PCB阻抗控制及设计说明
经典DDR3PCB设计指导
经典DDR3PCB设计指导DDR3 PCB(Printed Circuit Board)设计是一项关键性任务,它直接影响到DDR3内存模块性能和稳定性。
下面是一些经典的DDR3 PCB设计指导。
1.布局设计首先,要确保PCB布局以尽量减小信号传输长度和最小化信号路径的交叉。
为此,可以采用层叠设计,将电源和地线平面放在内层,并尽量将数据和时钟线路与其他信号线路分开。
同时,还要保持清晰的电源和地线分布,以减少电磁干扰。
2.阻抗匹配DDR3接口要求较低的阻抗匹配,一般为50欧姆。
因此,在设计DDR3PCB时,需要使用特殊的阻抗控制技术,包括差分阻抗控制和单端阻抗控制。
通过正确选择PCB板材和线宽/线间距来控制阻抗,确保数据线和时钟线的阻抗匹配。
3.时钟信号时钟信号对DDR3接口的性能和稳定性至关重要。
在PCB设计中,时钟信号应该尽量与其他信号线隔离,并保持尽可能短的信号路径。
此外,要确保时钟信号的最大和最小延迟在规格范围内,并且要避免信号树中出现反向或环形延迟。
4.功耗分析和管理DDR3内存模块在运行时会产生较大的功耗,因此在PCB设计中需要进行功耗分析和管理。
这包括考虑供电线路的宽度和连接方式,设计足够的电源滤波电容,并确保电源线路的稳定性和低噪声。
5.地线规划合理的地线规划对于DDR3PCB设计至关重要。
正确规划地线可以减少信号的噪声干扰和串扰。
建议使用实特性阻抗为0的地线平面,以减少反跳和电磁干扰。
6.差分信号DDR3接口主要使用差分信号传输,如数据线和时钟线。
在PCB设计时,差分信号应该尽可能保持信号的匹配性,并采取差分对的布线方式,减少差分信号之间的串扰。
以上是经典的DDR3PCB设计指导,注意这只是指导性的建议,具体设计仍应根据具体的应用场景和产品要求进行调整。
此外,使用专业的PCB 设计软件进行仿真和分析也是十分重要的,以确保DDR3PCB设计的性能和稳定性。
高速PCB设计中的阻抗控制
高速数字电路PCB设计中的阻抗控制(转载)随着半导体工艺的飞速发展,IC器件集成度和工作时钟频率不断提高。
以往在一块比较复杂的PCB上的高速网线只有几根或几十根,现在则是在一块PCB上只有几根或几十根网线不是高速信号线;以往认为数字电路设计只要把握逻辑正确,物理连线似乎只要连接上就能使电路正常工作;而现在越来越多的电子产品设计体现出高速、高性能、高密度和高复杂度的特点,尤其在通讯、计算机、航空航天以及图象处理等领域。
系统的主频越来越高,更加严重的挑战来自半导体工艺技术的进步,日渐精细的工艺技术使得晶体管尺寸越来越小,因而器件的信号跳变沿也就越来越快,从而导致更加严重的高速数字电路系统设计领域的信号完整性问题:传输线效应(反射、时延、振铃、及信号的过冲与欠冲)、信号问串扰等。
为此,电子系统设计师必须从传统的设计方法向现代的电子系统设计方法转变,这既是形势需要,也是发展的必然趋势。
1 高速数字电路概念1.1 什么是高速数字电路PCB上的高速电路设计,主要是以器件和连接器件的印制线为主要分析对象的。
以往在器件的时钟频率不是很高、时钟的上升或下降沿变化不是很陡的情形下,可以用集总参数的形式来表示印制线,而当器件的时钟频率变得很高时(比如:超过50MHz),时钟的上升或下降沿很小时(一般地在1ns~5ns之间),这时就不能将印制线用集总参数来表示,必须引入分布参数来表示印制线特性,这就是传输线的概念(图1)。
关于传输线的分析是高速PCB 设计当中最基本也是最核心的部分,下面简要介绍传输线的定义和高速电路设计相关的一些概念。
国际上通常对PCB上的传输线没有确切的具体定义,现在被大家普遍接受的约定如下:即当信号从驱动端到接收端的印制线上的延时大于等于上升或下降沿的l/ 时(即Tpd≥0.5Trist(Tfdl))。
这时就必须将此印制线当成传输线来分析,更为保守一点的定义是信号在走线上传播延时或。
1.2 PGB的板层材料和板层结构图2所示是一个标准6层PCB的断面层结构示意图,其它多层PCB的层设置与此相似。
PCB设计的阻抗控制和阻抗匹配
重要性,电路板出故障或问题的概率, 为一个电容( 图 1 - 1) 。
阻抗控制的精度就越低。
电路中信号的完整性,电路的 E M I 和
(4 )容易造成焊锡短路,可能会增
EMC 特性。但是随着产品的可靠性发展
加产品的成本。
和越来越受到重视,在设计时不再是
PCB 的各层分布一般是对称的。不
简单的导线连接,必须考虑电路中信
Key words: Reliability; Characteristic Impedance; Impedance Controlling; Impedance match
CLC number: TN306
Document code:A
Article ID:1003-0107(2005)04-0029-03
430068)
Huang Shuwei, Zhao Danling1
(Hubei University of Technology,
Wuhan 430068,China)
摘 要: 阻抗设计是 PCB 可靠性设计的一个重要环节。本文从多层 PCB 板叠层的设计原理、特性阻抗的
计算方法、严格的阻抗控制,来保证阻抗匹配,实现 P C B 的可靠性,使产品稳定的工作。
号完全相等。这就是说, 应将信号对称 别是在高频电路中,特性阻抗主要取 特性阻抗是否一致,是否匹配。因此,
