开漏 推挽电路

合集下载

开漏(Open-Drain)和推挽(Push-Pull)输出

开漏(Open-Drain)和推挽(Push-Pull)输出

开漏(Open-Drain)和推挽(Push-Pull)输出推荐到论坛| 收藏漏级开路即高阻状态,适用于输入/输出,其可独立输入/输出低电平和高阻状态,若需要产生高电平,则需使用外部上拉电阻或使用如LCX245等电平转换芯片。

有些朋友,尤其是未学过此方面知识的朋友,在实际工作中将I/O 口设置为漏开,并想输出高电平,但向口线上写1后对方并未认出高电平,但用万用表测量引脚确有电压,这种认为是不对的,对于高阻状态来说,测量电压是无意义的,正确的方法应是外加上拉电阻,上拉电阻的阻值=上拉电压/芯片引脚最大灌(拉)电流。

推挽方式可完全独立产生高低电平,推挽方式为低阻,这样,才能保证口线上不分走电压或分走极小的电压(可忽略),保证输出与电源相同的高电平,推挽适用于输出而不适用于输入,因为若对推挽(低阻)加高电平后,I=U/R,I会很大,将造成口的烧毁。

对与C8051F的很多型号片子,将I/O口设置为推挽方式的做法为:PnMDOUT=0xff,Pn=0x00,这样设置I/O口为推挽,并输出低电平(可降低功耗)将I/O口设置为漏开方式的做法为:PnMDOUT=0x00,Pn=0x11,这样设置I/O口为漏开。

如果学过三极管放大电路一定知道,前置单管放大器和功放末级放大电路的区别。

单片机内部的逻辑经过内部的逻辑运算后需要输出到外面,外面的器件可能需要较大的电流才能推动,因此在单片机的输出端口必须有一个驱动电路。

这种驱动电路有两种形式:其中的一种是采用一只N型三极管(npn或n沟道),以npn三极管为例,就是e接地,b接内部的逻辑运算,c 引出,b受内部驱动可以控制三极管是否导通但如果三极管的c极一直悬空,尽管b极上发生高低变化,c极上也不会有高低变化,因此在这种条件下必须在外部提供一个电阻,电阻的一端接c(引出脚)另一端接电源,这样当三极管的b有高电压是三极管导通,c电压为低,当b为低电压时三极管不通,c极在电阻的拉动下为高电压,这种驱动电路有个特点:低电压是三极管驱动的,高电压是电阻驱动的(上下不对称),三极管导通时的ec内阻很小,因此可以提供很大的电流,可以直接驱动led甚至继电器,但电阻的驱动是有限的,最大高电平输出电流=(vcc-Vh)/r;另一种是互补推挽输出,采用2只晶体管,一只在上一只在下,上面的一只是n型,下面为p型(以三极管为例),两只管子的连接为:npn(上)的c连vcc,pnp(下)的c接地,两只管子的ee,bb相连,其中ee作为输出(引出脚),bb接内部逻辑,这个电路通常用于功率放大点路的末级(音响),当bb接高电压时npn管导通输出高电压,由于三极管的ec电阻很小,因此输出的高电压有很强的驱动能力,当bb接低电压时npn截至,pnp导通,由于三极管的ec电阻很小因此输出的低电压有很强的驱动能力,简单的例子,9013导通时ec电阻不到10欧,以Vh=2.5v,vcc=5v计算,高电平输出电流最大=250MA,短路电流500ma,这个计算同时告诉我们采用推挽输出时一定要小心千万不要出现外部电路短路的可能,否则肯定烧毁芯片,特别是外部驱动三极管时别忘了在三极管的基极加限流电阻。

推挽输出与开漏输出的区别

推挽输出与开漏输出的区别

推挽输出与开漏输出的区别推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。

输出既可以向负载灌电流,也可以从负载抽取电流。

/////////////////////////////////////////////////////////////////////三极管的开漏输出有什么特性,和推挽是不是一回事,问题:很多芯片的供电电压不一样,有3.3v和5.0v,需要把几种IC的不同口连接在一起,是不是直接连接就可以了?实际上系统是应用在I2C上面。

