概率度量空间中的拓朴度理论与不动点定理
不动点定理
不动点定理不动点定理(Fixed Point Theorem)是数学中的一项重要定理,它在现代数学的许多领域中都有广泛的应用。
该定理的推导和证明过程相对复杂,但是可以通过举例来更直观地理解。
不动点定理最基本的形式是:对于一个连续函数f,如果存在一个数a使得f(a) = a,那么这个数a就被称为函数f的不动点。
假设有一个长度为1的线段,你可以将它折叠成任何形状的折线。
对于一条折线上的每一点,你都可以轻松地找到一个它的对应点,使得折线的对折后这两个点重合。
这个过程中,不动点就是指那些折线上的点,对折后依然保持不动。
我们先来看一个简单的例子,假设有一条直线y = x,我们希望找到这条直线上的一个不动点。
我们可以将其代入方程中,得到x = x,即x满足这个等式。
很明显,所有的实数都满足这个等式,所以直线y = x上的所有点都是它的不动点。
现在我们将问题扩展到更一般的函数。
假设有一个函数f(x) =x^2,我们可以将其图像绘制出来,并找到它的不动点。
通过描点,我们可以发现这个函数的图像在x = 0和x = 1处都与直线y = x有交点,也就是不动点。
这两个点分别是函数f(x)= x^2的两个不动点。
不动点定理告诉我们,如果一个函数在某个区间上满足某些条件,那么它一定存在一个不动点。
这个定理有着广泛的应用,例如在经济学中的均衡问题、微积分中的方程求解、组合数学中的图像理论等等。
不动点定理的推导和证明过程相对较为复杂,需要利用到现代数学中的许多高级概念和理论。
例如,需要使用到连续性、紧致性、度量空间等概念,以及开集、闭集、紧集等性质。
这些都是数学中非常重要的概念,它们为不动点定理提供了坚实的理论基础。
总结起来,不动点定理是数学中的一项重要定理,它有着广泛的应用。
通过找到函数中的某个不动点,我们可以解决一些实际问题或者推导出一些有意义的结论。
不动点定理的证明过程相对复杂,但通过举例可以更加直观地理解。
在日常生活中,我们也可以通过不动点定理来理解一些问题,例如折纸和折线、函数的交点问题等等。
Brouwer不动点定理的几种证明
Brouwer不动点定理的几种证明学院名称:专业名称:学生姓名:指导教师:二○一一年五月摘要Brouwer不动点定理是很著名的定理.其中,关于它的证明很多有:代数拓扑的证明、组合拓扑的证明、微分拓扑的证明等.都涉及拓扑学上许多复杂的概念和结果.关于该定理,也可以用图论的方法证明,用离散离散理论解决连续系统中问题.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍来体现这一思想.关键词:Brouwer;不动点.ABSTRACTBrouwer fixed point theorem is very famous theorem . Among them , about its proof many : algebra topologies, proof of the proof, differential combined topology etc. The proof of topological Involves many complex on the concept of limited and results.About this theorem, also can use graph method to prove, in a discrete discrete theory in solving continuous system. This article tries to summarize the other proof method based on the method of graph theory prove Brouwer fixed point theorem for detailed introduction to reflect this thought.Keywords: Brouwer; Fixed point.目录第一章引言 (1)1.1 研究背景 (1)1.2 本课题的研究内容 (1)第二章 Brouwer不动点定理的证明 (2)2.1 Brouwer不动点定理的图论证明 (2)引理2.1.1(sperner,1982) (3)定理2.1.2 (Brouwer) (3)2.2 Brouwer不动点定理的初等证明 (5)2.2.1 基本概念与引理 (5)定理2.2.2.1(Banach不动点定理) (5)定理2.2.2.2(KKM定理) (5)2.2.3 Brouwer不动点定理的证明 (7)定理2.2.3.2 (FKKM定理) (7)定理2.2.3.5(Brouwer不动点定理) (8)2.3 Brouwer不动点定理的nor分析证明 (9)2.3.6 Brouwer不动点定理 (18)参考文献 (19)致谢 (20)第一章引言1.1 研究背景Brouwer不动点定理是非线性分析和拓扑学中的重要基本定理,它的叙述简洁,应用广泛,但证明却很不简单.不论是代数拓扑的证明[1],还是组合拓扑的证明[2],以及微分拓扑的证明[3],都涉及拓扑学上许多复杂的概念和结果.1978年著名的微分拓扑学家nor给出了一中新证明[4],只用到多变量微分学的知识和某些基本分析定理.关于该定理,也可以用图论的方法证明,这种离散理论解决连续系统中问题的思想,对我们也给了很大的启示.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍.1.2 本课题的研究内容整理Brouwer不动点定理的初等、图论方面的证明和nor给出的用多变量微分学和某些基本分析定理的新证明.详细介绍Brouwer不动点定理的图论方法证明,体现离散理论解决连续系统中问题的思想.12第二章 Brouwer 不动点定理的证明2.1 Brouwer 不动点定理的图论证明Brouwer 不动点定理:若2∆表示平面上一个三角形区域围成的闭区域,f 是2∆到自身的连续映射,则f 至少有一个不动点,即存在一点20p ∈∆,使得00()f p p =.首先把2∆剖分成若干小三角形区域,即221m i i δ=∆=,221,n ij i ji j mδδ≠≤≤的面积为零.把2∆的三个顶点分别标志位0,1,2.每个2i δ的顶也用{0,1,2}中的数标志.若2i δ的顶i p 在2∆上的边上,且2∆的这条边端点之标号为k 与m ,2i δ的顶也标成k 与m ,称这些标志位正常标志,在正常标志中小三角形2i δ的三顶分别标志0,1,2时,称2i δ为正常三角形,见图a.2∆的这种标志的剖分称为三角剖分.1图 2.1v v 1v 59v 10v 11图 2.23引理2.1.1(sperner ,1982)在2∆的三角剖分中,正常三角形为奇数个.证:记20δ为2∆的外部区域,22212,,...,m δδδ是2∆进行三角剖分得到三角形子区域.以{}22212,,...,m δδδ为顶集造一个图G ,对于i 与j 接非零的情形,仅当2i δ与2j δ有公共边具此边端点标志为0与1时,才在此二顶间连一边,对20δ与2(0)i i δ≠的情形,仅当2i δ的0-1标志的边落在2∆的0-1标志的边上时,在顶20δ与2i δ间连一边,见图b.由于上述图G 中奇次项的个数是偶数,如果20()d δ是奇数,则22212(),(),...,()m d d d δδδ中奇数个奇次项,又2()3,1,2,...,i d i m δ<=.故22212,,...,m δδδ中的奇次项是一次项.而仅当2i δ是正常三角形时,2()1i d δ=,所以正常三角形有奇数个.下证20()d δ是奇数.事实上,20()d δ是2∆上0-1边上以0与1为端点的小区间的个数.当的这条0-1边之内点为任何小三角形之顶时,,是奇数.当的这条边内有小三角形之顶时,由于标志是正常的,的则这种小三角形在的这条0-1边上之端点标志位0或1.这时又有两种情况,(i )在这条0-1边上的小三角形顶皆标志0或皆标志1,则,(ii )在2∆这条0-1边上的小三角形之顶点标0与标1都有时,我们把端点标号一样的小区间收缩成一点,标号不变,则f 的这条0-1边上的标号序列为0-1交错列010101…01,这里出现奇数个以0,1为端点的小区间,故20()d δ为奇数.证毕. 定理2.1.2 (Brouwer)f 是2∆到自己的连续映射,则存在'20p ∈∆,使''00()f p p =. 证:012,,p p p 是2∆的三个顶点,则对任意2p ∈∆,可以写成001122p a p a p a p =++,则0i a ≥,201i i a ==∑,其中的012,,,p p p p 是二维向量,且012(,,)p a a a =,'''012()(,,)f p a a a =.令{}2'012012(,,)|(,,),,0,1,2i i i S a a a a a a a a i =∈∆≥=. 如果能证出 012S S S φ≠,则存在012012(,,)a a a S S S ∈,且',0,1,2ii a a i ≤=;又22'01i i i i a a ====∑∑,故必有'''001122,,a a a a a a ===,即f 有不动点. 下证2i i S φ=≠.事实上,考虑2∆的正常标志的三角形剖分,使得标志i 的每个顶点属于,0,1,2i S i =.2∆上任意一点'''012012(,,),()(,,)p a a a f p a a a ==时,存在一个i S ,使i p S ∈,且0i a >;否则当每个0i a >时,'ii a a >.于是22'00ii i i a a ==>∑∑,矛盾.若一个三4角形顶点i p S ∈且0i a >时,p 标志以i ,这种标志是正常标志,例如2∆的顶点(0,1,2)i p i =有1i a =,故i i p S ∈,标成i ;在2∆的01p p 边上各点的20a =,我们只能把这边上的点标以0或1;02p p 边上的点同理只能标志0或2;12p p 上的点只能标志1或2,故正常标志.由引理知,至少有一个正常三角形,其中顶点分别属于012,,S S S .我们是剖分无限变密,且小三角形中的最大直径足够小,则有分别在012,,S S S 中的三个点,两两相距可以任意小,又f 是连续的,故012,,S S S 是闭集.于是,012S S S φ≠.证毕.52.2 Brouwer 不动点定理的初等证明2.2.1 基本概念与引理定义2.2.1.1 设E 是一线性空间,其一切子集构成的集族记为2E .子集A E ⊂称为有限闭的,若它与每一有限维平面L E ⊂的交按L 上的Eucild 拓扑是闭的;一个集族{}A λλσ∈称为有限交性质,如果它的每一有限子集的交不空.定义2.2.1.2 设E 是一线性空间,X 是E 上的任意子集,称:2E G X →是一个KKM 映像,如果对任何有限子集{}12,,...mx x xX ⊂,有:{}121,,...()m mi i x x x G x =∞⊂引理2.2.1.3 设集合n X R ⊂非空,则距离函数()inf y Xd x x y ∈=-是Lipschitz的,即有:()()d x d y x y -≤- ,n x y R ∀∈2.2.2 利用Banach 不动点定理证明KKM 定理 定理2.2.2.1(Banach 不动点定理)有限维空间中有界闭凸集上的连续自映射必有不动点. 定理2.2.2.2(KKM 定理)设E 是一线性空间,X 是E 的子集,:2E G X →是一KKM 映像.如果对于任何x X ∈,()G x 是有限闭的,则集族{}()|G x x X ∈具有有限交性质.证: 反证法.假设存在{}12,,...mx x xX ⊂使得1()m i i G x φ==.设L 是由{}12,,...mx x x 张成的有限维平面,d 是上的Eucild 的度量.令{}12,,...mD co x x x =,则D L ⊂.由假定每个1,2,...,()i i m L G x =在L 中闭,故(,())0i d x L G x =的充分必要条件是()i x LG x ∈.定义函数: 1()(,())mi i x d x L G x λ==∑由于1()mii G x φ==,故对于每一x D ∈,()0x λ>.由引理1知:6()()x y n x y λλ-≤- ,x y D ∀∈不妨设D 包含原点,否则用11m ii D x m =-∑代替D 即可.令:11()(,())()mi i i f x d x L G x x t x λ==∑ x D ∀∈ 式中,1t >是待定参数.则:f D D →连续,且对任意,x y D ∈,有:1111()()(,())(,())()()mmiii i i i f y f x d y L G x x d x L G x x t y t x λλ==-≤-∑∑1111(,())(,())()()m miii i i i d y LG x x d x LG x x t y t y λλ==≤-∑∑1111(,())(,())()()mmiii i i i d x L G x x d x L G x x t y t x λλ==+-∑∑下面对式(3)右端两项分别进行估计.首先由引理1.