地布线在内部地线层的两侧。这样做 决于连线的单位分布电容和单位分布 在 P C B 设计的可靠性设计中有两个概
的优点是容易控制阻抗和环流;缺点 电感带来的分布阻抗。理想传输线的 念是我们必须注意的。
印制电路板上导线的特性阻抗是
传输线的特性阻抗只与信号连线 电路板设计的一个重要指标,特别是
PCB阻抗设计与阻抗设计软件Polar的使用
PCB阻抗设计与阻抗设计软件Polar的使用 随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。
相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。
在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300Mhz时控制迹线阻抗。
PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。
印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。
这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。
阻抗控制阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。
故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为―阻抗控制‖。
PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。
影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。
PCB 阻抗的范围是 25 至120 欧姆。
在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。
迹线和板层构成了控制阻抗。
PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。
但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:●信号迹线的宽度和厚度●迹线两侧的内核或预填材质的高度●迹线和板层的配置●内核和预填材质的绝缘常数PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。
微带线(Microstrip):微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。
PCB阻抗设计及计算教程
PCB阻抗设计及计算教程PCB阻抗设计及计算是电路设计与布局中的重要一环,它对于保证电路性能、抑制信号干扰和提高系统稳定性具有至关重要的作用。
本文将介绍PCB阻抗的基本概念,阻抗设计的目标和方法,并详细解释如何进行PCB阻抗计算。
1.基本概念:在PCB设计中,阻抗是指电流或信号在电路板上的传输时遇到的阻碍。
阻抗主要由导线、平面、空气等介质的特性决定。
常见的阻抗有单端阻抗和差分阻抗。
2.阻抗设计的目标:(1)确保信号完整性:通过控制阻抗,避免信号的反射和损耗,确保信号的完整性,避免信号失真以及噪声和串扰的引入。
(2)抑制系统的电磁辐射:通过设计合适的阻抗,减少电流的回流路径,降低系统的电磁辐射水平,提高抗干扰能力。
(3)提高系统的工作稳定性:通过阻抗设计和匹配,使得信号传输更加稳定,避免因阻抗不匹配引起的系统不稳定和故障。
3.阻抗设计的方法:(1)常规PCB布局:根据电路需求和信号速度,尽量避免使用过长过窄的线路,减小阻抗不匹配和信号失真的可能性。
(2)地线的设计:地线是设计阻抗的重要因素之一,它应该尽量宽而平,以减小阻抗,提高地线的传输能力。
(3)控制环境因素:根据设计需求,合理选择PCB板材和层间距,控制介质常数,进而控制阻抗值。
(4)信号层堆叠:通过合理的层次规划和PCB板厚度选择,控制信号层之间的间距和层间介质特性,达到要求的阻抗。
4.PCB阻抗计算:(1)阻抗计算规则:根据线宽、线距和介质常数等参数,可以使用在线计算软件或公式进行阻抗计算。
常用的公式有微带线和线间微带线的计算公式。
(2)使用在线计算软件:目前市面上有许多免费的在线阻抗计算软件,只需输入所需参数即可得到计算结果。
(3)使用电磁仿真软件:对于复杂的PCB设计,可以使用电磁仿真软件进行阻抗计算,如ADS、CST等软件。
仿真软件可以更加准确地计算阻抗,并考虑复杂的环境因素。
总结:PCB阻抗设计及计算是PCB设计中不可忽视的一环,它对电路性能和系统稳定性具有重要影响。
pcb阻抗板‘特性阻抗;基础知识
4.2.2.2 T1/B1 分别相连的测试线长一般为 100mm,线宽与板内生产板内阻抗线宽度一致,且线面盖阻焊 油墨;
d 4.2.2.3 T1-T2/T2-B2/B2-B1/B1-T1 的两个相邻孔中心距一般为 2.54mm; e 4.2.2.4 其中,T1 仅与 TOP 层阻抗测试线相连,T2 仅与 TOP 面第 2 层内层相连;B1 仅与 BOT 层阻抗测 r 试线相连,B2 仅与 BOT 层第 2 层相连。 te 阻抗条的设计图例:
深圳顺易捷科技有限公司
Shenzhen ShunYiJie Technology Co., Ltd.
