电化学修饰电极(1)

合集下载

高老师的电化学分析课件-修饰电极

高老师的电化学分析课件-修饰电极

高云涛制作
生物膜的通透性
• 生命活动所需要的物质要从细胞周围环境中取得, 代谢产物则需要由细胞排出,川流不息的物质都 要经过细胞膜。 • 膜允许一定的物质穿过的特性称为膜的通透性。 • 细胞膜通透性最显著的特点是它的选择性,选择 性通透对物质进出细胞起着调节作用,维持了膜 内外离子浓度差和膜电位,保证了膜内外渗透压 平衡。这是细胞膜最主要的生理功能之一,对保 证细胞及有机体最基本的生命活动的正常进行具 有及其重要的。
(1)纳米金溶胶制备
高云涛制作
(2)纳米金溶胶表征
高云涛制作
NG/MTP+CI8SH/Au电极的SEM图
高云涛制作
2.3 双层类脂膜修饰电极-BLM (Bilayer Lipid Membrane)
高云涛制作
2.3.1 引言
• 生命过程中许多重要反应 发生在生物膜上。生物膜 在生物信息传递交流中起 着核心作用。 • 但生物膜的组成、结构和 功能极为复杂,因而企图 同时深入研究其上所发生 的各种过程显然是十分困 难的。 • 本世纪五十年代,人们已 公认双层类脂膜是生物膜 的基本结构。
高云涛制作
自组装单分子膜的主要体系
• 现在研究比较多的自组装单分子膜(SAMs)主 要包括三类,即烷基硫醇类,咪唑类,希夫碱 类,常用金,硅、铂的氧化物做固体 • 在膜电化学中,硫醇类化合物在金电极表面形 成的SAMs是最典型的和研究最多的体系
高云涛制作
硫醇/金体系SAMs的自组装原理
RSH+Au0n
高云涛制作
纳米银修饰电极制备
SAMs-配位吸附-电化学还原
• (1) 金电极磨至镜面,再浸泡到 piranha溶液(H2SO4: H202=3 :1) 30分钟,依次用二次水超声波清 洗和无水乙醇清洗,然后浸泡在 氨乙基硫醇乙醇溶液中24h; • (2)将电极取出分别用二次水和 乙醇溶液冲洗,然后将这种修饰 了氨乙基硫醇的金电极在硝酸银 溶液中浸泡24h; • (3)后用0. 1M硝酸钾溶液清洗, 再将吸附有银离子的金电极放入 0. 1 M硝酸钾溶液中使用脉冲恒 电位法,则纳米银在氨乙基硫醇 单分子修饰的金电极表面形成。

电极修饰实验报告

电极修饰实验报告

电极修饰实验报告电极修饰实验报告引言:电极修饰技术在电化学领域中扮演着重要的角色。

通过对电极表面进行修饰,可以改善电极的电化学性能,提高催化活性和稳定性,从而在能源转换、传感器等领域中得到广泛应用。

本实验旨在通过对电极进行修饰,探究不同修饰方法对电极性能的影响,并对实验结果进行分析和讨论。

实验方法:1. 准备工作:清洗电极表面,确保表面干净无杂质。

2. 电极修饰方法:采用物理修饰和化学修饰两种方法进行实验。

- 物理修饰:将电极浸泡在修饰材料的溶液中,通过吸附或沉积的方式修饰电极表面。

- 化学修饰:通过化学反应将修饰材料固定在电极表面,形成修饰层。

实验结果与分析:1. 物理修饰实验结果:- 采用碳纳米管修饰电极后,电极的催化活性得到显著提高。

碳纳米管具有高比表面积和导电性能,能够增加电极与电解质的接触面积,提高反应速率。

- 采用金属纳米粒子修饰电极后,电极的催化活性也得到增强。

金属纳米粒子具有良好的催化性能,能够提供更多的活性位点,促进反应进行。

- 通过对比实验结果可知,物理修饰方法可以有效改善电极的电化学性能,但修饰层的稳定性相对较差。

2. 化学修饰实验结果:- 采用聚合物修饰电极后,电极的稳定性得到提高。

聚合物修饰层能够形成较为稳定的保护层,防止电极表面的氧化和腐蚀。

- 采用有机分子修饰电极后,电极的选择性得到改善。

有机分子修饰层能够与特定物质发生特异性相互作用,实现对目标物质的选择性检测。

- 通过对比实验结果可知,化学修饰方法可以提高电极的稳定性和选择性,但催化活性相对较低。

讨论与展望:本实验通过对电极进行不同修饰方法的比较,揭示了不同修饰方式对电极性能的影响。

物理修饰方法能够提高电极的催化活性,但修饰层的稳定性较差;化学修饰方法能够提高电极的稳定性和选择性,但催化活性相对较低。

因此,在实际应用中,需要根据具体需求选择最合适的修饰方法。

未来的研究可以进一步探究不同修饰材料和修饰方法的组合应用,以提高电极的全面性能。

电化学修饰电极(1)

