坐标正算反算公式讲解

合集下载

坐标正反算计算公式

坐标正反算计算公式

坐标正反算计算公式坐标的正反算是指根据点的经纬度坐标计算出该点所对应的位置,或者根据位置信息计算出该位置的经纬度坐标。

在地理信息系统中,正反算是非常重要的基本操作。

下面将分别介绍坐标的正算和反算的计算公式。

坐标正算即通过经纬度坐标计算出该点所对应的位置。

设经度为L,纬度为B,L0为中央经度(通常取地理区域中心点的经度),E为横轴坐标,N为纵轴坐标,M0为中央经线的投影,f为椭球扁率。

(1)将地球视为一个椭球体,对于小范围的区域,可以采用球面近似。

此时可以使用平面直角坐标系进行计算,并忽略地球的扁率和曲率。

具体计算公式如下:E=L-L0N=B-B0其中,B0为中央纬度。

(2)在地表为曲面的情况下,需要考虑地球的扁率和曲率。

此时可以使用高斯平面直角坐标系进行计算,公式如下:K = (a / √(1 - e^2 * sin^2B)) * √(1 + t^2)L = (L - L0) * cosBX=K*[L+(1-t^2+q^2)*L^3/6+(5-18*t^2+t^4+14*q^2-58*t^2*q^2)*L^5/120]Y=K*(M-M0+(1-t^2+q^2)*L^2/2+(5-14*t^2+3*t^4+14*q^2-28*t^2*q^2)*L^4/24)其中,a为椭球长半轴,e为椭球第一偏心率,M为曲面子午线弧长,t = tanB,q = (ωL)^2 * cosB,ω为地球自转角速度。

坐标反算即通过位置信息计算出该位置的经纬度坐标。

(1)对于小范围的区域,可以近似为平面直角坐标系,使用直角坐标系的计算公式即可反算出经纬度坐标。

具体计算公式如下:L=L0+EB=B0+N(2)对于地球曲面的情况,使用高斯平面直角坐标系进行反算时,可以采用交迭算法(迭代计算)。

迭代计算公式如下:L1 = [(X / K) - (1 - t^2 + q^2)(L1^3) / 6 - (5 - 18 * t^2 +t^4 + 14 * q^2 - 58 * t^2 * q^2)(L1^5) / 120] / cosBB1 = [(Y / K) - M - (1 - t^2 + q^2)(L1^2) / 2 - (5 - 14 *t^2 + 3 * t^4 + 14 * q^2 - 28 * t^2 * q^2)(L1^4) / 24] / (a /√(1 - e^2 * sin^2B))其中,L1、B1为迭代计算的经纬度坐标,X、Y为已知的平面坐标,K为局部坐标系绘图比例尺系数,t、q的计算和上述正算公式相同。

坐标正反算定义及公式

坐标正反算定义及公式

坐标正反算定义及公式一、坐标正算(地理坐标转平面坐标)坐标正算是将地球上的地理坐标(经纬度)转换为平面坐标(笛卡尔坐标或者极坐标)。

坐标正算是地图制图的一项基本工作。

1.大地参考椭球体模型在进行坐标正算之前,需要先定义一个大地参考椭球体模型,用于近似地球的形状。

常用的大地参考椭球体模型有WGS84、北京54等。

这些模型定义了地球的椭球体参数,如长半轴、扁率等。

2.经度、纬度的度分秒表示法地理坐标通常使用度分秒表示法来表示经度和纬度。

经度是以东西方向为正负,以本初子午线(通常是格林威治子午线)为基准;纬度是以南北方向为正负,以赤道为基准。

3.大地坐标系和平面坐标系大地坐标系是地球表面的经纬度坐标系,平面坐标系是一个笛卡尔坐标系或者极坐标系,用于表示地球表面的平面位置。

4.坐标正算公式坐标正算的公式根据大地参考椭球体模型的不同而有所不同,这里以WGS84椭球体模型为例。

假设待转换的地理坐标是经度λ、纬度φ,转换后的平面坐标是X、Y。

首先,计算出椭球体的参数e:e=√(a^2-b^2)/a其中,a是椭球体的长半轴,b是椭球体的短半轴。

然后,计算出曲率半径N:N = a / √(1 - e^2 * sin^2(φ))接着,计算出当前点的平面坐标:X = (N + h) * cos(φ) * cos(λ)Y = (N + h) * cos(φ) * sin(λ)其中,h是当前点的海拔高度。