5.3 CPU 载板的 TDR 测试
d Hioki 公司 2001 年六月才在 JPCA 推出的“1109 Hi Tester”,为了对 1.7GHz 高速传输 FC/PGA 载板在 Z0 方
面的正确量测起见,已不再使用飞针式(Flying probe)快速移动的触测,也放弃了 SMA 探棒式的 TDR 手动
3.3 但当上述微带线中 Z0 的四种变数(w、t、h、 r)有任一项发生异常,例如图中的讯号线出现缺口
e 时,将使得原来的 Z0 突然上升(见上述公式中之 Z0 与 W 成反比的事实),而无法继续维持应有的稳 UnRegister 定均匀(Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反弹反射的缺失
4. 2 示意图说明:
4.2.1 阻抗线的位置
一般加在生产板 PNL 边上或在客户允许的前提下加在 SET 边上
4.2.2 阻抗线的规格说明
4.2.2.1 T1、T2/B1、B2 为四个 PTH 孔,一般为喷锡成形孔,成品孔径为 1.00mm 左右,RING(成品 焊环)要求为 0.16-0.20mm;
高速数字电路PCB设计中的阻抗控制
环测威官网:/阻抗控制技术在高速数字电路设计中非常重要,其中必须采用有效的方法来确保高速PCB 的优异性能。
PCB上高速电路传输线的阻抗计算及阻抗控制•传输线上的等效模型图1显示了传输线对PCB的等效影响,这是一种包括串联和多电容,电阻和电感(RLGC 模型)的结构。
串联电阻的典型值在0.25至0.55欧姆/英尺的范围内,并且多个电阻器的电阻值通常保持相当高。
随着PCB传输线中增加的寄生电阻,电容和电感,传输线上的总阻抗被称为特征阻抗(Z 0)。
在线直径大,线接近电源/接地或介电常数高的条件下,特征阻抗值相对较小。
图3示出了具有长度dz的传输线的等效模型,基于该模型,传输线的特征阻抗可以推导为公式:。
在这个公式中,L“传感线”是指传输线上每个单位长度的电感,而C是指传输线上每个单位长度的电容。
环测威官网:/在上面的公式中,Z 0表示阻抗(欧姆),W表示线的宽度(英寸),T表示线的粗细(英寸),H表示到地面的距离(英寸),是指衬底的相对介电常数,t PD是指延迟时间(ps / inch)。
•传输线的阻抗控制布局规则基于上述分析,阻抗和信号的单位延迟与信号频率无关,但与电路板结构,电路板材料的相对介电常数和布线的物理属性有关。
这一结论对于理解高速PCB和高速PCB设计非常重要。
而且,外层信号传输线的传输速度比内层传输速度快得多,因此关键线布局的排列必须考虑这些因素。
阻抗控制是实现信号传输的重要前提。
但是,根据传输线的电路板结构和阻抗计算公式,阻抗仅取决于PCB材料和PCB层结构,同一线路的线宽和布线特性不变。
因此,线路的阻抗在PCB的不同层上不会改变,这在高速电路设计中是不允许的。
本文设计了一种高密度高速PCB,板上大多数信号都有阻抗要求。
例如,CPCI信号线的阻抗应为650欧姆,差分信号为100欧姆,其他信号均为50欧姆。
根据PCB布线空间,必须使用至少十层布线,并确定16层PCB设计方案。
由于电路板的整体厚度不能超过2mm,因此在堆叠方面存在一些困难,需要考虑以下问题:1)。
阻抗制作规范
规范制作阻抗PCB的阻抗计算和阻抗图形设计方法,确保成品的阻抗符合规定。
2、适用范围:
适用于本厂客户要求阻抗控制的PCB的阻抗设计及之CAM制作的阻抗图形设计。
3、名词解释:
3.1特性阻抗(Characteristic Impedance):当一条导线与大地绝缘后,导线与大地彼此之间的阻抗。
7.2.9外层方形PAD对应接地层为Thermal Pad或直接与铜面导通。
7.2.10线宽/线距必须符合流程单要求。
7.2.11两层板设计如下:
6.2.12四层板设计如下:
7.2.13六层板设计如下:
7.2.14八层板设计如下:
ቤተ መጻሕፍቲ ባይዱ7.3特殊阻抗设计:
特殊阻抗设计时除了一般注意事项以外须根据实际情况进行修改。
4.3.3特性阻抗:成品60欧姆±10%
4.3.3.1要求理论值计算特性阻抗控制的范围为60欧姆±8%:
4.3.3.2产品的制作参数要求如下:
1)客户原本设计的特性阻抗线线宽:150um,
2)客户原本设计的与特性阻抗线相邻的线距最小为:100um
3)与特性阻抗线相邻的介层的厚度要求为:105um±15um
RC% 68压合后的介质厚度为71±8UM,RC%62压合后的介质厚度为65±8UM
5)当选用几种Prepreg同时压合时,则采用最高的介电常数与最低的介电常数的平均值进行计算。
6)内层板材铜厚计算数据:
板材铜厚是70um用62um计算,板材铜厚是35um用30um计算,板材铜厚是18um用16um计算.