电化学修饰电极(1)

电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
基于金与硫强的相互作用,硫基化合物可在金表 面上自发形成单层膜[X(CH2)nSH,n>10],其能够 很好地操控界面上的反应性。这种单层膜通常是 将金电极浸泡在含有毫摩尔硫醇的乙醇溶液中隔 夜后而获得。形成自组装的有机硫化物单层膜( SAMs),由于它在许多科学与技术领域里的潜 在应用,自20世纪80年代末就已经受到广泛的关 注。除了它的在单层膜结构和长程电子转移研究 应用外,还有在化学传感器和生物传感器方面的 应用,以及信息储存装置和平板印刷等中的应用 。
化学修饰电极
化学修饰电极简介 化学修饰电极的制备 常见的化学修饰电极
化学修饰电极(CMES) 化学修饰电极(CMES)简介
化学修饰电极是20世纪70年代中期发展起来的一门新 兴的、也是目前最活跃的电化学和电分析化学的前沿领域。 化学修饰电极是在电极表面进行分子设计,将具有优 良化学性质的分子、离子、聚合物以化学薄膜的形式排列 在电极表面上,将修饰试剂的电化学行为赋予被修饰的电 极表面,从而改变了其表面性质,使电化学电极有较高选 择性、灵敏度或稳定性。以满足许多电分析问题的要求并 构成了新的分析应用以及不同的传感器的基础。 化学修饰电极扩展了电化学的研究领域,目前已应用 于生命、环境、能源、分析、电子以及材料学等诸多方面。 基于微结构的性质,电极上的修饰层可分为三种类型:修 饰单层,修饰均相复层,修饰有粒界的厚层。
碳纳米管(Carbonnano-tubes,CNTs)是 一种结构中空的纳米材料,具有密度小、强度高、 长径比大、比表面积大、高温稳定而不易与金属发 生反应、电导率和热导率高、热膨胀系数低、耐强 酸强碱和高温氧化等特性。 碳纳米管自1991年发现以来,以其独特的管 状几何形状,优异的物理化学性能、力学性能和稳 定结构成为极具应用潜力的一维纳米材料,很适合 于制备纳米尺度的复合材料,在提高复合材料的力 学性能方面已显示出巨大的潜力。

化学修饰电极

化学修饰电极

吸附法:
化学吸附是制备单分 子层修饰电极的一种 很简便的方法。
烯烃衍生物在Pt电极上的吸附示意图
吸附法优点:简单,直接 吸附法缺点:吸附层不重现,吸附 的修饰剂会掉落,严格控制实验条 件亦能得到重现性较好的结果。
欠电位沉积法:
金属在比其热力学电位更正处发生沉积的 现象。常发生在金属离子在异体底物上的沉 积。可以用来制备精细结构单层修饰电极的 一种方法。
b.电极表面的聚合物薄膜相对于膜内的 扩散层足够厚---相当于半无限扩散
光谱法:研究化学修饰电极的光谱技术包 括透射和反射紫外-可见光谱,红外光谱, Raman光谱,荧光光谱,光热光声光谱, 偏振光谱,圆二色谱等。
例如电化学反射紫外光谱可以获得电极表 面修饰剂的电子结构信息;详细研究电极 反应机理;选择性地观察法拉第过程。
第六章 化学修饰电极
化学修饰电极自问世以来,突破了传统 电化学中仅限于研究裸电极――溶液界面 的范围,开创了从化学状态上人为控制电 极表面结构的领域。通过电极表面的分子 裁剪,可按意图给电极预定的功能,以便 在其上有选择地进行所期望的反应,在分 子水平上实现了电极功能的设计。
1.化学修饰电极的起源与发展
等离子体聚合形成的聚乙烯二茂铁薄膜/玻碳
组合法:
化学修饰剂与电极材料简单地混合以制备组 合修饰电极的一种方法。 以化学修饰碳糊电极为典型,制备方法有直 接混合法和溶解法。 碳糊修饰电极的活化与再生
其他修饰电极的制备
混合价态化合物修饰:以普鲁士兰PB为代表的无
机过渡金属氰化物薄膜修饰电极,在电催化,电色效应, 离子选择性电极,固体电池,生物活体分析等方面有广泛 的应用,并在光电转化,防腐蚀,不对称有机合成、能量 与信息贮存以及药物分析等方面具有潜在的应用。 制备方法有:化学沉积法,电沉积法,新生金属法,等离 子体溅射法,已制备出多种含过渡金属的亚铁氰化物。