对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d y L G x x d x LG x x t y t y λλ==-∑∑11()()mi i x x y t y λ=≤-∑ 其次根据式(2),对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d x L G x x d x L G x x t y t x λλ==-∑∑11(,())()()()()mi i i d x L G x x x y t x y λλλλ=≤-∑1((,()))()()mi i i n d x L G x x x y t x y λλ=≤-∑综合式(3)、(4)、(5)知:(,)()()h x y f y f x x y t-≤-7式中,111(,)(,())()()()m mi i i i i nh x y x d x L G x x y x y λλλ===+∑∑.在有界闭集D D⨯上连续,因此有最大值M .取足够大的{}max ,1t M ≥,则,f 构成D 上的一个压缩映射.由Banach 不动点定理知道,,有一不动点x D ∈.令{}{}|(,())0,1,2,...i I i d x LG x i m -=>∈则()ii Ix G x -∈∉.另外:11()(,())()mi i i x f x d x L G x x t x λ---===∑{}1(,())|()()i i i i i Ii Id x LG x x x i I G x t x λ--∈∈=∈∞∈⊂∑导致了矛盾.故定理2成立.2.2.3 Brouwer 不动点定理的证明引理2.2.3.1 设集族{}A λλσ∈是n R 中的非空闭集合,其中一个有界,具有有限交性质,则该集族看非空交.证明:反证法.假设A λλσφ∈=,则它的余集为全空间,即()n CA C A R λλλσλσ∈∈==即开集CA λ.的并覆盖全空间,当然也覆盖集族中的有界闭集.由有限覆盖定理知,存在有限个开集12,,...,m CA CA CA .覆盖住0A ,即:012m A CA CA CA ⊂从而:012m CA A A A ⊃,即:012()m A A A A φ= 这与假设相矛盾,从而引理2成立.定理2.2.3.2 (FKKM 定理)设X 是n R 中的非空紧凸集,:n G X R →是闭值的KKM 映射,且存在一点0x 使0()G x 有界,则集族{}()|G x x X ∈有非空交.证明 :根据定理2知集族{}()|G x x X ∈具有有限交性质,于是根据引理2知定理3成立.引理2.2.3.3. 设X 是n R 中的非空紧凸集,映射:n G X R →连续,则至少存8在一点y X -∈使得:()inf ()x Xy G y x G y ---∈-=-引理2.2.3.4. 设X 是n R 中的非空紧凸集,映射:n G X R →连续.若对于X 中每一满足()x G x ≠的点x ,连结x 和()G x 的线段[],()x G x 至少包含X 中2点.则G 在X 中有不动点.定理2.2.3.5(Brouwer 不动点定理)设:n n G D R R ⊂→是闭集D 上的压缩映像,()G D D ⊂,则对任意0x D ∈,迭代序列:1()k k x G x += 0,1,...k =存在唯一的极限点.证明:由引理2.2.3.3,2.2.3.4可知Brouwer 不动点定理2.2.3.5成立.92.3 Brouwer 不动点定理的nor 分析证明2.3.1 考虑所有实数n 元组的集合1{{,...,}|(1)}n n i E x x x x i n ==≤≤是实数,在n E 上引进三种线性运算之后,{,,,,}n n R E =+⋅<>就称为n 维欧式空间,其中1(,...,)n x x x =称为n R 的点或向量,诸i x 称为点x 的坐标或向量x 的分量;向量(,...,)i n x x x =和(,...,)i n y y y =相加,结果是一个向量,定义为11(,...,)n n x y x y x y +=++ 实数α和向量x 相乘,结果是一个向量,定义为1,...,)(n x x x ααα=向量x 和y 的内积是一个实数,定义为 1,ni ii x y x y =〈〉=∑于是,向量的长度定义为x ==向量x 和y 的之间的距离就是x y -=由于对任何α有2,,2,,0x y x y x x x y y y αααα〈++〉=〈〉+〈〉+〈〉≥ 所以判别式2,,,0x y x x y y 〈〉-〈〉〈〉≤ 即是对任何x 和y n R ∈有Canchy By -∏不等式 |,|x y x y 〈〉≤⋅10等式成立的充要条件是:相差一个常数因子.因此我们可以定义的夹角,x y 〈〉︿的余弦为cos ,x y 〈〉︿,x y x y〈〉⋅=显然,,cos x y 〈〉≤︿1||;x 和y 相差正数因子时,,cos x y 〈〉≤︿1|;相差负数因子时,,cos x y 〈〉=-︿1||;此外由于222,x y x y x y -=+-〈〉222,cos x y x y x y +-〈〉⋅︿=2与通常的余弦定律一致,所以,cos x y 〈〉︿的定义是合理的.从而,向量x 和y 正交定义为, ,x y 〈〉︿=0.向量x 可以用从原点到点x 的有向线段来表示,也可以平行移动到任何位置,只依赖于方向和长度.因此,在图示中,两个向量相加可以用平行四边形法则,也可以用三角形法则.图 2.3(a) 图 2.3(b)2.3.2 命*I 是n R 中的一个区域.如果对任何向量*x I ∈,都相应的地有一个向量()n y x R ∈,就说y 是把*I 映入n R 的一个映像(变换).如果()y x 的诸分量1(,...,)(1)i n y x x i n ≤≤是1(,...,)n x x 的连续函数,就说y 是连续向量场.注意,在说到连续可微时,总是指函数对各个变元的一阶偏导数在包含*I 的一个n 维开领域中处处存在且连续.引理2.3.2.1 命*I 是有界闭域,v 是*I 上的连续可微向量场.于是存在Lipchitz 常数c ,使得*()(),,v x v y c x y x y I -≤-∈证明,由于v 是*I 上的连续,所以对任何*I ξ∈,存在()0δξ>,使得v 在方体 (,()){|||()(1)}n i i I x R x i n ξδξξδξ=∈-<≤≤11处处连续可微,命 *(,())sup ||iij x I jI v c x ξδξξ∈∈∂=∂ 于是,根据微分中值定理,对任何,(,())x y I ξδξ∈有22()()|(,...,)(,...,)|i n i n iv x v y v x x v y y -≤-∑1222{|(,...,)(,,...,)|i n i n iv x x x v y x x ≤-+∑1212|(,...,)(,,...,)|i n i n v y x x v y y x -+ .........1212|(,...,)(,,...,)|}i n i n v y y x v y x x -,,||ij i i ij i ji jc x y c x y ≤-≤-∑∑今证存在0δ>,不依赖于*I ξ∈,使得对任何,(,())x y I ξδξ∈,上述吧不等式成立.否则,对任何正整数p ,存在*p I ξ∈以及1,(,)p p p x y I pξ∈,使得()()p p ij p p ijx x v y c x y -≤-∑由于*I 是有界闭集,根据Bolzano-Weierstrass 定理,可设*p I ξξ→∈,从而,,p p x y ξ→.于是,当p 充分大时,,(,())p p x y I ξδξ∈,所以,()()p p ij p p ijv x v y c x y -≤-∑矛盾.这样一来,如果命 *,()()sup x y I M v x v y ∈=- ,max{,}ij i jMc c δ=∑则对任何*,x y I ∈有()()v x v y c x y -≤-引理2.3.2.2 命*I 是有界闭域,v 是*I 上的连续可微向量场.命u :*n I R →是一个变换,定义为*()(),u x x t v x x I =+⋅∈ 于是,当||t 充分小时,u 是把*I 变成区域*()u I 的一一变换,区域*()u I 的体积可以表示为t 的多项式.证明:据引理1,设是的Lipschitz 常数.于是,当1||t c<时,变换u 是一一的.因为,若x y ≠而()()v x u y =,则由(()())x y t v y v x -=- 推出||x y t c x y x y -≤-<-,矛盾. 其次,由于所以的Jacobi 行列式是12,,()[]1,0,ii j ji jv J u tx i j i jδδ∂=+∂=⎧=⎨≠⎩因而可以表为的多项式:1()1()()n n J u a x t a x t =+++其中诸()i a x t 显然是的连续函数.注意,当0t =时,这个行列式之值为1,所以只要||t 充分小,则()J u 恒为正.于是,则反函数定理,当||t 充分小时,u 是把区域*I 变成区域*()u I 的一一连续可微变换,它的逆变换也是连续可微的.因此,按照体积的积分定义以及n 重积分的换元法则,区域的体积可以表示为**1()(())n u I vol u I du du =⎰⎰*12()I J u dx dx =⎰⎰01n n a a t a t =+++其中 **1()i i n I a a x dx dx =⎰⎰*0,1,,,1i n a ==,nc k 中的1n -维单位球面定义为 1{|1}n n S x h x -=∈= 命v 是1n S -上的向量场.如果对任何1n x S -∈都有,()0x v x =,就说v 是1n S -上的向量场.今设v 是1n S -上的连续可微的单位切向量场,即是对任何1n x S -∈有()1v x =. 考虑区域图 2.4*13{|}22n I x k x =∈≤≤13命*()(),xv x x v x I x=∈ 于是,v 被扩充为*I 上的连续可微的切向量. 再考虑变换*:n u I k → *()(),u x x tv x x I =+∈ 由于()u x ==可见变换u 把半径为13()22r r ≤≤的球面1(){|}n n S r x R x r -=∈=变到半径为的球面1(n S -上.引理2.3.2.3 当t 充分小时,变换u 把1()n S r -变成1(n S -证明:设11,3t t c<<,其中c 是在上的Lipschitz 常数.对于任何固定的10(n u S -∈命*()(),w x tv x x I =∈ 由于1()2tv x t x =⋅<, 所以13()()()22tv x w x tv x <-≤≤< 此外, ()()()()w x w y t v x v y t c x y -=⋅-≤⋅⋅-而1t c ⋅<,可见w 是把欧氏空间的闭集映入自身的压缩映像,据压缩映像原理,有唯一的原动点00()x w x =,即00()x tv x =+,所以1x =000()u tv ξξ=+,其中100n x S ξ-=∈.这就证明了对任何10(n u S -∈,存在唯一的10n S ξ-∈,使得00()u u ξ=14图 2.52.3.3 现在让我们对半径为r 的n 维球体(){|}n n B r x R x r =∈≤的体积给出一个计算公式(())n n n vol B r c r =其中 111312,2221322,23n nn n n cn n n c n n c n n n π----⎧⎪⎪-=⎨--⎪⎪-⎩为偶数为奇数 事实上,例如12342,,3c c c ππ===,按归纳法有10(())2[rn n n vol B r vol B dx -=⎰ 221012()2rn n n n c r x dx --=-⎰ 2102cos nn n c r d πθθ-=⎰算出上述积分,就得到所要的结果.图 2.6152.3.4 现在我们问:球面1n S -上是否存在连续可微的单位切向量?这个问题的回答有些古怪.如果1n -是奇数,回答是肯定的,事实上我们可以给出所要的向量,例如121321()(,,,),n n n v x x x x x x x x S --=---∈但是,如果1n -是偶数,回答则是否定的定理1.偶数维球面上不存在连续可微的单位切向量场.证明:假若不然,当n 是奇数时,若1n S -上存在连续可微的单位切向量场v ,则据引理3,变换()()u x x tv x =+当t 充分小时把区域*13{|}22n I x R x =∈≤≤变成区域*(){n u I x R x =∈≤≤,所以*()u I 的体积是*(())[[n n vol u I vol B vol B =-31[()()22n n n n c =-*()n vol I =由于n 是奇数,这个体积不可能是t 的多项式,因而和引理2的结果矛盾. 定理1还可以稍加推广如下.定理2.偶数维球面上不存在处处不为零的连续向量场.证明:假若不然,命v 是1n S -上处处不为零的连续向量场, 1()n x Sm Min v x -∈=.于是0m >.据Weierstrass 逼近定理[8],中有界闭集上的连续函数可以用多项式函数均匀逼近,所以存在一个多项式映像1:n n p S R -→,即诸()i p x 都是1(,,)n x x 的多项式,图 2.716使得 1()(),n p x v x m x S --<∈ , 命 1()()(),,n u x p x p x x x x S -=-∈即 1()()()n i i j j i j u x p x p x x x =⎛⎫=- ⎪⎝⎭∑ 显然,上的联讯可微向量场,此外,21(),(),(),0,n u x x p x x p x x x x S -=-=∈所以u 是1n S -上的切向量场,最后,()0u x =蕴涵()(),p x p x x x =, 所以(),()0p x v x =,()()p x v x m -=>矛盾,从而u 在1n S -上处处不为零.