简答:1、部分3.3V器件有5V兼容性,可以利用这种容性直接连接2、应用电压转换器件,如TPS76733就是5V输入,转换成3.3V、1A输出。

/////////////////////////////////////////////////////////////////////开漏电路特点及应用在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。

本人虽然在念书时就知道其基本的用法,而且在设计中并未遇的过问题。

但是前两天有位同事向我问起了这个概念。

我忽然觉得自己对其概念了解的并不系统。

近日,忙里偷闲对其进行了下总结。

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

推挽输出与开漏输出的区别

推挽输出与开漏输出的区别

推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强( 一般20ma 以内).推挽结构一般是指两个三极管分别受两互补信号的控制, 总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector) 门电路.是两个参数相同的三极管或MOSFET以推挽方式存在于电路中, 各负责正负半周的波形放大任务, 电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。

输出既可以向负载灌电流,也可以从负载抽取电流。

/////////////////////////////////////////////////////////////////////开漏电路特点及应用在电路设计时我们常常遇到开漏( open drain )和开集( open collector )的概念。

本人虽然在念书时就知道其基本的用法,而且在设计中并未遇的过问题。

但是前两天有位同事向我问起了这个概念。

我忽然觉得自己对其概念了解的并不系统。

近日,忙里偷闲对其进行了下总结。

所谓开漏电路概念中提到的“漏”就是指MOSFET勺漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET勺漏极为输岀的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

如图1 所示:组成开漏形式的电路有以下几个特点:1.利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up , MOSFET到GND IC内部仅需很下的栅极驱动电流。

如图1。

2.可以将多个开漏输岀的Pin ,连接到一条线上。

形成“与逻辑” 关系。

如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0 了。

什么是开漏输出、推挽输出、开集输出、OC、OD、线或线与逻辑

什么是开漏输出、推挽输出、开集输出、OC、OD、线或线与逻辑
6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。
7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低
时,等于电源短路。)
8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。
要实现 线与需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。输出既可以向负载灌电流,也可以从负载抽取电流。
所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。如图1所示:
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率
高。
输出既可以向负载灌电流,也可以从负载抽取电流
at91rm9200 GPIO 模拟I2C接口时注意!!
一.什么是OC、OD
集电极开路门(集电极开路 OC 或源极开路OD)

开漏和推挽到底啥区别?

开漏和推挽到底啥区别?

开漏和推挽到底啥区别?开漏和推挽到底有什么区别?开漏和推挽区别在于:开漏:输出端相当于三极体的集电极,要得到高电平状态需要上拉电阻才行。

适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。

推挽输出:可以输出高,低电平,连线数字器件。

开漏电路就是指以MOS FET的漏极为输出的电路。

一般的用法是会在漏极外部的电路新增上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

推挽结构一般是指两个三极体分别受两互补讯号的控制,总是在一个三极体导通的时候另一个截止。

微控制器IO口开漏和推挽的区别微控制器IO埠开漏就是只有一个对地的mos管没有上拉电阻,漏极开路就是什么都不接,推挽输出就是对地对电源各有一个mos管,高电平时对电源的mos管导通对地mos管截止,低电平对地的mos 管导通对电源mos管截止,希望你能理解微控制器io口设定推挽和开漏的区别设定推挽模式,只能是输出模式,而输出高低电平的驱动电流都很大。