电极材料表面的修饰及其在电解水中的应用

电极材料表面的修饰及其在电解水中的应用

电极材料表面的修饰及其在电解水中的应用近年来,氢能作为一种清洁、高效、便捷的能源形式,备受关注。

电解水制氢是一种常见的制氢方法,而电极材料作为一种重要的膜电解池组件,它的性质会直接影响电解水的效率与经济性。

因此,电极材料表面的修饰成为了当前研究的热点之一。

一、电极材料表面的修饰电极材料表面的修饰主要是指对电极表面进行化学或物理的处理,使其结构、形貌及表面化学成分发生变化,从而达到改善电催化活性和稳定性的目的。

1、金属氢化物金属氢化物是电极表面修饰的常见方法之一。

通过在电极表面添加一定量的金属氢化物,可以提高催化活性。

这是因为金属氢化物可以提供可逆的氢离子吸附位,提高电极表面的催化活性。

2、纳米材料纳米材料作为电催化剂修饰电极表面的一个新兴领域,得到了越来越多的研究关注。

纳米材料特有的表面积大、晶界、缺陷等特性使其具有比传统电化学催化剂更优异的电催化性能。

3、自组装膜自组装膜是表面修饰领域的另一种常见方法,它是通过电化学凝聚一个分子膜,使之自组装成为一层有序的分子排列,从而达到改善纳米电催化剂的稳定性和催化性的目的。

自组装膜具有很高的化学和物理稳定性,可以在不同的电化学反应中稳定地催化反应。

二、电极表面修饰在电解水制氢中的应用电解水制氢是目前制氢的主要方法之一。

在此过程中,电极材料的性质直接影响着电解反应的效率和经济性。

1、金属氢化物修饰金属氢化物修饰可以明显提高电催化剂的催化活性和稳定性。

例如,钯、镍、钼等金属的氢化物被用于电解水制氢中,可以提高电极的催化效率和稳定性。

此外,氢化物和氢气也能提高电极的抗腐蚀性,从而提高电催化剂的使用寿命和可靠性。

2、纳米材料修饰纳米材料修饰的电催化剂具有更优异的电催化性能、更长的寿命和更高的耐腐蚀性。

纳米材料可以在电极表面形成更大的表面积,增加电极表面的反应中心,从而提高催化能力和效率。

此外,纳米材料的晶界可以调节电极表面的吸附能力,提高对反应分子的选择性。

3、自组装膜修饰自组装膜修饰电极表面可以明显改善催化剂的化学和物理稳定性,从而提高反应效率和经济性。

钨酸银修饰电极的电分析化学应用

钨酸银修饰电极的电分析化学应用

钨酸银修饰电极的电分析化学应用随着科技的不断发展和应用,电化学分析技术逐渐成为一项重要的检测手段。

其中,电极修饰技术作为电化学分析的重要组成部分,已经被广泛应用于环境、化学、生命科学等领域。

其中,二氧化钨修饰电极因其良好的电化学性质和可靠的应用效果,成为了电化学分析研究领域的热点之一。

而钨酸银修饰电极,作为一种高效的电化学分析检测手段,也备受人们关注,并且在电化学分析领域中应用十分广泛。

一、钨酸银修饰电极的制备1.1 钨酸银修饰电极制备方案钨酸银修饰电极具有良好的电化学性能和催化活性,其制备方法主要有两种:一种是在CE(carbon electrode,碳电极)上在水溶液中电沉积钨酸银;另一种是将碳电极浸泡在酒石酸和钨酸银的混合溶液中,使得钨酸银自成分溶液中电离并在CE表面上发生氧化还原反应生成纳米颗粒。

1.2 钨酸银修饰电极细节操作制备中需要注意以下几点细节操作:1.保证碳电极的干净,强制转化为平滑的表面。

2.在制备过程中,应该尽量避免钨酸盐的不完全溶解,以保证质量。

3.保持镀液的均匀搅动,以保证反应过程中的均匀性。

二、钨酸银修饰电极的电化学性能2.1 钨酸银修饰电极的电催化性能钨酸银修饰电极具有良好的电催化性能。

因为钨酸银修饰电极具有高催化活性,可以极大地提高反应速率和电化学灵敏度,以及增强对分析物的选择性。

2.2 钨酸银修饰电极的导电性能钨酸银修饰电极具有良好的导电性能。

在制备钨酸银修饰电极时,由于碳电极具有优异的导电性,使之与钨酸盐溶液反应后,生成了一层钨酸银纳米颗粒,具有优异的催化效果,同时也能够有效地保持碳电极的导电性能。

三、钨酸银修饰电极的应用3.1 钨酸银修饰电极在氧化还原反应中的应用钨酸银修饰电极的催化活性强,普通电极上的反应十分迟缓,用制备好的银钨酸埋入电极上作为催化剂将反应速度加快,提高电化学灵敏度,增加电极清洗、再生的次数,由此派生出很多高精准度的分析方法。