以上就是坐标正算的基本公式,可以将地理坐标转换为平面坐标。

二、坐标反算(平面坐标转地理坐标)坐标反算是将平面坐标(笛卡尔坐标或者极坐标)转换为地理坐标(经纬度)。

坐标反算是地图制图或者位置定位的一项重要工作。

1.平面坐标的原点和单位平面坐标通常以其中一点为原点,单位长度为米或者其他距离单位。

原点可以在任意位置,但是通常选择区域的中心或者其中一突出地物为原点。

2.坐标反算的过程坐标反算的过程是根据平面坐标和大地参考椭球体模型,计算出对应的地理坐标。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B = X A + AX ABY B = X A + AY AB(1-18 )二式中,AX AB与AY AB分别称为A〜B的纵、横坐标增量,其计算公式为:AXAB = X B—X A = D AB COS O ABAYAB = Y B—Y A = D AB sin O AB(1-19)注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角OCAB ,为坐标反算。

其计算公式为:(1-20 )注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导si n( A+B) = si nAcosB+cosAs inB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为a,BOD为B,旋转AOB使0B与0D重合,形成新A'OD。

A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin3 )A2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 )[1](1-21 )两角和公式sin( A+B) = sin AcosB+cosAs inB sin (A-B) = sin AcosB- COSAsinB cos(A+B) = cosAcosB-s inAsinB cos(A-B) = cosAcosB+si nAsi nB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB)ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB)cot(A+B) = (cotAcotB- 1 )/(COtB + COtA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Si n2A=2Si nA?CosACos2A=CosA A2-Si nA^2=1-2Si nAA2=2CosAA2-1tan 2A=2ta nA/ (1-tanAA2 )是sinA的平方sin2 (A))(注:Si nAA2[]三倍角公式sin3 a =4sin a-sin( n /3+ a )sin( n/)cos3 a =4cos a-cos( n /3+ a )cos( n /3a )tan3a = tan a • tan( n /3+a) • tan( n /3-a)[]三倍角公式推导sin 3a=sin( 2a+a)=sin 2acosa+cos2as ina=2s in a(1-s in& sup2;a)+(1-2s in& sup2;a)s ina=3s in a-4s in³acos3a=cos(2a+a)=cos2acosa-s in 2as ina=(2cos²a-1)cosa-2(1-s in& sup2;a)cosa=4cos³a-3cosasin 3a=3s in a-4s in& sup3;a=4si na(3/4-si n& sup2;a)=4sina[( V3/2)² -sin²a]=4sina(sin²60 °-sin²a)=4sina(sin60 °+sina)(sin60 °-sina)°)/2]}=4sina*2sin[(60+a)/2]cos[(60 °-a)/2]*2sin[(60 °-a)/2]cos[(60 °-a)/2]=4sinasin(60 °+a)sin(60 °-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(V 3/2) ²]=4cosa(cos²a-cos²30 °)=4cosa(cosa+cos30° )(cosa-cos30 °) =4cosa*2cos[(a+30 ° )/2]cos[(a-30 °)/2]*{-2sin[(a+30°)/2]sin[(a-30=-4cosasin(a+30 ° )sin(a-30 °) =-4cosasin[90 °-(60 °-a)]sin[-90 °+(60°+a)]=-4cosacos(60 ° -a)[-cos(60 °+a)] =4cosacos(60° -a)cos(60 °+a) 上述两式相比可得tan3a=tanatan(60 ° -a)tan(60 °+a) []半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. []和差化积sin 0 +sin $ = 2sin[( 0 + )/2]cos[( - © )/2]sin 0-sin © = 2cos[( 0 + © )/2]sin[( - © )/2] cos 0+cos © = 2cos[( 0+©)/2]cos[( -0©)/2] cos 0-cos © = -2sin[( 0+©)/2]sin[( -©0)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) []积化和差sin