因此()()()u x w x u x =就是1n S -上连续可微的单位切向量场.但是,如果1n -是偶数,定理1说,这是不可能的.例.地球表面的风的分布可以视为向量场,向量的长度和方向分别表示在该点的风力和风向.风力的分布当然是连续的,所以这个定理说,地球表面上总有一处是完全无风的.2.3.5 现在介绍一种方法,怎么样从维球体傻瓜的向量场构造出维球面上的切向量场.考虑1n k +,设111{|0}{|1}{|1}n n n n n n n k x k x S x k x B x k x +++=∈==∈==∈≤图 2.8n B 的边界球面1{|1}n n S x k x -=∈=是n S 的赤道.假设给了n B 上一个处处不为零的连续向量场u ,使得1n x S -∈时,()u x x =.首先,利用北极投影把n B 映成南半17球1{|0}n n n S x S x -+=∈≤,奇数对任何n x B ∈,从北极(0,0,1)N 到1(,,0)n x x x 的连线与n S 的交点ξ就是所要的对应点.容易验证,北极投影的确定义是2121()(2,,2,1),1n n x x x x x B x ξ=-∈+ 他的递变是111()(,,,0),1n n n x S ξξξξξ-+=∈-显然,这两个变换都是连续可微的.对于任何固定的n x B ∈, n k 中的直线()x tu x + ()t a <经过北极投影变成n S 上的球面曲线(())x tu x ξ+ (注意,北极投影显然对整个n k 上的点都有定义,不过n k 中不属于的点背变到北半球上罢了).我们来证明:这条曲线在0t ≤时速度向量()u ξ是n S -在ξ处的切向量.事实上,按定义有 0()(())|t d u x tu x dt ξξ==+ 2201[(2()),,(2()),()1]1()t d x tu x x tu x x tu x dt x tu x =⎧⎫⎪⎪=⋅+++-⎨⎬++⎪⎪⎩⎭ {22121221(1)[2(),,2(),2,()][2,,2,1]2()[1]n x u x u x x u x x x x x u x x =+⋅--++ 由于()u x 连续依赖于x ,而x 连续依赖于ξ,可见()u ξ连续依赖于n S ξ-∈.此外,{}22222221(),(1)[4,()(1)2,()][4(1)]2,()[1]u x x u x x x u x x x x u x x ξξ=+⋅+--+-+ {2222221(1)2,()(1)2,()[1]0x x u x x x u x x =+-++=可见,u 是n S -上的连续切向量场.最后,还应指出μ在n S -上处处不为零,因为()0μξ=蕴涵,()0x u x =,从而有推出所有的()0i x μ=,与假设矛盾.只要当1n x S -∈时,(),()x x u x x ξ==所以()(0,,0,1)μξ=指向正北.同样,如果我们利用南极投影和向量场u 我们将得到北半球{}1|0n n n S x S x ++=∈≥上的处处不为零的连续向量场μ,但是在赤道1n S -上这个向量场指向正南.为了得到整个球面n S 上的连续向量场,我们利用向量场u -,这样18相应的向量场μ在赤道1n S -上也指向正北.与南半球上的向量场一致.这样一来,我们从所给的向量场u 构造出在整个上处处不为零的连续向量场μ.2.3.6 Brouwer 不动点定理定理3.把n 球体映入自身的任何连续映象f 至少有一个不动点,即存在n x B ∈,使()f x x =证明:假若不然,对任何n x B ∈,()f x x ≠.命1,(),1n x x u x x y x B x y-=-∈-- 其中()x f x =显然,当1n x S -∈时,()u x x =; ()u x 连续依赖于x ,因为,1x y ≠.此外,u 在n B 上处处不为零,因为()0u x =蕴涵,x x x y y x x y --=-或,,x x x x y y x x y +=+ 所以,,,,,,x x x x y x y x x x x y +=+ 即 ,,x x y x =由此再据()0u x =即得y x =于是,u 是n B 上处处不为零的连续向量场.使得1n x S -∈时,()u x x =.据F ,可以由此构造n S 上处处不为零的连续切向量场μ.据定理2,当是偶数时是不可能的.因此,我们证明了当n 是偶数时的Brouwer 定理.奇数的情形则由偶数的情形立即推出.事实上,如果2121:k k f B B --→没有不动点,那么22:k k F B B →也没有不动点,这里12121(,,)((,,),0)k k F x x f x x -=.参考文献[1] 江泽涵,拓扑学引论(第二分册)[M].1965年,上海科技出版社,126.[2] 中国科学院数学研究所,《对策论(博弈论)》[M].1965年,人民教育出版社,1960.[3] V.Guillemin,A.Pollack,Differential Topology,Prentice-Hall,Inc.1974.[4] nor. Analytic proofs of the"Hainy Ball Theorem"and the Brouwer Fixed Point Theorem[M]. 1978年,521—524.[5] 王树禾,图论(第二版)[M].2009年,科技出版社,15.[6] 熊金城,点集拓扑讲义(第三版)[M].2003年,高等教育出版社,251.[7] 燕子宗,杜乐乐,刘永明,Brouwer不动点定理的初等证明[J].长江大学学报,2008,5(1),15-17.[8] 岳崇山,用组合发证明三维情况的Brouwer不动点定理 [J].数学学报,1962,No.7,p.33.[9] 江上欧,压缩映象原理的产生与应用,河北北方学院学报,2006,6(1),3-6.[10] J.Dieudonne,Elements d’Analyse,I.fondements de l’Analyse moderme Ganthier-Villars,1972.19致谢回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之极.在这四年的时间里,我在学习上和思想上都受益非浅.这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的.论文的写作是枯燥艰辛而又富有挑战的.老师的谆谆诱导、同学的出谋划策及家长的支持鼓励,是我坚持完成论文的动力源泉.在此,我特别要感谢我的论文指导老师刘永平老师.从论文的选题、文献的采集、框架的设计、结构的布局到最终的论文定稿,从内容到格式,从标题到标点,她都费尽心血.没有刘老师的辛勤栽培、孜孜教诲,就没有我论文的顺利完成.在此我还要感谢和我一起学习和生活的同学,与他们的交流使我受益颇多.最后要感谢我的家人以及我的朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心.这也将是我克服困难、不断前进的精神动力.郝斌斌2011年4月于兰州城市学院20。
不动点定理研究
前言不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。
作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集。
1935年,Tyehonoff进一步将Sehauder不动点定理I推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff不动点定理(吉洪诺夫不动点定理)。
布劳威尔不动点定理是拓扑学
布劳威尔不动点定理是拓扑学布劳威尔不动点定理是数学领域中的一个重要定理,它广泛应用于拓扑学、微观经济学、博弈论等领域。
该定理的中文名称为布劳威尔定理,它在拓扑学中的表述是“每一个连续映射自身到自身的映射必定存在至少一个不动点”。
在数学领域中,不动点指的是一个函数应用自身后仍然等于原函数的某个点。
具体来说,若函数f(x)满足f(x) = x,则称x为f的不动点。
例如,函数f(x) = x²的不动点为0和1,函数g(x) = sin(x)的不动点为nπ(n为整数)等。
布劳威尔不动点定理指出,对于任何一个连续映射f:X→X,其中X是一个紧致的欧几里得空间(例如n维球、n维立方体等),f必有至少一个不动点。
该定理的证明相对简单,可以采用反证法证明。
假设f没有不动点,即f(x) ≠ x,对于任何x∈X。
则定义g(x) = d(x,f(x)),即g(x)表示x与f(x)之间的距离。
由于f是一个连续映射,且X是一个紧致的欧几里得空间,因此g(x)取得了最小值k。
此时,对于任意x∈X,有g(x)≥k>0。
又由于f(x) ≠ x,于是d(x,f(x))>0,因此k>0。
接下来,我们定义h(x) = g(f(x)),即h(x)表示f(x)与f(f(x))之间的距离。
由于g(x) = d(x,f(x)),因此h(x) = d(f(x),f(f(x))) = g(f(x)),即g和h具有相同的取值。
此时,我们有h(x)≥k>0,因为h(x) = g(f(x))≥k。
不妨令x0为g(x)取得最小值的点,即g(x0) = k。
由于h(x) = g(f(x)),因此h(x0) = g(f(x0)) = g(x0) = k。
接着,我们将上述关系不断套用,可以得到h(f(x0)) = g(f(f(x0))) = g(f(x0)) = k,以此类推,得到h(fn(x0)) = k(n为任意整数)。
点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义
第二章 点 集 拓 扑§2.1. n 维欧氏空间、度量空间、拓扑空间的概念定义2.1.1.) , ,(n 1ξξ =x ,nR y ∈=) , ,(n 1ηη ,定义 R R R d nn →⨯: 为 ∑=-=n12)()y ,(i i i x d ηξ. 称d 为nR 上的Euclid 距离. 易证距离d 满足:01.y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.) x ,()y ,(y d x d =;03.)z ,()y ,()z ,(y d x d x d +≤, )R z y, ,(n∈x .定义2.1.2.( 距离空间,Metrical Space ) X 为非空集合,二元函数 R X X d →⨯: 满足:01.非负性:y x 0)y ,( ,0)y ,(=⇔=≥x d x d ; 02.对称性:) x ,()y ,(y d x d =;03.三角不等式:)z ,()y ,()z ,(y d x d x d +≤ )R z y, ,(∈x .称d 为X 上的一个距离,)d ,(X 为距离空间或度量空间.如 X A ⊂,称)d ,(A 为距离子空间.0r ,>∈X x ,开球:} ) ,({)r ;(r x y d X y x B <∈=; 闭球:} ) ,({)r ;(r x y d X y x S ≤∈=.开集:X A ⊂.A x ∈,∃球 A x B ⊂)r ;(,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集.开球是开集;2R 中第一象限区域(不含坐标轴)是开集. 记)d ,(A 中开集全体为τ,则有如下结论. 定理2.1.1.(1)τφ∈X ,; (2) ττ∈⇒∈)( ,2121G G G G ; (3) τλτλλλ∈⇒Λ∈∈Λ∈ )( G G .例:(1) 离散空间.φ≠X ,定义 ) X y x,( yx ,1yx ,0)y ,(∈⎩⎨⎧≠==x d . 称X 为离散距离空间.(2) ] ,[b a C 空间.} b] [a, )( )({] ,[上连续函数为t x t x b a C =.] ,[y(t)y ),(b a C t x x ∈==, 定义y(t)x(t) max )y ,( -=≤≤bt a x d ,d 是距离.(3) 有界函数空间)(X B .φ≠X ,} X )( )({)(上有界函数为t x t x X B =. 定义 y(t)x (t) sup )y ,( -=∈Xt x d ,()(y ,X B x ∈),d 是距离.称)(X B 为有界函数空间. 取+=N X ,记} )( )( {)(有界 n n x l X B ξξ===∞.)(y ),(n ηξ==n x ,n n sup )y ,(ηξ-=∈Nn x d .定义2.1.3.设φ≠X ,)(X P ⊂τ 满足:(1) τφ∈X ,; (2) τ对于有限交运算封闭:ττ∈⎪⎪⎭⎫⎝⎛⇒∈= n 1 i i n 1G G , ,G ;(3) τ对于任意并运算封闭:τλτλλλ∈⎪⎪⎭⎫ ⎝⎛⇒Λ∈∈Λ∈ G )( G . 称τ为X 上的一个拓扑( Topology ),X 上安装了拓扑τ,) ,(τX 是拓扑空间( Topological Space ). 每个τ∈G 称为开集. 如 X A ⊂, 令} {ττ∈=G A G A , 称) ,(A τA 为(拓扑)子空间.例:(1) 度量空间)d ,(X 是拓扑空间,称为由距离d 诱导的拓扑τ. (2) 设 φ≠X ,}{X ,φτ=,称) ,(τX 是平凡拓扑空间. (3) 设φ≠X ,)(X P =τ,称) ,(τX 是离散拓扑空间.(4) } n, , 2, 1, ,0{ ==N X ,令}{} )\( {φτ为有限集 A X X A ⊂=,则) ,(τX 成为拓扑空间.§2.2. 