而开漏模式,即可作为输出,也可作为输入。

作输出时,要输出高电平,需要外加上拉电阻。

作输入时,要求处理高电平状态,才能读外部引脚。

推挽和半桥区别大概说说;1)推挽电路管子大都工作线上性区,半桥电路的管子则工作在开关状态;2)推挽电路管子大都采用NPN、PNP / N沟道、P沟道的配对形式,或是等效形式,如达林顿结构;半桥电路的管子因为都工作在开关状态,不必采用极性配对的管子;推挽半桥区别反激最简单,一个变压器,一个开关管,一个输出二极体正激在上面的基础上,多一个储能电感,次级多一个续流二极体推挽,两个开关管,一个变压器(变压器初级抽头),次级也抽头,两个输出二极体半桥,跟推挽相近,但变压器没有抽头,次级同推挽全桥,有四个开关,次级同推挽BOOT升压电压和推挽升压的区别BOOT升压(降压)电路是通过开关管和储能元件(电感或电容)的配合达到升压或降压的目的,主电路工作在开关状态。

推挽电路通过电晶体和变压器的配合达到升压或降压目的,主电路可以工作在模拟或者开关状态。

什么是开漏输出、推挽输出、开集输出、OC、OD、线或线与逻辑

什么是开漏输出、推挽输出、开集输出、OC、OD、线或线与逻辑

开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。

TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。

它可以吸收很大的电流,但是不能向外输出电流。

所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。

OC门开漏输出和OD门开漏输出都是为了同一个目的,都是为了实现逻辑器件的线与逻辑,当然选用不同的外接电阻也可以实现外围驱动能力的增加。

当你应用此电路的时候,要注意应用时要加上拉电阻接电源,这样才能保证逻辑的正确,在电阻上要根据逻辑器件的扇入扇出系数来确定,但一般mos电路带载同样的mos电路能力比较强,所以电阻通常可以选择2.2k,4.9k这样一些常用的。

推挽输出与开漏输出的区别推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。

输出既可以向负载灌电流,也可以从负载抽取电流。

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

如图1所示:组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).上拉电阻:1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC(集电极开路)门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出之间的区别

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出之间的区别

推挽、开漏、强上拉、弱上拉、强下拉、弱下拉输出推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CO-MS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC(集电极开路)门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计时应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

开漏电路与推挽电路

开漏电路与推挽电路
18
四、推挽电路的介绍
互补推挽放大器
19
五、推挽优缺点
推挽电路适用于低电压大电流的场合,广泛应用于功放电路 和开关电源中。 它的优点是:结构简单,开关变压器磁芯利用率高,推挽电 路工作时,两只对称的功率开关管每次只有一个导通,所以 导通损耗小。
优于开漏
缺点是:开关变压器带有中心抽头,而且开关管的承受电压较 高;由于变压器原边漏感的存在,功率开关管关断的瞬间,漏 源极会产生较大的电压尖峰,另外输入电流的纹波较大,因而 输入滤波器的体积较大。
5
二、开漏电路的特点
2.可以将多个开漏输出的Pin,连接到一条在线。形成 “与 逻辑” 关系,也称作“线与功能”。 如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏 在线的逻辑就为0了。
6
二、开漏电路的特点
线与功能
PIN_OUT= PIN_A * PIN_B * PIN_C 只有当PIN_A、PIN_B、PIN_C都 为高电平时,PIN_OUT的逻辑才 会为高电平
25
Henry Xiang 2013/04/22
1
目录
Ⅰ、开漏电路(Open Drain) 一、开漏电路介绍 二、开漏电路的特点 三、开漏电路的不足
Ⅱ、推挽电路(Push Pull) 四、推挽电路的介绍 五、推挽优缺点
Ⅲ、实际应用与选择 六、推挽与开漏的选择
2
开漏电路(Open Drain)
3
一、开漏电路介绍
开漏电路就是指以MOSFET的漏极为输出的电路。 开漏电路概念中提到的“漏”就是指MOSFET的漏极。 一般的开漏电路是会在漏极外部的电路添加上拉电阻。完整 的开漏电路应该由开漏器件和开漏上拉电阻组成。如图所示
4