a sin 3 = -1/2*[cos( a + 3-)cos( a - 3 )] cos a cos 3 = 1/2*[cos( a +3)+cos( a -3)] sin a cos 3 = 1/2*[sin( a +3)+sin( -a3)] cos a sin 3 = 1/2*[sin(a +3-s )in( a -3)][]诱导公式sin(- a ) = -sin acos(- a ) =cos aSin( n /2- a ) = -COS a cos( n /2 - a ) = sin a Sin( n /2+ a )= COS a cos( n /2+ a ) = -sin asin( n- a ) = sin a COs( n - a ) = -COs a sin( n + a ) = -sin a cos( n + a ) = -cos a tanA=sinA/COsA tan ( n /2 + a) =—cot a tan ( n /2 — a) = cot a tan ( n — a) =—tan a tan ( n+ a) = tan a[][](sin a )A2+(cos a )A2=11+(tan a )A2=(sec a )人21+(cot a)A2=(csc a)A2证明下面两式,只需将一式,左右同除(sin a )A2第二个除(COS a )A2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=^ -Ctan(A+B)=tan( n -C)(tanA+tanB)/(1- tanAtanB)=(tan n -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n n (n € Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) []双曲函数sin h(a) = [e A a-e A(-a)]/2COSh(a) = [eAa+eA(-a)]/2tg h(a) = Sin h(a)/COS h(a)公式一:设a为任意角,终边相同的角的同一二角函数的值相等:sin ( 2k n + a)=sin aCOS ( 2k n+ a) = COS atan ( k n + a)=tan acot ( k n+ a)=COt a公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin ( n+ a)= :-sin aCOS ( n+ a):=-COS atan ( n+ a)= tan aCOt ( n+ a)= COt a公式二:任意角a与- a的三角函数值之间的关系:sin (- a) = -sin aCOS ( -a) = COS atan (- a) = -tan aCOt (-a)= -COt a公式四:利用公式—和公式二可以得到n- a与a的三角函数值之间的关系sin ( n- a)= Sin aCOS ( n- a)= -COS atan ( n- a)= -tan aCOt ( n- a)= -COt a公式五:利用公式-和公式二可以得到 2 n - a与a的三角函数值之间的关系:Sin ( 2 n- a)= -Sin aCOS ( 2 n- a)= COS atan ( 2 n- a)= -tan aCOt ( 2 n- a)= -COt a公式六:n /2 土及3 n /2 ±a与a的二角函数值之间的关系:Sin ( n /2+ a) = COS aCOS ( n /2+ a) = -sin atan (n /2+ a = -COt a cot (n /2+ a = -ta n a sin((n /2- a)= COs a cos (n /2- a)= sin a tan (n /2- a)= COt a cot (n /2- a)= tan a sin((3 n /2+ a )=-COs a cos (3 n /2+ a)=sin a tan (3 n /2+ a )=-COt a cot (3 n /2+ a )=-tan a sin((3 n /2- a):=-COS a cos (3n /2- a)= -sin a tan (3n /2- a)= COt a cot (3n /2- a):= tan a (以上k € Z)这个物理常用公式我费了半天的劲才输进来A • sin( 31+ 0 )+B - sin( w t+ $ = v{(A A2+B A2 +2ABc os( 0- $ )} ? sin { +B A2; +2ABcos( 0 - $ )} }~表示根号,包括{ .... }中的内容,希望对大家有用w t + arcsin[ (A?sin 0 +B?sin $ ) / V{人人2。

坐标正算反算公式讲解

坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。

13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L6R L 3sL 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

坐标正反算定义及公式

坐标正反算定义及公式

坐标正反算定义及公式1.坐标正算:坐标正算是指根据给定的地球坐标系的椭球体参数、基准椭球体参数和初始二维坐标,通过一系列计算,求解出地球上对应的三维坐标。

这是将地图中的二维信息转换为地球上的三维信息的过程。

坐标正算的公式如下:X=cosB*cosL*HY=cosB*sinL*HZ=sinB*H其中,X、Y、Z分别表示地球上的三维坐标,B表示纬度,L表示经度,H表示高程。

