水中铁的测定

合集下载

铁的测定及预处理方法

铁的测定及预处理方法

水质中铁含量的测定一、实验原理该方法采用邻菲罗啉光度法,水中的铁有二价和三价形式,在检测前需用盐酸羟胺将高价铁还原为二价铁。

在PH值4~5的乙酸-乙酸铵缓冲溶液中,二价铁和邻菲啰啉反应,生成橙红色有机物,可使用510nm 的光进行比色,测量范围:0.02~2.5mg/L。

二、水样预处理1)总铁的测定水样处理:采样后立即将样品用盐酸酸化至pH<1,分析时取50ml混合水样于150ml锥形瓶中,加入1+3盐酸1ml,10%的盐酸羟按1ml,加热煮沸至体积减少到15ml左右,以保证全部铁的溶解和还原成二价铁。

若有沉淀产生可过滤去除,水样处理完毕后按铁的测定步骤进行实验操作。

2)纯亚铁测定水样前处理:采样时将2ml盐酸放入一个100ml的具塞的水样瓶中,再放入水样至注满整个水样瓶,以防止水样中的亚铁转化成三价铁。

水样处理完毕后按铁的测定步骤进行实验操作。

注意事项:①本方法测定的是亚铁,测定时注意水样的前处理;②含氰离子和硫离子的水样酸化时,必须小心进行,因为会产生有毒气体。

三、实验耗材及设备使用铁测定的仪器:5B-3B(V8)铁测定使用的试剂LH-Fe测铁试剂四、测定步骤1.打开主机开关,进行预热。

2.准备数支反应管,置于冷却架的空冷槽上。

3.准确量取10mL纯水加到“0”号反应管中。

4.然后分别准确量取各水样10mL,依次加入到其他反应管中。

5.依次向各个反应管中加入2.5mL LH-Fe测铁试剂,摇匀,静置10分钟。

6.打开5B-3B(V8)仪器开关预热10分钟,在初始界面下按设置键进入铁测定模式。

7.测定并打印铁的结果。

水中铁的测定

水中铁的测定

水中铁的测定-12008-10-10 11:40邻菲罗啉分光光度法1.方法原理亚铁在PH3-9之间的溶液中与邻菲罗啉生成稳定的橙红色络合物〖(C12H8N2)3Fe〗,其反应式为:此络合物在避光时可稳定半年。

测量波长为510nm,其摩尔吸光系数为1.1x104.若用还原(如盐酸羟胺)将高铁离子还原,则本法可测定高铁离子及总铁含量.2.干扰及消除强氧化剂,氰化物,亚硝酸盐,焦磷酸盐,偏聚磷酸盐及某些重金属离子会干扰测定,经过加酸煮沸,可将氰化物及亚硝酸盐除去,并使焦磷酸,偏聚磷酸盐转化为正磷酸盐以减轻干扰,加入盐酸羟胺则可消除强氧化剂的影响.邻菲罗啉能与某些金属离子形成有色络合物而干扰测定.但在乙酸-乙酸胺的缓冲溶液中,不大于铁浓度10倍的铜,锌,钴,铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除.汞,隔,银等能与邻沸罗啉形成沉淀,若浓度低时,可加过量邻沸罗啉来消除;浓度高时,可将沉淀过滤除去.水样有底色,可用不加邻菲罗啉的试液作参比,对水样的底色进行校正.3.方法适用范围此法适用于一般环境水和废水中铁的监测,最低检出浓度为0.03mg/L,测定上限为5.00mg/L的水样,可适当稀释后再按本方法进行测定.4.仪器分光光度计,10mm比色皿.5.试剂5.1铁标准储备液:准确称取0.7020g硫酸亚铁铵[(NH4)2Fe(SO4)2.6H2O],溶于1+1硫酸50mL中,转移至1000mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁100?g.5.2铁标准使用液:准确移取标准储备液25.00mL置100mL容量瓶中,加水至标线,摇匀.此溶液每毫升含铁25.0?g.5.31+3盐酸5.4 10%(m/v)盐酸羟胺溶液.5.5缓冲溶液:40g乙酸铵加50mL冰乙酸用水稀释至100mL.5.60.5%(m/v)邻菲罗啉(1,10-phennthroline)溶液,加数滴盐酸帮助溶解.6.步骤6.1标准曲线的绘制依次移取铁标准使用液0,2.00,4.00,6.00,8.00,10.0mL置150mL锥形瓶中,加入蒸馏水至50.0mL,再加1+3盐酸1mL,10%(m/v)盐酸羟胺1mL,玻璃珠1~2粒.然后,加热煮沸至溶液剩15mL左右,冷却至室温,定量转移至50mL具塞刻度管中.加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚刚变红,加入5mL缓冲溶液,0.5%(m/v)邻菲罗啉溶液2mL,加水至标线,摇匀.显色15min后,用10mm比色皿,以水为参比,在510nm处测量吸光度,由经过空白校正的吸光度对铁的微克数作图.6.2总铁的测定采样后立即将样品用盐酸酸化至PH为1,分析时取50.0mL混匀水样置150mL锥形瓶中,加1+3盐酸1mL,盐酸羟胺溶液1mL,加热煮沸至体积减少到15mL左右,以保证全部铁的溶解和还原.若仍有沉淀应过滤除去.以下按绘制标准曲线同样操作,测量吸光度并作空白校正.6.3亚铁的测定采样时将2mL盐酸放在一个100mL具塞的水样瓶内,直接将水样注满样品瓶,塞好塞,以防氧化,一直保存到进行显色和测量(最好现场测定或现场显色).分析时只需取适量水样,直接加入缓冲溶液与邻菲罗啉溶液,显色5~10分钟,在510nm处,以水为参比测量吸光度,并作空白校正.6.4可过滤铁的测定在采样现场,用0.45?m滤膜过滤水样,并立刻用盐酸酸化过滤水至PH为1,准确吸取样品50mL置150mL锥形瓶中,以下操作与步骤1相同.铁(Fe,mg/L)=m/v式中:m---由校准曲线查得的铁量(?g);v---水样体积(mL).8.精密度和准确度一个实验室测定铁离子的浓度为0.5,2.5,4.5mg/L的水样,相对标准偏差分别为1.1%,0.44%和0.33%.对于0.5,2.5mg/L浓度的铁溶液按1:1的比例加标进行回收试验,得回收率分别为102.6%和97.4%.9.注意事项9.1各批试剂的铁含量如不相同,每新配一次试液,都需重新绘制校准曲线.9.2含CN-或S2-离子的水样酸化时,必须小心进行,因为会产生有毒气体.9.3若水样含铁量较高,可适当稀释;浓度低时可换用30mm或50mm的比色皿。

