平面向量数量积的八大热点问题【整理】

合集下载

【教学随笔】平面向量数量积的热点应用问题

【教学随笔】平面向量数量积的热点应用问题

平面向量数量积的热点应用问题“平面向量”除了要掌握平面向量的基本概念,还要突出平面向量的数量积,它是重点,也是高考的热点.一平行问题主要考察向量平行的等价条件:若已知向量且,则。

例1 已知向量且求:x解:由根据向量平行的等价条件得,解得x=4。

二垂直问题主要考察向量垂直的等价条件:若已知向量则。

例2 在中,,求:k的值分析:转化为,进而转化为,从而求出k。

解:由,又,则由向量垂直的等价条件,得,解得k=5。

三求模问题若则,或。

例3 已知向量,若不超过5,求k的取值范围分析:已知模的逆向问题,运用定义即可求参数取值范围解:由又,由模的定义得;解得:。

例4 已知向量,求:的最大值。

分析:模的最值运算问题采用平方进行,能使过程简化,便于求解。

解:由题意,知,又则:的最大值为4。

四求夹角问题求夹角可用公式解决例5 若且,求向量的夹角解:设所求向量的夹角为,由有即又,所以。

五解辨析型问题主要考查向量的数量积,向量积是一种乘法运算,结果是一个数,注意与实数乘法运算的区别,特别是不满足结合律,消去律。

例6 已知是非零平面向量。

命题甲:,乙命题:则甲是乙神么条件?解:命题甲:,得从而得或或,乙命题:,故乙甲,但甲乙,所以甲是乙的必要不充分条件。

六求向量例7已知平面向量中,,,且,求向量解:设向量夹角为,又,则=1,故向量共线并同向,又,所以。

七求数量积例8 已知平面上三点A,B,C满足求:的值。

解法一:运用定义则:=同理:,,所以=。

解法二整体处理由+得:0=9+16+25+,即。

解法三挖掘隐含条件由平面上三点A,B,C构成以B为直角顶点的直角三角形,知故===。

八求解综合问题是指向量与立体几何,解析几何,数列,三角等问题的交汇,综合和创新。

例9 在直角坐标系中,若定点与动点满足,求点P的轨迹方程。

解:由,有,即为所求点P的轨迹方程。

例10 已知直线与圆O:相交于A,B两点,且,则求的值。

解:由圆的几何性质,求得两向量的夹角是,则=为所求的值。

平面向量数量积的八大热点问题【整理】

平面向量数量积的八大热点问题【整理】

平面向量数量积的八大热点问题一、平行问题这类题主要考查向量平行的充要条件:若向量()()a x yb x y →=→=1122,,,,且b →≠→0,则a b x y x y →→⇔-=//12210。

例1. (2005广东)已知向量()()a b x →=→=236,,,,且a b →→//,则x =_______。

解:由a b →→//,根据向量平行的充要条件,得:2630⨯-=x ,解得x =4。

应填4。

二、垂直问题这类问题主要考查两向量垂直的充要条件:若向量()()a x y b x y →=→=1122,,,,则a b x x y y →→⇔+=⊥12120。

例2. (2005福建)在△ABC 中,∠C =90°,()()AB k AC →=→=,,,123,则k 的值是( )A. 5B. -5C.32D. -32解:由()BC AC AB k →=→-→=-22,,又∠C =90°,则BC AC →→⊥由向量垂直的充要条件,得:()22320-+⨯=k ,解得k =5故选A 。

点评:本题运用∠C =90°,转化为BC AC →→⊥,进而转化为x x y y 12120+=,从而求出k 。

三、求模问题若()a x y →=,则||a x y →=+222,或||a x y →=+22,对于求模有时还运用平方法。

例3. (2005湖北)已知向量()()a b k →=-→=225,,,,若||a b →+→不超过5,则k 的取值范围是__________。

解:由()a b k →+→=+32,,又||a b →+→≤5,由模的定义,得:()92252++≤k解得:-≤≤62k ,故填[]-62,。

评注:本题是已知模的逆向题,运用定义即可求参数的取值范围。

例4. (1)(2004全国)已知a b →→,均为单位向量,它们的夹角为60°,那么||a b →+→3=( )A.7B.10C.13D. 4(2)(2004湖南)已知向量()a →=cos sin θθ,,向量()b →=-31,,则||2a b →-→的最大值是___________。

