有性质P,判断数列a1,a2…a8是否为等差数列,若是等差数列,请证明;若不是,请说明理由.答案和解析1.【答案】{−1,0,1}【解析】【分析】本题考查了集合的定义与计算问题,属于基础题.根据补集与交集的定义,写出∁U B与A∩∁U B即可.【解答】解:因为全集,集合B={x|x≥2},所以∁U B={x|x<2},因为集合A={−1,0,1,2,3},所以A∩∁U B={−1,0,1},故答案为:{−1,0,1}.2.【答案】12【解析】解:复数i1−i =i(1+i)(1−i)(1+i)=−1+i2,它的虚部为:12,故答案为:12.复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式,即可.本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.3.【答案】30【解析】解:∵这100名同学中学习时间在6~8小时外的频率为(0.04+0.12+0.14+0.05)×2=0..7∴这100名同学中学习时间在6~8小时内为1−0.7=0.3∴这100名同学中学习时间在6~8小时内的同学为100×0.3=30故答案为:30率和为1,求出在6~8小时内的频率;利用频数等于频率乘以样本容量,求出这100名同学中学习时间在6~8小时内的同学的人数.本题考查频率分布直方图中,频率等于纵坐标乘以组距、考查频数等于频率乘以样本容量.4.【答案】100【解析】解:由流程图知,第一次循环:x=1,S=1,不满足S≥50第二次循环:x=2,S=9;不满足S≥50第三次循环:x=3,S=36,不满足S≥50第四次循环:x=4,S=100,满足S≥50此时跳出循环,所以输出S=100.故答案为:100.据流程图可知,计算出S,判定是否满足S≥50,不满足则循环,直到满足就跳出循环即可.本题考查算法流程图,直到型循环结构.循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.5.【答案】34【解析】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙,丙也各有两种选法,根据乘法原理可知:共有23=8中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,则他们不同在一个食堂用餐的选法有8−2=6;他们不同在一个食堂用餐的概率为68=34.故答案为:34先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出熟练掌握分步乘法原理和古典概型的概率计算公式是解题的关键.6.【答案】32【解析】解:正四棱锥的底面边长是4√2,侧棱长为5,底面对角线长为:8.所以棱锥的高为:√52−42=3.所以棱锥的体积为:13×4√2×4√2×3=32.故答案为:32.求出棱锥的高与底面面积,即可求解棱锥的体积.本题考查棱锥的体积的求法,求解棱锥的高是解题的关键.7.【答案】512π【解析】解:函数f(x)=sin(2x+π3)的图象沿x轴向右平移φ(φ>0)个单位后所得函数g(x)=sin(2x−2φ+π3)的图象,由于函数g(x)的图象关于y轴对称,所以:−2φ+π3=kπ+π2,整理得:φ=−kπ2−π12,当k=−1时,φ=5π12,故答案为:5π12.直接利用三角函数关系式的变换和正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.8.【答案】−110【解析】解:{a n}为等差数列,其公差为2,由a7是a3与a9的等比中项,可得a72=a3a9,即(a1+12)2=(a1+4)(a1+16),解得a1=−20,则S10=10×(−20)+12×10×9×2=−110.故答案为:−110.由等比数列的中项性质和等差数列的通项公式,解方程可得首项,再由等差数列的求和公式,计算可得所求和.本题考查等差数列的通项公式和求和公式的运用,以及等比数列的中项性质,考查方程思想和化简运算能力,是一道基础题.9.【答案】√2【解析】解:双曲线x2a2−y2b2=1的一条渐近线:bx−ay=0,圆(x−1)2+y2=1相交于A、B两点,圆的圆心(1,0),半径为1,∠ACB=90°,圆心到直线的距离为:√22,可得:√a2+b2=√22.解得b=a,c=√2a.双曲线的离心率为√2.故答案为:√2.求出双曲线的渐近线方程,利用圆的半径与半弦长,圆心到直线的距离满足的勾股定理求解即可.本题考查直线与圆的位置关系的综合应用,双曲线的离心率的求法,考查计算能力.10.【答案】(−1,0)∪(0,1]【解析】【分析】本题考查了函数定义域的求解,做这类题目的关键是找对自变量的限制条件,属于基础题.根据函数的定义,为求得使函数的解析式有意义的自变量x取值范围,我们可以构造关于自变量x的不等式,解不等式即可得到答案.