自来水水中铁含量的测定方法

自来水水中铁含量的测定方法

自来水水中铁含量的测定方法2010-05-17 09:391. 水中铁含量的测定方法:〔实验原理〕常以总铁量(mg/L)来表示水中铁的含量。

测定时可以用硫氰酸钾比色法。

Fe3++3SCN-=Fe(SCN)3(红色)〔实验操作〕 1.准备有关试剂(1)配制硫酸铁铵标准液称取0.8634 g分析纯的NH4Fe(SO4)2·12H2O溶于盛在锥形瓶中的50 mL蒸馏水中,加入20 mL 98%的浓硫酸,振荡混匀后加热,片刻后逐滴加入0.2 mol/L的KMnO4溶液,每加1滴都充分振荡混匀,直至溶液呈微红色为止。

将溶液注入l 000 mL的容量瓶,加入蒸馏水稀释至l 000 mL。

此溶液含铁量为0.1 mg/mL。

(2)配制硫氰酸钾溶液称取50 g分析纯的硫氰酸钾晶体,溶于50 mL蒸馏水中,过滤后备用。

(3)配制硝酸溶液取密度为1.42 g/cm3的化学纯的硝酸191 mL慢慢加入200 mL蒸馏水中,边加边搅拌,然后用容量瓶稀释至500 mL。

2.配制标准比色液取六支同规格的50 mL比色管,分别加入0.1 mL、0.2 mL、0.5 mL、1.0 mL、2.0 mL、4.0 mL硫酸铁铵标准液,加蒸馏水稀释至40 mL后再加5 mL硝酸溶液和1滴2 mol/L KMnO4溶液,稀释至50 mL,最后加入l mL硫氰酸钾溶液混匀,放在比色架上作比色用。

3.测定水样的含铁总量取水样40 mL装入洁净的锥形瓶中,加入5 mL硝酸溶液并加热煮沸数分钟。

冷却后倾入与标准比色液所用相同规格的比色管中,用蒸馏水稀释至50 mL处,最后加入1 mL硫氰酸钾溶液,混匀后与上列比色管比色,得出结果后用下式进行计算并得到结论。

式中“相当的硫酸铁铵标准液量”指的是配制标准比色液时所用的硫酸铁铵标准液的体积。

2, 铁离子测定仪/ShowProduct.asp?ProductID=158技术指标测量范围 0.00to5.00mg/LFe 0to400μg/LFe解析度 0.01mg/L 1μg/L 0.01mg/L精度读数的±2%±0.04mg/L 读数的±8%±10μg/L波长/光源 470nm硅光源 555nm硅光源标准配置主机、HI93721-01试剂、HI731313玻璃比色皿两个、9V电池主机、HI93746-01试剂、HI731313玻璃比色皿两个、9V电池测量方法采用EPA推荐的方法中用于天然水和处理水的315B法,铁和试剂反应使样剂呈淡蓝色采用EPA推荐的方法中用于天然水和处理水的315B 法,铁和试剂反应使样剂呈淡蓝色3. 水中铁离子含量测定方法-- 二氮杂菲分光光度法铁在深层地下水中呈低价态,当接触空气并在pH大于5时, 便被氧化成高铁并形成氧化铁水合物(Fe2O3•3H2O)的黄棕色沉淀,暴露于空气的水中, 铁往往也以不溶性氧化铁水合物的形式存在。

水质铁的测定 EDTA滴定法

水质铁的测定 EDTA滴定法

HZHJSZ00119杭州环境水质:水质铁的测定EDTA滴定法1 范围本方法适用于炼铁矿山电镀酸洗等废水中铁的测定测定铁的适宜含量为5~20mg在测定条件下铜铝离子含量较高大于5.0mg 时产生正干扰其它多数离子对本方法没有影响2 原理水样经酸分解使其中铁全部溶解并将亚铁氧化成高铁用氨水调节至pH2 左右用磺基水扬酸作指示剂用EDTA 络合物滴定法测定样品中的铁含量3 试剂硝酸硫酸盐酸氨水精密pH 试纸磺基水扬酸溶液50g/L 六次甲基四胺溶液300g/L4 铁标准溶液称取4.822g 硫酸高铁铵[FeNH4(S04) 12H20]溶于水中加1.0mL 硫酸移入1000mL 容量瓶中加水至标线混匀此溶液的浓度为0.010mol/L5 0.01mol/L EDTA 标准滴定溶液: 称取3.723g 二水合乙二胺四乙酸二钠盐溶于水中稀释至1000 mL 贮于聚乙烯瓶中按下法标定:标定吸取20.00mL 铁标准溶液置锥形瓶中加水至100mL 用精密pH 试纸指示滴加1+1 氨水调至pH=2 左右在电热板上加热试液至60 左右加磺基水扬酸溶液3.6 2mL用EDTA 标准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫红色消失而呈淡黄色为终点记下消耗EDTA 标准滴定溶液的毫升数(V0) 计算EDTA 标准滴定溶液的准确浓度c Na2-EDTA =0.010mol/L 20.00/ V04 仪器25 或50mL 酸式滴定管5 水样处理如果水样清澈且不含有机物或络合剂,则可取适量水样(合铁量约为5~20mg) 于锥形瓶中,加水至约100mL如果水样混浊或有沉淀或含有机物则分取适量混匀水样置锥形瓶中加硫酸3mL 硝酸5mL 徐徐加热消解至冒三氧化硫白烟试样应呈透明状否则再加适量硝酸继续加热消解得透明溶液为止冷却加水至100mL往上述处理过的水样中滴加1+1 氨水调节至pH2 左右(用精密pH 试纸检验) 6 操作步骤将调节好pH 的试液加热至60 加磺基水扬酸溶液3.6 2mL 摇匀用EDTA 标准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫色消失而呈现淡黄色为终点记录消耗EDTA 标准滴定溶液的毫升数V2)7 结果计算c 铁Fe, mg/L = c 55.847 1000 V1/ V2式中V1 滴定所消耗EDTA 标准滴定溶液体积(mL)V2 水样体积(mL)EDTA 标准滴定溶液的摩尔浓度(mol/L) (Fe)的摩尔质量(g/mol)8 精密度和准确度11 个实验室分别测定含5~20mg 铁的标准样品相对标准偏差不超过1.2% 相对误差不超过0.4% 单个实验室测定实际废水样的精密度和回收率见表1表1 测定实际废水样的精密度和准确度实验室废水名称六次重复测定结果相对标准偏差加标回收率编号mL/L1 炼铁废水11.2 7.4 97.32 钢厂排水153.6 0.25 101.03 化工厂排水9.4 1.1 96.54 电镀车间997.4 0.21 99.75 铁矿废水7268.2 0.2 100.66 冷轧钢废水594.3 0.1 101.27 机械厂电镀合金废水376.1 0.3 97.6注意事项(1) 含悬浮颗粒物或有机物多的样品应适当增加酸量进行消解消解过程中要防止暴沸和蒸干否则会使结果偏低(2) 水样中若含铜镍干扰离子应在预处理溶液中滴加1+1 氨水至刚产生混浊再滴加1+1 盐酸至溶液澄清加2g 氯化铵滴加六次甲基四胺溶液3.7 至出现混浊再过量8mL 在水浴上加热至80并保持15min 使Fe(OH)3 沉淀絮凝放冷用中速滤纸过滤用1+1 盐酸10mL 将滤纸上沉淀溶解返回烧杯中用热水洗滤纸洗液并入烧杯中必要时再用少量1+1 盐酸洗涤滤纸以使铁完全溶解冷却后溶液定容至200mL 分取适量调节pH 后再进行滴定操作(3) 用EDTA 标准滴定溶液滴定铁离子的适宜pH 值为1.5~2.0 既可排除重金属离子的干扰又适宜于磺基水扬酸指示终点pH 值过低使滴定终点不敏锐pH 值过高将产生氢氧化铁沉淀而影响滴定(4) 由于铁离子与EDTA 络合作用较慢因此滴定时试液应保持在60 左右在接近终点时应缓慢滴定并剧烈振摇使其加速反应否则将导致测定结果偏高9 参考文献水和废水监测分析方法编委会编水和废水监测分析方法第三版pp. 182~184中国环境科学出版社北京1997参考资料:中国分析网;中国科技部科技基础工作专项《全国分析测试体系的建立与完善》项目组。