推挽开漏

推挽开漏

推挽开漏
推挽电路(互补型电路),用兩個參數相同的三極管或MOSFET,以推挽方式存在於電路中,各負責正負半周的波形放大任務。

功放的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。

对负载而言,好象是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。

适用于低电压大电流的场合,广泛应用于功放电路和开关电源中。

优点是:
结构简单,开关变压器磁芯利用率高,推挽电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小。

缺点是:变压器带有中心抽头,而且开关管的承受电压较高;由于变压器原边漏感的存在,功率开关管关断的瞬间,漏源极会产生较大的电压尖峰,另外输入电流的纹波较大,因而输入滤波器的体积较大。

开漏输出顾名思义为漏极开路,在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的0,而是约0。

而这个就是漏电流。

开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。

它可以吸收很大的电流,但是不能向外输出的电流。

所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。

OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。

传统8051单片机只有开漏输出。

MCU引脚输出模式中推挽输出与开漏输出电路原理区别

MCU引脚输出模式中推挽输出与开漏输出电路原理区别

MCU引脚输出模式中推挽输出与开漏输出电路原理区别
MCU 引脚输出模式中推挽输出与开漏输出电路原理
区别
开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma 以内).
推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.
我们先来说说集电极开路输出的结构。

集电极开路输出的结构如图1 所示,右边的那个三极管集电极什幺都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为0 时,输出也为0)。

对于图1,当左端的输入为0 时,前面的三极管截止(即集电极C 跟发射极E 之间相当于断开),所以5V 电源通过1K 电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为1 时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。

我们将图1 简化成图2 的样子。

图2 中的开关受软件控制,1 时断开,0 时闭合。

很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为
0。

而当开关断开时,则输出端悬空了,即高阻态。

这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那幺输出端的电平就被这个负载。

stm32的 开漏电路 与 推挽输出_zhuan_我的嵌入式(软硬件)学习之路_百度空间

stm32的 开漏电路 与 推挽输出_zhuan_我的嵌入式(软硬件)学习之路_百度空间

2010-01-28 17:55 stm32的开漏电路与推挽输出_zhuan我的嵌入式(软硬件)学习之路收集有技术含量的文章,留下以便查阅所谓开漏电路概念中提到的“漏”就是指MOS FET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOS FET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

如图1所示:图1组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。

IC内部仅需很下的栅极驱动电流。

如图1。

2. 可以将多个开漏输出的Pin,连接到一条线上。

形成“与逻辑”关系。

如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。

这也是I2C,SMBus等总线判断总线占用状态的原理。

3. 可以利用改变上拉电源的电压,改变传输电平。

如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。

这样我们就可以用低电平逻辑控制输出高电平逻辑了。

4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平。

5. 标准的开漏脚一般只有输出的能力。

添加其它的判断电路,才能具备双向输入、输出的能力。

图2应用中需注意:1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。

例如,某输入Pin要求由开漏电路驱动首页我的主页相册广场昵称搜索消息关注此空间。

则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。

如图3。

2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度。

阻值越大,速度越低功耗越小。

反之亦然。

图3=====================================================推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collecto r)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路推挽放大器 在功率放大器电路中大量采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。

推挽输出与开漏输出的区别

推挽输出与开漏输出的区别

推挽输出与开漏输出的区别推挽输出与开漏输出的区别推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现‘线与’需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。

输出既可以向负载灌电流,也可以从负载抽取电流。

/////////////////////////////////////////////////////////////////////开漏电路特点及应用在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。

IC内部仅需很下的栅极驱动电流。

2. 可以将多个开漏输出的Pin,连接到一条线上。

形成“与逻辑” 关系。

当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。

这也是I2C,SMBus等总线判断总线占用状态的原理。

3. 可以利用改变上拉电源的电压,改变传输电平。

IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。

推挽输出与开漏输出结构和原理详解

推挽输出与开漏输出结构和原理详解

推挽输出与开漏输出结构和原理详解推挽输出和开漏输出是指在数字电路中用于驱动外部负载的两种常用结构。

它们在控制信号的输出方式、应用领域和工作原理等方面有所不同。

下面将对推挽输出和开漏输出进行详解。

1.推挽输出结构及原理推挽输出结构是一种常用的数字电路输出结构,它由一个NPN型晶体管和一个PNP型晶体管组成,用于驱动负载。

推挽输出在广泛的应用领域中,如信号灯控制、音频放大器、电机驱动等。

推挽输出的结构示意图如下:```VccR1Input signal/,\NPN PNP Load_______```推挽输出的工作原理如下:(1) 当输入信号为低电平(0V)时,NPN晶体管截止,PNP晶体管饱和,输出接近Vcc电压,负载得到驱动。