3.2 钨酸银修饰电极在环境污染检测中的应用钨酸银修饰电极在碱性溶液中对亚硝酸根(NO_2^--)有较高的催化活性,因而在环境污染检测中应用较广。

(整理)化学修饰电极.

(整理)化学修饰电极.

化学修饰电极化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。

化学修饰电极是在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物设计固定在电极表面,使电极具有某种特定的化学和电化学性质。

化学修饰电极扩展了电化学的研究领域,目前已应用于生命、环境、能源、分析、电子以及材料学等诸多方面。

一、研究修饰电极的实验方法:目前,主要应用电化学和光谱学的方法研究修饰电极,从而验证功能分子或基团已进入电极表面,电极的结构如何,修饰后电极的电活性、化学反应活性如何,电荷在修饰膜中如何传递等。

1、电化学方法:通过测量化学反应体系的电流、电量、电极电位和电解时间等之间的函数关系来进行研究的,用简单的仪器设备便能获得有关的电极过程动力学的参数。

常用的方法有循环伏安法1,2,微分脉冲伏安法3,4,常规脉冲伏安法5-8,计时电流法,计时库仑法,计时电位法以及交流伏安法和旋转圆盘电极法。

2、光谱法:能够在分子水平上研究电极表面结构的微观特性,如数量,空间,与电极材料成键的类型,平均分子构象,表面粗糙度对结构的影响,聚合物的溶胀,离子含量,隧沟大小,聚合物结构中的流动性等,这些对于修饰电极的应用是十分重要的。

研究化学修饰电极的常用表面分析方法有X光电子能谱(XPS)9-11、俄歇电子能谱(AES)12-14、反射光谱(Vis-UV15,16, 红外反射光谱17)、扫描电镜(SEM)18-20、光声及光热光谱等。

二、化学修饰电极的分类:一般分为吸附型、共价键合型、聚合物型三大类。

1、吸附型:用吸附的方法可制备单分中层,也可以制备多分子层修饰电极。

将修饰物质吸附在电极上主要通过四种方法进行:平衡吸附型,静电吸附型,LB膜吸附型,涂层型。

平衡吸附型21-25:在电解液中加入修饰物质,它们就会在电极表面形成热力学吸附平衡。

强吸附性物质,如高级醇类、硫醇类、生物碱等在电解液中以10-3~10-5mol/L低浓度存在时,有时能生成完整的吸附单分子层,一般则形成不完全的单分子层。

化学修饰电极

化学修饰电极


这种电子转移媒介体引起的电催化反应如图所示。 这里,修饰层中媒介体(聚甲苯胺蓝O)的氧化态与 溶液中待测物的还原态(NADH,还原型烟酰胺腺 嘌呤二核苷酸)反应后,再生出媒介体的还原态, 即修饰剂催化了溶液中NADH的氧化,因为 NADH在裸电极上的直接电氧化需要更正的过电 位。二茂铁、二酚类化合物也是典型的电子转移 媒介体和修饰剂,可用于催化一些直接电化学活 性不佳的被测物质的氧化还原反应。在电分析化 学中,一般认为化学修饰电极上的电催化是用来 放大检测信号,其催化电流往往与被测物浓度成 正比。

化学修饰电极已广泛用于无机、有机和生 化物质的分析检测,也是研究分离和合成 化学的重要实验平台。例如,在环境和食 品分析中,常用于重金属离子及亚硝酸盐 等多种污染物的高敏检测;在生物分析方 面,用于蛋白质、DNA、神经递质以及代 谢调控分子的检测和传感。
Sabahudin Hrapovic等使用不同的金属纳 米材料(Pt、Au、Cu)与溶于Nafion的单壁 碳纳米管和多壁碳纳米管制备得到复合型 传感器,通过吸附溶出伏安法来检测三硝 基甲苯TNT和其他硝基苯类化合物。 华南师范大学的杨勤燕通过简单的绿色无 污染方法制备了铂纳米粒子包覆的金纳米 孔膜及其双金属纳米复合膜修饰电极,并 成功应用于对大肠杆菌的快速检测。 其它文献也表明各类化学修饰电极对食品 中肾上腺素、抗坏血酸、多巴胺及细胞色 素C等也是一种高效灵敏的分析方法。
方式,形成化学键或生成表面配位化合物等物质,从而发生
的吸附。
(3)基于氢键、亲疏水作用力、-堆积力的吸附。这些吸附 也属于物理吸附的范畴。通过氧化还原或研磨等简单的电极
处理方式,在金属电极表面可产生-OH等含氧基团,而碳电
极表面则可产生-OH、C=O、-COOH等含氧基团,这些含氧 基团可通过氢键去捕集溶液中的相应组分。导电碳材料具有 碳原子的共轭结构,故碳基电极可通过-堆积力去吸附含 有苯环类似结构的分子。另外,表面处理干净的碳电极具有

