《一元一次方程》单元检测题
人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)
![人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)](https://img.taocdn.com/s3/m/8c89e277571252d380eb6294dd88d0d233d43c2c.png)
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
人教版七年级数学第三章《一元一次方程》单元测试带答案解析
![人教版七年级数学第三章《一元一次方程》单元测试带答案解析](https://img.taocdn.com/s3/m/6886f34d7f21af45b307e87101f69e314332fab6.png)
故选:A.
【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.
10.C
【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元,第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.
7.D
【分析】根据等式的基本性质可判断出选项正确与否;等式的基本性质:①等式两边同时加上(或减去)同一个整式,等式仍然成立;②等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
【详解】解:A.根据等式性质,a=b两边都加c,即可得到a+c=b+c,故选项错误,不符合题意;
B.如果 ,那么a+c−c=b−c-c,即a=b-2c,故选项错误,不符合题意;
C.如果 ,那么 成立的条件是c≠0,原变形错误,故选项错误,不符合题意;
D.如果 ,那么a=b,故选项正确,符合题意;
故选:D.
【点睛】此题考查了等式的基本性质,解题的关键是熟练运用等式的基本性质.
8.C
【分析】设十字框最中间的数为x,表示出其余数字,根据之和为选项中的数字求出x的值,x的值符合题意即可.
人教版七年级数学第三章《一元一次方程》单元测试
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于x的方程 的解是 ,则a的值为()
A. B.9C. D.1
2.如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()
一元一次方程章节测试卷(含答案)
![一元一次方程章节测试卷(含答案)](https://img.taocdn.com/s3/m/d232425bcbaedd3383c4bb4cf7ec4afe04a1b1bf.png)
第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
一元一次方程单元试题4套
![一元一次方程单元试题4套](https://img.taocdn.com/s3/m/864a5d1752ea551810a68768.png)
一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。
一元一次方程单元测试题及答案
![一元一次方程单元测试题及答案](https://img.taocdn.com/s3/m/8a04af3e0b4c2e3f57276326.png)
一元一次方程单元测试题一、选择题(40分)1.在方程4x-y=0, x+1x-2=0,-2x=1,x2-2x+7=0中一元一次方程的个数为(A)A.1个B.2个C.3个D.4个2.解方程x2 -1=x-13时,去分母正确的是(B)A.3x-3=2x-2B.3x-6=2x-2C.3x-6=2x-1D.3x-3=2x-1 3.方程x-2=2-x的解是(C)A.x=1B.x= - 1C.x=2 D.x=04.如果等式ax=bc成立,则下列等式成立的是(D)A.abx=abc ;B.x= bca; C.b-ax=a-bc D.b+ax=b+bc5.增加2倍的值比扩大5倍少3,列方程得(D)A.2x=5x+3B.2x=5x-3C.3x=5x+3D.3x=5x-36.方程3a10+2x+42=4(x-1)的解为x=3,则a的值为(C)A.2;B.22;C.10;D.-27.已知a≠1,则关于x的方程(a-1)x=1-a的解是(C)A.x=0B.x=1C.x=- 1D.无解8.对∣x-2∣+3=4,下列说法正确的是(D)A.不是方程;B.是方程,其解为1;C.是方程,其解为3;D.是方程,其解为1、3。
9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x =(A)A.3;B.5;C.2;D.410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( C)。
A.80元;B.85元;C.90元;D.95元二、填空题(48分)11.代数式-2a+1与1+4a 互为相反数,则a= -112.如果 - 3x 2a+1+6=0是一元一次方程,那么a= 0 ,方程的解为x= 2 。
13.若x= -4是方程ax 2-6x-8=0的一个解,则a= -1 。
14.如果5a 2b -3(2m+1)与-3a 2b 2(m+3)是同类项,则m= - 98。
北师大版七年级上册数学 第5章 一元一次方程 单元检测题
![北师大版七年级上册数学 第5章 一元一次方程 单元检测题](https://img.taocdn.com/s3/m/d74c5263e97101f69e3143323968011ca300f73f.png)
北师大版七年级上册数学第5章一元一次方程单元检测题一.选择题1.方程去分母得A. B.C. D.2.一元一次方程2(x﹣1)=5x﹣8的解为()A.x=﹣2B.x=2C.x=﹣3D.x=33.已知等式3a=2b+5,则下列关于等式的变形不正确的是()A.3a﹣5=2b B.a b C.3ac=2bc+5D.3a+1=2b+64.在方程,,,中,一元一次方程的个数为() A.1个B.2个C.3个D.4个5.东东在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4B.3C.2D.16.乐乐在解关于x的一元一次方程315362x mx x+---=①的的去分母环节时,错误地得到了方程()()23135x mx x+--=-②,因而求得的解是52x=.现请你帮忙,求得原方程实际的解是()A.1B.2C.32D.127.若方程3(2x-1)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,则k的值为()A. B.- C. D.-8.如图,轩轩将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?为解决这个问题,轩轩设正方形的边长为xcm,则依题意可得方程为()A.4x=5(x﹣4)B.4(x﹣4)=5x C.4x=5(x+4)D.4(x+4)=5x9.《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x 尺,则x=()A.2.5B.6.5C.7D.1110.某商场元旦促销,将某种书包每个x 元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是A.B.C.D.二.填空题11.若3x+1的值比的值少1,则x 的值为12.方程﹣3x=的解是.13.若1x =是关于x 的方程1222a x a x -=-+的解,则a =______.14.为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折(标价的80%)出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是________.15.列方程:“的2倍与5的差等于的3倍”为:.16.某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树_______棵.三.解答题17.解下列方程:(1)(2)3x﹣6=﹣15﹣6x(3)﹣=x+118.一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多l0.求原来的两位数.19.乐乐解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a 的值,并正确求出方程的解.20.某车间有22名工人生产螺栓和螺母,每人每天甲均生产螺栓1200或螺母2000个,一个螺栓要配两个螺母,为了使每天生产的螺栓和螺母刚好配套,应安排多少人生产螺栓,多少人生产螺母?21.某制衣厂接受一批服装的订货任务,按计划天数进行生产.如果平均每天生产20套服装,就比订货任务少生产100套;如果平均每天生产23套服装,就可超过订货任务20套.这批服装的订货任务有多少套?计划多少天完成?22.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,那么经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?(3)当|PA+PB|=2|QB﹣QC|=24时,请直接写出点Q的速度v的值23.某超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?。