【解答】解:要使函数y=√−x2−3x+4ln(x+1)有意义,则需满足2解之得,−1<x ≤1且x ≠0, ∴函数y =√−x 2−3x+4ln(x+1)的定义域是(−1,0)∪(0,1].故答案是(−1,0)∪(0,1].11.【答案】25【解析】解:∵x >1,(x −1)(y −2)=1,∴y >2. 则xy +6x +y +6=(x −1)(y −2)+8(x −1)+2(y −2)+16≥2√8(x −1)⋅2(y −2)+17=25,当且仅当8(x −1)=2(y −2),x =32,y =4. ∴xy +6x +y +6的最小值为25. 故答案为:25.由x >1,(x −1)(y −2)=1,可得y >2.变形xy +6x +y +6=(x −1)(y −2)+8(x −1)+2(y −2)+16,利用基本不等式的性质即可得出.本题考查基本不等式的性质、变形方法,考查了推理能力与计算能力,属于基础题.12.【答案】√6−32【解析】解:依题意,画图如下:在△ABC 中,根据余弦定理,可知 cos120°=22+AC 2−322⋅2⋅AC=−12,整理,得AC 2+2AC −5=0,解得AC =−1−√6(舍去),或AC =√6−1. 则BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ⋅(BA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) =|BA ⃗⃗⃗⃗⃗ |2+BA ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =4−AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =4−2⋅(√6−1)⋅cos120° =4−2⋅(√6−1)⋅(−12)=√6+3.∵MA⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −13BC ⃗⃗⃗⃗⃗ −12BA ⃗⃗⃗⃗⃗ =12BA ⃗⃗⃗⃗⃗ −13BC ⃗⃗⃗⃗⃗ , MC ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ −13BC ⃗⃗⃗⃗⃗ −12BA ⃗⃗⃗⃗⃗ =−12BA ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ ,∴MA ⃗⃗⃗⃗⃗⃗ ⋅MC ⃗⃗⃗⃗⃗⃗ =(12BA ⃗⃗⃗⃗⃗ −13BC ⃗⃗⃗⃗⃗ )(−12BA ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ )=−14|BA ⃗⃗⃗⃗⃗ |2+13BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +16BC ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ −29|BC ⃗⃗⃗⃗⃗ |2=−14⋅4−29⋅9+12BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗=−3+12⋅(√6+3)=√6−32. 故答案为:√6−32.本题在△ABC 中,根据余弦定理,可列出关于AC 的一元二次方程,计算出AC 的长度,然后转化BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ⋅(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )并计算值,再将BA ⃗⃗⃗⃗⃗ 、BC ⃗⃗⃗⃗⃗ 看作基底向量分别表示出MA ⃗⃗⃗⃗⃗⃗ 和MC ⃗⃗⃗⃗⃗⃗ ,然后代入MA⃗⃗⃗⃗⃗⃗ ⋅MC ⃗⃗⃗⃗⃗⃗ 进行向量的多项式运算代入数值即可得到结果. 本题主要考查向量线性表示和数量积运算问题.考查了转化与化归思想,方程思想,余弦定理,逻辑思维能力和数学运算能力.本题属中档题.13.【答案】2√2【解析】解:设M 为PQ 的中点,则2(AP 2+AQ 2)=(2AM)2+(2QM)2,即AP 2+AQ 2=2AM 2+2QM 2, ∴40=2AM 2+2(OQ 2−OM 2), ∴AM 2+4−OM 2=20, ∴AM 2−OM 2=16,设M(x,y),则(x −2)2+(y −2)2−(x 2+y 2)=16,化解得x +y +2=0, ∴OM min =|0+0+2|√2=√2,则PQ max =2√4−2=2√2.故答案为:2√2.设M 为PQ 的中点,根据2(AP 2+AQ 2)=(2AM)2+(2QM)2,化简可得点M 的轨迹方程,结合图象即可得解.本题考查直线与圆的位置关系,考查轨迹方程的求法,考查数形结合思想的运用,属于中档题.)14.【答案】[0,13【解析】【分析】由已知可得函数周期,结合函数f(x)在[0,2020)上有1515个零点,可得f(x)在[−2,2)上有3个零点,则需二次函数在[−2,a]上有两个零点,一次函数在(a,2)上有一个零点,结合二次函数零点的分布与系数间的关系列不等式组求解.