拓扑空间中的基本概念设),(τX 是拓扑空间,X A ⊂.定义:(1) 若 c A 是开集,称A 为闭集. (2) A 的闭包闭F F,A F⊂∆=A (包含A 的最小闭集).(3) 若G x ∈,G 是开集,称G 为x 的一个邻域.∃∈ ,A x 邻域G ,使A G x ⊂∈,称x 为A 的内点.A 的内点全体称为A 的核(内部),记0A 为. (书15P (3)错) (4) x X, x ,∀∈⊂X A 的邻域G ,有φ≠A G ,φ≠cA G ,称x 为A 的边界点.A 的边界点全体称为A的边界,记为 A ∂.显然,0A ,A ∂,0)(c A 互不相交,o c o A A A X)( ∂=.(5) x X,A ,∀⊂∈X x 的邻域G ,有 φ≠A x G }){\(,称x 为A 的聚点.A 的聚点全体称为A 的导集,记A '. (6))A \A ('∈x ,称x 为A 的孤立点.(7) 若 A A '=,称A 为完全集(完备集). (8) 若 ()φ=oA ,称A 为疏朗集(无处稠密集). A 不在任何开集中稠密.(9)X B ,⊂A ,若B A ⊃,称A 在B 中稠密.它等价于: Ay y B ∈⊂>∀);(B 0, εε.(10)-σF 型集A : +∞==1nF n A ,n F (闭集);-δG 型集B : +∞==1n G n B ,n G (开集).(11) 设B 在A 中稠密,0ℵ≤B ,称A 为可分集.若X 可分,称X 为可分空间. (12) 若 +∞==1nEn A ,n E (疏朗),称A 为第一纲集;否则称A 为第二纲集.(13) 设)d ,(X 为度量空间,X A ⊂.若存在球 )r ;(0x B ,使)r ;(0x B A ⊂,称A 为有界集.设 0 , ,>⊂εX B A .若 Bx x B A ∈⊂)(ε;,称B 为A 的一个网-ε.若0 >∀ε,A 具有有限的网-ε B ,称A 为完全有界集.注:可取有限的网-ε A B ⊂. 如:球n R x B ⊂)r ;(0 是完全有界集.(14) 设X x n ⊂}{, 若∃X x ⊂, 使 0 x),d(x lim n =+∞→n . 称}{n x 收敛于x , 记 x x lim n =+∞→n 或)(n x x n +∞→→.极限是唯一的; 收敛点列是有界集. (15) 设 )d ,(X 为度量空间,X A ⊂.若A 中任一点列都存在收敛于X 中点的子列,称A 为列紧集.如:欧氏空间n R 中的有界集是列紧集. (16) 设X A ⊂,Λ∈λλ}{G 是开集族.若 Λ∈⊂G λλA ,称Λ∈λλ}{G 为A 的一个开覆盖.若A 的任一开覆盖Λ∈λλ}{G ,存在有限子覆盖: n1iG =⊂i A λ,称A 为紧集. 若空间X 紧,称X 为紧空间.(17) 设)d ,(X 为度量空间,εε<>>∃>∀⊂) x ,d(x N n m , 0,N 0, }{n m 时,有当,X x n ,则称}{n x 为Cauchy 序列(基本列). 若X 中每个基本列均收敛,称X 是完备的度量空间. 如:收敛点列必是基本列. nR 是完备的度量空间.以下假设),(τX 是拓扑空间. 定理2.2.1.(闭集的性质)(1) X ,φ是闭集; (2) 有限个闭集之并是闭集; (3) 任意多个闭集之交是闭集. 定理2.2.2.(1) o A 是A 的最大开子集; A 为开集 o A A =⇔.(2)A 是包含A 的最小闭集; A 为闭集A A =⇔.(3) A 为闭集A A ⊂'⇔. (4) A A A '= . (5) A A A o∂= . (6) )d ,(X 为度量空间,则X A ⊂为闭集A ⇔中取极限运算封闭.(7) A 为度量空间X 中闭集 ⇔若 A x 0)y ,(inf )A ,( ∈==∈∆则,x d x d Ay .选证:(1) 记} {Λ∈λλG 为A 的全体开子集所成之集族.则⎪⎪⎭⎫⎝⎛∈⇔∈Λ∈∃⇔∈Λ∈ G x G x , λλλλ使oA x ,于是 Λ∈=λλG A o是开集,且是A 的最大开子集. 故A 为开集A A o =⇔. (3) 若A 为闭集,则c A 为开集,且φ=cA A .由聚点定义,c c A x A x )( '∈⇒∈,即c c A A )('⊂,A A ⊂'.反之, 设A A ⊂',则cc A x A x )( '∈⇒∈, 故存在x 的某个邻域G , 满足 c A x .)}{\(∈=而φA x G ,∴ φ=A G ,即cAG x ⊂∈,说明x 是c A 的内点,c A 是开集,A 是闭集.(6) 设点列A x n ⊂}{,X x x n ∈→.若}{n x 有无穷多项互异,则A x '∈;否则A x ∈.从而总有A x ∈.由(2) 得证.例1. 0.5] [0,E );5.0 ,0(E ,)5.0 ,0[0='==则Z E ; Z E E E ]5.0 ,0[='=.由于E E ⊂'不成立,E 不是闭集.例2. 2R X =, } 0 R,x ) ,{(≥∈=y y x A . 则 A A ='; } R x,0 ) ,{(∈>=y y x A o. A A A A ='= ; } )0 ,{(R x x A ∈=∂.例3. 证明R A ⊂的导集A '是闭集. 证:需要证c) A ('是开集.x,)A ( x c '∈∀不是A 的聚点,存在x 的邻域 ) ,(δx U ,) ,(δx U 中不存在异于x 的A 中的点,故),(δx U 中的每个点均不是A 的聚点.于是 cA x U ) () ,('⊂δ,c) A (' 是开集.定理2.2.3.X A = ∀⇔ 非空开集 X G ⊂,有 φ≠G A . 证:设X A =. 若开集G 满足φ=G A . 则 c G ( ,c G A ⊂为闭).由Th2.2.2.(2) 得 c G A ⊂, 于是,φ==⊂c c X A G )(.反之,由于c cA A A )( )(且φ= 为开集,由条件,φ=c A )(,得 X A =.定理2.2.4.( 疏朗集的三种等价描述)(1) φ=oA )(; (2) ∀非空开集φ≠⇒c )A (G G ;(3) ∀非空开集G ,必含有非空开子集 G G ⊂0,满足φ=0G A .证:(1)⇒(2).若开集G 满足φ=c)A (G ,则A G ⊂, 于是φφ==⊂G ,)A (G o. (2)成立.(2)⇒(3).∀非空开集G ,令0c0G ,)A (G G = 为G 的非空开子集, 且φ=⊂cA A 0G A .(3)⇒(1).反证法.假设 φ≠oA )(,由(3),存在非空开集oA G )(0⊂,满足φ=0G A ,即c )(G A 0⊂ (闭集),c G A0⊂,c 0)A (G ⊂ (开集), 从而 φ==00)(G G A c( A ⊂0G ).矛盾. (18P 错)定理2.2.5.在度量空间中,完全有界集是有界的可分集.证:设X A ⊂为完全有界集,存在X 中有限多个球 n k x B 1)}1 ;({,使 n1)1 ;(=⊂k kx B A . 固定 X x ∈0,记 ∑=+=n10k) x ,d(x1r k . 1) x d(x , 1), ;B(x x k, A, x k k <∈∃∈∀即使, 故r ) x ,d(x ) x d(x ,) x d(x ,0k k 0<+≤ ,即 )r ;(0x B A ⊂, A 有界.对于kk 1=ε,存在有限多个以A 中点)(k j x 为中心的球⎪⎭⎫⎝⎛k 1;)(k j x B ) n , 2, ,1(k =j ,使 kn 1 )(k 1 ;=⎪⎭⎫ ⎝⎛⊂j k j x B A .记{}3, 2, 1,k ;n , 2, ,1 k)( ===j x D k j ,则 D 是A 的至多可数子集.εε<∃>∀k1 ,0.于是,()Dx j k j j k j x B x B A n 1 )(n 1 )() B(x; ;k 1 ;kk∈==⊂⊂⎪⎭⎫⎝⎛⊂εε, D 在A 中稠密,A 为可分集.定理2.2.6.在度量空间中,列紧集是完全有界集.证:反证法.假设X A ⊂是列紧集,但A 不是完全有界集,A ,0 0>∃ε没有有限的0ε-网.A A ∈∃∈∀21 x , x ,使021) ,(ε≥x x d .同理,} x ,{21x 不是A 的0ε-网,A ∈∃3 x ,使) 2 1,i ( ,) ,(03=≥εx x d i .继续下去,得到A x n ⊂}{,满足:) j i ( ,) ,(0≠≥εj i x x d .显然,点列}{n x 无收敛子列,A 非列紧.定理2.2.7.在度量空间中,A 为紧集A ⇔为列紧的闭集.证:只需证明:A 为紧集 A ⇔中每个点列均有收敛于A 中点的子列.“⇒”. 反证法.假设存在点列A x n ⊂}{无收敛于A 中点的子列.则y y y N n ,0N 0 A,y >>>∃∈∀当及δ时,有 ) ;(y δy B x n ∉.现A y y B y )} ;({∈δ为紧集A 的一个开覆盖, 存在 m1 y )} ;({k =k k y B δ 满足m1y ) ;(k =⊂k k y B A δ.令k y mk N N max 1≤≤=,则当 时,N n > m1y ) ;(k=∉k k n y B x δ. 从而 A x n ∉. 矛盾.“⇐”. 设 A 为列紧闭集,则A 为完全有界集.要证A 是紧集,只要证明,对于A 的任一开覆盖Λ∈ }{λλG ,λδλδG ) B(x ; , , x 0, ⊂Λ∈∃∈∀>∃使A . ( 因为 A 具有有限的δ-网 ).采用反证法.假设不然,存在A 的一个开覆盖Λ∈ }{λλG , 满足Λ∈∀∈∃∈∀λ , x N,n n A , 有φλ≠c n G )1;B(x n.对A x n ⊂}{, 因A 为列紧闭集,存在子列 Λ∈⊂∈→ 0λλG A x x k n . 0r , 00>∃Λ∈∃λ,使0 G )r ;B(x 00λ⊂(开集). 而当k 充分大时,有 0 G )r ;B(x )n 1;B(x 00kn λ⊂⊂. 矛盾. 定理2.2.8.设) ,(d X 是度量空间,则以下三条等价: (1) X 是完备的度量空间; (2) 非空闭集列X F n ⊂满足0y) d(x , sup lim )(lim ), 3, 2, 1,(n ,nF y x,n 1===⊂∈+∞→+∞→+n n n n F d F F ,则∃唯一的 +∞=∈1n0Fn x .(3) X 中的完全有界集是列紧集.证:(1)⇒(2). 取) 3, 2, 1,n ( =∈n n F x .当 N p ∈ 时,n p n pn F F x ⊂∈++,0)d(F ) x ,d(x n n p n →≤+,)(n +∞→. }{n x 为完备空间X 中的基本列.记 ) (n ,0+∞→→x x n ,n F 闭, +∞=∈1n 0F n x . 0x 的唯一性显然. (2)⇒(3).设X A ⊂为完全有界集,点列A x n ⊂}{.由完全有界集的定义,∃∈∀ N,k 有限个以 k 21为半径的闭球所成之集族kn m k m k S F 1}{== 覆盖A .于是,存在1)1(F S∈ 含有}{n x 中的无限多项;又存在2)2(F S ∈ ,使得)2()1(S S 含有}{n x 中的无限多项 ; . 一般地, , N k ∈∀k k F S ∈∃)( ,使得kj j k S F 1)( =∆=含有}{n x 中的无限多项. 由此知,存在}{n x 的子列}{k n x 满足k n F x k ∈,) 3, 2, ,1 ( =k .非空集列}{k F 满足k k F F ⊂+1,且 0 1)(→=k F d k .由(2),存在 +∞=∈1k 0F k x ,且)d(F ) x ,d(x k 0n k ≤0k1→=,即0n x x k →,A 为列紧集.(3)⇒(1).设}{n x 为X 中基本列,记} {N n x A n ∈=.εε<≥>∃>∀) x ,d(x N n 0,N 0, N n 时,当.从而, N1k) ;B(x=⊂k A ε, A 为完全有界集⇒ A 为列紧集. 故}{n x 有收敛子列 0n x x k → ) (+∞→k . 显然0n x x → ) (+∞→n . X 为完备空间.定理2.2.9.设) ,(d X 是完备的度量空间,则子空间X M ⊂是完备的 M ⇔是闭集. 定理2.2.10.(Baire 纲定理) 完备的度量空间X 必是第二纲集. 证:采用反证法.假设X 是第一纲集,则 n 1nE ,E+∞==n X 为疏朗集. 由Th2.2.4.(3) 知:对于∃ ,1E 直径小于1的非空闭球φ=111E S , 使S ; 对于∃ ,2E 直径小于21的非空闭球1012S S S ⊂⊂,使φ=22E S ; ; 对于∃+ ,1n E 直径小于11+n 的非空闭球φ=⊂⊂+++1n 1n 01E S , 使n n n S S S .得非空闭球套+∞1}{n S . X 完备, +∞=∈∃1n 0S n x . 这样,X N n E x n ∉∈∉00 x ),( . 矛盾.定理 2.2.11.(完备化定理) 对于度量空间) ,(d X ,必存在一个完备的度量空间)~,~(d X ,使得) ,(d X 等距于)~ ,~(d X 的一个稠密子空间.在等距意义下,空间)~,~(d X 是唯一的. 称空间)~ ,~(d X 为) ,(d X 的完备化空间.(证明的思想方法与Cantor 实数理论中,把无理数加到有理数域中的方法相同). 等距映射:) ,(1d X ,) ,(2d Y 是距离空间, 存在一一映射Y X →:ϕ 满足 ))( ),(() ,(21y x d y x d ϕϕ=)X y x,(∈∀,称ϕ为等距映射,空间X 与Y 等距.例:取nR X =,d 为欧氏距离. )r ;(0x B A = (开球,0>r ).