3) 2116 Prepreg
A、介电常数为4.3±0.2
B、压合后的介质厚度为(内层100%残铜理论值):
PCB阻抗设计与阻抗类型图解
PCB阻抗设计与阻抗类型图解(仅限交流与学习使用,请勿用于其它作用)A、阻抗定义阻抗就是指在某一频率下,电子器件传输信号线中(也就是我们制作的线路板的铜线),相对某一参考层(也就是我们说的屏蔽层、影射层或参考层),其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它实际上是电阻抗、电感抗、电容抗等一个矢量总和。
在直流电中,物体对电流阻碍的作用叫做电阻;在交流电的领域中除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。
电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。
从一个器件输出信号,经传输后进入另一个器件,这两者阻抗之间的特定匹配关系。
简单说整个过程就像软管送水浇花,一端接在水龙头,另一端手握处加压使其射出水柱,当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区为最佳,力过度水注射程太远,腾空越过目标浪费水资源,挤压不足以致射程太近者,则照样得不到想要的结果。
阻抗就是施压的力道,保障发出的信号经传输后能准确匹配接收端的需求影响特性阻抗的因数1) 介质介电常数,与特性阻抗值成反比(Er)2)线路层与接地层(或外层)间介质厚度,与特性阻抗值成正比(H)3) 阻抗线线底宽度(下端W1);线面(上端W2)宽度,与特性阻抗成反比。
4) 铜厚,与特性阻抗值成反比(T)5) 相邻线路与线路之间的间距,与特性阻抗值成正比(差分阻抗)(S)6) 基材阻焊厚度,与阻抗值成反比(C)B、模型分类阻抗线可分为6类:1、单端阻抗线2、差分阻抗线3、单端共面地阻抗线4、差分共面地阻抗线5、层间差分阻抗线(包含:异层差分)6、共模阻抗外层单端外层差分外层单端共面地外层差分共面地常见的几种阻抗模型内层单端[两面屏蔽]内层差分[两面屏蔽]内层单端共面地[两面屏蔽]内层差分共面地[两面屏蔽]特殊的阻抗模型层间差分各类阻抗线在实际PCB文件中的效果图各类阻抗线在实际PCB文件中的效果图各类阻抗线在实际PCB文件中的效果图深圳拓普西科技有限公司Thank You!Mar, 2014Tuopx Co., Ltd. Confidential Slide 11。
PCB阻抗知识讲解
4.2 FA A4E1664批量生产板阻抗测试结果(12月9日)
FA
蚀ห้องสมุดไป่ตู้速 度 菲林设 计线宽
A4E1664批量生产板阻抗测试结果(12月9日)
实测线 宽
碱性蚀刻后阻抗测试数据 WF绿油后阻抗测试 阻抗平均 阻抗测试 阻抗测试 阻抗测试 阻抗测试 阻抗测试 值 最大值 最小值 平均值 最大值 最小值 99.45 100.81 96.46 90.07 91.03 89.05 98.69 100.39 95.72 88.02 88.96 87.45 99.72 101.07 96.92 87.47 89.89 86.23 102.81 103.74 101.25 88.33 89.3 87.32 97.52 100.57 91.25 85.72 87.02 83.37 100.99 102.98 98.76 92.66 93.86 91.82 97 98.03 95.96 90.01 91.51 88.5 99.92 101.36 97.67 88.34 89.21 87.52 98.23 100.34 95.33 87.88 89.4 85.96 3600mm/m 0.2150.27mm 95.78 96.93 93.88 94.8 96.33 92.94 in 0.225mm 101.09 102.07 99.57 90.34 91.91 88.23 99.31 100.29 97.99 89.97 91.38 88.62 99.96 101.73 98.2 90.28 92.37 87.41 100.02 101.29 98.45 91.15 92.48 88.48 96.8 99.06 93.61 90.65 91.42 89.5 95.53 106.45 100.66 89.17 90.08 88.59 96.66 97.42 95.37 85.77 88.78 82.64 97.87 99.35 96.46 88.87 89.95 88.11 100.34 101.24 98.94 89 89.78 88.39 从碱性蚀刻后和WF绿油后阻抗测试数据分析可知,WF后测试条阻抗减少10±3.
PCB设计之阻抗控制的走线细节举例
PCB设计之阻抗控制的走线细节举例1.走线的宽度和间距:走线的宽度和间距会直接影响走线的阻抗。
通常情况下,走线的宽度越宽,阻抗越低。
为了控制阻抗,可以在设计软件中使用特定的规则来指定走线的宽度和间距。
例如,对于常见的50欧姆的阻抗控制要求,可以将规则设置为适当的走线宽度和间距。
2.层数的选择:在高速信号传输中,层数的选择也会影响阻抗。
较高的层数可提供更多的走线空间,有助于降低阻抗。
因此,为了阻抗控制,可以选择适当的层数。
在多层PCB设计中,内层走线的间距和宽度也需要综合考虑,以保持阻抗的一致性。
3.地平面的设计:在PCB设计中,地平面的设计是控制阻抗的关键。
地平面应尽可能地平整,并且与走线保持一定的距离。
这样可以减少地平面与走线之间的互电容和互电感,从而提高阻抗的一致性。
为了实现这一点,可以在地平面上设置一些小孔,用于连接不同地层,从而提高地层的连贯性。
4.走线的形状和拐角:走线的形状和拐角也会影响阻抗。
通常情况下,直线和圆弧形的走线对阻抗控制较好,而直角拐弯较差。
在需要进行90度拐角的情况下,可以使用斜角拐弯来减小阻抗的变化。
此外,走线的形状和转角也会对电磁兼容性(EMC)产生影响,在设计时需要综合考虑。
5.信号层和电源/地层的分离:为了阻抗控制,信号层和电源/地层应尽可能地分离。
这样可以减少信号层与电源/地层之间的互电容和互电感,从而提高阻抗的一致性。