第3章 一元一次方程单元测试题(含答案)
![第3章 一元一次方程单元测试题(含答案)](https://img.taocdn.com/s3/m/4e9ad035bdd126fff705cc1755270722192e597d.png)
3章 《一元一次方程》单元测试(时间120分钟 总分150分)姓名;__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1 D.x -3y =0 2、下列通过移项变形,错误的是( )A.由x+2=2x-7,得x-2x=-7-2B.由x+3=2-4x ,得x+4x=2-3C.由2x-3+x=2x-4,得2x-x-2x=-4+3D.由1-2x=3,得2x=1-3 3、若(m ﹣2)x |m|﹣1=5是一元一次方程,则m 的值为( )A.±2B.﹣2C.2D.44、下列结论错误的是( )A 、若a=b ,则a ﹣c=b ﹣cB 、若a=b ,则ax=bxC 、若x=2,则x 2=2x D 、若ax=bx ,则a=b5、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1325x x x ---+=-▲, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( )A.2B.3C.4D.56、一条公路,甲队单独修需6天,乙队单独修需1 2天,若甲、乙两队同时分别从两端开始修,全部修完需要 ( )A .2天B .3天C .4天D .5天7、某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A .240元B .250元C .280元D .300元8、一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加2 cm ,长方形就变成了正方形,则正方形的边长为 ( )A .6 cmB .7 cmC .8 cmD .9 cm9、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D .(1)2070x x -= 10、1.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为x 千米,则汽车下坡共用了( )小时. A.3514-228x xB.2814-2xC.28xD. 3514-2x 11、小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=4412、图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( ) A.2314 B.3638C.42D.44二、填空题(共6小题,每小题4分,共24分)13、“x 的2倍与3的差等于零”用方程表示为________.14、由等式(a ﹣2)x=a ﹣2能得到x ﹣1=0,则a 必须满足的条件是________.15、若-x n +1与2x 2n -1是同类项,则n = .16、图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.17、2x+1=5的解也是关于x 的方程3x ﹣a=4的解,则a=________. 18、现规定一种新的运算=ad ﹣bc ,那么=9时,x=________.三、解答题(共8小题,共78分)19、解下列方程(共8分,每小题4分)(1)4x -3(12-x )=6x -2(8-x ) (2)2x -13-2x -34=120、(8分)某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?21、(8分)若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.22、(8分)小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1; ②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4; ④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.23、(10分)已知方程2x -35=23x -3与方程3n -14=3(x +n)-2n 的解相同,求(2n -27)2的值.24、(10分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示出来,从大到小依次是 , , ;(2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.25、(12分).在某市第四次党代会上,提出了“建设美丽城市决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?26、(14分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【参考答案】1.C2.C3.B4.D5.D6.B7.A8.B9.A 10.D 11.A 12.C13. 2x ﹣3=0 14. a ≠2 15. 2 16. 1000 17. 0或1 18. 219.(1)x =-20. (2)x =72.20.应往甲处调86名维和部队队员,往乙处调14名维和部队队员 21.因为6M=2N-4,所以6(x2+3x-5)=2(3x2+5)-4. 解得x=2. 22.解:(1)不正确 ①②(2)去分母,得3(x +1)-2(2-3x )=6, 去括号,得3x +3-4+6x =6, 移项,得3x +6x =6-3+4,合并同类项,得9x =7,解得x =79.25.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(3)设余下的工程由乙队单独施工,还要y 天完成. 根据题意得)151101(×2+115y =1,解得y =10.答:余下的工程由乙队单独施工,还要10天完成.26.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得 2(x+50)=3x , 解得x=100, x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣10100)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元); (3)当在两家商场购买一样合算时,100a+14000=80a+15000, 解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算; 购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算。
七年级数学一元一次方程单元测试卷及答案
![七年级数学一元一次方程单元测试卷及答案](https://img.taocdn.com/s3/m/73044b3f6d85ec3a87c24028915f804d2b168739.png)
七年级数学一元一次方程单元测试卷及答案一元一次方程单元测试题一、选择题:(每题3分,共30分)1.下列四个式子中,是方程的是()A、1 + 2 =3B、x—5=0C、x = 0D、|1-0.5|= 0.52.下列等式变形正确的是()A、如果s = 11sab,那么b = 222aB、如果x = 6,那么x/2 = 3C、如果x - 3 = y - 3,那么x - y = 0D、如果mx = my,那么x = y3.方程-2x=1的解是()A、x=-1/2B、x=-4C、x=4D、x=-4/44.在解方程-1/(x-3)=1时,去分母正确的是()A、1-(x-3)=1B、3-2(x-3)=6C、2-3(x-3)=6D、3-2(x-3)=155.关于x的方程(2k + 1)x + 3 = 0是一元一次方程,则k值不能等于(。
)A、-1/2B、1C、-1D、-26.方程2x+a-4=0的解是x=-2,则a等于()A、-8B、2C、8D、-27.儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍A、3年前B、3年后C、9年后D、不可能8.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是()秒A、60B、50C、40D、309.某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为(。