本题考查分段函数零点与方程根的关系,考查二次函数零点的分布与系数之间的关系,是中档题.【解答】解:定义在R上的函数f(x)满足f(x)=f(x−4),函数的周期为4,且至多在[−2,2)上有3个零点,而[0,2020)含505个周期,∴要使函数f(x)在[0,2020)上有1515个零点,则f(x)在[−2,2)上有3个零点.设g(x)=2x+3x2+a=3x2+2x+a,该函数为二次函数,在[−2,2)上至多有两个零点,则要使f(x)在[−2,2)上有3个零点,需要函数ℎ(x)=1−x在(a,2)上有一个零点,即a< 1;∈[−2,2),函数g(x)=3x2+2x+a的对称轴方程为x=−13则g(x)在[−2,a]上有两个零点,.,解得0≤a<13).∴实数a的取值范围为[0,13).故答案为:[0,1315.【答案】解:∵向量m⃗⃗⃗ =(cosx,sinx),n⃗=(√3sinx,sinx),∴函数f(x)=m⃗⃗⃗ ⋅n⃗=√3sinxcosx+sin2x=√3sin2x2+1−cos2x2=sin(2x−π6)+12.(1)T=2π2=π;(2)f(α2)=sin(α−π6)+12=1310⇒sin(α−π6)=45,∵α∈(0,π2),∴−π6<α−π6<π3;∴cos(α−π6)=√1−sin2(α−π6)=√1−(45)2=35;∴sinα=sin[(α−π6)+π6]=sin(α−π6)cosπ6+cos(α−π6)sinπ6=45×√32+35×12=3+4√310.【解析】先根据向量的数量积以及三角函数的有关知识得到f(x)=sin(2x−π6)+12.(1)直接代入周期公式即可;(2)先根据f(α2)=1310,得到sin(α−π6)=45,再结合角的范围求得cos(α−π6)=35,最后利用两角和的正弦即可求解结论.本题考查了数量积运算性质、三角函数的性质,考查了推理能力与计算能力,属于中档题.16.【答案】解:(1)证明:在直三棱柱ABC−A1B1C1中,CC1⊥平面ABC,BC⊂平面ABC,∴CC1⊥BC,∵BC⊥AC,AC∩CC1=C,∴BC⊥平面ACC1A1,∵AM⊂平面ACC1A1,∴BC⊥AM.(2)证明:取AB1的中点为Q,连接NQ,QM,∵在△ABB1中,N,Q分别为AB,AB1中点,∴NQ//AB1,且NQ=12AB1,在直三棱柱ABC−A1B1C1中,∵BB1//CC1,且BB1=CC1,M为CC1的中点,∴CM//BB1,且CM=12BB1,∴NQ//MC,且NQ=MC,∴四边形NCMQ是平行四边形,∴NC//QM,∵NC⊄平面AMB1,QM⊂平面AMB1,∴CN//平面AMB1.【解析】(1)由已知推导出CC 1⊥BC ,BC ⊥平面ACC 1A 1,由此能证明BC ⊥AM . (2)取AB 1的中点为Q ,连结NQ ,推导出四边形NCMQ 是平行四边形,从而NC//QM ,由此能证明CN//平面AMB 1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(1)过点D 作DD′⊥AB ,垂足为D′,在Rt △ABC 中,∵AB ⊥BC ,∠BAC =π6,AB =6, ∴BC =2√3,在Rt △ADD′中,∵AD′=2,DD′=2√3,AD =4, ∴sin∠DAD′=√32, ∴∠DAD′=π3,∵∠BAC =π6,∴∠ADP =π6,在△ADP 中,由正弦定理可得AD sinθ=DPsin π6,∴DP =2sinθ,π6<θ<5π6;(2)在△ADP 中,由正弦定理可得APsin∠ADP =ADsinθ, ∴AP =4sin∠ADP sinθ=4sin(5π6−θ)sinθ,∴S △APD =12AP ⋅PD ⋅sinθ=4sin(5π6−θ)sinθ,又S △ADC =AD ⋅DC ⋅sin∠ADC =12×4×4×sin 2π3=4√3,∴S △DPC =S △ADC −S △APD =4√3−4sin(5π6−θ)sinθ,设三项费用之和为f(θ), 则f(θ)=4sin(5π6−θ)sinθ×4+(4√3−4sin(5π6−θ)sinθ)×2+2sinθ×4=12√3+4(2+cosθsinθ),π6<θ<5π6,∴f′(θ)=8(−12−cosθsin 2θ),令f′(θ)=0,解得θ=2π3,当θ∈(π6,23π)时,f′(θ)<0,函数f(θ)单调递减, 当θ∈(2π3,5π6)时,f′(θ)>0,函数f(θ)单调递增,∴f(θ)min =f(2π3)=16√3,答:三项费用总和的最小值为16√3万元.【解析】(1)根据解三角形和正弦定理可得DP =2sinθ,π6<θ<5π6,(2)分别求出S △APD ,S △ADC ,可得S △DPC ,设三项费用之和为f(θ),可得f(θ)=12√3+4(2+cosθsinθ),π6<θ<5π6,利用导数求出最值.