(2) 当输入信号为高电平(Vcc)时,NPN晶体管饱和,PNP晶体管截止,输出接近0V,负载失去驱动。

推挽输出的特点:-输出电流能够提供相对较高的电流驱动能力;- 输出电压可以与Vcc相同,也可以与地(GND)相同;-推挽输出的集电极电阻很小,因此可以提供较低的输出电压误差;-适用于推挽驱动、电机驱动、音频放大器等需要提供大电流的应用场景。

2.开漏输出结构及原理开漏输出结构也是一种常用的数字电路输出结构,它通过NPN晶体管或MOSFET管驱动负载。

开漏输出结构广泛应用于数字IC、微控制器、I2C总线等。

开漏输出的结构示意图如下:```VccR1Input signal_____,______ LoadNPNN-MOS```开漏输出的工作原理如下:(1)当输入信号为低电平(0V)时,NPN晶体管截止或MOSFET导通,输出接近0V,负载得到驱动。

(2) 当输入信号为高电平(Vcc)时,NPN晶体管饱和或MOSFET截止,输出为高阻态(Open),负载失去驱动。

开漏输出的特点:-输出电流能够提供相对较高的电流驱动能力;-输出电压只能接近地(GND);-输出电压的高、低电平通过外部上拉电阻(R1)进行限制;-适用于非对称驱动、开关电源控制等需要较高的输出电流和开路状态的应用场景。

推挽、开漏、强上拉、弱上拉、强下拉、弱下

推挽、开漏、强上拉、弱上拉、强下拉、弱下

推挽输出:可以输出高‎,低电平,连接数字器‎件;推挽结构一‎般是指两个‎三极管分别‎受两互补信‎号的控制,总是在一个‎三极管导通‎的时候另一‎个截止开漏输出:输出端相当‎于三极管的‎集电极. 要得到高电‎平状态需要‎上拉电阻才‎行. 适合于做电‎流型的驱动‎,其吸收电流‎的能力相对‎强(一般20m‎a以内).上拉电阻:1、当TTL电‎路驱动CO‎M S电路时‎,如果TTL‎电路输出的‎高电平低于‎C O MS电‎路的最低高‎电平(一般为3.5V),这时就需要‎在TTL的‎输出端接上‎拉电阻,以提高输出‎高电平的值‎。

2、OC(集电极开路‎)门电路必须‎加上拉电阻‎,才能使用。

3、为加大输出‎引脚的驱动‎能力,有的单片机‎管脚上也常‎使用上拉电‎阻。

4、在COMS‎芯片上,为了防止静‎电造成损坏‎,不用的管脚‎不能悬空,一般接上拉‎电阻产生降‎低输入阻抗‎,提供泄荷通‎路。

5、芯片的管脚‎加上拉电阻‎来提高输出‎电平,从而提高芯‎片输入信号‎的噪声容限‎增强抗干扰‎能力。

6、提高总线的‎抗电磁干扰‎能力。

管脚悬空就‎比较容易接‎受外界的电‎磁干扰。

7、长线传输中‎电阻不匹配‎容易引起反‎射波干扰,加上下拉电‎阻是电阻匹‎配,有效的抑制‎反射波干扰‎。

上拉电阻阻‎值的选择原‎则包括:1、从节约功耗‎及芯片的灌‎电流能力考‎虑应当足够‎大;电阻大,电流小。

2、从确保足够‎的驱动电流‎考虑应当足‎够小;电阻小,电流大。

3、对于高速电‎路,过大的上拉‎电阻可能边‎沿变平缓。

综合考虑以上三点,通常在1k‎到10k之‎间选取。

对下拉电阻‎也有类似道‎理对上拉电阻‎和下拉电阻‎的选择应结‎合开关管特‎性和下级电‎路的输入特‎性进行设定‎,主要需要考‎虑以下几个‎因素:1. 驱动能力与‎功耗的平衡‎。