2.坐标反算:坐标反算是指根据给定的地球坐标系的椭球体参数、基准椭球体参数和地球上的三维坐标,通过一系列计算,求解出地图上对应的二维坐标。

这是将地球上的三维信息转换为地图中的二维信息的过程。

坐标反算的公式如下:L=atan(Y/X)B=atan(Z/sqrt(X^2+Y^2))H=sqrt(X^2+Y^2+Z^2)其中,L表示经度,B表示纬度,H表示高程,X、Y、Z表示地球上的三维坐标。

在坐标正反算中,还需要考虑一些特殊情况,如椭球体的椭率偏差、大地基准面的形状等。

根据这些特殊情况,需要进行一些修正和适用于不同地区的公式。

此外,还有其他一些常见的坐标系统,如平面坐标系统、高斯投影坐标等,它们都有相应的坐标正反算公式。

值得注意的是,坐标正反算在实际应用中非常广泛,例如地图的绘制、GPS定位、导航系统等都需要通过坐标正反算来实现。

因此,熟练掌握坐标正反算的原理和公式对于地理信息专业人员至关重要。

总之,坐标正反算是将地图上的二维坐标与地球上的三维坐标相互转换的过程。

通过实际坐标的正算,可以确定地球上的位置,而通过坐标的反算,可以确定地图上的位置。

坐标正反算是地理信息系统中的一项重要技术,对于许多实际应用具有重要意义。

坐标反算正算计算公式

坐标反算正算计算公式

坐标反算正算计算公式坐标反算和正算是地理测量学中常见的问题,用于计算地球表面上两点之间的距离、方位角和坐标。

坐标反算是根据已知的两个地点的经纬度和距离,来计算出另一个点的经纬度坐标。

坐标正算则是根据已知的一个地点的经纬度和另一个地点的方位角和距离,来计算出第二个地点的经纬度坐标。

下面简单介绍一下坐标反算和正算的计算公式。

坐标反算坐标反算通常用于计算两点间的距离和方位角。

1.距离计算两点间的距离可以通过公式:D = 2 * R * asin(sqrt(sin((lat2-lat1)/2)^2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)^2))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度,R为地球平均半径。

2.方位角计算两点间的方位角可以通过公式:brng = atan2(sin(lon2-lon1) * cos(lat2), cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) *cos(lon2-lon1))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度。

坐标正算坐标正算通常用于根据已知一个点的经纬度和另一个点的方位角和距离,计算出第二个点的经纬度。

1.纬度计算第二个点的纬度可以通过公式:lat2 = asin(sin(lat1) * cos(d/R) + cos(lat1) * sin(d/R) * cos(brng))其中,lat1为第一个点的纬度,d为距离,R为地球平均半径,brng 为方位角。

2.经度计算第二个点的经度可以通过公式:lon2 = lon1 + atan2(sin(brng) * sin(d/R) * cos(lat1), cos(d/R) - sin(lat1) * sin(lat2))其中,lon1为第一个点的经度,d为距离,R为地球平均半径,brng 为方位角。

坐标正算与反算

坐标正算与反算

一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B=X A + ΔX ABY B=X A+ ΔY AB(1-18)二式中,ΔX AB与ΔY AB分别称为A~B的纵、横坐标增量,其计算公式为:ΔX AB=X B-X A=D AB · cosαABΔY AB=Y B-Y A=D AB · sinαAB(1-19)注意,ΔX AB和ΔY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。

二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。

其计算公式为:(1-20)(1-21)注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔX AB、ΔY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。

三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。

深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。

角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。

A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))OA'=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)[1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)[编辑本段]倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))[编辑本段]三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)[编辑本段]三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)[编辑本段]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.[编辑本段]和差化积sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)[编辑本段]积化和差sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] [编辑本段]诱导公式sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = -cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα[编辑本段]万能公式[编辑本段]其它公式(sinα)^2+(cosα)^2=11+(tanα)^2=(secα)^21+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立[编辑本段]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαcot(kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容。

简述坐标正算和坐标反算的原理

简述坐标正算和坐标反算的原理

坐标正算和坐标反算的原理及应用一、坐标正算坐标正算是指根据给定的点坐标和直线之间的水平距离 DAB 与坐标方位角 AB,推算出另一条直线的坐标方位角 AB 和水平距离DAB 的方法。