第三章化学修饰电极1

第三章化学修饰电极1

2、光谱电化学法
• 光谱电化学法是用各 种光谱技术和电化学 相结合。
• 在同一个电解池内进 行测量的一种方法, 其特点是同时具有电 化学和光谱学二者的 特性。
• 可以在电极反应过程 中获得多种有用的信 息。
• 红外光谱 • 拉曼光谱 • 荧光光谱 • 偏振光谱 • 紫外可见光谱 • 圆二色谱
纳米金自组装金电极的紫外-可见等 离子体共振吸收差谱
➢ 固体电极重现性差的主要原因:固体表面 状态差异。
金属和碳材料的表面具有一定的表面能,这种 表面能的分布不均匀。晶面上存在的缺陷,如台阶、 纽结、位错和吸附原子等,使溶液中的许多物质很 容易吸附到这些具有高能的位点上而造成污染。
同时金属和碳的表面都能被化学的或电化学的 方法氧化,氧化作用的同时也增加了表面粗糙度, 容易形成惰化层。
➢ 可利用表面配合反应进行富集分离,在电极表面 修饰上配合剂和鳌合剂,使待测离子与之发生配 合反应而被选择分离。
➢利用媒介作用,加速氧化还原蛋白质在电极表面 的电子传递过程。如亚甲蓝修饰电极对血红蛋白电 极反应的加速作用。
➢可利用专一结合作用,将抗原/抗体专一结合反 应与化学放大作用相结合,为新型电化学生物传感 器提供设计依据。
寿命长、制备方便,灵敏度高,选择性好,应 用广泛
碳纳米管修饰电极
又叫巴基管,碳的同素异形体; 由单层或多层石墨片绕中心按一定角度卷曲而成的无 缝、中空纳米管。
单壁碳纳米管 直径为1-2 nm
多壁碳纳米管 直径2~25nm
CNT的性质
高的机械强度和弹性。
强度≥100倍的钢,密度≤1/6倍的钢
➢ 优良的导体和半导体特性。量子限域所致 ➢ 高的比表面积。 ➢ 强的吸附性能。 ➢ 优良的光学特性 ➢ 发光强度随发射电流的增大而增强。 ➢ ……………

化学修饰电极化学修饰电极

化学修饰电极化学修饰电极

(1)吸附修饰电极
吸附方式: 平衡吸附 静电吸附 LB膜吸附
单层吸附膜
复合膜
LB膜:不溶于水的表面活性物质在水面上形成排列有序 的单分子膜 (Langmuir–Blodgett,LB膜); SA膜:依靠S原子与金之间的作用,硫化物(–SH,SO2等) 在金电极表面形成有序的单分子膜,称为自组装膜(self assembing, SA膜)。
脑神经组织中多巴胺、儿茶胺的实时监测。
2020/1/16
微电极
2020/1/16
4.4.3 生物电化学分析 Bioelectrochemical Analysis
1. 活体伏安分析
1973年 Adams将直径1mm 石墨电极插入大白鼠的大脑尾 核部位,测定多巴胺,获得第 一张活体循环伏安图。
药物在活体中浓度变化、分 解、作用的监测;
通过微电极与超微电极实 现无损伤分析。
2020/1/16
2. 免疫伏安分析
1979年,Heineman等提出; 利用抗原与抗体间特定选择性建立的高选择性分析法。
3. 生物电化学传感器
酶传感器、生物组织传感器、免疫传感器; 测定乙肝的免疫传感器。
2020/1/16
4.4.4 光谱电化学分析
以电化学产生激发信号,以光谱技术测量物质变化的 分析方法。充分利用了电化学方法容易控制物质的状态、 光谱法有利于物质识别的特点。
4.4.1 化学修饰电极
化学修饰电极:
利用化学或物理的方法,将特定功能的分子、离子、 聚合物等固定在电极表面,实现功能设计。
基体材料:碳(石墨)、玻璃、金属等。
1.化学修饰方法
(1)吸附型修饰电极 将特定官能团分子吸附到电极表面。
(2)共价键合型修饰电极 通过化学反应键接特定官能团分子或聚合物。