在多层PCB设计中,可以选择在信号层之间插入电源/地层,建立一个电源平面或地平面来提供均匀的分布。
6.终端匹配:终端匹配是一种常用的阻抗控制技术。
通过在信号线的起始和终止位置添加合适的电阻、电容等元件,可以达到匹配信号线的阻抗。
例如,可以在信号线的终止位置添加电阻,以匹配信号线和负载之间的阻抗。
终端匹配可以在设计中通过网络分析软件来实现。
综上所述,PCB设计中的走线细节对于阻抗控制至关重要。
通过选择适当的走线宽度和间距、层数、设计合理的地平面、走线的形状和拐角以及合理的终端匹配,可以实现阻抗的一致性,提高信号传输的质量和稳定性。
PCB 结构、加工流程、线路阻抗控制、线路阻抗计算简介 for update_170815
公式3,介质损耗:
19
PCB线路阻抗控制
4、高速板材介质损耗,铜箔的表面粗糙度,PP的玻纤效应影响。
2> 铜箔表面粗糙度 左图是几种常规的铜箔对表面粗糙度的定义,其中有STD(标准铜箔)、RTF(反转铜箔)
和VLP/HVLP(低/超低表面粗糙度铜箔),可见不同的铜箔铜牙(粗糙度)相差明显。
13
PCB线路阻抗控制
2、PCB加工过程的蚀刻偏差
线路蚀刻:利用感光材料,将设计的线路图形通过曝光、显影、蚀刻的工艺步骤, 达到所需铜面线路图形。
蚀刻的目的:蚀刻的目的是将图形转移以后有图形的受抗蚀剂保护的地方保留,其
他未受保护的铜蚀刻掉,最终形成线路,达到导通的目的。 蚀刻分类:蚀刻有酸性蚀刻和碱性蚀刻两种,通常内层采用酸性蚀刻,湿膜或干膜 为抗蚀剂。外层采用碱性蚀刻,锡铅为抗蚀剂。 内层蚀刻(DES流程):显影→蚀刻→退膜 外层蚀刻(SES流程):显影→镀铜镀锡→退膜→蚀刻→退锡
15
PCB线路阻抗控制
3、PCB加工过程中,层压带来的流胶率的偏差
PCB压合原理:通过“热与压力”使PP结合不同内层芯板和外层铜箔, 并利用外层 铜箔作为外层线路之基地。
半固化片的特性:
1> RC%(Resin content):指半固化片中除了玻纤布以外,树脂成分所占的重量 百分比。 RC%的多少直接影响到树脂填充导线间空隙的能力,同时决定压板后的 介电层厚度。 2> RF%( Resin flow):指压板后,流出板外的树脂占原来半固化片总重量的百 分比。 RF%是反映树脂流动性的指标,它也决定压板后的介电层厚度 3> VC%(volatile content):指半固化片经过干燥后,失去的挥发成分的重量 占原来半固化片总重量的百分比。VC%的多少直接影响压板后的品质。
PCB生产工程阻抗制作规范
工程阻抗制作规范1.目的规范制作阻抗P C B的阻抗计算和阻抗图形设计方法,确保成品的阻抗符合规定。
2.适用范围适用于本厂客户要求阻抗控制的P C B的阻抗设计及之C A M制作的阻抗图形设计。
3.名词解释3.1特性阻抗(C h a r a c t e r i s t i c I m p e d a n c e):当一条导线与大地绝缘后,导线与大地彼此之间的阻抗。
3.2差分阻抗(D i f f e r e n t i a l I m p e d a n c e):二条平行导线与大地绝缘后的阻抗,两条导线与大地彼此之间的阻抗。
4.阻抗控制的制作规格范围一般地,对于成品产品来说,我司控制的阻抗值的规格范围为±10%,如客户又特别要求,可根据客户设计的产品结构或客户要求的阻抗规格制作。
4.1 与阻抗控制计算有关的各个材质的计算参数如下:⑴. 芯板:介电常数为4.5±0.2操作中,根据客户要求,以及产品的需要,可向板材供应商了解芯板的具体层压结构,然后依照该芯板的Prepreg配方的介电常数来计算。
⑵. 7628 PrepregA、介电常数为4.5±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%47 压合后的介质厚度为190±10UM,RC%43 压合后的介质厚度为180±15UM。
⑶. 2116 PrepregA、介电常数为4.3±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC%54 压合后的介质厚度为118±10UM,RC%50 压合后的介质厚度为105±10UM。
⑷. 1080 PrepregA、介电常数为4.2±0.2B、压合后的介质厚度为(内层100%残铜理论值):RC68% 压合后的介质厚度为71±8UM,RC%62 压合后的介质厚度为65±8UM。
⑸. 当选用几种Prepreg同时压合时,则采用最高的介电常数与最低的介电常数的平均值进行计算。
PCB的阻抗控制要点
^谈PCB的阻抗控制随着电路设计日趋复杂和高速,如何保证各种信号(特别是高速信号)完整性,也就是保证信号质量,成为难题。
此时,需要借助传输线理论进行分析,控制信号线的特征阻抗匹配成为关键,不严格的阻抗控制,将引发相当大的信号反射和信号失真,导致设计失败。
常见的信号,如PCI总线、PCI-E总线、USB、以太网、DDR内存、LVDS信号等,均需要进行阻抗控制。
阻抗控制最终需要通过PCB设计实现,对PCB板工艺也提出更高要求,经过与PCB 厂的沟通,并结合EDA软件的使用,我对这个问题有了一些粗浅的认识,愿和大家分享。
多层板的结构:为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。
而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。
通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。
外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um 或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。
内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。
多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。
阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。
当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。
下面是一个典型的6层板叠层结构:0.615.24Mm 3KPCB的参数:不同的印制板厂,PCB的参数会有细微的差异,通过与上海嘉捷通电路板厂技术支持的沟通,得到该厂的一些参数数据:表层铜箔:可以使用的表层铜箔材料厚度有三种:12um、18um和35um。
最全PCB设计规范
最全PCB设计规范PCB设计规范是指对PCB板设计与布线进行规范化的要求和标准。
合理的PCB设计规范可以提高电路的可靠性、可制造性和可维护性,减少设计错误和生产问题。
以下是一个最全的PCB设计规范指南:一、尺寸和层数规范1.预留适当的板边用于固定和装配。
2.保持板厚适当,符合设备尺寸和散热要求。
3.层数应根据电路需求合理选择,减少层数可以降低生产成本。
二、元器件布局规范1.分配适当的空间给每个元器件,避免过于拥挤。
2.避免敏感元器件(如高频元器件)靠近高噪声源(如高压变压器)。
3.分组布局,将相关功能的元器件放在一起,便于调试和维护。
三、信号线布线规范1.信号线走线应尽量保持短而直的原则,减小传输延迟和信号损耗。
2.高频信号线避免与高电流线路交叉,以减少互相干扰。
3.分层布线,将高频信号和低频信号分开,避免互相干扰。
四、电源和地线布线规范1.电源线和地线应尽量宽而短,以降低阻抗。
2.使用大面积的地平面,减少地回流电流的路径。
3.电源线和地线应尽量平行走线,减少电感和电容。
五、阻抗控制规范1.布线时应根据需求控制差分对阻抗和单端信号阻抗。
2.保持差分对信号的平衡,避免阻抗不匹配。
3.使用合适的线宽和间距设计走线,以满足阻抗要求。
六、焊盘和插孔规范1.确保焊盘和插孔的尺寸、形状和位置符合零部件要求,并适合选用的焊接工艺。
2.避免焊盘和插孔之间过于拥挤,以便于手动和自动插件。
七、丝印规范1.丝印应清晰可见,包括元器件标识、引脚标识、极性标识等。
2.不要在元器件安装位置上涂抹丝印墨水,以免影响焊接质量。
八、通孔布局规范1.确保通孔位于焊盘的中心,避免焊盘过大或过小,影响焊接质量。
2.根据电路需求选择合适的通孔类型(如PTH、NPTH等)。
九、防静电规范1.PCB板表面清洁,避免灰尘和静电积累。
2.使用合适的静电防护手套和接地装置进行操作。
十、符号和标识规范1.适当添加电路图符号和标识,便于后续调试和维护工作。
PCB设计中阻抗的详细计算方法
PCB设计中阻抗的详细计算方法-差分阻抗为例日期:2010.01.20 | 分类:软件使用 | 标签:与其大致的了解很多事情,不如好好把你平时碰到的问题详细的搞懂,阻抗计算就是其中一个例子。
很多PCB设计人员现在已经不自己动手去计算阻抗了,不信你可以看看他的电脑上有没有Polar Si这个工具即可。
如果读者你有心学,那么今天我就整理一篇polar si的学习资料,至于软件本身,你可以去搜索下载,如果下不到,可以在本文后留言,我可以发邮件给大家,不过申明一下,此软件只做交流学习用,如果觉得自己有能力,建议购买正版!下面我以计算手机射频 SAW至TC(transceiver)的接受线阻抗为例,说明Polar Si计算阻抗的过程。
这段线现在在手机PCB设计中很多公司的默认做法是走4mil的线宽,相邻层净空,然后不做特别处理。
原因为何,很多设计师不会去细究。
其实此系列阻抗线要求是差分阻抗150欧,那么计算出来线宽究竟是多少?我以一个普通的HDI板厂的一个普通的叠层结构为例计算此差分阻抗。
叠层结构见下图:其中sig为信号层,即为铜箔厚度,绿色标示的是pp,我们可以看到来l3–》l4之间的pp为16mil,是很“厚”的,这也是为什么我们一般微带线的阻抗参考层要跨越此pp,实际操作就是将微带线放在L3或者L4层。
搞清楚图中各个数值的意义,下面我们就打开Polar Si阻抗计算软件,选择差分阻抗计算模式,并且选择要挖掉一层的图示来计算,如下图所示:这时我们看到右边有很多需要填的数值,不必紧张,见下图,当你点某个方框时,在左侧的图示上面,此数值所对应的字母会用红色框高亮,例如下图中在右边点H1后的数值框,输入数值,那么左侧的H1就会高亮。
下面我们就按上述方法,依次根据叠层结构填入各个数值,Er1和Er2如果不知道可以填入3.8-4.2之间的数值,对计算结果影响不是很大,在最下面的Zdiff(差分阻抗)处填入150,表示我们要计算的是差分150欧的阻抗。
PCB设计参考规范
PCB设计参考规范PCB(Printed Circuit Board)设计是电子产品开发过程中至关重要的一个环节。
一个好的PCB设计可以优化电子产品的性能、提高生产效率并降低成本。
为了保证PCB设计的质量和稳定性,设计工程师需要遵循一些常用的规范与标准。
下面是PCB设计参考规范的一些要点,以供设计工程师参考。
一、尺寸规范1.PCB板尺寸:PCB板尺寸应根据产品的需求进行合理的设计,并留出足够的空间用于组装元件和布局信号线路。
2.定位孔:在板子的四个角上应布置定位孔,用于方便PCB板的定位和对准。
二、元件布局规范1.元件布局:尽量采用合理的布局方式,避免元件之间的互相干扰。
可以根据不同的电路模块将元件进行分组,同时也要考虑到各个模块之间的互连。
2.元件间距:元件之间的间距要足够大,以避免干扰和短路等问题的发生。
三、信号线路规范1.信号线宽度:不同类型的信号线的宽度应根据其承载的电流大小来设计,以保证信号线的稳定性和可靠性。
2.信号线走向:信号线走向应尽量简洁、直观,并避免交叉。
尽量使用直线,避免过多的拐弯和斜线。
3.分层布局:合理使用PCB板的多层结构,将功率线和地线分层布局,避免互相干扰。
四、阻抗控制规范1.差分信号的阻抗控制:对于差分信号,其阻抗应尽量保持一致,以避免信号失真和互相干扰。
2.时钟信号的阻抗控制:对于高速时钟信号,应采用特殊的布线方式和阻抗控制,以避免信号抖动和失真。
五、电源和地线规范1.电源线和地线:电源线和地线应采用足够宽的线路来设计,以保证稳定的电源供应和良好的接地。