坐标正算的计算公式为:XB = XA + DAB·cos(AB)YB = YA + DAB·sin(AB)其中,XB 和 YB 分别称为 A~B 的纵、横坐标增量,XA、YA 分别是直线 AB 的起点和终点的坐标,DAB 是直线 AB 的水平距离。

需要注意,XB 和 YB 均有正、负号,其符号取决于直线 AB 的坐标方位角所在的象限。

二、坐标反算坐标反算是指根据给定的两个点坐标和直线之间的水平距离DAB,推算出直线 AB 的坐标方位角 AB 和水平距离 DAB 的方法。

坐标反算的计算公式为:AB = (YB - YA) / (XB - XA) - 90°其中,AB 是直线 AB 的坐标方位角,XB、YA 分别是直线 AB 的起点和终点的坐标,YB 和 XA 分别是 A~B 和 B~A 的横纵坐标增量。

需要注意,坐标反算得到的方位角是一个锐角,必须先根据 YB-YA 与 XB-XA 的正负号,确定直线 AB 所在的象限,再将象限角换算为坐标方位角。

三、坐标正算和坐标反算的应用坐标正算和坐标反算在实际应用中有着广泛的应用,下面列举几个典型的应用:1. 航空航天领域:在航空航天领域中,坐标正算和坐标反算被用来确定飞行器的位置和方向,从而确保飞行器的安全和准确性。

2. 机械设计领域:在机械设计中,坐标正算和坐标反算被用来计算机械零部件的位置和方向,从而确保机械设计的精确性和合理性。

3. 地理信息系统:在地理信息系统中,坐标正算和坐标反算被用来确定地图中各个点的位置和方向,从而支持地图数据的采集、管理和分析。

4. 机器人领域:在机器人领域中,坐标正算和坐标反算被用来确定机器人的位置和方向,从而确保机器人的准确移动和作业。

坐标反算名词解释

坐标反算名词解释

坐标反算名词解释“坐标反算”是指根据直线的起点和终点的坐标,计算直线的水平距离和坐标方位角的过程。

拓展资料:“坐标正算”是指根据直线的起点坐标、直线的水平距离以及坐标方位角来计算终点的坐标的过程叫坐标正算。

计算原理:如图中所示,已知一条直线的起点和终点坐标分别为A点坐标(XA, YA),B点坐标(XB, YB),A点到B点距离L,A点到B点方位角aAB,通过坐标反算来计算直线AB的水平距离S ab和坐标方位角αab。

坐标正算公式:XB=XA+LcosaABYB=YA+LsinaAB坐标反算公式:L^2= (XB-XA)^2+(YB-YA)^2由于反三角函式计算的结果有多值性所以在计算坐标方位角αab之前,要先计算象限角R ab。

计算步骤①tan R ab=|△y ab|╱|△x ab|=|y b-y a|╱|x b-x a|;②R ab=arctan|y b-y a|╱|x b-x a|;③L=|△y ab|╱sinαab=|△x ab|╱cosαab。

Sab=△y ab。

L是A、B两点间距离,Sab是水平距离。

④根据“②”中所求的R ab,求坐标方位角αab,⑴若坐标方位角为第一象限角,则:R ab=αab;⑵若坐标方位角为第二象限角,则:αab=180°-R ab;⑶若坐标方位角为第三象限角,则:αab=180°+R ab;⑷若坐标方位角为第四象限角,则:αab=360°-R ab。

附注坐标方位角:直线的方向是用方位角来表示的,其中以坐标北方向为基準方向,顺时针旋转到直线的水平角度,称为该直线的坐标方位角。

象限角划分:第一象限角:0°~90°第二象限角:90°~180°第三象限角:180°~270°第四象限角:270°~360°另注意:此象限角的划分与数学中的象限角不同,应注意!现场确定坐标系如果找到两个基准点A(N3000,E4500,Z100), B(N2900,E5500,Z120),则可以根据基準点坐标值反推坐标系,找到N,E方向。