以上拉电阻‎为例,一般地说,上拉电阻越‎小,驱动能力越‎强,但功耗越大‎,设计是应注‎意两者之间‎的均衡。

2.下级电路的‎驱动需求。

推挽输出和开漏输出详解

推挽输出和开漏输出详解

open-drain与push-pull】GPIO的功能,简单说就是可以根据自己的需要去配置为输入或输出。

但是在配置GPIO管脚的时候,常会见到两种模式:开漏(open-drain,漏极开路)和推挽(push-pull)。

对此两种模式,有何区别和联系,下面整理了一些资料,来详细解释一下:图表?1 Push-Pull对比Open-Drain常见的GPIO的模式可以配置为open-drain或push-pull,具体实现上,常为通过配置对应的寄存器的某些位来配置为open-drain 或是push-pull。

当我们通过CPU去设置那些GPIO的配置寄存器的某位(bit)的时候,其GPIO硬件IC内部的实现是,会去打开或关闭对应的top transistor。

相应地,如果设置为了open-d模式的话,是需要上拉电阻才能实现,也能够输出高电平的。

因此,如果硬件内部(internal)本身包含了对应的上拉电阻的话,此时会去关闭或打开对应的上拉电阻。

如果GPIO硬件IC内部没有对应的上拉电阻的话,那么你的硬件电路中,必须自己提供对应的外部(external)的上拉电阻。

而push-pull输出的优势是速度快,因为线路(line)是以两种方式驱动的。

而带了上拉电阻的线路,即使以最快的速度去提升电压,最快也要一个常量的R×C的时间。

其中R是电阻,C是寄生电容(parasitic capacitance),包括了pin脚的电容和板子的电容。

但是,push-pull相对的缺点是往往需要消耗更多的电流,即功耗相对大。

而open-drain所消耗的电流相对较小,由电阻R所限制,而R不能太小,因为当输出为低电平的时候,需要sink更低的transistor,这意味着更高的功耗。

(此段原文:because the lower transistor has to sink that current when the output is low; that means higher power consumption.)而open-drain的好处之一是,允许你cshort()多个open-drain的电路,公用一个上拉电阻,此种做法称为wired-OR连接,此时可以通过拉低任何一个IO的pin脚使得输出为低电平。

单片机开漏电路和推挽电路

单片机开漏电路和推挽电路

单片机开漏电路和推挽电路
单片机开漏电路和推挽电路是两种常用的数字电路电路,它们在单片机应用中有重要的作用。

1. 开漏电路
开漏电路是一种在数字逻辑电路中使用的电路,它的特点是输出端口没有上拉或下拉电阻,只有一个晶体管作为开关控制。

在开漏电路中,只有当输出端口上的晶体管导通时,输出端口才能输出信号。

当晶体管截止时,输出端口处于开路状态,即没有输出信号。

开漏电路常用于驱动大负载、实现高电平输出等场合,例如驱动LED 灯、驱动电机等。

在单片机应用中,开漏电路常用于实现外部设备的开关控制,例如LED灯控制、电机控制等。

2. 推挽电路
推挽电路是一种在数字逻辑电路中使用的电路,它的特点是输出端口可以输出高电平或低电平信号,输出端口的状态由两个晶体管的状态决定。

当晶体管A导通时,晶体管B截止,输出端口为低电平;当晶体管B导通时,晶体管A截止,输出端口为高电平。

推挽电路常用于实现外部设备的开关控制,例如驱动LED灯、驱动电机等。

在单片机应用中,推挽电路常用于实现外部设备的开关控制,例如LED灯控制、电机控制等。

总之,开漏电路和推挽电路是两种常用的数字电路电路,它们在单片机应用中有重要的作用,需要根据具体的应用场景选择合适的电路。

推挽、开漏、强上拉、弱上拉、强下拉、弱下

推挽、开漏、强上拉、弱上拉、强下拉、弱下

推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC(集电极开路)门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