则A 为完全有界集;X 完备,A 也是列紧集.作为距离子空间,A 不完备,其完备化距离空间为 )r ;(~0x S A = (闭球).§2.3. 连 续 映 射定义2.3.1.(连续映射)(A) ) ,(1d X 与) ,(2d Y 是距离空间,映射 . x ,:0X Y X f ∈→) ;( x 0, 0, 0δδεx B ∈>∃>∀当时,) );(((x )0εx f B f ∈,称f 在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y (B) ) ,(1τX 与) ,(2τY 是拓扑空间,映射. x ,:0X Y X f ∈→ 020 x , )( ∃∈∀τV x f 的邻域 的邻域1τ∈U ,使(V ))f U ( ,(U)1-⊂⊂即V f ,称f 为在0x 处连续. 若f 在X 的每一点连续,称f 是X 到Y 的连续映射.例1. (1) 距离空间 21d ,d R,Y ),1 ,0(==X 为欧氏距离. 则 x y sin =是)d ,()d ,(21Y X → 的连续映射(函数).(2) 取 }X ,{ ),1 ,0(1φτ==X 为X 中离散拓扑; 2 ,τR Y = 为Y 中欧氏拓扑.则 x y sin =不是Y X →的连续映射.因为,X ∈∀0 x ,对于Y 中)(0x f 的邻域 Y ) ),(21(0⊂∞+=x f V ,不存在0x 的邻域X U ⊂,使V U f ⊂)(. 定理2.3.1. 设X ,Y 是拓扑空间,Y X f →:. (A) f 连续 ⇔ f 反射开集:X (V )f 1⊂⇒⊂∀-Y V 开集 是开集;(B) f 连续 ⇔ f 反射闭集:X (F)f 1⊂⇒⊂∀-Y F 闭集 是闭集.证:(A) “⇒”.V f(x ) (V ),fx 1∈∈∀-即 .由f 在x 处连续,存在x 的邻域 X U ⊂, 使(V )f U (U)1-⊂⊂.即V f . x 是内点,(V )f 1-是开集.“⇐”. 若f 反射开集,Y V f(x ) X x ⊂∈∀的邻域及, 则 X (V)f 1⊂=-∆U 为x 的邻域,且V (V )][f f f(U)1⊂=-,故)(x f 在x 处连续.(B) 注意到 c c F f F f)]([)(11--=,证(B).定理2.3.2. 设X ,Y 是度量空间,映射Y X f →:.则f 在0x 处连续0n n X,}{ x x x →⊂∀⇔)()f( 0n x f x →⇒, )(n +∞→. (证明同数学分析)定理2.3.3. (连续函数的延拓)设E 是度量空间X 中的闭集,R E g →: 是连续函数,则存在连续函数R X f →: 满足: (1) E ),()(∈=x x g x f ; (2) )( sup )(sup ),( inf )(inf x g x f x g x f Ex Xx Ex Xx ∈∈∈∈==.(证略)定理2.3.4. (压缩映射原理,Banach 不动点定理)设)d ,(X 是完备的距离空间,映射X X T :是压缩映射, 即 y) d(x , Ty) d(Tx , 1,0 θθ≤<≤∃使 , X y x,∈∀. 则 T 有唯一的不动点X x ∈:x x T = .证:取初值 ,0X x ∈ 迭代格式:,01Tx x = ,12Tx x =, ,1 n n Tx x =+.下证}{n x 是Cauchy 序列:)Tx ,d(Tx ) x ,d(x ) ,() ,(2n 1n 1n n 11----+=≤=θθn n n n Tx Tx d x x d ) x ,d(x ) x ,d(x 02n 1n 21n θθ≤≤≤-- .) x ,d(x ) x ,d(x ) ,() ,(n n 2p n 1p n 11+-+-+-++++++≤ p n p n n p n x x d x x d()) ,( 0121x x d np n p n θθθ+++≤-+-+ ),(1),(1)1(0101x x d x x d np n θθθθθ-≤--=,∴0),(lim =++∞→n p n n x x d . 而X 完备, x x ,x n →∈∃使 X . T 连续, 故 x x T = .唯一性:若 y T y =. 由于 y 0)y ,( )y ,( )y T , ()y ,(=⇒=⇒≤=x x d x d x T d x d θ.误差估计:) x ,(1)x ,(00Tx d x d nn θθ-≤. 推论.设),(d X 是完备的距离空间,映射X X T :. 若 0n T 是X 上的压缩映射,则T 有唯一的不动点.证:0n T有唯一的不动点x :x x Tn =0.由, )() (00x T x T T x T T n n == 故x T 也是 0nT 的不动点. x x T =⇒ . 由于 T 的不动点也是0n T的不动点,故T 的不动点唯一. 压缩映射原理的应用例1.常微分方程解的存在唯一性.考虑初值问题:⎪⎩⎪⎨⎧==00)(),(x t x t x f dt dx,其中) ,(t x f 连续, 关于x 满足Lipschite 条件:0)(k,) ,() ,(2121>-≤-x x k t x f t x f . 则方程存在唯一解 )(t x x =.证:方程等价于[]⎰+=tt d x t x 00),x(f )(τττ.取 1k ,0<>δδ使.定义 ] t ,[] t ,[0000δδδδ+-+-t C t C T :为 []⎰+=tt d x t Tx 00),x(f ))((τττ,] t ,[00δδ+-∈t t .验证 T 是压缩映射:⎰-≤≤- t212100 ]),([]),([max ),(t t t d x f x f Tx Tx d τττττδ⎰-≤≤- t2100)()(max t t t d x x k τττδ021t t m ax )()( m ax 0-⋅-⋅≤≤-≤-δδτττt t t x x k ),( 21x x d k δ≤. )1(<δkT 在 ] t ,[00δδ+-t C 内具有唯一的不动点 )(t x x =:x Tx =. 重复利用定理将解延拓到实数域R 上.例2.线性方程组解的存在唯一性.线性方程组:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-∑∑∑===nj n j j n n n j j j nj j j b x a x b x a x b x a x 1 12221111,,,满足 ∑=≤≤<=nj ji n i a111max α, 则它具有唯一解 ) x , ,(n 1 x x =.证:在nR 中定义距离:ini y y x d -=≤≤i 11x max ),(,) x , ,(n 1 x x=,n R y y ∈=)y , ,(n 1 ,则 ) ,(1d R n 完备. 作映射 n n R R T : 为 ⎪⎪⎭⎫ ⎝⎛++=∑∑==n j n j j n j j b x a b x a x x 1 n 1 j 11n 1 , ,) x , ,( . 则∑=≤≤-=nj j j j i n i y x a Ty Tx d 1 11)( max ) ,(∑=≤≤-≤nj j j j i ni y x a 1 1 max ),(max 11 1y x d a n j j i n i ⎥⎦⎤⎢⎣⎡≤∑=≤≤) ,( 1y x d α=.T 是压缩的,有唯一不动点 ) x , ,(n 1 x x =.§2.4. R 中的开集及完全集的构造开区间) ,(b a 是R 中开集 (+∞≤<≤∞-b a ). 任意多个开区间之并是开集.另一方面,设开集R G ⊂.则G r) x r,(x 0,r G , x ⊂+->∃∈∀使.记 }G x),( , inf{⊂<=ααα且x a , }G ) ,( , sup{⊂>=βββx x b 且.开区间) ,(b a 具有性质:G b G,a ,) ,(∉∉⊂G b a .称) ,(b a 为开集G 的一个构成区间.于是,G 中每一点必在G 的一个构成区间.此外,G 的任何两个不同的构成区间必不相交.而R 中两两不交的开区间至多可列个. 定理2.4.1. (开集构造定理) 每个非空开集R G ⊂可表示为至多可列个两两不交的开区间之并: +∞==1 n n )b ,(a n G .根据完全集的定义 (15P )及Th2.2.3(3) 可知,完全集(A A '=)即为无孤立点的闭集.故有如下定理. 定理2.4.2. (R 中完全集的构造) 集R A ⊂是完全集 cA ⇔ 是两两不交并且无公共端点的开区间之并.Cantor 集P . [ ] [ ] [ ] [ ] [ ]构造过程: 0 231 23231 32 97 98 1第一步:将 ]1 ,0[三等分,挖去⎪⎭⎫ ⎝⎛=32 ,311J ,留下闭区间 ⎥⎦⎤⎢⎣⎡=31 ,00I ,⎥⎦⎤⎢⎣⎡=1 ,322I . 记 11J G =.第二步:对0I ,2I 分别三等分,挖去中间的开区间⎪⎭⎫ ⎝⎛=92 ,9101J 与 ⎪⎭⎫⎝⎛=98 ,9721J . 记 21012J J G =,留下4个闭区间⎥⎦⎤⎢⎣⎡91 ,0,⎥⎦⎤⎢⎣⎡31 ,92,⎥⎦⎤⎢⎣⎡97 ,32,⎥⎦⎤⎢⎣⎡1 ,98.第三步:对留下的4个闭区间施行同样过程.将挖去的4个开区间之并记为3G .如此继续下去.记 c1 n G P ), ,1()0 ,(G ∆+∞==∞+-∞⎪⎪⎭⎫ ⎝⎛= n G . (书25P 错) 据Th2.2.4 及Th2.4.2,Cantor 集P 是疏朗集、完全集.若采用三进制无穷小数表示]1 ,0[中数,则 xG 1n ⇔∈+∞= n x 中至少有一位是1,亦即:x ⇔∈P x 可表示为由0或2作为位数过构成的无穷小数.由Th1.3.4,ℵ=⎪⎪⎭⎫ ⎝⎛=∏∞+= 2} {0,1 n P ; ]1 ,0[~P .第二章习题26P .16.设}{n K 是度量空间X 中非空单调减紧集序列,证明:φ≠+∞= 1nKn .特别地,若 0)(→n K d ,则+∞=1nKn 为单点集.证:反证法.假设φ=+∞= 1 n K n , 即 ∞+=∞+==⎪⎪⎭⎫ ⎝⎛=⊂11 n 1K n c n cn K X K . 321 ⊃⊃⊃K K K , 321 ⊂⊂⊂cc c K K K . 1K 紧 φ=⊂=⇒=⊂⇒=cn c n ki c n kkiK K K K K kkkn 1n n 11K K K .矛盾.若 0)( lim =+∞→n n K d ,)(n 0)d(K y) d(x , K ,n 1n +∞→→≤⇒∈+∞= n y x . y x =∴.33.证明: x sup }{n⎭⎬⎫⎩⎨⎧+∞<==∈∞N n n x x l 是不可分的距离空间. 证明:距离:}{n x x =,}{n y y =,n n Nn y x y x d -=∈ sup ) ,( . 假设 ∞l 可分,据15P (11), (9),它有至多可列的稠密子集.对于 41=ε,存在可列多个球+∞1)} ;({εn x B , 使+∞=∞⊂1) ;(n n x B l ε.记{} }1 ,0{ }{ n ∈==x x x A n , 则 ∏+∞=1 1} {0,n A ~,ℵ=A . 但+∞=⊂1 ) ;(n n x B A ε, 存在球) ;(0εn x B , 至少包含A 中不同的两点 A y x ∈ ,. 这样,()212) ;(1) ,(0 =≤≤=εεn x B d y x d , 矛盾. 空间 ∞l 不可分.。
点集拓扑知识归纳总结
第二章 拓扑空间2.1拓扑空间的概念2.1.1拓扑定义2.1.1设X 是一集合,T 是X 的一子集族。
如果T 满足:(1),X T ∅∈;(2)有限交封闭;(3)任意并封闭。
则称T 为X 上的一拓扑,而T 的成员叫X 的开集。
例:{},T X =∅叫X 上的平庸拓扑;{}A |A T X =⊆叫X 上的离散拓扑;典型拓扑:余有限拓扑、余可数拓扑、有心拓扑、去心拓扑定义2.1.2 Y 的子空间拓扑或相对拓扑:母空间的开集交上Y 即可。
定义2.1.3 设(X,T )是拓扑空间,∼是X 上的等价关系,等价类的集合为[]{}/|X x x X =∈∼,自然投影:/p X X →∼定义为()[]p x x =。
令(){}1//|T U X p U T −=⊆∈∼∼叫/X ∼上的商拓扑,()/,/T X ∼∼叫商空间。
下面证明/T ∼是/X ∼上拓扑。
(1)由于()1p T −∅=∅∈,()1/p X X T −=∈∼,即,//X T ∅∈∼∼;(2)设/A T ⊆∼为有限集,由于()11U U U A Ap p U −−∈∈⎛⎞=⎜⎟⎝⎠∩∩,且满足()1p U T −∈,由拓扑T 对有限交封闭有,()1U A p U T −∈∈∩,从而U U /AT ∈∈∼∩;(3) /A T ∀⊆∼,由于()11U U A Ap U p U −−∈∈⎛⎞=⎜⎟⎝⎠∪∪,类似地,由拓扑T 对任意并封闭有,()1U A p U T −∈∈∪,从而U /AU T ∈∈∼∪。
综上所述,/T ∼是/X ∼上拓扑。
定理2.1.1设(X,T )是拓扑空间,F 是X 的闭集族,则(1),X F ∅∈;(2)有限并封闭;(3)任意交封闭。
定理2.1.2设(X,T )是拓扑空间,F 是X 的闭集族,Y ⊆ X,则Y |F 是Y 作为子 空间的闭集族。
2.1.2 领域系定义2.1.5设X 是拓扑空间,包含x 的开集叫x 的开领域。
定义2.1.6设X 是拓扑空间,如果A 内存在x 的开领域,则称A 是x 的领域。
分析拓扑意义下的不动点定理
[e] 为单位元素.