循环水中总铁测定方法及影响因素讨论

循环水中总铁测定方法及影响因素讨论

循循循循循循循循循循循循循循循循循总铁是指循环水中铁的所有形态(包括溶解铁和不溶解铁)的含量。

循环水中总铁的测定方法主要有以下几种:
1.颜色比较法:将循环水中的铁和标准溶液进行颜色比较
,通过颜色的变化来测定总铁含量。

2.还原法:将循环水中的铁还原为铁粉,再用称量法测定
总铁含量。

3.直接滴定法:使用试剂将循环水中的铁直接滴定,再用
称量法测定总铁含量。

4.电位滴定法:使用试剂将循环水中的铁进行电位滴定,
再用称量法测定总铁含量。

影响循环水中总铁测定结果的因素有以下几个:
1.水质:循环水中的其他成分可能会干扰铁的测定结果。

2.测定方法:不同的测定方法可能会导致测定结果的差异。

3.样品处理:样品的储存和处理方式会影响测定结果。

4.试剂稳定性:使用过期的试剂或不稳定的试剂会导致测
定结果的偏差。

5.仪器精度:使用不精确的仪器会导致测定结果的偏差。

仪器分析实验-自来水中铁含量测定(邻二氮菲分光光度法)

仪器分析实验-自来水中铁含量测定(邻二氮菲分光光度法)

实验二 自来水中铁含量的测定(邻二氮菲分光光度法)一、目的要求1.掌握邻二氮菲分光光度法测定微量铁的方法原理;2.熟悉绘制吸收曲线的方法,正确选择测定波长;3.学习标准曲线的制作。

二、实验原理邻二氮菲(1,10—二氮杂菲),也称邻菲啰啉,是测定微量铁的高灵敏、高选择性显色剂。

在pH2~9范围内(一般控制在5~6间)Fe 2+与邻二氮菲试剂生成稳定的橙红色配合物Fe(Phen)32+ lgK =21.3,在510nm 下,其摩尔吸光系数为1.1×104 dm 3·cm -1·mol -1 。

Fe 3+也和邻二氮菲生成配合物(呈蓝色)。

因此,在显色之前需用盐酸羟胺或抗坏血酸将全部的Fe 3+还原为Fe 2+。

本方法的选择性很高,相当于含铁量40倍的Sn 、AI 、Ca 、Mg 、Zn 、Si ,20倍的Cr 、Mn 、V 、P 和5倍的Co 、Ni 、Cu 不干扰测定。

本实验采用标准曲线法(又称工作曲线法),即配制一系列浓度由小到大的标准溶液,在确定条件下依次测量各标准溶液的吸光度(A ),以标准溶液的浓度为横坐标,相应的吸光度为纵坐标,在坐标纸上绘制标准曲线。

将未知试样按照与绘制标准曲线相同的操作条件的操作,测定出其吸光度,再从标准曲线上查出该吸光度对应的浓度值就可计算出被测试样中被测物的含量。

三、仪器与试剂1.仪器 722型分光光度计、容量瓶(50mL 、100mL )、刻度吸管(5mL ,10mL )等。

2.试剂(1)铁标准储备溶液准确称取0.176克分析纯硫酸亚铁铵(FeSO 4 ·(NH 4)2 SO 4·6H 2O )于小烧杯中,加水溶解,加入6mol ∕L HCl 溶液5mL ,定量转移至250mL 容量瓶中稀释至刻度,摇匀。

所得溶液每毫升含铁0.100 mg (即100ug/mL )。

(2)0.1%邻二氮菲溶液;2Fe 3++2NH 2OH = 2Fe 2++N2O +2H +Fe 2+ + 3N N Fe2+3(3)10%盐酸羟胺(新配)(4)HAc-NaAc缓冲溶液(pH=4.6)(5)6 mol∕L HCl(6)测铁水样:约10mL 100ug/mL铁标准储备液稀释至250mL。

废水中铁含量的测定注意事项

废水中铁含量的测定注意事项

废水中铁含量的测定注意事项一、二氮杂菲分光光度法1、总铁包括水中悬浮铁盒微生物体中的铁,取样时应剧烈震摇均匀,并立即吸取,以防止重复测定结果之间出现很大差别。

2、该方法测量的是水样中总铁的含量,在样品的预处理中应采取稀释样品的方法,不可采用过滤对水样进行预处理。

3、若水样较清洁,含难溶亚铁盐少时,可将所加试剂: 1+1盐酸、盐酸羟胺溶液、二氮杂菲溶液及乙酸铵缓冲溶液用量减半。

但标准系列与样品操作必须一致。

4、自来水中含有微量铁,会使测定结果偏高,因此配置各种使用溶液所用到得容量器皿及测定过程中使用的锥形瓶、比色管需用(1+9)硝酸溶液浸泡清洗后直接使用纯水清洗使用,不可再用自来水清洗。

5、乙酸铵试剂可能含有微量铁,故缓冲溶液的加入时要准确一致。

6、检测过程中有对溶液加热的要求,但没有对加热时间长短做规定,经过多次试验结果表明,测量过程中,对样品加热煮沸10min,才可保证水中铁的完全溶解和还原,样品的吸光度液达到了恒定水平,如果加热时间不够则会使检测结果偏低。