第三章 化学修饰电极1

第三章 化学修饰电极1

可利用专一结合作用,将抗原 / 抗体专一结合反 应与化学放大作用相结合,为新型电化学生物传感 器提供设计依据。
3.2 超微电极电极
Chemically Modified Electrodes
(1)概述
直径在100µ m以下的电极;
按材料分可分为微铂、金、汞电极和碳纤
维电极;
按形状分,可分为微盘电极、微环电极、
循环伏安法 计时电流法 计时电位法
计时库仑法
脉冲伏安法
交流阻抗法
中性鲁米诺体系在纳米金自组装金电极与在裸 金电极上CV行为的比较
0
+
3
ECL Intensity/A.U.
C
0.00
ECL-1: 0.69 V ECL-1: 1.03 V ECL-1: _ 0.45 V ECL-1: _ 1.22 V
-4
2
1.0 0.5
0.0
-0.5
-1.0
-1.5
Potential/V vs SCE
交流阻抗法
用小幅度交流信号扰动电解池,观察体 系在稳态时对扰动跟随的情况。
200
100
modified GE bare GE 0 200 400 Z'(ohm) 600
表交 面流 的阻 电抗 子可 传以 递明 速显 率的 优看 于出 裸修 金饰 电电 极极
ECL Intensity/A.U.
1 2 3 4 5
-1
4
0.01
2
1
B
Semi-derivative of CV/mA.V
0.000
0.02 1.4 1.2 1.0 0.8 0.6
Potential/V vs SCE

化学修饰电极

化学修饰电极

文献阅读报告1化学修饰电极1.1化学修饰电极简介化学修饰电极是当前电化学和电分析化学领域非常活跃的研究热点。

化学修饰电极是通过对电极的表面进行化学修饰和功能化改性,将具有优良化学性质的离子、分子、聚合物等修饰物质以薄膜的形式固定在电极表面,赋予电极一些特定的化学和电化学性质,从而改善电极的选择性、灵敏度和响应时间等性能。

1975年化学修饰电极的问世,突破了传统电化学中只限于研究裸电极电解液界面的范围,开创了从化学状态上人为地控制电极表面结构的领域。

通过对电极表面的分子剪裁,可按意图赋予电极预定的功能,以便能够在电极上有选择地进行所期望的反应,在分子水平上实现电极功能的设计。

研究化学修饰电极的表面微结构和界面反应,不仅能够促进电极过程动力学理论的发展,同时它显示出的催化、光电、富集和分离、分子识别、搀杂和释放等效应和功能,使整个电化学领域显示出非常具有吸引力的发展前景。

1.4化学修饰电极的制备化学修饰电极就是利用化学或物理的方法对电极表面进行修饰,形成具有特定预期功能的膜,以完成对电极的功能设计。

因此,化学修饰电极的制备是开展这个领域研究的关键。

常用的电极修饰方法有吸附法、共价键合法、电化学沉积法、电化学聚合法、掺入法等。

1.4.1吸附法吸附法主要用于制备单分子层或多分子层的化学修饰电极,根据修饰物质在电极上吸附的方法不同,可分为以下几种:化学吸附法:化学吸附法是一种通过电极表面与溶液之间的非共价吸附作用而将修饰物质结合到电极表面的方法,修饰物质在电极表面可以达到热力学吸附平衡。

强吸附性物质(如核酸、蛋白质、生物碱以及多环芳烃等)都可以通过非共价作用吸附在电极表面。

化学吸附法与吸附物质的浓度、电解液的组成、电极电位等都有关系,是一个可逆的过程。

该方法的优点是操作简单、直接,缺点是吸附层不易重现,被吸附的修饰物质容易流失。

但是在严格控制的实验条件下,能够获得较好的重现性。

LB膜法:膜法是将具有亲水基团和脂肪疏水端的双亲分子溶于易挥发的有机溶剂中,铺展在平静的气水界面上,待溶剂挥发后沿水面横向施加一定的压力使溶质分子在水面上形成有序排列的单分子膜,将单分子膜转移到固体电极的表面,即可得到膜修饰电极。