现已通过同伦对空间 Χ 的每一点 x 建立一个基本群 π(1 X , x),紧接着就会产生这样的问题: 同一空间在不同点处的基本群是否相同即是否同构呢?答案是否定的.但对空间 Χ 略加一点容易
Newman 提到 Nielsen 在研究曲面的自映射的不动点时运用了曲面的基本群与其他同伦群的运用将 促使不动点理论得到实质性的发展. 1962 年前后,我国数学家江泽涵、姜伯驹、石根华等人的工作 大大推广了可计算尼尔森数的情形,并得出 Lefschetz 不动点定理的逆定理. 为什么他们的工作常 常有意义,令人深省.
不动点理论实质上是方程解的存在性与解的个数的理论. 反之, 方程解的存在性与解的个数 问题实际上就是不动点的有无问题和不动点的个数问题.
早在 1799 年,Gauss 的代数基本定理的证明中已经运用根的重数与映射的同伦这两个概念. 1881-1886 年 Poincare 的 ODE 的定性理论的一系列论文研究了闭曲面上向量场的奇点,相当于恒 同映射类的不动点. 他对于孤立奇点引进了指数这一概念并证明了 Lefschetz 定理的一个特例. 上 世纪初,荷兰的直觉主义拓扑学家 Brouwer 引进了闭 n 维流形之间的映射的映射度,把指数的概 念从二维推广到 n 维. 1923 年,Lefschetz 发现了 Lefschetz 定理,他最初提出的只限于 X 是一个能 定向的闭流形,后来瑞士数学家 Hopf 打破了流形这一限制,对齐性的连通的多面体 X,可贵的是, 更容易的证明了这一定理.
凸集,博弈论,不动点定理
凸集,博弈论,不动点定理1.引言1.1 概述概述:本文将探讨凸集、博弈论和不动点定理这三个重要的数学概念,并分析它们的定义、性质以及在实际应用中的作用。
通过研究这些概念,我们可以深入理解和应用它们在不同领域中的关联和相互关系。
凸集是一个几何概念,指的是在欧几里德空间中的一个集合,其中任意两点的连线上的所有点也都属于该集合。
凸集具有许多重要的性质,如可加性、局部性以及凸组合等,这些性质使得凸集在优化问题、经济学、几何学等领域中有广泛的应用。
博弈论是研究决策制定者之间相互关系与冲突的一门学科。
它涉及多个参与者之间的互动和决策,并通过分析不同的策略和结果来研究可能的决策结果。
博弈论的应用范围广泛,包括经济学、管理学、社会科学等领域,通过博弈论可以帮助我们预测和解决各种竞争和合作策略决策问题。
不动点定理是数学中的一个重要概念,指的是在某个映射函数下存在一个点,经过迭代作用后保持不变。
不动点定理在函数分析、拓扑学等领域中有广泛的应用,它可以用来证明存在性和收敛性等问题。
通过对凸集、博弈论和不动点定理的研究,我们可以进一步理解数学在实际问题中的应用和价值。
本文将详细介绍这些概念的定义、性质以及在实际问题中的应用,希望读者在阅读本文后能够对凸集、博弈论和不动点定理有更深入的理解,并进一步探索这些概念在其他领域中的应用和发展。
1.2文章结构文章结构部分的内容可以包括以下几点:1.2 文章结构本文将按照以下结构进行论述:第一部分为引言部分,介绍本篇文章的背景和主题。
该部分分为概述、文章结构和目的三个小节,分别对文章的整体情况、组成结构以及研究目的进行说明。
第二部分为凸集的内容,该部分分为定义和性质以及凸集的应用两个小节。
在定义和性质部分,我们会给出凸集的基本概念和相关性质的阐述,介绍凸集的形式以及其重要性。
接着,在凸集的应用部分,我们会介绍凸集在优化问题、经济学和几何学等领域的具体应用。
第三部分为博弈论的内容,该部分分为博弈论的基本概念和博弈论的应用两个小节。
概率度量空间上C—映射及其不动点定理
及 其 不 动点定理进 行 了讨 论 空间 给
£
文 中涉及的 概率度 量空 间 (
(
F ,
△ )
一范数△
,
且: 一 完 备 的
二
。
,
油
,
g
e n
见文③ ) } 是 E 中任 一 点列
, ,
{ 、
>
x
,
弋、
} 称 为 二 一 收敛 于 沂
,
。五 “己 为
,
三
(`
,
,
)
如对 任
o
又 > o
,
存 在 正 整数 N
,
满足
’
即
l, 2
) 用i n
产 告 产 百 k
谧 T F
一
,
义
,
二
“
)
之( i “
… k 一
2 )
V
厂)
O
,
二
二 刀诬 In
l 盏 了 乒人
一
lF
1
、
:
、
,
川
, 7
) 》 由 定义 2
,
与 归 纳假 设有
无一 z 、 “
’
:
几*
k一
、
,
:
*
一
,
二
`
,
,
) > 脚刀 { 几 卜
2
二
,
孟
一
止、
“ ;
)
= N (。
几)
当
n
》 N
,,
时
,
有F
,
、 。
,
:
不动点性质是拓扑性质
不动点性质是拓扑性质
在数学中,不动点是指一个操作对其不会产生变化的点。
这种性质因此被称为不可变性质。
而在拓扑学中,不动点性质有着更深层次的理解。
不动点既可以是一个空间上的点,也可以是一个抽象的概念。
例如,在空间中,不动点可以被理解为在进行某种变换或者坐标变换之后,它的位置不会发生变化的点。
而在抽象的概念中,不动点可以被理解为在一系列变换之后,它仍然保持不变的一个概念。
这种拓扑性质,可以用来解释许多自然界中观察到的现象。
例如,在一个山脊的山谷中,不论从哪个角度观察,它的形状不变。
这就是因为山脊的形状是一个不动点,即使从不同的角度观察,它的形状仍然保持不变。
此外,不动点性质还可以用于描述地理信息系统,地理信息系统(GIS)是一种计算机辅助的工具,用于管理、分析、显示、存储和处
理地理空间数据。
不动点可以用来定义空间范围,并在地图上标出地理位置。
此外,不动点性质也可以用于描述抽象数学中的概念,例如几何学中的图形变换和表示理论中的点定义。
在抽象数学中,不动点性质可以用来描述某个空间点在进行某种变换后,其位置保持不变的性质。
这种性质在拓扑中可以用来描述各种抽象数学的概念,以及定义地理信息系统中的空间范围。
此外,不动点的拓扑性质也可以用来解释自然界中的现象,例如山谷的形状等。
总之,不动点性质是拓扑性质,它可以被用来定义几何变换的点的位置,也可以用来描述地理信息系统和自然界中发生的现象。
因此,
不动点性质是一个重要的拓扑性质,对理解抽象数学和理解实际现象具有重要的意义。
数学定理赏析-不动点理论
精彩的数学定理赏析
答:取一个纸盒和一张纸,纸恰好盖住盒内的底面.可想而知此时纸上的每个点与正在它下面的盒底上的那些点配成对.把这张纸拿起来,随机地揉成一个小球,再把小球扔进盒里.拓扑学家已经证明,不管小球是怎样揉成的,也不管它落在盒底的什么地方,在揉成小球的纸上至少有一个这样的点,它恰好处在它盒底原来配对点的正上方
如何找这个不动点?
通过具体找到这个点,来证明这个问题
纸被揉成纸团后,看它投到纸盒底部的影子.纸盒底部的影子区域肯定比纸盒底要小.那么,就取【纸盒底部的在影子内的那个部分】,它肯定对应于纸团里面的某一小团部分.
假如去掉纸团的其他部分,那一小团部分同样可以在纸盒底面投影,而且投影肯定比刚才的纸团在纸盒上的投影小,而且在它之内.(因为它是在整个纸团之内).那么,取这一小片投影(注意这片影子肯定是连续的不会断开,因为纸没有撕裂),当它再往纸团里对应的时候,肯定对应于其中更小的一团.我们再次把多余的纸去掉.