坐标正算反算公式讲解

坐标正算反算公式讲解

一 方位角:在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角YX第一象限第二象限第三象限第四象限oAa图12、第二象限的方位角Y X第一象限第二象限第三象限第四象限oAa图23、第三象限的方位角YX第一象限第二象限第三象限第四象限o Aa图34、第四象限的方位角YX第一象限第二象限第三象限第四象限oAa图4方位角计算公式:x=a -1tanA Y O Y -AX OX-方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算或:注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α45、α51。

13图5解: α23= α12-β2+180°=30°-130°+180°=80°α34= α23-β3+180°=80°-65°+180°=195°α45=α34-β4+180°=195°-128°+180°=247°α51=α45-β5+180°=247°-122°+180°=305°α12=α51-β1+180°=305°-95°+180°=30°(检查)三坐标正算一、直线段的坐标计算oB DACEaap图6设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标1、设直线段OA长度为L,则A点坐标为X A=X O+L×Cos(F op)Y A=Y O+L×Sin(F op)2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为X B=X O+L OB×Cos(F op)Y B=Y O+L OB×Sin(F op)直线BC的方位角F BC=F op+aIF F B C>360°:Then F BC-360°→F BC:IfEndX C=X B+L BC×Cos(F BC)Y C=Y B+L BC×Sin(F BC)3、设直线段OD长度为L,直线段DE长度为L DE,则E点坐标为ODX D=X O+L OD×Cos(F op)Y D=Y O+L OD×Sin(F op)直线DE的方位角F DE=F op-aIF F DE<0°:Then F DE+360°→F DE:IfEndX E=X D+L DE×Cos(F DE)Y E=Y D+L DE×Sin(F DE)二、缓和曲线段的坐标计算x Y 00=L- +=L 40R L 52s 2L3456R L 94s 4L 6R L 3s L 336R L 7s 33-90 L πRL sO2切线角=设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一点的曲线长度为L,当线路右转时直线CP 的方位角Fcp=F+90°IF F cp >360°:Then F cp-360°→F cp :IfEnd当线路左转时直线CP 的方位角Fcp=F-90°IF F cp<0°:Then F cp+360°→F cp:IfEndX P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)三、圆曲线段的坐标计算圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

坐标正算反算公式讲解

坐标正算反算公式讲解

坐标正算反算公式讲解坐标正算和反算是地理信息系统(GIS)中两个常用的操作,用于将地理坐标转换为平面坐标(正算)或将平面坐标转换为地理坐标(反算)。

这两个操作在测量、绘图、导航、定位等领域都有广泛的应用。

下面是对坐标正算和反算公式的详细讲解。

一、坐标正算公式坐标正算是将地理坐标(经纬度)转换为平面坐标(XY坐标)。

在坐标正算中,我们需要用到投影坐标系和大地坐标系之间的转换公式。

1.地理坐标系地理坐标系使用经度和纬度来表示地球上的点。

经度是指从地球圆心到其中一点的经线弧度长度与赤道弧度长度的比值,范围为-180到180度;纬度是指从地球赤道到其中一点的纬线弧度长度与半径的比值,范围为-90到90度。

2.投影坐标系投影坐标系是将地理坐标投影到平面坐标系上的一种方法。

根据需要,可以选择不同的投影方式,例如等角、等面积、等距、等分四类等。

每个投影方式都有其特点,选用不同的投影方式可以满足不同的需求。

3.原理坐标正算的原理是根据地理坐标系中点的经纬度和投影坐标系中原点的经纬度之间的差异,通过一定的计算公式将地理坐标系中的点坐标转换为投影坐标系中的点坐标。

4.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。

(2)计算地理坐标系中点的经纬度与原点经纬度的差值。

(3)利用投影坐标系的转换公式,将差值转换为平面坐标。

5.常用坐标正算公式常用的坐标正算公式包括高程改正公式、大地坐标系转换公式、高斯投影正算公式等。

二、坐标反算公式坐标反算是将平面坐标(XY坐标)转换为地理坐标(经纬度)。

在坐标反算中,我们需要用到投影坐标系和大地坐标系之间的反转换公式。

1.原理坐标反算的原理是根据投影坐标系中点的坐标和大地坐标系中原点的经纬度之间的差异,通过一定的计算公式将平面坐标系中的点坐标转换为地理坐标系中的点坐标。

2.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。

(2)计算平面坐标系中点的坐标与原点坐标的差值。

(3)利用投影坐标系的反转换公式,将差值转换为地理坐标。

最新坐标正反算定义及公式

最新坐标正反算定义及公式

坐标正反算定义及公式第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6 可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