平面向量的数量积及运算律

平面向量的数量积及运算律

平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。

平面向量数量积运算专题(附答案)精编版

平面向量数量积运算专题(附答案)精编版

平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2D.-3+2 2变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B.-126C.112D.-112变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |23.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8D.94.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.325.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.67.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6D.0 8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.11.已知向量a =(sin x ,34),b =(cos x ,-1).当a ∥b 时,求cos 2x -sin 2x 的值;12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值.平面向量数量积运算题型一 平面向量数量积的基本运算例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.(2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2答案 (1)2 (2)D 解析 (1)如图,AE →·AF →=(AB →+BE →)·(AD →+DF →)=(AB →+13BC →)·(AD →+1λDC →)=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos 120°+1λ×2×2+13×2×2+13λ×2×2×cos 120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1, ∴103λ-23=1,∴λ=2. (2)方法一 设|P A →|=|PB →|=x ,∠APB =θ, 则tan θ2=1x,从而cos θ=1-tan 2θ21+tan 2θ2=x 2-1x 2+1.P A →·PB →=|P A →|·|PB →|·cos θ =x 2·x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时取等号,故P A →·PB →的最小值为22-3. 方法二 设∠APB =θ,0<θ<π, 则|P A →|=|PB →|=1tanθ2.P A →·PB →=|P A →||PB →|cos θ =(1tanθ2)2cos θ=cos 2θ2sin 2θ2·(1-2sin 2θ2)=(1-sin 2θ2)(1-2sin 2θ2)sin 2θ2.令x =sin 2θ2,0<x ≤1,则P A →·PB →=(1-x )(1-2x )x=2x +1x-3≥22-3,当且仅当2x =1x ,即x =22时取等号.故P A →·PB →的最小值为22-3.方法三 以O 为坐标原点,建立平面直角坐标系xOy , 则圆O 的方程为x 2+y 2=1, 设A (x 1,y 1),B (x 1,-y 1),P (x 0,0),则P A →·PB →=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=x 21-2x 1x 0+x 20-y 21. 由OA ⊥P A ⇒OA →·P A →=(x 1,y 1)·(x 1-x 0,y 1)=0⇒x 21-x 1x 0+y 21=0, 又x 21+y 21=1,所以x 1x 0=1.从而P A →·PB →=x 21-2x 1x 0+x 20-y 21=x 21-2+x 20-(1-x 21) =2x 21+x 20-3≥22-3.故P A →·PB →的最小值为22-3.点评 (1)平面向量数量积的运算有两种形式:一是依据长度和夹角,二是利用坐标运算,具体应用哪种形式由已知条件的特征来选择.注意两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不应该漏掉其中的“·”.(2)向量的数量积运算需要注意的问题:a·b =0时得不到a =0或b =0,根据平面向量数量积的性质有|a |2=a 2,但|a·b |≤|a |·|b |.变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 答案 9解析 因为OA →⊥AB →,所以OA →·AB →=0.所以OA →·OB →=OA →·(OA →+AB →)=OA →2+OA →·AB →=|OA →|2+0=32=9.题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D.π(2)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( ) A.126 B.-126C.112D.-112答案 (1)A (2)B解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a |·|b |·cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0. ∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)记向量2a -b 与a +2b 的夹角为θ, 又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即2a -b 与a +2b 的夹角的余弦值是-126.点评 求向量的夹角时要注意:(1)向量的数量积不满足结合律,(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角为钝角.变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________. 答案 90°解析 ∵AO →=12(AB →+AC →),∴点O 是△ABC 中边BC 的中点,∴BC 为直径,根据圆的几何性质得AB →与AC →的夹角为90°. 题型三 利用数量积求向量的模例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5D.6(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.答案 (1)A (2)5解析 (1)因为平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°, 所以|2a +b |=(2a )2+b 2+2×|2a |×|b |cos 120° =22×12+22+2×2×1×2×⎝⎛⎭⎫-12=2. (2)方法一 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25, ∴|P A →+3PB →|的最小值为5. 方法二 设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5.点评 (1)把几何图形放在适当的坐标系中,给有关向量赋以具体的坐标求向量的模,如向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可求解.(2)向量不放在坐标系中研究,求解此类问题的方法是利用向量的运算法则及其几何意义或应用向量的数量积公式,关键是会把向量a 的模进行如下转化:|a |=a 2.变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. 答案233解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°.又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0,所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°,所以b ·e 1=|b |·|e 1|cos 30°=1. 