2.空域分离:电源线和地线应尽量分离,以避免互相干扰。
六、丝印规范1.丝印位置:丝印应放置在元件的旁边或正上方,方便用户查看和识别。
2.字体和标识:使用合适的字体和标识,确保丝印清晰可读。
七、焊盘规范1.焊盘尺寸:焊盘尺寸应根据元件的尺寸来设计,使得焊接过程更加方便和稳定。
2.焊盘间距:焊盘之间的间距应足够大,以便焊接过程中的热量扩散,避免焊接不良。
PCB设计之阻抗控制的走线细节举例
PCB设计之阻抗控制的走线细节举例阻抗控制是PCB设计中重要的一环,它能够确保信号在整个电路板上的传输质量和稳定性。
在走线细节方面,以下是一些阻抗控制的实例和技巧:1.分层设计:分层设计是阻抗控制中常用的一种方法。
根据信号层和地层的叠加情况,可以通过调整两者之间的距离和间隔来控制阻抗。
一般而言,信号层与地层之间的间隔越小,阻抗也就越低。
2.差分走线:差分走线是高速信号传输中常用的一种方式,它的特点是对抗干扰能力强,传输距离较远,同时可以控制阻抗。
在差分走线中,两个差分信号走线的布线长度要尽量相等,曲线的弯曲半径也要保持一致。
3.指定走线宽度和距离:在PCB设计中,走线的宽度和距离也会影响信号的阻抗。
一般而言,较宽的走线会导致低阻抗,而较窄的走线会导致高阻抗。
因此,在设计时需要根据信号的特性和需求来选择合适的走线宽度和距离。
4.使用阻抗控制软件:在设计中,很多阻抗控制软件可以帮助工程师实现信号走线的阻抗控制。
这些软件能够根据设计要求和参数,自动计算出合适的走线参数,以满足特定的阻抗要求。
5.保持整体稳定性:阻抗控制不仅要考虑单个走线的阻抗,还要考虑整个电路板的稳定性。
因此,在设计时需要平衡整个电路板的布线和分布电容,以确保整体的信号完整性和稳定性。
6.处理过渡区域:在信号走线从一种阻抗到另一种阻抗的过渡区域,信号的反射和损耗会增加。
因此,在设计中需要合理处理过渡区域,可以通过使用过渡锥角或添加过渡电容等方式来减少信号的反射和损耗。
7.选择合适的材料:PCB的材料也会对信号的阻抗产生影响,因此需要选择合适的材料。
常见的PCB材料有FR4和高频板材。
对于高频信号,使用高频板材能够更好地控制阻抗。
8.减小功率传输的损耗:在高功率传输的情况下,信号的传输损耗会增加。
为了减小传输损耗,可以通过增大走线的宽度和减小走线的长度等方式来控制阻抗。
综上所述,阻抗控制在PCB设计中是非常关键的一环。
通过分层设计、差分走线、指定走线宽度和距离、使用阻抗控制软件、保持整体稳定性、处理过渡区域、选择合适的材料以及减小功率传输的损耗等技巧,可以有效地控制信号的阻抗,提高信号的传输质量和稳定性。
PCB FPC 电路板阻抗知识培训资料
H1
L4INT2 L5VCC
PP 2116 (4.1mil) INT2 FR4 1/1 0.15mm (6.0mil) VCC PP 2116HR (2.5mil)
L6
铜箔 0.5oz (0.7mil)
L6
电子表格应填入之数据: (L3线路量测层之理论奥姆值) Hinght (H): 35.4 (基材厚度-指量测层往上/往下最接近之地
Impedance Change
A
B
Incident
energy
Transmitted Energy
Reflected energy
阻抗之设计
四、阻抗之设计 印刷电路板对阻抗之要求,不外乎要求控制线路之宽度、厚度 及相关之绝缘层厚度。欲控制之层数越多,则难度越高;一般而 言,对阻抗之设计,不外乎下列三种结构,任何阻抗均可由此衍 生而来: (A)Microstrip 结构
1. 影响阻抗之主要因素: 印刷电路板对阻抗之要求,不外乎要求控制线路宽度,厚度及 相关之绝缘层厚度,欲控制之层数愈多,则难度愈高,主要影响 阻抗因素如下: A. 线宽:与阻抗值成反比,线宽↓,阻抗值↑,线宽↑,阻抗值 ↓ B. 迭构(压合厚度): 与阻抗值成正比,厚度↑,阻抗值↑,厚度 ↓,阻抗值↓ C. 介电介数(Er值): 与阻抗值成反比,介电↓,阻抗值↑,介电 ↑,阻抗值↓
(2)一旦多层板线路质量不良,等特性阻抗值超出公差时,所传讯 号的能量将出现反射(Reflection)、散失(dissipation)、衰减 (Attenuation)或延误(Delay)等劣化现象,严重时甚至出现讯号之 当机情形。 当A组件经由板面线路向B发出讯号,若该讯号线的线宽不均,造成 特性阻抗值上起伏变化时,则讯号的部份能量会反回A中去。
印制电路板(PCB)的阻抗控制介绍
印制电路板(PCB)的阻抗控制介绍一:特性阻抗原理:传输线的定义,在国际标准IPC-2141 3.4.4说明其原则“当 信号在导线中传输时,若该导线长度大到信号波长的1/7,则该导线应被视做传输线。
如当某电磁波信号以时钟频率为900MHZ (GSM手机传输频率)在导线中传播时,则如果线路的长度大于:1/7波长=1C/7F=4.76CM 时,该线路就被定义为传输线。
众所周知,直流电路中电流传输时遇到的阻力叫电阻,交流电路中电流遇到的阻力叫阻抗而高频(》400MHZ )电路中传输信号所遇到的阻力叫特性阻抗,在高频情况下,印制板上的传输信号铜导线可以被视为由一串等效电阻及一并连电感所组合而成的传导线路,而此等效电阻在高频分析时小到可以忽略不记,因此我们在对一个印制板的信号传输进行高频分析时,则只需考虑杂散分布之串联电感及并联电容的效应,我们可以得到以下公式;Z0=R+√L/C √≈√L/C ( Z0为特性阻抗值)关于特性阻抗,有以下几原则:1、 在数字信号在板子上传输时,印制板线路的特性阻抗值必须与头尾元件的电子阻抗匹配,如果不匹配的话,所传送的信号能量将出现反射,散失,衰减,或延误,等现象,从而产生杂信,2、 由于电子元件的电子阻抗越高时,其传输速率才越快,因而电路板的特性阻抗值也要随之提高,才能与之匹配,3、射频通信用的PCB ,除强调 Z0外,有时更加强调板材本身具有低的 Er (介质常数)值及低的Df (介质损耗因子)值。
高频信号在介质中的传输速度为C/ Er,可知:Er 越小,传输速度越快,这也是为何高频要用低介质常数的高频材料。
Df 影响着信号在介质传输过程中的失真,Df 越小,失真越小。