本题考查了函数解析式的求解,解三角形,函数最值的计算,属于中档题.18.【答案】解:(1)由椭圆过的定点坐标及离心率可得b =1,c a =√32,又c 2=a 2−b 2,解得:a 2=4,b 2=1, 所以椭圆C 的标准方程:x 24+y 2=1;(2)设直线AB 的方程为:y =kx +m ,因为直线l 与圆C :x 2+y 2=r 2(1<r <2)相切于A , 所以r =√1+k 2,即m 2=r 2(1+k 2),①,因为直线l 与椭圆C 相切于B ,联立直线与椭圆的方程:{y =kx +m x 24+y 2=1,整理可得:(1+4k 2)x 2+8kmx +4m 2−4=0有两个相等的实数根,所以△=64k 2m 2−4(1+4k 2)(4m 2−4)=0,整理可得m 2=1+4k 2,② 由①②可得{m 2=3r 24−r 2k 2=r 2−14−r 2; 设B(x 1,y 1),由求根公式可得x 1=−8km2(1+4k 2)=−4km m 2=−4km ,∴y 1=kx 1+m =k(−4km )+m =−4k 2+m 2m =1m ,∴|OB|2=x 12+x 22=16k 2+1m=5−4r 2,∴在直角三角形OAB 中,|AB|2=|OB|2−|0A|2=5−4r 2−r 2=5−(r 2+4r 2)≤5−4=1,当r 4=4,即r =√2,即r=√2∈(1,2)时,|AB|取到最大值,且最大值为1.【解析】(1)由椭圆的过的店的坐标,及离心率,以及a,b,c之间的关系,求出a,b的值,进而求出椭圆的标准方程;(2)设直线l的方程,由与圆x2+y2=r2(1<r<2)相切可得圆心到直线的距离为半径,可得m,k,r之间的关系,再由与椭圆联立由相切由判别式等于0可得m,k,r之间的关系,求出弦长|AB|的表达式,由均值不等式求出|AB|的最大值.本题考查求椭圆的标准方程,及直线与椭圆相切,直线与圆相切的性质及均值不等式的应用,属于中档题.19.【答案】解:(1)因为f′(x)=lnx+1,∴f′(1)=1,结合f(1)=a,所以f(x)在x=1处的切线方程为y−a=x−1,结合切点过A(2,−2),∴−2−a=2−1,∴a=−3.(2)ℎ(x)=lnx−ax+x2的定义域为(0,+∞).ℎ′(x)=2x2−ax+1x=0,则x2−ax+1=0,令△=a2−8.①当△≤0,即−2√2≤a≤2√2时,ℎ′(x)≥0,所以ℎ(x)的增区间为(0,+∞).②当△>0,即a<−2√2或a>2√2时,2x2−ax+1=0有两个不等的实数根即:x1=a−√a2−84,x2=a+√a2−84.当a<−2√2时,x1,x2<0,∴ℎ′(x)>0,所以ℎ(x)的增区间为(0,+∞);当a>2√2时,x1>0,x2>0,令ℎ′(x)>0,则0<x<x1或x>x2;令ℎ′(x)<0,则x1<x<x2.所以ℎ(x)的增区间为(0,x1),(x2,+∞);减区间为(x1,x2).(3)令q(x)=f(x)+g(x)=(x+1)lnx−ax+a,显然q(1)=0.q′(x)=lnx+1x+1−a,(x>1).①当a≤2时,q′(x)>0,所以q(x)在(1,+∞)上递增,∴q(x)>q(1)=0,符合题意;②当a>2时,q″(x)=x−1x2>0,所以q′(x)在(1,+∞)上递增,且q′(1)=2−a<0,令x=e a,显然q′(e a)=1e a+1>0,故存在唯一实数x0>1,使得q′(x0)=0,当x∈(1,x0)时,q′(x)<0;当x∈(x0,+∞)时,q′(x)>0,所以q(x)在(1,x0)递减,所以q(x0)<q(1)=0,与q(x)>0矛盾.综上,a 的最大值为2.【解析】(1)先利用导数将x =1处的切线方程表示出来,然后将点(2,−2)代入,即可求出a 的值;(2)求出f(x)的导数,然后判断导数的符号即可;(3)利用判别式判断函数q(x)=f(x)+g(x)的零点情况,然后根据零点研究导数的符号,确定函数q(x)的单调性、最值,构造出a 的不等式求解.本题考查利用导数研究函数的单调性、极值以及最值情况,同时考查学生运用分类讨论、函数与方程思想解决问题的能力,也体现了对学生的逻辑推理、数学运算等数学核心素养的考查.属于较难的题目.20.【答案】解:(1)设等差数列{a n }的公差为d 和等比数列{b n }的公比为q ,由b 1=2a 1=2,b 2S 3=54,a 2+T 2=11,可得{2q(3+3d)=541+d +2+2q =11,解得{d =2q =3或{d =5q =32(舍去),则a n =1+2(n −1)=2n −1;b n =2⋅3n−1;(2)M n =a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =1⋅2+3⋅6+⋯+(2n −1)⋅2⋅3n−1, 3M n =1⋅6+3⋅18+⋯+(2n −1)⋅2⋅3n ,两式相减可得−2M n =2+2(6+18+⋯+2⋅3n−1)−(2n −1)⋅2⋅3n =2+4⋅3(1−3n−1)1−3−(2n −1)⋅2⋅3n ,化简可得M n =2(n −1)⋅3n +2; (3)由(1)可得S n =n 2,T n =3n −1, 假设存在正整数m ,使得S m +T m+1S m +T m恰好是数列{a n }或{b n }中的项,所以S m +T m+1S m +T m=m 2+3m+1−1m 2+3m −1,可设m 2+3m+1−1m +3−1=L ,L ∈N ∗,所以(L −1)(m 2−1)=(3−L)3m ,因为m 2−1≥0,3m >0,所以1<L ≤3,由L ∈N ∗,可得L =2或3,当L =2时,m 2−1=3m ,即m 2−13=1,可令f(m)=m 2−13,f(m +1)−f(m)=(m+1)2−13m+1−m 2−13m=−2m 2−2m−33m+1,当m =1时,f(1)<f(2),当m ≥2时,f(m +1)<f(m),可得f(1)<f(2)>f(3)>f(4)>⋯,由f(1)=0,f(2)=13,可得m 2−13m=1无整数解.当L =3时,有m 2−1=0,即存在m =1使得m 2+3m+1−1m 2+3m −1=3,是数列{a n }中的第二项,故存在正整数m =1,使得S m +T m+1S m +T m恰好是数列{a n }中的项.【解析】(1)设等差数列{a n }的公差为d 和等比数列{b n }的公比为q ,运用等差数列和等比数列的通项公式,解方程可得公差和公比,进而得到所求通项公式; (2)由数列的错位相减法法求和,结合等比数列的求和公式,可得所求和; (3)假设存在正整数m ,使得S m +T m+1S m +T m恰好是数列{a n }或{b n }中的项,可设m 2+3m+1−1m 2+3m −1=L ,L ∈N ∗,化简整理,结合整数的性质可得L =2或3,分别讨论L 的值,解方程可得所求结论.本题考查等差数列和等比数列的通项公式和求和公式的运用,以及数列的错位相减法求和,数列中存在性问题解法,考查方程思想和分类讨论思想,化简运算能力和推理能力,属于难题.21.【答案】解:(1)依题意,得[a 13b ][1−3]=[−13],即{a −3=−13−3b =3,解得{a =2b =0, ∴M =[2130];(2)设曲线C 上一点P(x,y)在矩阵M 的作用下得到曲线xy =1上一点P′(x′,y′), 则[x′y′]=[2130][xy ],即{x′=2x +y y′=3x ,∴x′y′=1,∴(2x +y)×(3x)=1,整理得曲线C 的方程为6x 2+3xy =1.【解析】本题(1)可以利用矩阵的特征值和特征向量的意义列出相应的方程,解方程得到本题结论;(2)根据矩阵变换下相关点的坐标关系,利用代入法求出曲线的方程,得到本题结论.本题考查了矩阵的特征值和特征向量,本题难度不大,属于基础题.22.【答案】解:(1)由ρsin(θ−π4)=3√2,得√22ρsinθ−√22ρcosθ=3√2, 即ρsinθ−ρcosθ=6.∴直线l 的直角坐标方程为x −y +6=0; (2)P 为椭圆C :x 23+y 2=1上一点,设为P(√3cosα,sinα)(0≤π<2π),∴P 到直线l 的距离d =√3cosα−sinα+6|√2=|2cos(α+π6)+6|√2.∴当cos(α+π6)=−1时,d 取得最小值为2√2.【解析】(1)展开两角差的正弦,结合极坐标与直角坐标的互化公式可得直线l 的直角坐标方程;(2)设P(√3cosα,sinα)(0≤π<2π),写出点到直线的距离公式,再由三角函数求最值. 本题考查简单曲线的极坐标方程,考查点到直线距离公式的应用,训练了利用三角函数求最值,是中档题.23.【答案】解:由柯西不等式可知:(x +y +z)2≤[(√2x)2+(√3y)2+z 2]⋅[(√2)2+(√3)2+12],故2x 2+3y 2+z 2≥2411, 当且仅当√2x1√2=√3y1√3=z1,即:x =611,y =411,z =1211时, 2x 2+3y 2+z 2取得最小值为2411.【解析】本题考查柯西不等式的应用,由柯西不等式知:(x +y +z)2≤[(√2x)2+(√3y)2+z 2]⋅[(√2)2+(√3)2+12]故2x 2+3y 2+z 2≥2411,由此能求出2x 2+3y 2+z 2的最小值.解题时要认真审题,仔细解答,注意等价转化思想的灵活运用,属于基础题.24.【答案】解:(1)由抛物线的定义可知,AF +BF =y 1+y 2+p =2y 0+p =4+2y 0, ∴p =4,故抛物线C 的方程为x 2=8y .