化学修饰电极

化学修饰电极

化学修饰电极化学修饰电极是20世纪70年代中期发展起来的一门新兴的、也是目前最活跃的电化学和电分析化学的前沿领域。

化学修饰电极是在电极表面进行分子设计,将具有优良化学性质的分子、离子、聚合物设计固定在电极表面,使电极具有某种特定的化学和电化学性质。

化学修饰电极扩展了电化学的研究领域,目前已应用于生命、环境、能源、分析、电子以及材料学等诸多方面。

一、研究修饰电极的实验方法:目前,主要应用电化学和光谱学的方法研究修饰电极,从而验证功能分子或基团已进入电极表面,电极的结构如何,修饰后电极的电活性、化学反应活性如何,电荷在修饰膜中如何传递等。

1、电化学方法:通过测量化学反应体系的电流、电量、电极电位和电解时间等之间的函数关系来进行研究的,用简单的仪器设备便能1,2获得有关的电极过程动力学的参数。

常用的方法有循环伏安法,3,45-8微分脉冲伏安法,常规脉冲伏安法,计时电流法,计时库仑法,计时电位法以及交流伏安法和旋转圆盘电极法。

2、光谱法:能够在分子水平上研究电极表面结构的微观特性,如数量,空间,与电极材料成键的类型,平均分子构象,表面粗糙度对结构的影响,聚合物的溶胀,离子含量,隧沟大小,聚合物结构中的流动性等,这些对于修饰电极的应用是十分重要的。

研究化学修饰电极的常9-11用表面分析方法有X光电子能谱,XPS,、俄歇电子能谱,AES,12-1415,161718-20、反射光谱(Vis-UV, 红外反射光谱)、扫描电镜 (SEM)、1光声及光热光谱等。

二、化学修饰电极的分类:一般分为吸附型、共价键合型、聚合物型三大类。

1、吸附型:用吸附的方法可制备单分中层,也可以制备多分子层修饰电极。

将修饰物质吸附在电极上主要通过四种方法进行:平衡吸附型,静电吸附型,LB膜吸附型,涂层型。

21-25平衡吸附型:在电解液中加入修饰物质,它们就会在电极表面形成热力学吸附平衡。

强吸附性物质,如高级醇类、硫醇类、生物碱等-3-5在电解液中以10~10mol/L低浓度存在时,有时能生成完整的吸附单分子层,一般则形成不完全的单分子层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前已经发展的制备化学修饰电极的方法主要有滴 涂法、共价键合法、电化学法、吸附法和掺杂法等。目前人 们研究得比较多的是滴涂法、共价键合法和电化学法这三种 方法,下面对这三种制备方法的研究进展进行论述。
精选课件
4
滴涂法
滴涂法是将溶解在适当溶剂中的聚合物或者纳米材料 滴加或涂覆于电极表面,待溶剂蒸发干固后,生成涂膜 结合在电极表面从而达到化学修饰的目的。 具体方法为: (A)将电极浸入修饰液中,取出后使附着于电极表面的溶 液干固成膜; (B)用微量注射器把一定已知量的修饰液注射到 电极表面,然后于固成膜; (C)电极在修饰液中旋转,使其溶液附着于电极表面,然 后干固成膜 该方法主要用于制备Nafion或者碳纳米管修饰电极。
精选课件
10
S-H键的清除是单层膜形成的关键: RSH+Au↔RS-Au+e- + H+
烷基间的范德华力决定了单层膜的定向。 通过这样的自组装过程形成了结构完美的单层膜 ,碳氢链相互平行,以约30O斜立于电极的表面上 。 如下图:
精选课件
11
这是一个紧 密堆积的无针孔 的膜(表面覆盖 率 约 为 9×10 - 10mol/cm2 ) 并 阻 碍组分向电极表 面的传质。
精选课件
8
电化学氧化法是利用电化学氧化作用使反应物在电 极表面生成特定的产物,该产物最终通过吸附、组 装或共价键合等作用修饰电极表面,从而制备化学 修饰电极的一种方法。用该方法制备修饰电极的报 道还不是很多。
精选课件
9
自组装单层膜
基于金与硫强的相互作用,硫基化合物可在金表 面上自发形成单层膜[X(CH2)nSH,n>10],其能够很 好地操控界面上的反应性。这种单层膜通常是将 金电极浸泡在含有毫摩尔硫醇的乙醇溶液中隔夜 后而获得。形成自组装的有机硫化物单层膜( SAMs),由于它在许多科学与技术领域里的潜在 应用,自20世纪80年代末就已经受到广泛的关注 。除了它的在单层膜结构和长程电子转移研究应 用外,还有在化学传感器和生物传感器方面的应 用,以及信息储存装置和平板印刷等中的应用。
强碱和高温氧化等特性。
碳纳米管自1991年发现以来,以其独特的管
状几何形状,优异的物理化学性能、力学性能和稳
定结构成为极具应用潜力的一维纳米材料,很适合
于制备纳米尺度的复合材料,在提高复合材料的力
学性能方面已显示出巨大的潜力。
精选课件
14
碳纳米管的分类:
单壁碳纳米管(SWN Ts)由单层石墨片同轴卷 绕构成,其侧面由碳原子 六边形排列组成,两端由 碳原子的五边形封顶。
管径一般从10~20 nm,长度一般可达数十 微米,甚至长达20 cm