所以|b |=233. 高考题型精练1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →等于( ) A.-32a 2B.-34a 2C.34a 2 D.32a 2 答案 D解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝⎛⎭⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.2.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A.min{|a +b |,|a -b |}≤min{|a |,|b |}B.min{|a +b |,|a -b |}≥min{|a |,|b |}C.max{|a +b |2,|a -b |2}≤|a |2+|b |2D.max{|a +b |2,|a -b |2}≥|a |2+|b |2 答案 D解析 由于|a +b |,|a -b |与|a |,|b |的大小关系与夹角大小有关,故A ,B 错.当a ,b 夹角为锐角时,|a +b |>|a -b |,此时,|a +b |2>|a |2+|b |2;当a ,b 夹角为钝角时,|a +b |<|a -b |,此时,|a -b |2>|a |2+|b |2;当a ⊥b 时,|a +b |2=|a -b |2=|a |2+|b |2,故选D.3.(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A.6 B.7 C.8 D.9答案 B解析 ∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.4.如图,在等腰直角△ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设OA →=a ,OB →=b ,OP →=p ,则p ·(b -a )等于( )A.-12B.12C.-32D.32答案 A解析 以OA ,OB 所在直线分别作为x 轴,y 轴,O 为坐标原点建立平面直角坐标系, 则A (1,0),B (0,1),C (34,14),直线l 的方程为y -14=x -34,即x -y -12=0.设P (x ,x -12),则p =(x ,x -12),而b -a =(-1,1),所以p ·(b -a )=-x +(x -12)=-12.5.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.(0,52] B.(52,72] C.(52,2] D.(72,2] 答案 D解析 由题意,知B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心,12为半径的圆的内部.又AB 1→⊥AB 2→,AP →=AB 1→+AB 2→, 所以点A 在以B 1B 2为直径的圆上, 当P 与O 点重合时,|OA →|取得最大值2, 当P 在半径为12的圆周上时,|OA →|取得最小值72,故选D.6.如图所示,△ABC 中,∠ACB =90°且AC =BC =4,点M 满足BM →=3MA →,则CM →·CB →等于( )A.2B.3C.4D.6答案 C解析 在△ABC 中,因为∠ACB =90°且AC =BC =4,所以AB =42,且B =A =45°.因为BM →=3MA →,所以BM →=34BA →.所以CM →·CB →=(CB →+BM →)·CB →=CB →2+BM →·CB →=CB →2+34BA →·CB →=16+34×42×4cos 135°=4.7.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( ) A.2π3 B.π3 C.π6 D.0 答案 B解析 设a 与b 的夹角为θ,由于x i ,y i (i =1,2,3,4)均由2个a 和2个b 排列而成,记S = i =14(x i ·y i ),则S 有以下三种情况:①S =2a 2+2b 2;②S =4a ·b ;③S =|a |2+2a ·b +|b |2.∵|b |=2|a |,∴①中S =10|a |2,②中S =8|a |2cos θ,③中S =5|a |2+4|a |2cos θ. 易知②最小,即8|a |2cos θ=4|a |2,∴cos θ=12,可求θ=π3,故选B.8.(2014·江苏)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.答案 22解析 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB→-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB→2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22.9.设非零向量a ,b 的夹角为θ,记f (a ,b )=a cos θ-b sin θ.若e 1,e 2均为单位向量,且e 1·e 2=32,则向量f (e 1,e 2)与f (e 2,-e 1)的夹角为________. 答案 π2解析 由e 1·e 2=32,可得cos 〈e 1,e 2〉=e 1·e 2|e 1||e 2|=32, 故〈e 1,e 2〉=π6,〈e 2,-e 1〉=π-〈e 2,e 1〉=5π6.f (e 1,e 2)=e 1cos π6-e 2sin π6=32e 1-12e 2,f (e 2,-e 1)=e 2cos5π6-(-e 1)sin 5π6=12e 1-32e 2.f (e 1,e 2)·f (e 2,-e 1)=(32e 1-12e 2)·(12e 1-32e 2)=32-e 1·e 2=0, 所以f (e 1,e 2)⊥f (e 2,-e 1).故向量f (e 1,e 2)与f (e 2,-e 1)的夹角为π2.10.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.11.已知向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,sin B =63,求f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围.解 (1)因为a ∥b ,所以34cos x +sin x =0.所以tan x =-34.故cos 2x -sin 2x =cos 2x -2sin x cos xsin 2x +cos 2x=1-2tan x 1+tan 2x =85.(2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin(2x +π4)+32.由正弦定理,得a sin A =bsin B ,所以sin A =a sin Bb=3×632=22. 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos(2A +π6)=2sin(2x +π4)-12.因为x ∈[0,π3],所以2x +π4∈[π4,11π12].所以32-1≤f (x )+4cos(2A +π6)≤2-12. 所以f (x )+4cos(2A +π6)的取值范围为[32-1,2-12].12.在△ABC 中,AC =10,过顶点C 作AB 的垂线,垂足为D ,AD =5,且满足AD →=511DB →.(1)求|AB →-AC →|;(2)存在实数t ≥1,使得向量x =AB →+tAC →,y =tAB →+AC →,令k =x ·y ,求k 的最小值. 解 (1)由AD →=511DB →,且A ,B ,D 三点共线,可知|AD →|=511|DB →|.又AD =5,所以DB =11.在Rt △ADC 中,CD 2=AC 2-AD 2=75, 在Rt △BDC 中,BC 2=DB 2+CD 2=196, 所以BC =14.所以|AB →-AC →|=|CB →|=14.(2)由(1),知|AB →|=16,|AC →|=10,|BC →|=14. 由余弦定理,得cos A =102+162-1422×10×16=12.由x =AB →+tAC →,y =tAB →+AC →, 知k =x ·y=(AB →+tAC →)·(tAB →+AC →) =t |AB →|2+(t 2+1)AC →·AB →+t |AC →|2 =256t +(t 2+1)×16×10×12+100t=80t 2+356t +80.由二次函数的图象,可知该函数在[1,+∞)上单调递增, 所以当t =1时,k 取得最小值516.。