(2)由题意得,直线AB 的斜率一定存在,设其方程为y =kx +m(k ≠0,m >0),则点Q(0,m),联立{y =kx +m x 2=2py,得x 2−2pkx −2pm =0, ∴x 1+x 2=2pk ,x 1x 2=−2pm ,∴y 1y 2=x 122p ⋅x 222p =m 2=p 24,解得m =p2, y 1+y 2=k(x 1+x 2)+2m =2pk 2+2m ,作AA′⊥x 轴于A′,BB′⊥x 轴于B′,∵1PA +1PB =3PQ ,∴PQ PA +PQ PB =3,则OQ AA′+OQ BB′=3, ∴m y 1+m y 2=m(y 1+y 2)y 1y 2=m(2pk 2+2m)p 24=p 2(2pk 2+p)p 24=k 2+1214=3,解得k 2=14,k =±12, ∴存在直线AB 满足题意,其方程为y =±12x +p 2.【解析】(1)利用抛物线的定义,有AF +BF =y 1+y 2+p =2y 0+p =4+2y 0,从而求得p 的值,即可得解;(2)直线AB 的斜率一定存在,设其方程为y =kx +m(k ≠0,m >0),将其与抛物线的方程联立,消去y 得到关于x 的一元二次方程,利用根与系数的关系,可分别求得y 1+y 2和y 1y 2,从而得到m =p 2;作AA′⊥x 轴于A′,BB′⊥x 轴于B′,利用三角形相似,可将1PA +1PB =3PQ转化为OQ AA′+OQ BB′=3,把该等式中的线段全用m 和p 代换,化简整理后,可求得k 的值,从而得解.本题考查抛物线的定义、直线与抛物线的位置关系,还借助了三角形相似求线段比例,考查学生的转化与化归能力和运算能力,属于中档题.25.【答案】解:(Ⅰ)由于3−1和3+1都不属于集合{0,1,3},所以该集合不具有性质P ; 由于2+0、4+0、6+0、4+2、6−2、6−4、0−0、2−2、4−4、6−6都属于集合{0,2,4,6},所以该数集具有性质P. …(4分)(Ⅱ)∵A ={a 1,a 2,…,a 8}具有性质P ,所以a 8+a 8与a 8−a 8中至少有一个属于A ,由0≤a 1<a 2<⋯<a 8,有a 8+a 8>a 8,故a 8+a 8∉A ,∴0=a 8−a 8∈A ,故a 1=0.∵0=a 1<a 2<⋯<a 8,∴a 8+a k >a 8,故a 8+a k ∉A(k =2,3,…,8).由A具有性质P知,a8−a k∈A(k=2,3,…,8).又∵a8−a8<a8−a7<⋯<a8−a2<a8−a1,∴a8−a8=a1,a8−a7=a2,…,a8−a2=a7,a8−a1=a8,即a i+a9−i=a8(i= 1,2,…,8).…①由a2+a7=a8知,a3+a7,a4+a7,…,a7+a7均不属于A,由A具有性质P,a7−a3,a7−a4,…,a7−a7均属于A,∴a7−a7<a7−a6<⋯<a7−a4<a7−a3<a8−a3,∴a7−a7=0,a7−a6=a2,a7−a5=a3,…,a7−a3=a5,即a i+a8−i=a7(i= 1,2…7).…②由①②可知a i=a8−a9−i=a8−(a7−a i−1)(i=1,2…7,8),即a i−a i−1=a8−a7(i=2,3,…,8).故a1,a2,…a8构成等查数列.…(10分)【解析】(Ⅰ)根据数集A具有性质P的定义,判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P.(Ⅱ)根据数集A={a1,a2…a8}具有性质P,可得a i+a9−i=a8…①,a i+a8−i=a7…②,由①②可知a i=a8−a9−i=a8−(a7−a i−1),即a i−a i−1=a8−a7,从而得到a1,a2,…a8构成等查数列.本题主要考查等差关系的确定,等差数列的定义,新定义,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:全屏查看效果更佳。

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每题5小分,共计70分。

请把答案填写在答题卡相应位置上。

1.已知集合==-{0,1,2,8},{1,1,6,8}A B ,那么A B ⋂=__________.2.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z z 的实部为__________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为__________.5.函数()2log 1f x =-__________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率是__________.7.已知函数sin(2)()22y x ππϕϕ=+-<<的图像关于直线3x π=对称,则ϕ的值是__________.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为32c ,则其离心率的值是__________. 9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2)-上cos ,022()1||,202x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则((15))f f 的值为__________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11.