)A、0.81aB、1.12aC、1.1aD、0.9a10.用“●”“■”“▲”分别表示三种不同的物体,如图2-1-1所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A、5个B、4个C、3个D、2个二、填空题:(每题3分,共15分)11.白天的温度是8℃,夜间下降了t℃,则夜间的温度是8-t℃。
12.方程2y-6=y+7变形为2y-y=7+6,这种变形叫去括号,根据等式性质。
13.若x=-3是方程x-a=6的解,则a=-9.14.当x=1时,代数式2x+3与6-4x的值相等。
一元一次方程单元测试(含答案)
![一元一次方程单元测试(含答案)](https://img.taocdn.com/s3/m/98feece4763231126fdb1118.png)
第三章一元一次方程单元测试之蔡仲巾千创作班别___________ 姓名____________ 成绩_______________一. 选择题(第小题3分,共30分)1.(3分)下列各式中,是一元一次方程的是()A.﹣=1B.=3C.x2+1=5D.x﹣52.(3分)已知关于x的方程3﹣(a﹣2x)=x+2的解是x=4,则a的值是()A.4B.5C.3D.23.(3分)方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.2B.﹣2C.±1D.±24.(3分)解方程﹣3x+4=x﹣8,下列移项正确的是()A.﹣3x﹣x=﹣8﹣4B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4D.﹣3x+x=﹣8+45.(3分)方程﹣4x=的解是()A.x=﹣2B.x=﹣C.x=﹣8D.x=26.(3分)下列等式变形中不正确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=yD.若mx=my,则x=y7.(3分)在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=68.(3分)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.(3分)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(15﹣x)﹣2B.x+1=(30﹣x)﹣2C.x﹣1=(15﹣x)+2D.x﹣1=(30﹣x)+210.(3分)轮船在静水中速度为每小时20km,水流速度为每小时4km,从甲码头顺流航行到乙码头,再返回甲码头,共用5小时(不计停留时间),求甲、乙两码头的距离.设两码头间的距离为x km,则列出方程正确的是()A.(20+4)x+(20﹣4)x=5B.20x+4x=5C.+D.+二. 填空题(第小题4分,共24分)11.(4分)请写出一个一元一次方程,使得这个方程的解为“x=1”:12.(4分)已知2x﹣6=0,则4x=.13.(4分)若x与9的积等于x与﹣16的和,则x=.14.(4分)定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比方:2⊗5=2×(2﹣5)+1=2×(-3)+1=-6+1=-5.若4⊗x=13,则x=.15.(4分)当k=时,方程kx+4=3﹣2x无解.16.(4分)一件工作,甲队独做10天可以完成,乙队独做可以15天完成.若两队合作2天,然后由乙队单独完成,还需要多少天可以完成剩下的工作?设乙队还需要x天可以完成剩下的工作,列方程为_______________.三. 解答题(共5小题,共46分)17.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=118.(8分)方程x﹣3=的解与关于x的方程2x﹣m=x﹣2的解互为相反数,求m的值.19.(8分)先阅读例1,再仿照例1解方程:|3x﹣4|=5.这就是“整体代换”数学思想方法例1 解方程:|x﹣2|=3解:把x﹣2看作一个整体a,令a=x﹣2,方程可变形为|a|=3,这是“分类讨论”数学思想方法∴a=3 或 a=﹣3即x﹣2=3 或 x﹣2=﹣3当x﹣2=3时,x=5当x﹣2=﹣3时,x=﹣1综上所述,方程的解为x=5或x=﹣1.20.(8分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?21.(10分)某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不克不及同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?一元一次方程单元测试参考答案与试题解析一.选择题(共10小题)ABBAB DDCCD二. 填空题(共6小题)11.x﹣1=0 12.12 .13.﹣2 .14. 1 .15.﹣2 16.(+)×2+=1.三. 解答题(共5小题)17.【解答】解:(1)移项合并得:4x=﹣12,解得:x=﹣3;(2)去分母得:8x+36=9x﹣24,移项合并得:﹣x=﹣60,解得:x=60;(3)去括号得:4x﹣10=6x﹣12,移项合并得:﹣2x=﹣2,解得:x=1;(4)去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.18.【解答】解:解方程x﹣3=x﹣得:x=3,把x=﹣3代入方程2x﹣m=x﹣2得:﹣6﹣m=﹣5,解得:m=﹣1.19.【解答】解:把3x﹣4看作一个整体b,令b=3x﹣4,方程可变形为|b|=5,这是“分类讨论”数学思想方法∴b=5或b=﹣5,即3x﹣4=5或3x﹣4=﹣5.当3x﹣4=5时,x=3;当3x﹣4=﹣5时,x=﹣.综上所述,方程的解为x=3或x=﹣.20.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.21.【解答】解:方案一:∵4500×140=630000(元),∴将食品全部进行粗加工后销售,则可获利润630000元方案二:15×6×7500+(140﹣15×6)×1000=725000(元),∴将食品尽可能多的进行精加工,没来得及加工的在市场上直接销售,则可获利润725000元;方案三:设精加工x天,则粗加工(15﹣x)天.根据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4500+60×7500=810000(元)答:该公司可以粗加工这种食品80吨,精加工这种食品60吨,可获得最高利润为810000元.。
七年级一元一次方程单元检测题
![七年级一元一次方程单元检测题](https://img.taocdn.com/s3/m/b69cb8a8fe4733687f21aa6f.png)
一元一次方程单元检测题一、选择题(本大题共11小题,共33.0分) 1. 下列方程中是一元一次方程的是( )A. x3−3=4+x4 B. 2x +3x −1 C. x 2−3x +3=0D. x +2y =32. 已知下列方程:①x −2=2x ;②0.3x =1;③x2=5x +1;④x 2−4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A. 2 B. 3C. 4D. 53. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +14. 已知a ,b ,c ,d 为有理数,现规定一种新的运算∣∣∣ab cd ∣∣∣=ad −bc ,那么当∣∣∣24(1−x)5x ∣∣∣=18时,则x 的值是( )A. x =1B. x =711C. x =117D. x =−15. 若3x+12的值比2x−23的值小1,则x 的值为( ) A. 135 B. −135C. 513D. −5136. 若关于x 的方程x −0.5x =3−1与3x −k =2的解相同,则k 的值为( ) A. 1B. 4C. 10D. −127. 代数式2x −1与4−3x 的值互为相反数,则x 等于( )A. −3B. 3C. −1D. 18. 某工程队需动用15台挖土、运土机械,每台每小时能挖土3 m 2或运土 2 m 3,为了使挖出的土能及时运走,设安排x 台机械挖土,则可列方程为( )A. 3x −2x =15B. 3x =2(15−x)C. 2x =3(15−x)D. 3x +2x =159. 将方程−3( 2x −1 )+2( 1−x )=2去括号,得( )A. −3x+3−1−x=2B. −6x−3+2−x=2C. −6x+3+1−2x=2D. −6x+3+2−2x=210.下列方程变形中,正确的是()A. 2x−1=x+5,移项得2x+x=5+1B. x2+x3=1,去分母得3x+2x=1C. (x+2)−2(x−1)=0,去括号得x+2−2x+2=0D. −4x=2,系数化为1得x=−211.