7、各批试剂的铁含量不相同,每新配一次试液,都需重新绘制校准曲线。

二、磺基水杨酸光度法1、为避免引起光电池疲劳现象﹐不测定时应打开暗室盖,特别应避免强光照射。

2、比色皿盛取溶液时只需装至比色皿的2/3处,过满易溅出腐蚀仪器。

3、比色皿的光学表面一定要注意保护。

4、操作仪器要小心,不要用劲拧动,以免损坏机件。

5、读数时眼睛应垂直于表盘,使平面镜里外的指针重合,此时读数最准确。

6、每改变一个波长,就得重新调0和100%。

三、邻菲罗啉分光光度法1.水样中大量的磷酸盐存在,会对测定产生干扰,这时我们可加柠檬酸盐对苯二酚加以消除。

2.用溶剂萃取法可消除所有金属离子或可能与铁进行络合反应的阴离子所造成的干扰。

3.为了避免氨水在调整过程中过量(即刚果红试纸变成红色),一般可先加入约0.8mL浓氨水,然后用氨水(1+1)逐滴调节。

4.水样采集时应使用专用磨口玻璃瓶,并将其用盐酸(1+1)浸泡12h以上,再用一级试剂水充分洗净,然后向取样瓶内加入优级纯浓盐酸(每500mL水样加浓盐酸2m1),直接采取水样,并立即将水样摇匀。

分光光度法测水中铁含量

分光光度法测水中铁含量

分光光度法测水中铁含量
分光光度法是一种常用的分析化学方法,用于测量水中铁含量。

该方法基于铁离子在特定波长下的吸收特性,通过测量吸光度来确定铁的浓度。

以下是使用分光光度法测水中铁含量的一般步骤:
1. 标准曲线的绘制:首先,需要制备一系列含有不同铁浓度的标准溶液。

将标准溶液分别放入分光光度计中,在特定波长下测量其吸光度。

以铁浓度为横坐标,吸光度为纵坐标绘制标准曲线。

2. 水样的处理:将水样采集后,可能需要进行适当的预处理,如过滤、稀释或调节 pH 值等,以确保样品适合测量。

3. 测量吸光度:将处理后的水样放入分光光度计中,在与绘制标准曲线相同的波长下测量其吸光度。

4. 结果计算:根据测量的吸光度,通过标准曲线可以确定水样中铁的浓度。

将吸光度与标准曲线进行比对,找到对应的铁浓度。

需要注意的是,在进行分光光度法测量时,要确保仪器的准确性和稳定性,并进行适当的质量控制措施,如使用标准物质进行校准。

此外,还应注意实验条件的控制,如溶液的 pH 值、温度等,以确保测量结果的准确性。

以上是分光光度法测水中铁含量的基本步骤,具体操作可能因仪器和实验要求的不同而有所差异。

在实际操作中,请遵循相关的实验操作规程和安全注意事项。

如果你有具体的实验需求,建议参考相关的实验手册或咨询专业人士。

水中铁含量的测定实验报告

水中铁含量的测定实验报告

水中铁含量的测定实验报告
《水中铁含量的测定实验报告》
在日常生活中,我们经常会接触到各种各样的水源,包括自来水、河水、湖水等。

然而,这些水源中往往会含有各种各样的杂质,其中包括铁元素。

铁元素
在水中的含量不仅会影响水的味道和颜色,还可能对人体健康造成影响。

因此,对水中铁含量的测定就显得尤为重要。

为了准确测定水中铁的含量,我们进行了一项实验。

首先,我们收集了来自不
同水源的样本,包括自来水、河水和湖水。

然后,我们使用了一种叫做原子吸
收光谱法的方法来进行测定。

这种方法可以通过测量样品中铁元素的吸收光谱
来确定其含量。

在实验中,我们首先将样品进行预处理,去除其中的杂质和有机物。

然后,我
们将样品转化成气态,并通过原子吸收光谱仪进行测定。

通过对比样品的吸收
光谱和标准溶液的吸收光谱,我们得出了水中铁的含量。

通过实验,我们发现不同水源中的铁含量差异很大。

自来水中的铁含量较低,
而河水和湖水中的铁含量则较高。

这说明水源的不同会直接影响水中铁的含量。

因此,我们应该根据实际情况选择合适的水源,并进行必要的水质处理,以确
保饮用水的安全和健康。

总的来说,通过这次实验,我们对水中铁含量的测定有了更深入的了解,也增
强了对水质安全的重视。

希望我们的实验报告能够为相关领域的研究和实践提
供一定的参考和借鉴。

水中总铁的测定

水中总铁的测定

感谢您的观看
THANKS
详细描述
在测定水中总铁时,误差可能来源于多个方面,如仪器精度、操作方法、环境因素等。为了减小误差,可以采用 高精度的测量仪器,定期对仪器进行校准和维护。同时,在操作过程中要严格遵守操作规程,避免操作失误。对 于环境因素引起的误差,可以通过多次测量求平均值的方法减小误差。
问题二:测定方法的比较和选择
城市污水处理不彻底可 能导致铁元素排入水体。
采矿过程中可能将含铁 矿物带入地表水体。
影响铁含量的因素
水温
水温升高可能导致水中溶解氧 含量降低,影响铁的氧化还原
平衡。
pH值
水体pH值的变化可影响铁的存 在形态和溶解度。
氧化还原条件
水体中的氧化还原条件对铁的 溶解度和存在形态有重要影响 。
共存离子
水体中其他离子(如氯离子、 硫酸根离子等)的存在可能影
02
03
准确性评估
精密度评估
误差分析
将测定结果与标准值或已知值进 行比较,评估测定结果的准确性。
通过多次重复测定同一样品,计 算结果的变异系数(CV)来评估 测定结果的精密度。
分析测定过程中可能存在的误差 来源,如仪器误差、操作误差等, 并对误差进行合理评估。
结果的应用和意义
指导水质监测
测定水中总铁的含量,有助于了解水质状况,为水处 理和环境监测提供依据。
要点一
总结词
要点二
详细描述
不同的测定方法具有不同的优缺点,需要根据实际情况选 择合适的方法。
在测定水中总铁时,有多种方法可供选择,如原子吸收光 谱法、分光光度法、电化学法等。每种方法都有其独特的 优点和局限性。例如,原子吸收光谱法具有高精度和高灵 敏度,但仪器成本较高;分光光度法操作简便,但易受干 扰物质影响。因此,在选择测定方法时,需要根据实际需 求和条件进行综合考虑,选择最适合的方法。

自来水中铁的测定

自来水中铁的测定

火焰原子吸收法测定水样中铁的含量—标准曲线法【实验目的】(1)学习原子吸收分光光度法的基本原理;(2)了解原子吸收分光光度计的基本结构及其使用方法(3)掌握应用标准曲线法测水中铁的含量。

【实验原理】标准曲线法是原子吸收分光光度分析中最常用的定量分析方法之一,该法是配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测出它们的吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,根据试样溶液的吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。

标准曲线法常用于分析共存的基体成分较为简单的试样。

如果溶液中共存基体成分比较复杂,则应在标准溶液中加入相同类型和浓度的基体成分,以消除或减少基体效应带来的干扰,必要时须采用标准加入法进行定量分析。

【实验部分】1、仪器原子吸收分光光度计z-5000(日立)空心阴极灯铁空心阴极灯无油空气压缩机乙炔钢瓶通风设备2、试剂金属铁优级纯浓盐酸优级纯浓硝酸优级纯蒸馏水标准溶液配制(1)1000ppm铁标准贮备液:1.000g 的纯铁加热溶解于20ml 的王水,冷却后准确地稀释到1000ml。