若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为__________.12.在平面直角坐标系xOy 中, A 为直线:2l y x =上在第一象限内的点, ()5,0B 以AB 为直径的圆C 与直线l 交于另一点D ,若0AB CD ⋅=,则点A 的横坐标为__________. 13.在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.14.已知集合{}{}**|21,,|2,n A x x n n N B x x n N ==-∈==∈,将A B ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列的前n 项和,则使得112n n S a +>成立的n 的最小值为__________.二、解答题15.在平行四边形1111ABCD A B C D -中, 1111,AA AB AB B C =⊥1.求证: //AB 平面11A B C2.平面11ABB A ⊥平面1A BC 16.已知,αβ为锐角, ()45tan ,cos 3ααβ=+=- 1.求cos2α的值。

2.求()tan αβ-的值。

17.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧(MPN P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米,先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD .大棚Ⅱ内的地块形状为CDP ∆,要求AB 均在线段MN 上, ,C D 均在圆弧上,设OC 与MN 所成的角为θ1.用θ分别表示矩形ABCD 和CDP ∆的面积,并确定sin θ的取值范围2.若大棚Ⅰ内种植甲种蔬菜, 大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18如图,在平面直角坐标系 中,椭圆过点,焦点,圆的直径为1.求椭圆及圆的方程;2. 设直线与圆相切于第一象限内的点.①若直线与椭圆有且只有一个公共点,求点的坐标;②直线与椭圆交于两点.若的面积为,求直线的方程.19记分别为函数的导函数.若存在,满足且,则称为函数与的一个”点”.1.证明:函数与不存在”点”.2.若函数与存在”点”,求实数的值.3.已知函数,对任意,判断是否存在,使函数与在区间内存在”点”,并说明理由.20设是首项为,公差为的等差数列,是首项,公比为的等比数列1.设,若对均成立,求的取值范围2.若证明:存在,使得对均成立,并求的取值范围(用表示)。

参考答案一、填空题1.答案:{}1,8解析:观察两个集合即可求解。

2.答案:2 解析:()⋅+=+=-=+212i a bi ai bi ai b i ,故==-=-2,1,2a b z i3.答案:90 解析:8989909191905++++=4.答案:8 解析:代入程序前11I S =⎧⎨=⎩符合6I <, 第一次代入后32I S =⎧⎨=⎩,符合6I <,继续代入; 第二次代入后54I S =⎧⎨=⎩,符合6I <,继续代入;第三次代入后78I S =⎧⎨=⎩,不符合6I <,输出结果8S =,故最后输出S 的值为8.5.答案:[)2,+∞ 解析:2log 100x x -≥⎧⎨>⎩,解之得2x ≥,即[)2,+∞.6.答案:310解析:假设3名女生为,,a b c ,男生为,d e ,恰好选中2名女生的情况有:选a 和b ,a 和c ,b 和c 三种。

总情况有a 和b ,a 和c ,a 和d ,a 和e ,b 和c ,b 和d ,b 和e ,c 和d ,c 和e ,d 和e 这10种,两者相比即为答案3107.答案:6π-解析:函数的对称轴为+k 2ππ()+k 2k Z ππ∈,故把3x π=代入得2,326k k πππϕπϕπ+=+=-+ 因为22ππϕ-<<,所以0,6k πϕ==-.8.答案:2解析:由题意画图可知,渐近线by x a=与坐标轴的夹角为60。

故22223,4b c a b a a ==+=,故2ce a==. 9.答案:22解析:因为()()4f x f x +=,函数的周期为4, 所以()()()11151,1122f f f =--=-+= ∴()()1215cos 242ff f π⎛⎫=== ⎪⎝⎭. 10.答案:43解析:平面ABCD 将多面体分成了两个以2为底面边长,高为1的正四棱锥, 所以其体积为14221233⨯⨯⨯⨯=.11.答案:-3解析:3221()212f x x ax a x x =-+⇒=+ 令()()3223122,'20231g x x g x x x x x=+=->⇒-+ 在()0,1上单调递减,在()1,+∞上单调递增∵有唯一零点∴()()321213231a g f x x x ==+=⇒=-+求导可知在[]1,1-上, ()()()()min max 14,01f x f f x f =-=-== ∴()()min max 3f x f x +=- 12.答案:3解析:∵AB 为直径∴AD BD ⊥ ∴BD 即B 到直线l 的距离。