设P=2y−2,Q=2y+3,且3P−Q=1,则y的值是()A. 0.4B. 2.5C. −0.4D. −2.5二、填空题(本大题共5小题,共15.0分)12.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为______元.13.小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了1 3(−x−12+x)=1−x−∗5(“∗”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,这个被墨水污染的数字是.14.一项工程,甲单独做需要10天完成,乙单独做需要15一天完成,两人合作4天后,剩下的部分由乙单独做,则还需要天才能完成.15.某中学为了对校园进行消毒,购买了84消毒液300瓶,75%酒精400瓶,共用了6900元,其中每瓶75%酒精比84消毒液贵5元.若设84消毒液每瓶x元,则根据题意列方程得.16.将方程4x+3y=6变形成用含y的代数式表示x,则x=.三、计算题(本大题共1小题,共6.0分)17.解下列方程:(1)2x−13−10x+16=2x+14−1;(2)x0.7−0.17−0.2x0.03=1.四、解答题(本大题共5小题,共40.0分)18.A,B两地相距60千米,甲、乙两人同时从A,B两地骑自行车出发,相向而行.甲每小时比乙多行2千米,经过2小时相遇,问甲、乙两人的速度分别是多少?19.下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10 m3,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户5月份用水多少立方米?20.已知(|a|−1)x2−(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解比方程5x−2k=2x的解大2,求k的值.21.一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,所得的两位数比原来的两位数大27,求原来的两位数.22.某工厂出售一种产品,其成本价为每件28元,如果直接由厂家门市部销售,每件产品售价是35元,每月还要支付其他费用2100元;如果委托商店销售,那么出厂价为每件32元.(1)求这两种销售方式下,每月销售多少件时,所得利润相等;(2)若每月销售量为1000件,则采用哪种销售方式获利较多?【解析】解:A、是一元一次方程,故A符合题意;B、是代数式,故B不符合题意;C、是一元二次方程,故C不符合题意;D、是二元一次方程,故D不符合题意;故选:A.根据一元一次方程的定义求解即可.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.【答案】B只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.是分式方程,故①错误;【解答】解:①x−2=2x②0.3x=1,即0.3x−1=0,符合一元一次方程的定义.故②正确;=5x+1,即9x+2=0,符合一元一次方程的定义.故③正确;③x2④x2−4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x−6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B.3.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.4.【答案】C【解答】解:由题意,得2×5x−4(1−x)=18,,解得x=117故选C.5.【答案】B解:由题,3x+12=2x−23−1,去分母得:3(3x+1)=2(2x−2)−6,去括号得,9x+3=4x−4−6,移项、合并得:5x=−13,系数化为1得:x=−135.故选B.6.【答案】C【解答】解:x−0.5x=3−1,解得x=4.则把x=4代入关于x的方程3x−k=2,得3×4−k=2,解得,k=10.故选C.7.【答案】B【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x=3.故选B.8.【答案】B【解析】若安排x台机械挖土,则安排(15−x)台机械运土,由题意得3x=2(15−x),故选B.9.【答案】D【解析】去括号时,如果括号外面是负号,则去括号后括号内每一项都要变号.故方程−3(2x−1)+2(1−x)=2去括号,得−6x+3+2−2x=2.10.【答案】C【解析】2x−1=x+5,移项得2x−x=5+1;x 2+x3=1,去分母得3x+2x=6;−4x=2,系数化为1得x=−12.故选C.11.【答案】B【解析】∵P=2y−2,Q=2y+3,3P−Q=1,∴3(2y−2)−(2y+3)=1,去括号,得6y−6−2y−3=1,移项、合并同类项,得4y=10,系数化为1,得y=2.5.故选B.12.【答案】4【解析】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.13.【答案】5【解析】将x=5代入13(−x−12+x)=1−x−∗5,得13(−5−12+5)=1−5−∗5,解得∗=5,即被黑水污染的数字是5.14.【答案】5【解析】设还需要x天完成,根据题意得410+4+x15=1,解得x=5.15.【答案】300x+400(x+5)=6900【解析】若84消毒液每瓶x元,则75%酒精每瓶(x+5)元,由题意,得300x+ 400(x+5)=6900.16.【答案】6−3y4【解析】4x+3y=6,两边同时减去3y,得4x=6−3y,两边同时除以4,得x=6−3y4.17.【答案】解:(1)去分母,得4(2x−1)−2(10x+1)=3(2x+1)−12.去括号,得8x−4−20x−2=6x+3−12.移项,得8x−20x−6x=3−12+4+2.合并同类项,得−18x=−3.系数化为1,得x=16.(2)原方程可化为10x7−17−20x3=1.去分母,得30x−7(17−20x)=21.去括号,得30x−119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=14.17【解析】略18.【答案】解:设乙的速度是每小时x千米,则甲的速度是每小时(x+2)千米.依题意得:2x+2(x+2)=60.解得x=14,则x+2=16.答:乙的速度是每小时14千米,则甲的速度是每小时16千米.【解析】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设乙的速度是每小时x千米,则甲的速度是每小时(x+2)千米.根据“A,B两地相距60千米,甲每小时比乙多行2千米,经过2小时相遇”,列出方程并解答.19.【答案】解:(1)由题意可得10a=23,解得a=2.3.答:a的值为2.3.(2)设该用户5月份用水x m3,∵用水22 m3时,水费为22×2.3=50.6元<71元,∴x>22,∴22×2.3+(x−22)×(2.3+1.1)=71,解得x=28.答.该用户5月份用水28 m3【解析】略20.【答案】解:(1)因为(|a|−1)x2−(a+1)x+8=0是关于x的一元一次方程,所以|a|−1=0且−(a+1)≠0.由|a|−1=0,得|a|=1,所以a=±1.由−(a+1)≠0,得a+1≠0,所以a≠−1,所以a=1.所以方程可转化为−2x+8=0.移项,得−2x=−8.系数化为1,得x=4.(2)因为方程−2x+8=0的解比方程5x−2k=2x的解大2,所以方程5x−2k=2x的解为x=2.所以5×2−2k=2×2.移项,得−2k=4−10.合并同类项,得−2k=−6.系数化为1,得k=3.【解析】略21.【答案】解:设原来两位数十位上的数字为x,则个位上的数字为2x,由题意得20x+x−27=10x+2x,移项,得20x+x−10x−2x=27,合并同类项,得9x=27,系数化为1,得x=3,所以2×3=6.答:原来的两位数为36.【解析】略22.【答案】解:(1)设每月销售x件时,两种销售方式的销售利润相等.由题意得(35−28)x−2100=(32−28)x,解得x=700,所以每月销售700件时,两种销售方式所得利润相等.(2)当每月销售量为1000件时,直接由厂家门市部销售的利润是(35−28)×1000−2100=4900元;委托商店销售的利润是(32−28)×1000=4000元.因为4900>4000,所以采用直接由厂家门市部销售的方式获利较多.【解析】见答案第11页,共11页。
一元一次方程单元测试题及答案
![一元一次方程单元测试题及答案](https://img.taocdn.com/s3/m/74aff1ae760bf78a6529647d27284b73f24236b0.png)
一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。