二:特性阻抗的常见形式和计算方法:在线路板的设计中,传输信号最常见的有4种单线布线和2种差分布线方式方式:以上四种单线传输信号布线方式的阻抗计算公式见下;(差分略)1、 微带线:Z 。
=87ln 「5.98H/(0.8W+T )」Er+1.412、 埋入式微带线Z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB 阻抗控制设计说明
随着PCB 信号切换速度不断增长,当今的PCB 设计厂商需要理解和控制PCB 迹线的阻抗。
相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。
在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300Mhz 时控制迹线阻抗。
PCB 迹线的关键参数之一是其特性阻抗 (即波沿信号传输线路传送时电压与电流的比值) 。
印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB 设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。
这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。
阻抗控制
阻抗控制(eImpedance Controling) ,线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。
故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为“阻抗控制”。
PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。
影响PCB 走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。
PCB 阻抗的范围是25 至120 欧姆。
在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。
迹线和板层构成了控制阻抗。
PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。
但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:
信号迹线的宽度和厚度
迹线两侧的内核或预填材质的高度
迹线和板层的配置
内核和预填材质的绝缘常数
PCB 传输线主要有两种形式:微带线( Microstrip )与带状线( Stripline )。
微带线( Microstrip )
微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数Er 线路板的表面之上,以电源或接地层为参考。
如下图所示:
注意:在实际的PCB制造中,板厂通常会在PCB板的表面涂覆一层绿油,因此在实际的阻抗计算中,通常对于表面微带线采用下图所示的模型进行计算:
带状线(Stripline ):
带状线是置于两个参考平面之间的带状导线,如下图所示,H1和H2代表的电介质的介电
常数可以不同。
上述两个例子只是微带线和带状线的一个典型示范,具体的微带线和带状线有很多种,如覆膜微带线等,都是跟具体的PCB 的叠层结构相关。
用于计算特性阻抗的等式需要复杂的数学计算,通常使用场求解方法,其中包括边界元
素分析在内,因此使用专门的阻抗计算软件SI9000,我们所需做的就是控制特性阻抗的参
数:
绝缘层的介电常数Er、走线宽度W1、W2 (梯形)、走线厚度T和绝缘层厚度H。
对于W1 、W2 的说明:
计算值必须在红框范围内。
其余情况类推。
下面利用SI9000 计算是否达到阻抗控制的要求:
首先计算DDR 数据线的单端阻抗控制:
TOP层:铜厚为0.5OZ,走线宽度为5MIL,距参考平面的距离为3.8MIL,介电常数为4.2。
选择模型,代入参数,选择lossless calculatio n,如图所示:
coati ng表示涂覆层,如果没有涂覆层,就在thick ness中填O,dielectric (介电常数)填1 (空气)。
substrate表示基板层,即电介质层,一般采用FR-4,厚度是通过阻抗计算软件计算得到,
介电常数为 4.2(频率小于1GHz 时)。
点击Weight(oz)项,可以设定铺铜的铜厚,铜厚决定了走线的厚度。
9、绝缘层的Prepreg/Core 的概念:
PP (prepreg)是种介质材料,由玻璃纤维和环氧树脂组成,core其实也是PP类型介质,只
不过他的两面都覆有铜箔,而PP 没有,制作多层板时,通常将CORE 和PP 配合使用,CORE 与CORE 之间用PP 粘合。
10、PCB 叠层设计中的注意事项:
(1)、翘曲问题
PCB 的叠层设计要保持对称,即各层的介质层厚、铺铜厚度上下对称,拿六层板来说,就是TOP-GND 与BOTTOM-POWER 的介质厚度和铜厚一致,GND-L2 与L3-POWER 的介质厚度和铜厚一致。
这样在层压的时候不会出现翘曲。
( 2)、信号层应该和邻近的参考平面紧密耦合(即信号层和邻近敷铜层之间的介质厚度要很小);电源敷铜和地敷铜应该紧密耦合。
( 3 )、在很高速的情况下,可以加入多余的地层来隔离信号层,但建议不要多家电源层来隔离,这样可能造成不必要的噪声干扰。
( 4)、典型的叠层设计层分布如下表所示:
( 5 )、层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;
尽量避免两信号层直接相邻;主电源尽可能与其对应地相邻;兼顾层压结构对称。
对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的( 50MHZ 以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);
无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。