就是说:
整个纸盒对应于纸团
纸盒【在纸团投影内的部分】对应于纸团内的一小块
纸盒【一小块的投影的部分】对应于刚才那一小块内的更小一块
纸盒【更小块投影的部分】对应于更小块中的更更小一块…………………………
不断地去掉纸上的多余部分,一次又一次, 不断地缩小范围,无数次后,趋于极限,最后纸团上只剩下一个点,它的投影就是它最初投影于纸盒上的那个点。
不动点定理
不动点定理在经济学中的应用数本1301 王敏摘要不动点定理是拓扑学中很著名的定理,从一维到多维空间都保持这一性质。
其次,在经济学特别是在博弈论中不动点定理有着广泛的应用,比如证明纳什均衡或者一般均衡的存在性。
关键词:不动点、博弈论、纳什均衡一、不动点定理定义1:设X 是一个拓扑空间。
如果X 中有两个非空的隔离子集A 和B ,使得B A X ⋃=,则称X 是一个不连通空间;否则,称X 是一个连通空间。
]1[ 引理1:设X 是一个连通空间,R X →:f 是一个连续映射,则)(f X 是R 中的一个区间。
]1[引理2:(介值定理)设R b a f →],[:是闭区间],[b a 到实数空间R 的一个连续映射,则对于)(f a 和)(f b 之间的任何一个实数r ,存在],[z b a ∈使得z z =)(f 。
]1[ 定理:(不动点定理)设]1,0[]1,0[:f →是一个连续映射,则存在]1,0[z ∈使得z =)(z f 。
]1[证明:如果0)0(f =或者1)1(f =,则定理显然成立。
下设0)0(f >,1)1(f <。
定义映射R →]1,0[:f 使得对于任何]1,0[x ∈有)()(x f x x F -=。
容易验证f 是一个连续映射,并且这时又0)0(<F 和0)1(>F 。
因此根据介值定理可得存在]1,0[z ∈,使得0)z (=F ,即z z =)(f 。
布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数f ,存在一个点0x ,使得00)(f x x =。
这个定理表明:在高维球面上,任意映到自身的一一连续映射,必定至少有一个点是不变的,即映射:f n E E →n 是一个连续映射,其中n E 是n 维闭球体,则存在z n E ∈,使得z z =)(f 。
二、博弈论和纳什均衡 博弈论又被称为对策论,既是现代数学的一个新分支,也是运筹学的一个重要学科。
宏观经济学分析方法系列:(课堂放映版、11硕已讲)拓扑空间、不动点定理
==================================附录:宏观经济学分析方法:不动点定理(09、10、11硕已讲,2009年01月21日,精细订正)我们开始讨论不动点定理,那么什么是不动点定理?所谓不动点,就是使方程(x)f=x有解的点x,这里f可以是单变量函数,也可以是度量空间到自身上的映射。
因为点x是在f的映射下固定不变的点,我们称为不动点。
所谓不动点定理就是描述方程()f=xx的解的存在条件的定理。
不动点的存在性问题就称为不动点问题,不动点定理由此得名。
有许多不同的不动点定理。
其中一些是构造性的,但大多数不是构造性的,例如,最著名的布劳威尔不动点定理就不是构造性的,布劳威尔不动点理只告诉我们不动点是存在的,但没有说明寻找不动点的方法。
在数学中,有许多类似描述解的存在性定理,其中最著名的就是代数基本定理和微积分中的各种中值定理,正如我们已经看到的一样,这样的存在性定理在理论上和实际应用中都是非常重要的。
设想使用计算机去寻找近似解,如果我们知道解是存在的,我们就不会无的放矢。
(不讲,跳过)事实上,不动点问题是普遍存在的,我们知道的许多问题都可以转化为不动点问题。
例如:设nnR R g :是一个映射,我们欲解方程0)(=x g ,其中nR x ∈。
这个问题就等价于不动点方程x x g x =+)( 或 x x g x =+)(70;更一般地,等价于x x g x =Φ+))((,式中nnR R →Φ:满足,0)(=Φy 当且仅当0=y 。
我们将介绍三个重要的不动点定理:巴拿赫(Banach )不动点定理,布劳威尔(Brouwer )不动点定理和角谷(Kakutani )不动点定理。
一、压缩映射与巴拿赫不动点定理我们首先介绍巴拿赫不动点定理,这个定理也称为压缩映射原理。
这是一构造性定理,定理的证明提供一个构造不动点的方法,这个方法称为逐次逼近法(即迭代法)。
在介绍巴拿赫不动点定理之前,先引进压缩映射的概念。
不动点定理研究
前言不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论1.在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论2.1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念3.我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理4.最后给出结果的是波兰数学家巴拿赫Bananch6,他于1922年提出的压缩映像俗称收缩映射原理发展了迭代思想,并给出了Banach不动点定理6.这一定理有着及其广泛的应用,像代数方程、微分方程、许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的关于流形的映射2一文中就证明了经典的不动点定理的一维形式.即,设连续函数fxfx把单位闭区间0,1映到0,10,1中,则有00,1x,使00fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题;作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射即对任意Xx,xf是紧的,这时映射的定义域可不必是紧集,甚至不必是闭集;1935年,Tyehonoff进一步将Sehauder不动点定理I推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff不动点定理吉洪诺夫不动点定理;1950年,Hukuhara将Schauder不动点定理II与Tyehonoff不动点定理结合起来得到面的定理,我们称其为Sehauder--Tychonoff不动点定理:1941年,kllcIltani把Bmuwer不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani不动点定理:克莱尼1950年,Botmenblust,Karlin把Sehauder不动点定理I推广到集值映射的情形:1952年,Fan,Glicksberg分别把Tyehonoff不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg不动点定理或K-F—G不动点定理.即1968年,Browder又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder不动点定理:布劳德不动点定理 : 由布劳德Browder,.提出的带边界条件的集值映射不动点定理.设X是局部凸拓扑线性空间,C为X中非空紧凸集,F:C→2X具非空闭凸值且上半连续.记δC={x∈C|存在X的有限维线性子空间E,使得x属于C∩E在E中的边界}.若F满足下述两边界条件之一,则F有不动点:角谷静夫1911年8月28日 - 2004年8月17日 ,着名;教授;毕业于东北帝国大学理学部数学科;府出生;1941年发表了;角谷的不动点定理将布劳威尔的不动点定理一般化;在经济学和博弈论中,角谷的不动点定理现在被频繁使用;莱夫谢茨证明,Lf是整数,且如Lf≠0,则f至少有一个不动点.其后莱夫谢茨对他的不动点定理进行一系列推广,先是推广到有边界流形1926,在H.霍普夫Hopf推广到n维复形的特殊情形1928之后,莱夫谢茨又在1930年推广到具有有限贝蒂数的有限维紧度量空间,在1933年对有限维复形给出简单而漂亮的证明,最后他推广到所谓广义流形及局部连通空间.以不动点定理为中心,莱夫谢茨把代数拓扑学推进到一个新阶段.对于交截、乘积和上同调,对于对偶定理、相对同调和奇异同调以及局部连通集都做出系统的发展.原始的莱夫谢茨不动点定理不能包括布劳威尔不动点定理.为了把不动点定理推广到有边界流形相对流形,他引入了相对同调群,并把庞加莱对偶定理推广到相对情形,得出莱夫谢茨对偶1374 定理.这不仅是一种推广,而且把以前两个互不相关的庞加莱对偶定理和亚力山大对偶定理统一在一起.不动点定理在数学中占有重要地位,它在无穷维空间被推广成为分析的重要工具,M.F阿蒂亚Atiyah及R.鲍特Bott把莱夫谢茨不动点定理推广到椭圆复形.江泽涵和姜伯驹等对不动点理论亦有重大发展.的和值得注意,它在某种意义上给出了一种计算不动点的方法;存在对博拉奇空间的概括和一般化,适用于偏微分方程理论一、不动点算法又称固定点算法;所谓不动点,是指将一个给定的区域A,经某种变换x,映射到A时,使得x=x成立的那种点;最早出现的是布劳威尔定理1912:设A为R n中的一紧致凸集, 为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=x;其后,角谷静夫于1941年将此定理推广到点到集映射上去;设对每一x∈A ,x为A 的一子集;若x具有性质:对A上的任一收敛序列x i→x0,若y i∈x i且y i→y0,则有y0∈x0,如此的x称为在A上半连续,角谷静夫定理:设A为R n中的一紧致凸集,对于任何x∈A,若x为A的一非空凸集,且x在A上为上半连续,则必存在x∈A,使x∈x;.绍德尔和又将布劳威尔定理推广到巴拿赫空间;不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用;例如,关于代数方程的基本定理,要证明ƒx=0必有一根,只须证明在适当大的圆│x│≤R内函数ƒx+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解;对于一个给定的凸规划问题:min{ƒx│g i x≤0,i=1,2,…,m},在此,ƒ和g1,g2,…,g m皆为R n中的凸函数;通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解;H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分;现以n维单纯形S n为例来说明这一概念,在此,;对每一i, 将区间0≤x i≤1依次分为m1,m2…等分,m1<m2<…,m i→,是给定的一列正整数;对于固定的i,过分点依次作平行于x i=0的平面; 这些平面将S n分成若干同样大小的n 维三角形;它们的全体作成的集 G i,称为S n的一三角剖分;设ƒx为S n→S n的一连续函数,x=x1,x2,…,x n+1,ƒx=ƒ1x,ƒ2x,…,ƒn+1x;定义;由于ƒx和x皆在S n上,若有则显然有ƒx=x,即x为ƒx的一不动点;对每一点y∈S n赋与标号ly=k=min{j│y∈C j,且y j>0};由著名的施佩纳引理,在G i中必存在一三角形σi,它的n+1个顶点y i k的标号分别为kk=1,2,…,n+1k→y k,k=1,2,…,n+1;根据σi的作法,当i j→于是可得一列正数ij j→,使得时,收敛成一个点x;故y k=x,k=1,2,…,n+1;因k的标号为k,故y k∈C k,因而即x为所求的不动点;因此,求ƒx:S n→S n的不动点问题就化为求σi i=1,2,… 的问题;为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等;关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之S n改为R n或R n中之一凸集;求一凸函数在一凸集上的极值问题也可化为求不动点问题;一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况;参考书目Variable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.二、Prof. Yuguang Xu 徐裕光教授 Kunming University, China 雲南省昆明學院Fixed point theory and its applications在台湾成功大学所作的报告不动点理论研究的内容属于数学的非线性泛函分析和一般拓扑学范畴;研究出的结果被广泛应用于分析数学,力学,微分方程,控制理论,最优化理论,非线性规划,数理经济学和博弈论等应用性学科;一.不动点理论的发展进程• 一个简单的不动点问题微积分中;• 1909 年, Brouwer 的著名的不动点定理及一系列的论文创立了不动点理论;• 1922 年 , 波兰著名数学家 S. Banach 给出了一个既简单又实用的压缩映射原理, 它也是一个不动点定理;在简单的条件下, Banach 压缩映射原理不仅指出了映射不动点的存在性和唯一性,还提供了一种逼近不动点的方法;• 1967 年,美国数学家 H. E. Scarf 找到了计算单纯形连续映射不动点的组合拓扑有限算法,这也就是 Brouwer 不动点定理的构造性证明;• 1941 年,日本数学家角谷静夫 Kakutani 的集值不动点定理为博弈论建立在数学基础上作了理论准备;• 1968 年的 Fan - Browder 不动点定理, 1972 年的 Himmelberg 不动点定理以及 Tarafdar 在 1987 年和 1992 年分别在拓扑线性空间和 H -空间建立的不动点定理;• 美国数学家 Michael 1956 年, Deutsch 和 Kenderov 1983 年,应用集值分析中的连续选择原理在拓扑空间建立集值不动点定理和几乎不动点定理;• 1990 年以后,关于不动点理论的研究达到一个高潮,在各种映射或空间条件下,讨论不动点,随机不动点,几乎不动点等,每年有上百篇论文发表,新的不动点定理和各种迭代逼近方法不断涌现;二.