A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。
5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。
三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。
7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。
四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。
如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。
7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。
8. 解:设需要 \( x \) 天完成。
七年级数学上册《一元一次方程》单元测试卷
![七年级数学上册《一元一次方程》单元测试卷](https://img.taocdn.com/s3/m/8e0130850129bd64783e0912a216147917117eab.png)
七年级数学上册《一元一次方程》单元测试卷一、单选题1.关于x 的方程2(x-1)-a=0的根是3,则a 的值为( )A .4B .-4C .5D .-52.下列式子,是一元一次方程的是( )A .21x x -=B .7x y +=C .248x x-= D .132x x -= 3.若 3x =- 是关于 x 的方 =1x m + 的解,则关于 y 的不等式 ()2126y m -≥-+ 的最大整数解为( ) A .1B .2C .3D .44.已知等式 a b = , c 为任意有理数,则下列等式中,不一定成立的是( )A .22a c b c +=+B .0ac bc -=C .22a c b c -=-D .a b c c= 5.在数轴上,表示哪个数的点与表示﹣2和4的点的距离相等?( )A .原点B .1C .﹣1D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元7.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是( )A .312x ++ 8x=1 B .312x ++ 38x - =1 C .12x + 8x =1D .12x + 38x - =18.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x ,那么可得方程( ) A .2000(1+x )=2120 B .2000(1+x %)=2120 C . 2000(1+x·80%)=2120D .2000(1+x·20%)=21209.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .2110.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( ) A .8人B .10人C .12人D .14人11.下列等式一定成立的是( )A .x 2+3=0B .x+2=x+3C .x+2=2+xD .x y -=-212.下列各对等式,是根据等式的性质进行变形的,其中错误的是( ).A .4x-1=5x+2→x=-3B .1.82101820232300.50.757x x x x---=→-= C .0.030.050.135100.23232424x x xx --+=→+= D .()()5312533632x x x x +--=→+--= 二、填空题13.若1x =-是关于x 的方程33x m +=-的解,则m 的值为 .14.若 1x = 是关于x 的方程1222a x a x -=-+ 的解,则 a = . 15.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是 %.16.如图,点A 、点B 在数轴上表示的数分别是-4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 .三、解答题17.如图,已知∠1=∠2,∠3=∠4,试说明AB∠CD .18.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润不低于5%,则最多打几折?19.某商店有两种书包,每个小书包比大书包的进价少25元,而它们的售后所获利润相同,其中,每个小书包的利润率为30%,每个大书包的利润率为20%,求两种书包的进价.20.现有180件机器零件需加工,任务由甲、乙两个小组合作完成.甲组每天加工12件,乙组每天加工8件,结果共用20天完成任务.求甲、乙两组分别加工机器零件多少个.21.数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
第3章《一元一次方程》单元测试卷(附答案)
![第3章《一元一次方程》单元测试卷(附答案)](https://img.taocdn.com/s3/m/a46f3bd9a0c7aa00b52acfc789eb172ded639976.png)
《一元一次方程》单元测试卷第Ⅰ卷(选择题)一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.24.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=26.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.57.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶第Ⅱ卷(非选择题)二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了次.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为.三.解答题(共6小题)17.解方程:﹣=1.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:9(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?人教版数学七年级(上)第3章《一元一次方程》单元测试卷参考答案与试题解析一.选择题(共12小题)1.已知(m﹣n)x=m﹣n,若根据等式的性质可得x=1,那么m、n必须满足的条件是()A.m=n B.m=﹣n C.m≠n D.m、n为任意数【解答】解:已知(m﹣n)x=m﹣n,根据等式的性质可得x=1,则m﹣n≠0,那么m、n必须满足的条件是:m≠n.故选:C.2.下列方程中,是一元一次方程的是()A.x2+x+1=x2+2 B.x+y=9 C.x+=2 D.3x=3(x﹣1)【解答】解:A、整理后,符合一元一次方程的定义,故此选项正确;B、含有两个未知数,故不是一元一次方程,故此选项错误;C、分母中含有未知数,是分式方程,故此选项错误;D、整理后,不含有未知数,故不是一元一次方程,故此选项错误.故选:A.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.4.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.5.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.6.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.5【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.7.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.8.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.9.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)×aC.b=(1+22.1%)×2a D.b=22.1%×2a【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.10.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.11.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.12.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶.这三天,正好把妈妈买的全部饮料喝光,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶【解答】解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣(瓶),所以第三天喝了{(x﹣x﹣0.5)﹣}+0.5(瓶),(x+0.5)++ {(x﹣x﹣0.5)﹣}+0.5=x,解得x=7.故选:C.二.填空题(共4小题)13.甲、乙二人在圆形跑道上从同一点A同时出发.并按相反方向跑步.甲的速度为每秒5m,乙的速度为每秒8m.到他们第一次在A点处再度相遇时跑步就结束.则从他们开始出发(算第一次相遇)到结束(算最后一次相遇)共相遇了4次.【解答】解:设路程为x,相向而行相遇时间=,相背而行相遇时间=;最后相遇在A点时相遇次数:≈4(次).答:从出发到结束他们共相遇了4次.故答案为:4.14.有五个正整数排成一列,从第二个数起,每一个数都不小于前一个的两倍,若已知这五个数之和是2018,则最后一个数的最小可能值是1043.【解答】解:设第一个数是x,则第2个数是2x,第3个数是4x,第4个数是8x,第5个数是16x,依题意有x+2x+4x+8x+16x=2018,解得x=65,∵x为整数,x最大取65,31x=31×65=2015,8x+1=8×65+1=521,521×2+1=1043.答:最后一个数的最小可能值是1043.故答案为:1043.15.如图,某超市一楼和二楼之间架设了两台长度相同的上下自动扶梯,向上每秒移动的距离和向下每秒移动的距离相等,小可踏入上楼的扶梯并且以每秒0.3米的速度向上行走,同时,小逸踏入下楼的扶梯并且以每秒0.2米的速度向下行走.过了27秒,小可刚好位于扶梯的中点,再过了3秒,她和小逸相遇,自动扶梯的长度是30米.【解答】解: +×=,1﹣=,设自动扶梯的长度是x米,依题意有(﹣)x=(0.3﹣0.2)×(27+3),解得x=27.答:自动扶梯的长度是30米.故答案为:30米.16.《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为(50++)x=50.【解答】解:设三人一共用了x天完成织布任务,则可列方程为:(50++)x=50.故答案是:(50++)x=50.三.解答题(共6小题)17.解方程:﹣=1.【解答】解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.18.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.19.M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?【解答】解:设购买了桂花树苗x棵,根据题意,得:5(x+11﹣1)=6(x﹣1),解得:x=56.答:购买了桂花树苗56棵.20.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【解答】解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?【解答】解:(1)设每月主叫时间为x分钟.①当0≤x≤200时,方式一收费58元,方式二收费88元,故不存在两种方式收费相同;②当200<x≤400时,计费方式一收费58+0.2(x﹣200)=0.2x+18,计费方式二收费88元,∴0.2x+18=88,解得:x=350,∴当主叫时间为350min时,两种方式收费相同.(2)当x>400时,计费方式二收费88+0.25(x﹣400)=0.25x﹣12.根据题意得:0.2x+18=0.25x﹣12,解得:x=600,又∵0.25>0.2,∴当400<x<600时,选择计费方式二省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一省钱.22.八达岭森林体验中心,由八达岭森林体验馆和450公顷的户外体验区构成.森林体验馆包括“八达岭森林变迁“、“八达岭森林大家族“、“森林让生活更美好“等展厅,户外游憩体验系统根据森林生态旅游最新理念,采取少设施、设施集中的点线布局模式,突破传统的“看风景“旅游模式,强调全面体验森林之美.在室内展厅内,有这样一个可以动手操作体验的仪器,如图,小明在社会大课堂活动中,记录了这样一组数字:根据以上材料回答问题:A,B两地相距300公里,小轿车以90公里/小时的速度从A地开往B地;公共汽车以60公里/小时的速度从B开往A地,两车同时出发相对而行,两车在C地相遇,相遇后继续前行到达各自的目的地.(1)多少小时后两车相遇?(2)小轿车和公共汽车分别到达目的地,计算小轿车的碳足迹为多少?公共汽车的碳中和树木棵数为多少?(3)根据观察或计算说明,为了减少环境污染,我们应该选择哪种交通工具出行更有利于环保呢?【解答】解:(1)设经过x小时两车相遇根据题意列方程得90x+60x=300解得:x=2答:两车2小时相遇.(2)小轿车到达目的地,碳足迹为22.5×3=67.5(Kg)公共汽车分别到达目的地碳中和树木棵数为:0.005×3=0.015(棵)(3)通过观察得出,我们应尽量选择公共交通出行,有利于环保.。
人教版七年级上册数学 第五章 一元一次方程 单元测试卷
![人教版七年级上册数学 第五章 一元一次方程 单元测试卷](https://img.taocdn.com/s3/m/609cc722a36925c52cc58bd63186bceb19e8edd3.png)
人教版七年级上册数学第五章一元一次方程单元检测题一.选择题1.已知x=1是方程x+m=3的解,则m的值是()A.1B.2C.−2D.32.下列方程中,解为x=3的方程是()A.y−3=0B.x+2=1C.2x−2=3D.2x=x+33.下列变形符合方程的变形规则的是()A.若2x−3=7,则2x=7−3B.若3x−2=x+1,则3x−x=1−2 C.若−3x=5,则x=5+3D.若−14x=1,则x=−44.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.8天B.5天C.3天D.2天5.琪琪同学在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4B.3C.2D.16.如图,一个正方形先剪去宽为 2.4的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.10B.12C.14D.167.在中央电视台“开心辞典”节目中,某期的一道题目是:如图,两个天平都平衡,则1个苹果的重量是1个香蕉重量的()A.23倍B.43倍C.32倍D.2倍8.阿阳中学初三二班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费送老师一张(由学生出钱),每个学生交0.6元刚好,相片上共有多少人()A.13个B.12个C.11个D.无法确定二.填空题9.若(m−2)x|m|−1−2=5是关于x的一元一次方程,则m的值是.10.已知4x+2y=3,用含x的式子表示y=.11.在长方形ABCD中,放入6个形状大小相同的小长方形(空白部分),其中AB=9cm,BC=13cm,则阴影部分图形的总面积是cm2.12.某商场将一件商品在进价的基础上加价50%标价,再打八折出售,售价为120元,则这件商品获利元.13.程大位《直指算法统宗》中记载了这样一个问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个大小和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.则大和尚为人.三.计算题14.解方程(1)x−13−x+26=1(2)3=1−2(4+x)四.解答题15.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每3人共乘1辆车,最终剩余2辆车;若每2人共乘1辆车,最终剩余9个人无车可乘,问共有多少人,多少辆车?16.以下是琪琪解方程x+13−x−32=1的解答过程.解:去分母,得2(x+1)−3(x−3)=1.去括号,得2x+2−3x−6=1.移项,合并同类项,得x=5.琪琪的解答过程是否有错误?如果有错误,写出正确的解答过程.17.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球x盒时,两种优惠办法付款一样?(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?18.某商场从厂家购进甲、乙两种文具,甲种文具的每件进价比乙种文具的每件进价少20元.若购进甲种文具7件,乙种文具2件,则需要760元.(1)求甲、乙两种文具的每件进价分别是多少元?(2)该商场从厂家购进甲、乙两种文具共50件,所用资金恰好为4400元.在销售时,每件甲种文具的售价为100元,要使得这50件文具销售利润率为30%,每件乙种文具的售价为多少元?19.杨师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(−3x2+5x−7)=−2x2+3x−6.(1)求所捂的多项式;(2)若x是14x=−12x+3的解,求所捂多项式的值;(3)若所捂多项式的值为144,请求写出x的取值.。