(2)铁标准使用液(12.5ppm)准确吸取12.5mL上述铁标准贮备液于1000mL容量瓶中,用2%HNO3稀至1000mL。

仪器操作条件波长248.3nm 燃烧器高度9mm狭缝0.2nm 乙炔流量 2.2升/分灯电流12mA空气流量15.0升/分【实验步骤】12 1、配制标准溶液系列准确移取0、1.00、2.00、3.00、4.00mL 上述12.5ppm 铁标准使用液,分别置于5只25mL 容量瓶中,分别加入5mL1%HNO 3,用水稀释至刻度,摇匀备用。

该标准溶液系列铁的浓度分别为0、0.5、1.0、1.5、2.0ppm 。

2、配制水样溶液 准确吸取水样18.00mL 于25mL 容量瓶中,加5mL1% HNO 3,用水稀释至刻度,摇匀备用。

水中铁含量的测定方法4种

水中铁含量的测定方法4种

水中铁含量的测定方法4种1.光度法:光度法是常用的测定水中铁含量的方法之一、该方法利用溶液中的物质对光的吸收或散射现象,通过测量透射光强度的变化来间接确定溶液中的物质浓度。

具体步骤为:采集水样→过滤去除杂质→使用试剂与样品反应→检测溶液中的吸光度→根据吸光度与标准曲线关系确定溶液中铁的含量。

2.原子吸收光谱法(AAS):AAS是一种高效准确的测定水中铁含量的方法。

该方法通过测量金属元素蒸气吸收特定波长的光线的强度来确定样品中金属元素的含量。

具体步骤为:样品制备→原子化→光吸收→信号检测→结果计算。

该方法具有灵敏度高、准确性好、选择性强等优点,但价格较昂贵,操作相对复杂。

3.电量法:电量法是一种常用的测定水中铁含量的方法,它利用电化学原理测定铁离子浓度。

具体步骤为:采集水样→调整溶液pH→电极分析→校准、计算浓度。

电量法不受其他成分的干扰,且操作相对简单。

但该方法对电极的选择和使用要求较高,且结果受到溶液中其他成分的影响较大。

4.化学滴定法:化学滴定法是一种精密准确的测定水中铁含量的方法。

该方法通过在滴定过程中,用一种已知浓度的滴定试剂与待测溶液中的铁发生化学反应,从而确定铁的浓度。

例如,硫酸亚铁被硝酸亚铁氧化滴定,生成高铁状物质底物。

滴定后终点可通过添加高铁状底物的变色或指示剂变色来判定。

该方法简单易行,精确度较高,但受其他成分的干扰较大。

不同方法适用于不同的实际场景,选用合适的测试方法主要取决于实验条件、设备和仪器的可用性,以及预期的测试结果准确度等因素。

在实际应用中,可以结合多种测定方法以提高结果的可靠性。

水质铁、锰的测定

水质铁、锰的测定

水质铁、锰的测定火焰原子吸收分光光度法GB/T 11911-19891 范围本标准适用于地面水、地下水及工业废水中铁、锰的测定。

铁、锰的检测限分别是0.03mg/L和0.01mg/L,校准曲线的浓度范围分别为0.1~5mg/L和0.05~3mg/L。

2 试剂本方法所用试剂除另有说明外,均使用符合国家标准或专业标准的分析纯试剂和去离子水或同等纯度的水。

2.1 硝酸(HNO3),ρ=1.42g/mL,优级纯。

2.2 硝酸(HNO3),ρ=1.42g/mL,分析纯。

2.3 盐酸(HCl),ρ=1.19g/mL,优级纯。

2.4 硝酸溶液,(1+1)用硝酸(2.2)配制。

2.5 硝酸溶液,1+99 (0.16mol/L):用硝酸(2.1)配制。

2.6 盐酸溶液,(1+99)用盐酸(2.3)配制。

2.7 盐酸溶液,(1+1)用盐酸(2.3)配制。

2.8 氯化钙溶液,10g/L:将无水氯化钙(CaCl2)2.7750g溶于水并稀释至1000mL。

2.9 铁标准贮备液:称取光谱纯金属铁1.0000g,准确到0.0001g,用60mL(1+1)盐酸溶解,用去离子水准确稀释至1000mL。

2.10 锰标准贮备液:称取光谱纯金属铁1.0000g,准确到0.0001g(称前用稀硫酸洗去表面氧化物,再用去离子水洗去酸,烘干,在干燥器中冷却后,尽快称取),用10mL(1+1)硝酸溶解。

当锰完全溶解后,用(1+99)盐酸准确稀释至1000mL。

2.11 铁、锰混合标准操作溶液:分别移取铁贮备液(2.9)50.00mL,锰贮备液(2.10) 25.00mL于100mL容量瓶中,用(1+99)盐酸溶液稀释至标线,摇匀。

此溶液中铁、锰的浓度分别为50mg/L和25mg/L。

3 仪器3.1 原子吸收分光光度计3.2 铁、锰空心阴极灯3.3 乙炔钢瓶或乙炔发生器3.4 空气压缩机,应备有除水、除油、除尘装置3.5 仪器参数:不同型号仪器的最佳测试条件不同,可根据仪器说明书自行选择。

可见分光光度法测定水中的铁离子

可见分光光度法测定水中的铁离子

可见分光光度法测定水中的铁离子光度法是分析化学中一种常见的定量分析方法,在水体中测定铁离子的含量也是常用的方法。

可见分光光度法是光度法中的一种,通过水中铁离子在可见光波长范围内吸收不同强度的光线,来测量其浓度。

下面将从原理、仪器设备、实验步骤和注意事项四个方面介绍可见分光光度法测定水中的铁离子。

一、原理可见光是原则上人眼可以看到的波长范围,它在400~760nm的范围内。

铁离子溶液经过对可见光的吸收后,吸收后的光线传送到光电管中被检测到,从而确定铁离子的浓度。

当水中铁离子存在于最佳吸收波长处(约在510nm波长范围内)时,吸光度与浓度成正比,可以通过绘制标准曲线得出水中铁离子的浓度。

二、仪器设备可见分光光度法测定水中铁离子需要的仪器设备包括分光光度计、玻璃仪器(量筒、烧杯、移液管等)、铁离子标准样品、硝酸铁(III)溶液、氢氧化钠溶液等试剂。