不动点理论的四个研究方向1、在拓扑空间研究“不动点性质”使用同伦群,不动点的有限算法组合拓扑;2 、丹麦数学家 Nielsen 研究不动点的个数 Nielsen 数,开创不动点类理论的研究,大陆数学家的工作;3、一般度量空间或拓扑向量空间的连续映射的不动点问题4、应用集值分析中的连续选择原理在拓扑空间建立集值不动点定理和几乎不动点定理并应用于博弈论研究;三.不动点理论主流方向的研究现状,及研究前沿期待解决的问题“ 一般度量空间或拓扑向量空间映射的不动点问题”是研究的主流;近20 年来的研究发展主线:• 迭代逼近算法的研究从 Mann 迭代到杂交迭代等;• 强伪压缩映射的不动点,强增生算子方程的迭代解两者的联系;• 迭代误差分析和稳定性研究;• 有待解决的几个问题一般情况下的收敛性问题, 迭代收敛的等价性问题,不动点存在性和迭代逼近的条件的协调性问题,关于 Schauder 猜想;其次为“应用连续选择原理建立集值不动点定理和几乎不动点定理”的研究;现有的最好结果和需要解决的问题:a 上下半连续集值映射与其不动点存在性的拓扑同伦关系;b 具备弱于上下半连续性的集值映射与其不动点的存在唯一性的充要条件;c 探索几乎均衡解与几乎不动点存在性的关系;三、维基百科中关于Kakutani fixed point theorem应用领域之一:博弈论Mathematician used the Kakutani fixed point theorem to prove a major result in . Stated informally, the theorem implies the existence of a in every finite game with mixed strategies for any number of players. This work would later earn him a .In this case, S is the set of of chosen by each player in a game. The function φx gives a new tuple where each player's strategy is her best response to other players' strategies in x. Since there may be a number of responses which are equally good, φ is set-valued rather than single-valued. Then the of the game is defined as a fixed point of φ, .a tuple of strategies where each player's strategy is a best response to the strategies of the other players. Kakutani's theorem ensures that this fixed point exists.翻译:数学家约翰.纳什应用角谷静夫不动点理论证明了博弈论中的大量的结论;可以说角谷静夫不动点理论意味着在每个具有任意数量玩家的混合策略有限博弈中纳什均衡是存在的此项工作将在未来1994年为他赢得诺贝尔经济学奖;在这种情况下,S是博弈中每个玩家所选择的混合策略元组的集合;方程φx给出一个新的元组,其中每个玩家的策略是在X中她对其他玩家所选策略的最优选择;由于可能有许多选择是不相上下的,所以φ是集值而不是单值;博弈中的纳什均衡被定义为φ的不动点,比如,一个策略元组,其中针对其他玩家的策略每个玩家的策略都是最优的;角谷静夫的理论确保了此不动点是存在的四、我的理解角谷静夫不动点理论的重要性在与将布劳威尔定理中的存在某一个点x∈A,使得x=fx在A范围中成立扩展到存在A上的一个子集X使得x=fx,x∈X;数学表达不准确,大概是这个意思;O∩_∩O~这个理论正好为纳什证明“所有有限博弈至少有一个纳什均衡”提供了有力的理论工具五、有趣的地方在纳什博弈论论文集序言部分第七页最下边的注释,序言作者Ken Binmore 讲了一个小故事,有次角谷静夫做演讲,演讲结束后,角谷静夫问Kin Binmore为啥这么多人来听演讲,Ken Binmore解释说:今天来的许多经济学家是来看创造出如此重要的角谷静夫不动点理论的作者的;角谷静夫却回答说:“什么是角谷静夫不动点理论”;看完这里,我笑半天,角谷静夫都不知道自己的理论被别人叫啥了,也许可能太谦虚了,也许故意为之想不明白。
拓扑学不动点定理证明
拓扑学不动点定理证明拓扑学不动点定理是拓扑学中的一个重要定理,其核心内容是对于一个连续映射,必然存在至少一个点在映射后不会移动,即不动点。
这个定理在数学和物理学等领域中具有广泛的应用。
证明该定理的方法非常巧妙,下面将会进行简单介绍。
首先,我们需要了解一个基本概念,即Brouwer映射,即将一个 n-维球面映射到自身的连续映射。
因此,Brouwer映射包含了调整球面内的每一个点,使得整体保持相似的变换。
现在我们考虑将一个n-维球面上的一点经过Brouwer映射后的位置,即f(p),如果f(p)=p,则p是不动点。
我们以反证法证明这个定理。
假设不存在不动点,则f(p)≠p对于球面上的任意点p都成立。
现在我们来连接p和f(p),我们将这条线段称作“极线”。
为了使它更具有良好性质,我们可以将它直接与球面的外表面相连,形成一个新的球面,进一步将其摊平成为一个圆盘。
由于极线上的点都不是不动点,所以它们会被映射到圆盘内部的两个区域之一。
现在我们将它们分别染成黑色和白色。
我们可以看到,极线的两个端点被映射到圆盘边沿的两个点,有一点在黑色区域中,有一点在白色区域中。
考虑将极线按照黑白相间的方式染色,即在两个端点之间依次交替染成黑色和白色。
由于它的两个端点分别被映射到两个不同的区域中,所以黑白相间的染色方式必然在某个点处断开。
这个点就是圆盘内部的一个点q,它对应着极线上的一个黑点和一个白点,即f(q)和q。
因为它是极线上的一个点,所以从f(q)到q画一条线段,此时它与圆盘边沿相交于两个点。
我们将两个端点中的那个点沿着极线不断地平移,当它沿着极线平移到黑点处时,另一个端点就沿着极线到达了白点处。
这个过程不断重复,最终他们的距离会不断缩小并趋近于q。
而绝对距离的缩小不同于相对距离,因为极线任意一点的相对位置关系都被Brouwer映射保留了下来。
换句话说,极线可以缩成任意细的线,但仍然能够刻画从黑点到白点的路径。
所以,距离缩小的同时,这条路径也会变得越来越像一个极小的Brouwer映射,我们称之为Brouwer闭曲面。
点集拓扑21n维欧氏空间度量空间拓扑空间的概念定义
d(x,y)「「( i20. d(x, y) = d(y, x);第二章点集拓扑§2.1. n 维欧氏空间、度量空间、拓扑空间的概念定义 2.1.1. x=( 1^ , n ) , y = ( 1,…,n )・ R n ,定义 d:R n R n > R 为 d 为R n 上的Euclid 距离. 易证距离d 满足:10. d(x, y)_0, d(x, y)=0= x = y ;30. d(x,z) "(x,y) d(y,z) , (x,y,z R n ).定义 2.1.2.(距离空间,Metrical Space ) X 为非空集合,二元函数 d:X X > R 满足: 10 .非负性:d(x, y) — 0, d(x, y)=0 二 x=y ;20 .对称性:d(x, y)二 d(y, x);30 .三角不等式:d(x,z)乞 d(x, y) d(y, z) (x,y, z R).称d 为X 上的一个距离,(X, d)为距离空间或度量空间.如 A X ,称(A, d)为距离子空间.x^x,,开球:B(x;r) ={徉 Xd(y,x) “}; 闭球:S(x; r) = {疔 X d(y, X )E r }.开集:A X . x A ,球B(x; r) A ,称x 为A 的一个内点.如A 中每个点都是内点,则称A 为开集. 开球是开集;R 2中第一象限区域(不含坐标轴)是开集. 记(A, d)中开集全体为•,则有如下结论. 定理 2.1.1. (1), X ; ⑵ G ,G 2 二(G G 2); (3) G.(「上)= G..例:(1)离散空间. 、,人0, x = y X 式©,定义d(x,y) =」 (x,y^X).称X 为离散距离空间.1, x*(2) C[a, b]空间.C[a,b]={x(t)|x(t)为[a,b]上连续函数} . x = x(t), y = y(t) c[a, b],定义 d(x, y)=舉於 x(t) - y(t),d 是距离.⑶有界函数空间B(X).X 叮,B(X) ={x(t) x(t)为 X 上有界函数}.定义 d(x,y^sup x(t) - y(t),(X,严 B(X)), d 是距 t uX离.称B(X)为有界函数空间.取 X = N*,记 B(X) = I ~{X =G n )|G n )有界} . X=G n ), ^Cn),d(X,y) = SUP n 」n .n^N定义2.1.3.设X 八,• P(X)满足:X⑴© , X E T ;⑵T对于有限交运算圭寸闭:G i,…,G n 5 =n G i乏£;「=1丿/ X⑶飞对于任意并运算封闭:G讣T仏E A) n U E j k?u=A 丿称・为X上的一个拓扑(Topology ), X上安装了拓扑•,(X,)是拓扑空间(Topological Space ). 每个G忘E称为开集. 如A^X ,令E A={GnAGEE},称(A, 7A )为(拓扑)子空间.例:(1)度量空间(X, d)是拓扑空间,称为由距离d诱导的拓扑•.⑵设1 , ={ , X},称(X,)是平凡拓扑空间.⑶设X 八,•二P(X),称(X,.)是离散拓扑空间.⑷X=N={0,1,2「, n, },令.={A X (X A)为有限集} { },则(X,)成为拓扑空间.§.2.拓扑空间中的基本概念设(X, •)是拓扑空间,A X .定义:(1)若A是开集,称A为闭集.—△⑵A的闭包A二F (包含A的最小闭集).AC=F, F 闭⑶若X,G,G是开集,称G为x的一个邻域.x A,邻域G,使x G A,称x为A的内点.A的内点全体称为A的核(内部),记A0为.(书R5(3)错)⑷A X, x • X, - x的邻域G,有G A=, G A =■,称x为A的边界点.A的边界点全体称为A的边界,记为:A .显然,A0, A, (A c)0互不相交,X = A:A (A c)°.⑸x,X, A X, - x的邻域G,有(G {x}) A=•,称x为A的聚点.A的聚点全体称为A的导集,记A .⑹x (A A ),称x为A的孤立点.⑺若A = A •,称A为完全集(完备集).(8)若A。
不动点
在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石。
布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(英语:L. E. J. Brouwer)。
布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数f,存在一个点x0,使得f(x0) = x0。
布劳威尔不动点定理最简单的形式是对一个从某个圆盘D射到它自身的函数f。
而更为广义的定理则对于所有的从某个欧几里得空间的凸紧子集射到它自身的函数都成立。
不动点定理fixed-point theorem如果f 是n+1维实心球Bn+1={x∈R n+1|x|≤1}到自身的连续映射(n=1,2,3…),则f 存在一个不动点x∈Bn+1(即满足f(x0)=x0)。
此定理是L.E.J.布劳威尔在1911年证明的。
不动点问题实际上就是各种各样的方程(如代数方程、微分方程、积分方程等)的求解问题,在数学上非常建立布劳威尔不动点定理是他的突出贡献.这个定理表明:在二维球面上,任意映到自身的一一连续映射,必定至少有一个点是不变的.他把这一定理推广到高维球面.尤其是,在n维球内映到自身的任意连续映射至少有一个不动点.在定理证明的过程中,他引进了从一个复形到另一个复形的映射类,以及一个映射的映射度等概念.有了这些概念,他就能第一次处理一个流形上的向量场的奇点.康托尔揭示了不同的n与空间Rn的一一对应关系.G.皮亚诺(Peano)则实现了把单位线段连续映入正方形.这两个发现启示了,在拓扑映射中,维数可能是不变的.1910年,布劳威尔对于任意的n证明了这个猜想——维数的拓扑不变性.在证明过程中,布劳威尔创造了连续拓扑映射的单纯逼近的概念,也就是一系列线性映射的逼近.他还创造了映射的拓扑度的概念——一个取决于拓扑映射连续变换的同伦类的数.实践证明,这些概念在解决重要的不变性问题时非常有用.例如,布劳威尔就借助它界定了n 维区域;J.W.亚历山大(Alexander)则用它证明了贝蒂数的不变性.不动点理论已经成为非线性分析的重要组成部分,该问题的研究已经在偏微分方程、控制论、经济平衡理论及对策理论等领域获得了极为成功的应用。
几乎概率赋范空间中的拓扑度理论与不动点定理
几乎概率赋范空间中的拓扑度理论与不动点定理
张传林
【期刊名称】《西南师范大学学报:自然科学版》
【年(卷),期】1992(017)002
【摘要】首先研究了几乎概率赋范空间的拓扑结构,接着在包含全连续场在内的一类映象上建立了拓扑度,最后利用这种拓扑度理论得到了一些新的不动点定理.【总页数】7页(P155-161)
【作者】张传林
【作者单位】无
【正文语种】中文
【中图分类】O189.2
【相关文献】
1.概率赋范空间上的不动点定理及其应用 [J], 龚怀云;向淑晃
2.概率赋范空间上的一些不动点定理的进一步分析 [J], 向淑晃
3.一类新型概率线性赋范空间及其不动点定理 [J], 宋光兴
4.半紧概率1—集压缩场的拓扑度及不动点定理 [J], 吴鲜;曹石遗
5.广义概率A—proper 映象的拓扑度及其不动点定理 [J], 赵登虎
因版权原因,仅展示原文概要,查看原文内容请购买。