一元一次方程单元测试题(90分钟,120分)
![一元一次方程单元测试题(90分钟,120分)](https://img.taocdn.com/s3/m/1806aee26f1aff00bed51e48.png)
一元一次方程单元测试题(90分钟,120分)一、选择题(每小题2分,共30分)1.下列方程中,是一元一次方程的是( )(A )()232x x x x +-=+ (B)()40x x +-= (C)1x y += (D)10x y += 2.在解方程21x --332x +=1时,去分母正确的是 A 、3(x -1)-2(2+3x )=1 B 、3(x -1)-2(2x +3)=6C 、3x -1-4x +3=1D 、3x -1-4x +3=63.下列方程变形不正确的是 ( )A 、4x+8=0 x+2=0B 、x+5=3-3x 4x=-2C 、352=x 2x=15 D 、3x=-1 x=-3 4.关于x 的方程2(1)0x a --=的解是3,则a 的值是( )A .4B .—4C .5D .—55.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列的方程是( )A .2052m m -=B .2035m m -=C .2057m m -=D .2053m m -= 6.某个体户在一次买卖中同时卖出两件上衣,售价都是165元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他 ( )A 、赚22元B 、赚36元C 、亏22元D 、不赚不亏.7.下列方程中,解是x=1的是( )A.132=-xB.132=+xC.215.0x -= D.x x =-43 8.、若m 1x 5m -=()是一元一次方程,则m 的值是 ( )A.±1B.-1C.1D.29.某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7。
若由外校转入1人加入 乙队,则后来乙与丙的人数比为何?A.3:4B.4:5C.5:6D.6:710.下列方程中,一元一次方程的有( )个。
①2x -3y =6 ②x 2-5x +6=0 ③3(x -2)=1-2x ④013=+x⑤3x -2(6-x ) A.1 B.2 C.3 D.411.方程2x+1=3与2-3x a -=0的解相同,则a 的值是( ) A.7 B.0 C.3 D.512.有m 辆客车及n 个人,若每辆乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ;②4314010+=+n n ;③4314010-=-n n ;④1431040+=+m m ,其中正确的是( ).A .①②B .②④C .①③D .③④13.若615-x 与37-互为倒数,那么x 的值等于( ) A .75 B .75- C .3511 D .3511- 14.若代数式(a-1)x │a │+8=0是关于x 的一元一次方程,则a 的值为 ( )A.-1B.0C.1D.1或-115.下面是一个被墨水污染过的方程:+=-x x 3212,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是A .1B .-1C .21- D .21二、填空题(每小题3分,共30分)16.若方程2x-5=1和0331=--x a 的解相同,则a= 17..写出满足下列条件的一个一元一次方程:①未知数的系数是12;②方程的解是3,这样的方程可以是:____________.18.若式子14x -的值比式子24x -的值少5,那么x =__________. 19.若2x y +=,8x =,则y 的取值为_____________.20.小李在解方程135=-x a (x 为未知数)时,误将-x 看作+x ,解得方程的解2-=x ,则原方程的解为___________________________。
一元一次方程单元测试题及答案
![一元一次方程单元测试题及答案](https://img.taocdn.com/s3/m/646543c9a1116c175f0e7cd184254b35effd1a55.png)
一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。
接着,将式子进行计算,得到2x = 4。
最后,将方程两边同时除以2,得到x = 2。
答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。
接着,将常数项移动到等号的右边,得到4x = 16 + 20。
最后,将方程两边同时除以4,得到x = 9。
答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。
接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。
接着,将方程两边同时减去5x,得到x - 1 = 14。
最后,将方程右边的常数项移动到等号左边,得到x = 15。
答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。
接着,将方程两边同时减去4x,得到x = 2 - 3。
最后,将右边的常数项进行计算,并化简方程,得到x = -1。
答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程》单元检测题一、单选题1.某商品打七折后价格为a元,则原价为()A. a元B. a元C. 30%a元D. a元2.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A. B. C. D.3.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5B. 4C. 3D. 24.下列变形中:①由方程去分母,得x﹣12=10;②由方程两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A. 4B. 3C. 2D. 15.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A. 大和尚25人,小和尚75人B. 大和尚75人,小和尚25人C. 大和尚50人,小和尚50人D. 大、小和尚各100人元,可列方程为()A. B.C. D.7.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A. 不盈不亏B. 盈利20元C. 亏损10元D. 亏损30元8.方程x-3=-6的解是().A. x=2B. x=-2C. x=3D. x=-39.方程2x-3y=7,用含x的代数式表示y为()A. y=(7-2x)B. y=(2x-7)C. x=(7+3y)D. x=(7-3y)10.方程的解是()A. B. C. D.11.方程的解是()A. B. C. D.二、填空题12.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.13.已知A=5x+2,B=11-x,当x=________时,A比B大3.14.当_____时,代数式与代数式的值相等.15.已知方程,用含的代数式表示为________.16.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是_____元.三、解答题17.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方(2)求商店获得的利润.18.老王的房子准备开始装修,请来师徒二人做泥水.已知师傅单独完成需10天,徒弟单独完成需15天。