三、实验步骤1. 将分光光度计设置为可见光波长范围,并打开仪器通电预热。

2. 准备一系列的标准铁离子溶液,按照不同的浓度进行标号,将各标准溶液置于量筒内并使用去离子水定容定量,摇匀后使用分光光度计分别进行测定并记录吸光度值。

3. 获取未知浓度的样液,也是按照一定的比例稀释后测定。

读出吸光度值并转化为铁离子浓度。

4. 绘制标准曲线,根据样品的吸光度,查出所测样液的铁离子浓度。

四、注意事项1. 用硝酸铁(III)溶液和氢氧化钠溶液制备铁离子标准溶液时,应注意安全操作,避免触及皮肤和吸入到呼吸道中。

2. 量筒、移液管等玻璃仪器应保持干净,以免影响实验结果。

3. 分光光度计的光程和孔径必须一致,并且需要在测定光线过程中保持稳定。

4. 使用分光光度计时应使用去离子水进行清洗打扫,并注意避免碰撞或摩擦。

综上所述,可见分光光度法测定水中铁离子的原理清晰易懂,操作步骤简单,可以快速准确地测定水体中铁离子的浓度。

在实验过程中,应注意实验室安全,保证仪器的准确性和不受干扰,以获得可靠的实验数据。

分光光度法测定水质中铁的研究

分光光度法测定水质中铁的研究

分光光度法测定水质中铁的研究水是生命之源,人类生活离不开水,但由于经济发展和人口增加等原因,水资源的污染问题也越来越严重。

其中,重金属污染对水环境的破坏极大,而铁作为一种重要的金属元素,其污染问题也备受关注。

因此,对水中铁的检测就显得至关重要。

目前,分光光度法被广泛应用于测定水质中铁的含量。

本文就为大家介绍分光光度法测定水质中铁的原理、优势、操作步骤及误差分析等方面的内容。

一、测定原理分光光度法是一种以物质吸收光的特性进行分析的方法。

通过测量样品在特定波长处的吸光度,从而确定样品中目标元素的含量。

对于水质中铁的测定,通常采用四氢溴酸酸性条件下的邻二氢吡啶纳米粒子-Fe(Ⅲ)络合物的分光光度法。

首先将样品加入适量的邻二氢吡啶吸附剂中,使铁与邻二氢吡啶作用,形成Fe(Ⅲ)络合物。

然后,用NaBH4还原剂还原Fe(Ⅲ)为Fe(Ⅱ),Fe(Ⅱ)与邻二氢吡啶形成纳米粒子,生成了邻二氢吡啶纳米粒子-Fe(Ⅲ)络合物。

最后,通过分光光度法测量该络合物在720nm处的吸光度,从而测定水质中铁的含量。

二、测定优势与其他测定方法相比,分光光度法具有以下优势:1. 分析过程简单,操作方便,可实现快速测定。

2. 准确度高,灵敏度高,测定结果精准可靠。

3. 仪器设备较为简单,设备成本低,易于使用。

4. 对于水质中铁离子的测定,在低量级样品中也具有良好的测定特性。

三、操作步骤下面是一个分光光度法测定水质中铁的操作步骤:1. 准备样品。

将待测水样均匀搅拌后,取适量样品加入邻二氢吡啶吸附剂中。

2. 溶解。

加入适量氢氧化钠和四氢溴酸,将样品溶解。

3. 还原。

加入定量NaBH4还原剂2次,即可将Fe(Ⅲ)还原为Fe(Ⅱ)。

4. 稳定。

样品加入MOPS缓冲液稳定铁离子和纳米粒子的形成。

5. 吸光度。

在720nm处使用分光光度计测量样品吸光度。

6. 计算结果。

利用标准曲线计算样品中铁的含量。

四、误差分析分光光度法在测定水质中铁的含量时,误差来源主要有以下几种:1. 样品准备。

生活饮用水中铁元素火焰原子吸收测定方法证实报告

生活饮用水中铁元素火焰原子吸收测定方法证实报告

方法验证验证项目:生活饮用水标准检验方法GB/T5750.6-2006(2.1)生活饮用水中铁的测定火焰原子吸收分光光度法验证单位:验证日期:验证人:审核人:生活饮用水铁火焰原子吸收测定方法确认报告一、方法依据GB/T5750.6-2006(2.1)火焰原子吸收分光光度法。

二、方法原理水样中铁离子被原子化后,吸收来自同种金属元素空心阴极灯发出的共振线,吸收共振线的量与样品中铁元素的含量成正比。

在其它条件不变的情况下,根据测量被吸收后的谱线强度,与标准系列比较定量。

三、.仪器原子吸收分光光度计:仪器性能指标应符合GB/T 21191的规定。

元素灯(铁)。

采样容器:硬质玻璃瓶或聚乙烯瓶(桶)。

实验室常用器皿:符合国家标准的A级玻璃量器和玻璃器皿。

四、.试剂和材料除非另有说明,分析时均使用符合国家标准的优级纯化学试剂,实验用水为新制备的去离子水或蒸馏水。

硝酸(GR)、盐酸(GR);铁标准溶液各1支(1000μg/mL);高纯乙炔(≥99%)。

五、分析方法步骤1、样品预处理1.1溶解态铁样品`样品采集后尽快用0.45um 滤膜过滤,弃去初始滤液50mL ,酸化后 直接测定,用少量滤液清洗采样瓶,收集滤液于采样瓶中。

1.2测定总量样品在电热板上消解后用滤纸过滤后直接测定。

2、样品测定标准曲线制定绘制标准曲线,计算回归方程,以所测样品的吸光强度,从标准曲线或回归方程中查得样品溶液中各元素的质量浓度(mg/L) 。

六、讨论1、适用范围:该标准适用于地表水、地下水、废水中直接测定的溶解态和总量的测定。

2、检出限评定按照样品分析的全部步骤,平行测定空白11次,并按下列公式计算标准偏差,同时计算出方法的检出限:S t MDL n ⨯=-)99.0,1(式中:MDL ——方法检出限;n —— 样品的平行测定次数;t ——自由度为n -1,置信度为99%时的t 分布(单侧);S——n 次平行测定的标准偏差。

其中,当自由度为n -1=10,置信度为99% 时的t值为2.764。

火焰原子吸收法测定水样中铁的含量

火焰原子吸收法测定水样中铁的含量

实验火焰原子吸收法测定水样中铁的含量—标准曲线法一、目的要求(1)学习原子吸收分光光度法的基本原理;(2)了解原子吸收分光光度计的基本结构及其使用方法(3)掌握应用标准曲线法测水中铁的含量。

二、基本原理标准曲线法是原子吸收分光光度分析中最常用的定量分析方法之一,该法是配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测出它们的吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。

试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,根据试样溶液的吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。

标准曲线法常用于分析共存的基体成分较为简单的试样。

如果溶液中共存基体成分比较复杂,则应在标准溶液中加入相同类型和浓度的基体成分,以消除或减少基体效应带来的干扰,必要时须采用标准加入法进行定量分析。

三、仪器1、原子吸收分光光度计AA-6300(岛津)2、空心阴极灯铁空心阴极灯3、无油空气压缩机4、乙炔钢瓶5、通风设备四、试剂1、金属铁优级纯2、浓盐酸优级纯3、浓硝酸优级纯4、蒸馏水5、标准溶液配制(1)1000ppm铁标准贮备液:1.000g 的纯铁加热溶解于20ml 的王水,冷却后准确地稀释到1000ml。