坐标正反算定义及公式

坐标正反算定义及公式

第六章T第二节T导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6所示,点的坐标可由下式计算:巾=M +仏心式中:上、上山为两导线点坐标之差,称为坐标增量,即:为如=y 厂V A = 盘血【例题6-1】已知点A 坐标,I =1000、」\ =1000;!、方位角:上=35° 17/ 36.5", 两点水平距离 f =200.416 ,计算 点的坐标?\- […二* IIH+ : II - / 350177 36.5"=1163.580n:二匚I 2'jj.L j :,:35o17z 36.5"=1115.7932、坐标反算已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角% = J 山此(6-3)(6-4)式中反正切函数的值域是-90°〜+90°,而坐标方位角为 0°〜360°,因此坐标方位角的值,可根据、 的正负号所在象限,将反 正切角值换算为坐标方位角。

【例题 6-2 】 =3712232.528、 =523620.436 、 =3712227.860、应=523611.598 ,计算坐标方位角计算坐标方位角 二工、水平距离% - J 竝 + 今:=27.8150 - 32.528)2 + f 611.598 - 620.436 )2= 799.900468 =9.995^=arclan 今塑y.-y.611.598 - 620.436 - 8.838a Jfl arctan —_—= arctan ------------- > arclan ----亦-心27,860 - 32.528 - 4.668=62° 09/ 29.4"+180 ° =242° 09/29.4"注意:一直线有两个方向,存在两个方位角,式中:二】」、的计算是过A点坐标纵轴至直线」的坐标方位角,若所求坐标方位角为,二,则应是A点坐标减点坐标。

坐标正反算定义及公式

坐标正反算定义及公式

第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。

首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。

一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。

如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。

如图6-6可知,由下式计算水平距离与坐标方位角。

(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。

【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。

=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。

【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 方位角:
在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a 表示。

1、第一象限的方位角
Y
X
第一象限第二象限
第三象限
第四象限
o
A
a
图1
2、第二象限的方位角
Y X
第一象限
第二象限第三象限
第四象限
o
A
a
图2
3、第三象限的方位角
Y
X
第一象限
第二象限
第三象限
第四象限
o A
a
图3
4、第四象限的方位角
Y
X
第一象限
第二象限
第三象限
第四象限
o
A
a
图4
方位角计算公式:
x
=a -1
tan
A Y O Y -A
X O
X
-
方位角的计算器计算程序:Pol(X A -X O ,Y A -Y O )
直线OA 方位角度值赋予给计算器的字母J ,0≤J <360。