(1)若两人先合作2天,剩下的由徒弟单独做,结果超出老王预期的工期3天完成,求老王预期的工期天数;(2)若师傅的工价每天300元,徒弟的工价每天220元,老王房子的泥水工价预算不超过3180元,问师傅至少要做几天?19.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.20.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店(2)当购买乒乓球多少盒时,两种优惠办法付款一样?21.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?. 参考答案1.B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a (元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.2.C【解析】分析:根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总车数得出等式即可.详解:由题意可列方程:故选:C.点睛:本题考查了一元一次方程的应用,解题的关键是理解题意找准等量关系,进而列出方程.3.B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.B【解析】分析:根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.详解:①方程=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程x=,两边同除以,得x=;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x﹣4=x+4移项,得5x=8;要注意移项要变号,故③错误.④方程2﹣两边同乘以6,得12﹣(x﹣5)=3(x+3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B.点睛:在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.5.A【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.C【解析】分析:根据题意分别表示出两种方式打折后的售价,再根据售价、成本、利润的关系列方程求解.详解:按成本价提高50%后售价为x(1+50%),再以八折出售变为0.8×(1+50%)x,又因为获利28元,此时售价也可表示为x+28,所以可列方程x+28=0.8×(1+50%)x.故选:C.点睛:此题主要考查了一元一次方程的应用,关键在于用两种方式表示出提价打折后的售价,列出方程.7.C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.8.D【解析】分析:方程移项合并,即可求出解.详解:x﹣3=﹣6,移项合并得:x=﹣3.故选D.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.B【解析】分析:先移项,移项时不要忘记变号,再把y的系数化为1即可.详解: ∵2x-3y=7,∴2x-7=3y,∴y=(2x-7)故选B.点睛:本题考查了等式的性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.10.D【解析】分析:按照移项,合并,系数化为1的计算过程计算即可.详解:移项得:2x=3+1,合并得:2x=4,系数化为1得:x=2.故选D.点睛:考查解一元一次方程.掌握解一元一次方程的步骤是解决本题的关键.11.C【解析】分析:根据解一元一次方程的一般步骤解答即可.详解:移项得:,合并同类项得:,系数化为1得:.故选C.. 点睛:熟记“解一元一次方程的一般步骤”是解答本题的关键.12.15【解析】分析:设输出结果为y ,观察图形我们可以得出x和y 的关系式为:,将y的值代入即可求得x的值.详解:∵当y=127时,解得:x=43;当y=43时,解得:x=15;当x=15时,解得不符合条件。
则输入的最小正整数是15.故答案为:15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.13.2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为:2.点睛:本题考查的是一元一次方程的应用:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.是一道基础题,难度不大.14.3【解析】分析:先根据题意列出方程:2x﹣3=6-x,再解答即可.详解:根据题意列方程得:2x﹣3=6-x,移项得:2x+x=6+3,合并同类项得:3x=9,系数化为1得:x=3.故答案为:3.点睛:解答本题的关键在于根据题意列出方程.15.【解析】分析:用含的代数式表示就是把x 写在等式的左边,其它项写在右边,并把x 的系数化为1. 详解:∵,∴,∴.故答案为:.点睛:本题考查了等式的性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.16.140【解析】解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%﹣x=28,解得:x=140.答:这件衣服的成本是140元;故答案为:140.17.(1)每套课桌椅的成本为82元.(2)商店获得的利润为1080元.【解析】【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【详解】(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82,答:每套课桌椅的成本为82元;(2)60×(100﹣82)=1080(元),答:商店获得的利润为1080元.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.18.(1)老王的房子做泥水预期天完成;(2)师傅至少要做天.【解析】分析:设老王预期的工期为x天,完成整项工程徒弟做了2天,师傅做了(x+3)天,总工作量为单位1,根据徒弟做2天的工作量+师傅做(x+3)天的工作量=1,列方程求解即可;(2) 设师傅要做y天,则徒弟要做,根据老王房子的泥水工价预算不超过3180元,列出不等式求解即可.详解:(1)设老王预期的工期为天.依题意,得解得经检验,符合题意答:老王的房子做泥水预期天完成.(2)设师傅要做天,依题意,得≤解得:答:师傅至少要做天.点睛:本题考查了一元一次方程的应用,解题的关键是读懂题意,找出等量关系,列出方程即可.19.(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.【解析】分析: (1)用乙公司经营的蛋糕店的数量乘以其所占的百分比即可得出该市蛋糕店的总数;用该市蛋糕店的总数乘以甲蛋糕店所占的百分比即可得出甲公司经营的蛋糕店数量;(2)设甲公司增设x家蛋糕店,则全市共有蛋糕店(x+600)家,甲公司经营的蛋糕店为20%(600+x)家或(100+x)家,从而列出方程,求解即可.详解:(1)解:150× =600(家)600× =100(家)答:甲蛋糕店数量为100家,该市蛋糕店总数为600家.(2)解:设甲公司增设x家蛋糕店,由题意得20%(600+x)=100+x解得x=25(家)答:甲公司需要增设25家蛋糕店.点睛: 本题主要考查扇形统计图与一元一次方程的应用,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系,并据此列出方程.20.(1)当购买20盒时,去甲商店购买更合算,当购买40盒时,去乙商店购买更合算;(2)当购买乒乓球30盒时,两种优惠办法付款一样.【解析】分析:(1)根据两店的优惠办法,分别求出购买20盒、40盒乒乓球时两店所需. 费用,比较后即可得出结论;(2)设当购买乒乓球x盒时,两种优惠办法付款一样,根据两店的优惠办法结合两店所需费用相同,即可得出关于x的一元一次方程,解之即可得出结论.详解:(1)当购买20盒时:甲商店所需费用5×100+(20﹣5)×25=875(元),乙商店所需费用5×100×0.9+20×25×0.9=900(元).∵875<900,∴当购买20盒乒乓球时去甲商店购买合算;当购买40盒时:甲商店所需费用5×100+(40﹣5)×25=1375(元),乙商店所需费用5×100×0.9+40×25×0.9=13500(元).∵1375>1350,∴当购买40盒乒乓球时去乙商店购买合算.(2)设当购买乒乓球x盒时,两种优惠办法付款一样.根据题意得:5×100+(x﹣5)×25=5×100×0.9+x×25×0.9,解得:x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.点睛:本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.21.(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.【解析】分析:(1)需要分类讨论:行程不超过3千米和行程超过3千米,根据两种收费标准进行计算;(2)把x=8代入(1)中相应的代数式进行求值即可;(3)设他坐了x千米,根据该乘客付费26.2元列出方程求解即可.详解:(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为:10+(x﹣3)×1.8=1.8x+4.6(元).(2)当x=8时,1.8x+4.6=1.8×8+4.6=19(元).答:乘客坐了8千米,应付费19元;(3)设他坐了x千米,由题意得:10+(x﹣3)×1.8=26.2,解得x=12.答:他乘坐了12千米.点睛:该题考查了一元一次方程的应用,列代数式及求代数式的值等问题;解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.。