(2)铁标准使用液(12.5ppm)准确吸取12.5mL上述铁标准贮备液于1000mL容量瓶中,用2%HNO3稀至1000mL。

五、仪器操作条件波长248.3nm 燃烧器高度9mm狭缝0.2nm 乙炔流量 2.2升/分灯电流12mA空气流量15.0升/分六、实验步骤1、配制标准溶液系列准确移取0、1.00、2.00、3.00、4.00mL上述12.5ppm铁标准使用液,分别置于5只25mL容量瓶中,分别加入5mL1%HNO3,用水稀释至刻度,摇匀备用。

该标准溶液系列铁的浓度分别为0、0.5、1.0、1.5、2.0ppm。

2、配制水样溶液准确吸取水样18.00mL于25mL容量瓶中,加5mL1% HNO3,用水稀释至刻度,摇匀备用。

水中总铁的测定

水中总铁的测定

7
试剂及仪器—邻菲罗啉分光光度法
分光光度计 DR3900可见光光度计


10mm 比色皿。
8
分析步骤
1 总铁的测定
采样后立即将样品用盐酸(3.1)酸化至 pH<1(含 CN-或 S2-离 子的水样酸化时,必须小心进行, 因为会产生有毒气体),分析时取 50.0mL 混匀水样于 150mL 锥形瓶中,加(1+3)盐酸(3.2) 1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到 15mL 左 右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。冷却至室 温,定量转移至 50mL 具塞比色管中。加一小片刚果红试纸,滴加饱 和乙酸钠溶液至试纸刚刚变红,加入 5mL 缓冲溶液(3.4)、0.5% 邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色 15min 后,用 10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用 30mm 或50mm 的比色皿),以水为参比,在 510nm 处测量吸 光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含 量如不同,每新配一次试液,都需重新绘制校准曲线。
3
1、总铁是循环水的一个重要指标,其含量
常用的分光光度法测定邻菲啰林分光 光度法。 适用范围(HJ/T 345─ 2007): 本标准适用于地表水、地下水及废水中铁 的测定。方法最低检出浓度为 0.03mg/L, 测定下限为0.12mg/L,测定上限为 5.00mg/L。对铁离子大于 5.00mg/L 的水 样,可适当稀释后再按本方法进行测定。
水中铁含量的测定
——邻菲罗啉分光光度法
质检车间:展宏洋
大纲



方法简介及适用范围 测定原理 试剂及仪器 分析步骤 结果计算 注意事项
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总铁离子的测定—邻菲罗啉分光光度法此法适用于一般环境水和废水中铁的监测,最低检出浓度为0.03mg/L,测定上限为5.00mg/L的水样,可适当稀释后再按本方法进行测定。

1、原理:亚铁离子在PH值3~9的条件下,与邻菲罗啉(1,10—二氮杂菲)反应,生成桔红色络合离子:3C12H8N2+Fe2+→[Fe(C12H8N2)3]2+此络合离子在PH值3~4.5时最为稳定。

水中三价铁离子用盐酸羟胺还原成亚铁离子,即可测定总铁。

2、试剂2、1 1+1盐酸溶液。

2、2 1+1氨水。

2、3 刚果红试纸。

2、4 10%盐酸羟胺溶液。

2、5 0.12%邻菲罗啉溶液。

2、6 铁标准溶液的配制:称取0.864g硫酸铁铵[FeNH4(SO4)2·12H2O]溶于水,加2.5mL硫酸,移入1000mL 容量瓶中,稀释至刻度。

此溶液为1mL含0.1铁标准溶液。

吸取上述铁标准溶液10mL,移入100mL容量瓶中用水稀释至刻度,此溶液为1mL含0.01mg铁标准溶液。

3、干扰及消除强氧化剂,氰化物,亚硝酸盐,焦磷酸盐,偏聚磷酸盐及某些重金属离子会干扰测定,经过加酸煮沸,可将氰化物及亚硝酸盐除去,并使焦磷酸,偏聚磷酸盐转化为正磷酸盐以减轻干扰,加入盐酸羟胺则可消除强氧化剂的影响. 邻菲罗啉能与某些金属离子形成有色络合物而干扰测定.但在乙酸-乙酸胺的缓冲溶液中,不大于铁浓度10倍的铜,锌,钴,铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除.汞,隔,银等能与邻沸罗啉形成沉淀,若浓度低时,可加过量邻沸罗啉来消除;浓度高时,可将沉淀过滤除去.水样有底色,可用不加邻菲罗啉的试液作参比,对水样的底色进行校正.5、仪器5、1 分光光度计。

测量波长为510nm6、分析步骤6、1 标准曲线的绘制分别吸取1mL含0.01mg铁标准溶液0,1.0,2.0,3.0,4.0,5.0mL于6只50m容量瓶中,加水至约25mL,各加1毫米长的刚果红试低,在试纸呈蓝色时,各瓶加1mL10%盐酸羟胺溶液,2mL0.12%邻菲罗啉溶液,混匀后用1+1氨水调节使刚果红试纸呈紫红色,再加1滴1+1氨水,使试纸呈红色,用水稀释至刻度。

10分钟后于510nm处,用3cm比色皿,以试剂空白作参比,测其吸光度,以吸光度为纵坐标,铁离子毫克数为横坐标,绘制标准曲线。

6、2 水样的测定取水样50mL于150mL锥形瓶中,放入1毫米长的刚果红试纸,用1+1盐酸溶液调节使水呈酸性,PH<3,刚果红试纸显蓝色。

加热煮沸10分钟,冷却后移入50mL比色管中,加10%盐酸羟胺溶液1mL,摇匀,1分钟后,再加0.12%邻菲罗啉溶液2mL,用1+1氨水调节PH,使刚果红试纸呈紫红色,再加1滴氨水,试纸呈红色后用水稀释至刻度。

10分钟后于510nm处,以3cm比色皿,以试剂空白作参比,测其吸光度。

7、分析结果的计算水样中总铁离子含量X(毫克/升),按下式计算:A ×50X= ————Vw式中:A—从标准曲线查得的铁离子的含量,毫克;Vw—水样体积,毫升。

8、注释8、1 循环冷却水中铁含量常以三氧化二铁和氢氧化铁沉淀形式存在,加盐酸煮沸以使其溶解。

8、2 分析步骤中溶液的PH控制也可采用加2mL 2mol/L盐酸,在加邻菲罗啉后,再加5mL 22%醋酸铵溶液,但醋酸铵溶液应不含铁离子,否则,更换试剂时应重新绘制标准曲线。

9、允许差:水中总铁离子含量小于1mg/L时,平行测定两结果差不大于0.03mg/L。

10、结果表示:取平行测定两结果算术平均值,作为水样的总铁离子含量安全方面:1、含CN-或S2-离子的水样酸化时,必须小心进行,因为会产生有毒气体,剩余的水样必须倒到小桶内,统一处理。