直线段OA 的距离值赋予给计算器的字母I,I >0 直线OA 与直线AO 的方位角关系: 1、
当直线OA 的方位角≤180°时,其反方位角等于a+180°。

2、 当直线
OA 的方位角>180°时,其反方位角等于a-180°。

二 方位角的推算 (一)几个基本公式 1、坐标方位角的推算
或:
注意:若计算出的方位角>360°,则减去360°;若为负值,则加上360°。

例题:方位角的推算
已知:α12=30°,各观测角β如图,求各边坐标方位角α23、α34、α
45
、α51。

13
图5
解: α23= α12-β2+180°=30°-130°+180°=80°
α34= α23-β3+180°=80°-65°+180°=195°
α45=α34-β4+180°=195°-128°+180°=247°
α51=α45-β5+180°=247°-122°+180°=305°
α12=α51-β1+180°=305°-95°+180°=30°(检查)
三坐标正算
一、直线段的坐标计算
o
B D
A
C
E
a
a
p
图6
设起点O的坐标(X O,Y O),直线OP的方位角为F op,求A、C、E点的坐标
1、设直线段OA长度为L,则A点坐标为
X A=X O+L×Cos(F op)
Y A=Y O+L×Sin(F op)
2、设直线段OB长度为L OB,直线段BC长度为L BC,则C点坐标为
X B=X O+L OB×Cos(F op)
Y B=Y O+L OB×Sin(F op)
直线BC的方位角F BC=F op+a
IF F B C>360°:Then F BC-360°→F BC:IfEnd
X C=X B+L BC×Cos(F BC)
Y C=Y B+L BC×Sin(F BC)
3、设直线段OD长度为L
,直线段DE长度为L DE,则E点坐标为
OD
X D=X O+L OD×Cos(F op)
Y D=Y O+L OD×Sin(F op)
直线DE的方位角F DE=F op-a
IF F DE<0°:Then F DE+360°→F DE:IfEnd
X E=X D+L DE×Cos(F DE)
Y E=Y D+L DE×Sin(F DE)
二、缓和曲线段的坐标计算
x Y 00=L- +=
L 40R L 52s 2L
3456R L 9
4s 4
L
6R L 3
s
L 336R L 7
s 33
-90 L πRL s
O
2
切线角=
设完整缓和曲线起点O 的坐标为O (XO,YO ),方位角为F ,曲线长度为L S ,曲线上任一
点的曲线长度为L,
当线路右转时直线CP 的方位角Fcp=F+90°
IF F cp >360°:Then F cp-360°→F cp :IfEnd
当线路左转时直线CP 的方位角Fcp=F-90°
IF F cp<0°:Then F cp+360°→F cp:IfEnd
X P=X O+Abs(x O)×Cos(F)+Abs(y O)×COS(F CP)
Y P=Y O+Abs(x O)×Sin(F)+Abs(y O)×Sin(F CP)
三、圆曲线段的坐标计算
圆曲线的已知点数据为起点S的桩号K s、走向方位角αs、起点S 坐标为(X o,Y o)、圆曲线半径为R与曲线长为L。

设半径为R的圆曲线中线上任意点j的桩号为K j,求Z j点的坐标?
x
解:
弦长sj的弦切角与弦长为
弦切角θsj=(L j/(2R))×(180°/π)=(90°×L j)/(πr) 弦长C sj=2Rsin(θsj)
则弦长sj的方位角为αsj=αs±θsj
圆曲线上任意j点的方位角为αj=αs±2θsj
求得圆曲线上任意点j的计算公式为
X j=X O+C sj×Cos(αsj)
Y j=Y O+C sj×Sin(αsj)
四坐标反算
1、直线段坐标反算
x
图9
反算原理
如图9所示,直线 se的点斜式为
y-y p=tanαs(x-x p) (公式1)
将起点S 的坐标代入解得
y p = y s - tan αs (x s -x p ) (公式2)
因直线jp 垂直于直线sp ,故p 点中桩坐标因满足垂线jp 的下列点斜式方程 y p -y j = -(x p -x j ) / tan αs (公式3) 将公式2代入公式3得
y s - tan αs (x s -x p )- y j =-(x p -x j ) / tan αs tan αs (y s -y j )- tan 2αs x s + tan 2αs x p =-x p +x j 简化后得
=x tan 2+1j
+a s
tan 2a s
x s
-tan a(y -y )s
j
p
x
=p
y j
y -j
y j
y -tan
a s
2、圆曲线段坐标反算原理
x
图10
反算原理
如图10所示,设j点为圆曲线附近任意边桩点,坐标为j(X,Y),已知点S点坐标为(X0,Y0),则圆心点C的坐标为
X c=X0+R×COS(αs±90°)
Y c=Y0+ R×sin(αs±90°)
再根据圆心点C与j点的坐标算出直线cj的方位角αcj与距离d cj,则j点的边距为dj=R-d cj,由圆心点坐标反算垂足点p的中桩坐标为
X P=X C+R×COS(αcj)
Y P=Y C+ R×sin(αcj)
再根据S 点的坐标和P 点的坐标求出弦长SP 的距离
Csp=√((X 0-X P )2+(Y 0-Y P )2
)
再根据弦长SP 的距离和反三函数的关系,求出弦切角θsp 值(单位为度)。

=sp
θ-1
sin sp
c
2R
求出弦切角后就可以求出弧长sp 的值及P 点的走向方位角αp 的值:
=sp
L
360
sp θ20
×2πR
αp =αs ±2θsp
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。

相关文档
最新文档