开漏输出与推挽输出

开漏输出与推挽输出

开漏输出和推挽输出推挽输出:可以输出高,低电平,连接数字器件。

输出0 时,N-MOS 导通,P-MOS 高阻,输出0。

输出1 时,N-MOS 高阻,P-MOS 导通,输出1(不需要外部上拉电路)。

开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).输出0 时,N-MOS 导通,P-MOS 不被激活,输出0。

输出1 时,N-MOS 高阻,P-MOS 不被激活,输出1(需要外部上拉电路);可以读IO输入电平变化,此模式可以把端口作为双向IO使用。

推挽输出电路如下:上面的三极管是N型三极管,下面的三极管是P型三极管,请留意控制端、输入端和输出端。

当Vin电压为V+时,上面的N型三极管控制端有电流输入,Q3导通,于是电流从上往下通过,提供电流给负载。

经过上面的N型三极管提供电流给负载(Rload),这就叫「推」。

当Vin电压为V-时,下面的三极管有电流流出,Q4导通,有电流从上往下流过。

经过下面的P型三极管提供电流给负载(Rload),这就叫「挽」。

以上,这就是推挽(push-pull)电路。

那么什么是开漏呢?要理解开漏,可以先理解开集。

如图,开集的意思,就是集电极C一端什么都不接,直接作为输出端口。

如果要用这种电路带一个负载,比如一个LED,必须接一个上拉电阻,就像这样。

当Vin没有电流,Q5断开时,LED亮。

当Vin流入电流,Q5导通时,LED灭。

开漏电路,就是把上图中的三极管换成场效应管(MOSFET)。

N型场效应管各个端口的名称:场效应管是电压控制型元器件,只要对栅极施加电压,DS就会导通。

结型场效应管有一个特性就是它的输入阻抗非常大,这意味着:没有电流从控制电路流出,也没有电流进入控制电路。

没有电流流入或流出,就不会烧坏控制电路。

而双极型晶体管不同,是电流控制性元器件,如果使用开集电路,可能会烧坏控制电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Open drain & push pull,IO口驱动,集电极开路Open drain & push pull最近在写GPIO的driver, 在配置GPIO管脚时,看见了感觉熟悉的两个名词:Open Drain and Push Pull。

可是一时对它们的原理及区别有感觉很模糊,故上网收集了一些资料复习一下。

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

如图1所示:图 1组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。

IC内部仅需很下的栅极驱动电流。

如图1。

2. 可以将多个开漏输出的Pin,连接到一条线上。

形成“与逻辑” 关系。

如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。

这也是I2C,SMBus等总线判断总线占用状态的原理。

3. 可以利用改变上拉电源的电压,改变传输电平。

如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。

这样我们就可以用低电平逻辑控制输出高电平逻辑了。

4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。

5. 标准的开漏脚一般只有输出的能力。

添加其它的判断电路,才能具备双向输入、输出的能力。

图 2应用中需注意:1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。

例如,某输入Pin要求由开漏电路驱动。

则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。

如图3。

2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度。

阻值越大,速度越低功耗越小。

反之亦然。

图 3Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。

输出能力看IC内部输出极N管P管的面积。

和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。

push-pull是现在CMOS电路里面用得最多的输出级设计方式。

实际电路板运用中,此类电路非常广泛,以主板为例,南北桥芯片内部多采用open drain线路(这个纯属猜测,南北桥所用电压多为1.1v/1.2v),主要原因是:电平低,所需电流小,相应的芯片的功耗比较小,发热量小,可以更好的解决笔记本或者台式机的散热问题,能在同样的外部硬件条件下达到更高的工作频率。