单壁碳纳米
精选课件
15
多壁碳纳米管 (MWNTs)一般由几层到 几十层石墨片同轴卷 绕构成,层间间距为 0.34 nm左右,其典型 的直径和长度分别为 2 ~ 30 nm 和 0.1 ~
50μm
多壁碳纳米管
精选课件
16
多壁碳纳米管作 为分子导线实现基础电 极与氧化还原蛋白质间 的通信(共价键合到 SWCNT的一端)
碳纳米管竖直排列形成的纳 米 森林作为分子导线
精选课件
17
碳纳米管的应用:
电化学器件 氢气存储 场发射装置 碳纳米管场效应晶体管 催化剂载体 碳纳米管修饰电极
精选课件
18
溶胶-凝胶包埋
溶胶-凝胶是一种很好的物理包埋剂,如硅溶
化学修饰电极
ห้องสมุดไป่ตู้
精选课件
1
化学修饰电极简介 化学修饰电极的制备 常见的化学修饰电极
精选课件
2
化学修饰电极(CMES)简介
化学修饰电极是20世纪70年代中期发展起来的一门新 兴的、也是目前最活跃的电化学和电分析化学的前沿领域。
化学修饰电极是在电极表面进行分子设计,将具有优 良化学性质的分子、离子、聚合物以化学薄膜的形式排列 在电极表面上,将修饰试剂的电化学行为赋予被修饰的电 极表面,从而改变了其表面性质,使电化学电极有较高选 择性、灵敏度或稳定性。以满足许多电分析问题的要求并 构成了新的分析应用以及不同的传感器的基础。
化学修饰电极扩展了电化学的研究领域,目前已应用 于生命、环境、能源、分析、电子以及材料学等诸多方面。 基于微结构的性质,电极上的修饰层可分为三种类型:修 饰单层,修饰均相复层,修饰有粒界的厚层。
精选课件
3
化学修饰电极的制备
化学修饰电极的制备是化学修饰电极得以开展研究 的关键性步骤。修饰方法的设计合理性与否、操作步骤及优 劣程度对化学修饰电极的活性、稳定性和重现性有直接影响 ,因此是化学修饰电极研究和应用的基础。
金基底上自组装膜的形成
精选课件
12
堆积和有序受到许多因素的影响,如碳链长度

端基、溶剂、浸泡时间或基底形貌。随链长的减小
(n<10),堆积密度和覆盖率降低,无序度增加。
这样的以及其他的结构无序性和结构欠缺(例如针
孔),常常导致性能降低。由烷基硫醇混合物形成
的共组装单层膜能够在膜的构架上获得膜的组成上
和形貌上的变化。根据共组装的两种硫醇的差别,
能够选择性地除去其中的一个组分(例如通过还原
性解吸)。
精选课件
13
碳纳米管修饰电极
碳纳米管(Carbonnano-tubes,CNTs)是一
种结构中空的纳米材料,具有密度小、强度高、长
径比大、比表面积大、高温稳定而不易与金属发生
反应、电导率和热导率高、热膨胀系数低、耐强酸
精选课件
7
电化学法
包括以下三种: 电化学沉积法是一种将电极置于含有一定修饰材料
的电解液中,采用恒电流或恒电位进行沉积而制备 出修饰电极的方法。 电化学聚合法则是一种利用电化学氧化还原引发, 使电活性的单体就地在电极表面发生聚合,生成聚 合物膜而达到修饰目的的方法。这类电活性单体大 多含有乙烯基、羟基和氨基的芳香化合物以及杂环 、稠环多核碳氢化合物和冠醚类化合物等。这种方 法主要被用来制备各种聚合物修饰电极。
精选课件
5
优缺点:
该方法操作简单且直接。 但是,用滴涂法制备的修饰电极会因为溶剂的挥 发而导致薄膜的厚度不均匀,并且重现性较差。
精选课件
6
共价键合法
共价键合法是对电极表面进行预处理,以引入 键合基,然后进行表面有机合成,通过化学键 合 反应将预定官能团修饰到电极表面。采用这种方 法制备的修饰电极具有分子识别功能和选择性响 应,并且稳定性很高。
相关文档
最新文档