2、盐酸的性质:物理性质:无色透明液体,为氯化氢的水溶液。

在空气中冒烟,有刺激性气味,味酸。

能与水和乙醇任意混溶,溶于苯。

呈强酸性。

能与许多金属和金属的氧化物起作用,能与碱中和,与磷、硫等非金属均无作用。

化学性质:呈强酸性,和碱反应生成氯化物和水。

能与许多金属和金属的氧化物起作用,能与碱中和,与磷、硫等非金属均无作用。

其酸能与酸碱指试剂反应,紫色石蕊{(C7H7O4N)n}试剂与pH试纸变红色,无色酚酞不变色。

储存与运输: 储存于阴凉、通风的库房。

库温不超过30℃,相对湿度不超过85%。

保持容器密封。

应与碱类、胺类、碱金属、易(可)燃物分开存放,切忌混储。

储区应备有泄漏应急处理设备和合适的收容材料。

应急处理:急救措施: 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟,可涂抹弱碱性物质,如肥皂水等。

就医。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。

就医。

吸入:迅速脱离现场至空气新鲜处。

保持呼吸道通畅。

如呼吸困难,给输氧。

如呼吸停止,立即进行人工呼吸。

就医。

食入:用水漱口,就医。

泄露应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。

建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。

不要直接接触泄漏物。

尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。

小量泄漏:用砂土、干燥石灰或苏打灰混合。

也可用大量水冲洗,洗水稀释后放入废水系统。

大量泄漏:构筑围堤或挖坑收容;用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

人体环境危害:健康危害:蒸气或雾对眼、鼻、喉有刺激性。

口服液体可引起恶心、呕吐、腹痛、血便或休克。

皮肤或眼接触可致灼伤。

慢性影响:鼻粘膜萎缩、鼻中隔穿孔。

长期反复皮肤接触,可引起皮肤刺激。

防护措施:呼吸系统防护:空气中浓度超标时,必须佩带防毒面具或供气式头盔。

紧急事态抢救或逃生时,建议佩带自给式呼吸器.眼睛防护:戴化学安全防护眼镜.防护服:穿工作服(防腐材料制作)。

手防护:戴橡皮手套.其它:工作后,淋浴更衣。

单独存放被毒物污染的衣服,洗后再用。

保持良好的卫生习惯。

3、氨水的性质:物理性质:无色透明液体。

为氨的水溶液。

易挥发逸出氨气,有强烈的刺激性气味。

能与乙醇混溶。

呈强碱性。

能从空气中吸收二氧化碳。

与硫酸或其他强酸反应时放出热。

与挥发性酸放在近处能形成烟雾。

有腐蚀性,催泪性。

储存:密封阴凉保存。

氨水化学性质:能使无色酚酞试液变红色,能使紫色石蕊试液变蓝色,能使湿润红色石蕊试纸变蓝。

能与酸反应,生成铵盐。

浓氨水与挥发性酸(如浓盐酸和浓硝酸)相遇会产生白烟。

应急处理:急救措施: 吸入:迅速脱离现场至新鲜空气处。

保持呼吸道通畅。

如呼吸困难,给输氧。

如呼吸停止,立即进行人工呼吸。

误食:误服者用水漱口,给牛奶或蛋清。

就医。

皮肤接触:立即脱去被污染衣着,用大量流动清水冲洗,至少15分钟。

就医。

眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。

就医。

泄露应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴自给式呼吸器,穿化学防护服。

不要直接接触泄漏物,在确保安全情况下堵漏。

用大量水冲洗,经稀释的洗水放入废水系统。

用沙土、蛭石或其它惰性材料吸收,然后以少量加入大量水中,调节至中性,再放入废水系统。

如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

人体环境危害:健康危害:侵入途径:吸入、食入。

吸入后对鼻、喉和肺有刺激性引起咳嗽、气短和哮喘等;可因喉头水肿而窒息死亡;可发生肺水肿,引起死亡。

氨水溅入眼内,如不采取急救措施,可造成角膜溃疡、穿孔,并进一步引起眼内炎症,最终导致眼球萎缩而失明。

皮肤接触可致灼伤。

慢性影响:反复低浓度接触,可引起支气管炎。

皮肤反复接触,可致皮炎,表现为皮肤干燥、痒、发红。

环境危害:防护措施: 呼吸系统防护:可能接触其蒸气时,应该佩带防毒面具。

紧急事态抢救或逃生时,建议佩带自给式呼吸器。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服。

手防护:戴防化学品手套。

其它:工作现场禁止吸烟、进食和饮水。

工作后,淋浴更衣。

保持良好的卫生习惯。

4、使用电炉子注意事项:1)如其它加热方式无法替代使用明火电炉的,必须采取有效的防范措施,隔离易燃易爆物品。

2)使用明火电炉期间必须有人在旁边监护,无人监护时,必须将明火电炉关闭。

3)使用明火电炉加热介质时,避免介质溢出流到炉盘上,导致短路。

4)使用明火电炉加热介质时,不能将管口对着人,以免介质被加热后喷出伤人。

5)使用电炉子,不能用湿手拔、插插座,不能把电压打得太大,使用完毕及时关闭电炉子,不能用电炉子用来做非生产用电。

如果电炉子不断电,不能用手随意搬动电炉子,不能对电炉子进行维修操作。

6)加热容器是玻璃、金属容器,加热时应垫上石棉网以免触电和发生短路事故。

分析中需要注意的地方:1、取样时水样一定要混匀。

2、写报告单时一定要标明水样颜色、有无沉淀物。

3、氨水的加入量为,使刚果红试纸变为紫红色后,再加一滴。

加入量过多,或导致分析结果偏高。

4、加入氨水的速度不能太快,刚果红试纸变色很慢,加入一滴氨水要充分混匀后,再观察颜色。

5、比色时,不能超过分光光度计分析铁离子的量程。

6、所分析的水样不透明时,加入盐酸使PH<3时,用净化风吹至水样呈透明,然后检查水样的PH<3,此项操作必须在通风橱中进行。

7、水样煮沸10min,不能让水样剧烈沸腾,8、比色管和比色皿用后要用水清洗干净,然后用1:1的盐酸浸泡。

9、比色时,检查分光光度计的波长510nm,比色皿要擦干净,不能用手摸透光光面。

10、各批试剂的铁含量如不相同,每新配一次试液,都需重新绘制校准曲线。

11、若水样含铁量较高,可适当稀释;浓度低时可换用30mm或50mm的比色皿。

仪器出现的问题及处理办法:1、分光光度计:1)波长选择错误,正确的波长是510nm。

2)卤钨灯能量不够,更换新钨灯。

3)浓度超量程,减少取样量重新分析。

2、电炉子:炉丝断,电炉工作时,不能把电压调至最大。

不需要工作时,及时关闭电炉。

洗三角瓶的次数。

相关文档
最新文档