BD ==∵CD AC BC r ===,又 CD AB ⊥∴2AB BC ==设(),2A a a1AB a ==⇒=或3(舍去).13.答案:9解析:由面积得:111sin120sin 60sin 60222ac a c ︒=︒+︒ 化简得()011aa c ac c a a +=⇒=<<-()()14414151159a a c a a a a +=++=-++--≥=当且仅当()1411a a -=-,即3,32a c ==时取等号。

14.答案:27解析:{}2,4,8,16,32,64,128B =⋅⋅⋅与A 相比,元素间隔大。

所以从n S 中加了几个B 中元素考虑。

1个: 23112,3,1224n S a =+=== 2个: 45224,10,1260n S a =+===3个: 78437,30,12108n S a =+=== 4个: 12138412,94,12204n S a =+===5个: 212216521,318,12396n S a =+=== 6个: 383932638,1150,12780n S a =+===发现2138n ≤≤时n+112n S a =发生变号,以下用二分法查找:3031687,12612S a ==,所以所求n 应在2229~之间. 2526462,12492S a ==,所以所求n 应在2529~之间. 2728546,12540S a ==,所以所求n 应在2527~之间. 2627503,12516.a a ==∵272812S a >,而262712a a <,所以答案为27.二、解答题15.答案:1.∵平行六面体1111ABCD A B C D - ∴面//ABCD 面1111A B C D ∵AB ⊂面ABCD ∴//AB 面1111A B C D又面11ABA B ⋂面111111A B C D A B = 且AB ⊂面11ABA B ∴11//AB A B又11A B ⊂面11,A B C AB ⊄面11A B C ∴//AB 面11A B C 2.由1可知: 11//BC B C ∵111AB B C ⊥ ∴1AB BC ⊥∵平行六面体1111ABCD A B C D - ∴11AB A B = 又由1得11//AB A B∴四边形11ABB A 为平行四边形 ∵11AA AB =∴平行四边形11ABB A 为菱形 ∴11AB A B ⊥ 又1A B BC C ⋂= ∴1AB ⊥面1A BC ∵1AB ⊂面11ABB A ∴面11ABB A ⊥面1A BC 解析:16.答案:1.方法一: ∵4tan 3α=∴sin 4cos 3αα= 又22sin cos 1αα+= ∴22169sin ,cos 2525αα==∴227cos 2cos sin 25ααα=-=- 方法二:2222222222cos 2cos sin cos sin 1tan cos sin 1tan 417325413ααααααααα=+--==++⎛⎫- ⎪⎝⎭==-⎛⎫+ ⎪⎝⎭2.方法一:7cos 2,25αα=-为锐角24sin 20sin 24225ππααα⇒<<⇒>⇒=∵()cos ,αβαβ+=均为锐角, 2παβπ<+< ∴()sin αβ+=∴()()()()()cos cos 2cos 2cos sin 2sin 25αβααβααβααβ-=-+=+++=∴()()()()()sin sin 2sin 2cos cos 2sin 25αβααβααβααβ-=-+=+-+=-∴()()()sin 2tan cos 11ααβαβαβ--==--方法二:∵α为锐角7cos 225α=-∴2(0,)απ∈∴24sin 225α==∴24tan 27α=-∵,αβ为锐角∴()0,αβπ+∈又∵()cos αβ+= ∴()sin αβ+=∴()tan 2αβ+=-∴()()()()()tan 2tan tan tan 21tan 2tan ααβαβααβααβ-+-=-+=++()()722257111225---==-⎛⎫+-- ⎪⎝⎭解析:17.答案:1. 过N 作MN 垂直于交圆弧MPN 于,设PO 交CD 于H40sin 10,240cos 80cos ,4040sin BC AB PH θθθθ=+=⨯==-()1180cos 4040sin 1600cos 1600sin cos 22CDP S AB PH θθθθθ∆=⨯⨯=⨯⨯-=-当C 点落在劣弧MN 上时, AB MN >,与题意矛盾。

相关文档
最新文档