这个在实际的系统设计中相当重要,如今的笔记本性价比逐渐赶上台式机,散热逐渐不再成为瓶颈,芯片多采用此类电路功不可没。

个人设计电路过程中,要提高输出功率,第一,芯片是否支持是关键,如果不支持所需功率,那么第二,我们可以采用比较放大器(这个在数字时钟信号或者其他数字电平中可以大规模运用),第三,可以采用上面这种电路方式,不过这种技术多用在芯片内部,实际电路设计中基本见不到这种设计。

推挽输出与开漏输出的区别(转载自百度Hi periwyr)2009-03-19 18:03推挽输出:可以输出高,低电平,连接数字器件;开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路.是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小,效率高。

输出既可以向负载灌电流,也可以从负载抽取电流。

//////////////////////////////////////////////////////////////////// /开漏电路特点及应用在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。

本人虽然在念书时就知道其基本的用法,而且在设计中并未遇的过问题。

但是前两天有位同事向我问起了这个概念。

我忽然觉得自己对其概念了解的并不系统。

近日,忙里偷闲对其进行了下总结。

所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。

同理,开集电路中的“集”就是指三极管的集电极。

开漏电路就是指以MOSFET的漏极为输出的电路。

一般的用法是会在漏极外部的电路添加上拉电阻。

完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

如图1所示:组成开漏形式的电路有以下几个特点:1. 利用外部电路的驱动能力,减少IC内部的驱动。

当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。

IC内部仅需很下的栅极驱动电流。

如图1。

2. 可以将多个开漏输出的Pin,连接到一条线上。

形成“与逻辑” 关系。

如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。

这也是I2C,SMBus等总线判断总线占用状态的原理。

3. 可以利用改变上拉电源的电压,改变传输电平。

如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。

这样我们就可以用低电平逻辑控制输出高电平逻辑了。

4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。

5. 标准的开漏脚一般只有输出的能力。

添加其它的判断电路,才能具备双向输入、输出的能力。

应用中需注意:1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。

例如,某输入Pin要求由开漏电路驱动。

则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。

如图3。

2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度。

阻值越大,速度越低功耗越小。

反之亦然。

Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。

输出能力看IC内部输出极N管P管的面积。

和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。

push-pull是现在CMOS 电路里面用得最多的输出级设计方式。

at91rm9200 GPIO 模拟I2C接口时注意!!一.什么是OC、OD集电极开路门(集电极开路 OC 或源极开路OD)open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。

一般用于线或、线与,也有的用于电流驱动。

open-drain是对mos管而言,open-collector是对双极型管而言,在用法上没啥区别。

开漏形式的电路有以下几个特点:1.利用外部电路的驱动能力,减少IC内部的驱动。

或驱动比芯片电源电压高的负载.2.可以将多个开漏输出的Pin,连接到一条线上。

通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。

这也是I2C,SMBus等总线判断总线占用状态的原理。

如果作为图腾输出必须接上拉电阻。

接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。

如果要求速度高电阻选择要小,功耗会大。

所以负载电阻的选择要兼顾功耗和速度。

3.可以利用改变上拉电源的电压,改变传输电平。

例如加上上拉电阻就可以提供TTL/CMOS电平输出等。

4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。

一般来说,开漏是用来连接不同电平的器件,匹配电平用的。

5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DR AIN了。

这种输出的主要目的有两个:电平转换和线与。

6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。

这样你就可以进行任意电平的转换了。

7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。

(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。

)8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。

因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。

所以如果对延时有要求,则建议用下降沿输出。

二.什么是线或逻辑与线与逻辑?在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 N MOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上.因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.注:个人理解:线与,接上拉电阻至电源。

(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来;如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑.注:线或,接下拉电阻至地。

(~A)+(~B)=~(AB);这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时, 这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内.顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入.三.什么是推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路(可惜,图无法贴上)。

相关文档
最新文档