微重点04 平面向量数量积的最值与范围问题((习题版))

微重点04 平面向量数量积的最值与范围问题((习题版))

微重点04平面向量数量积的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.知识导图考点分类讲解考点一:求参数的最值(范围)规律方法利用共线向量定理及推论(1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.【例1】(2023·漳州模拟)已知△ABC ,点D 满足BC →=34BD →,点E 为线段CD 上异于C ,D 的动点,若AE →=λAB→+μAC →,则λ2+μ2的取值范围是________.【变式1】设非零向量a ,b 的夹角为θ,若|a |=2|b |=2,且不等式|2a +b |≥|a +λb |对任意的θ恒成立,则实数λ的取值范围为()A.[-1,3]B.[-1,5]C.[-7,3]D.[5,7]【变式2】(23-24高三上·黑龙江佳木斯·阶段练习)在ABC 中,点D 在线段AC 上,且满足12AD AC = ,点Q 为线段BD 上任意一点,若实数,x y 满足AQ x AB y AC =+,则24x y +的最小值为.【变式2】.(2023高三·全国·专题练习)已知向量,a b 满足||1,a b == ,且)0R (a b λλ+∈=,则函数()3(1)1f x x x xλ=+>-+的最小值为.【变式4】(2023·深圳模拟)过△ABC 的重心G 的直线l 分别交线段AB ,AC 于点E ,F ,若AE →=λAB →,AF →=μAC →,则λ+μ的最小值为()A.23+2 B.2+223C.43D.1考点二:求向量模、夹角的最值(范围)易错提醒找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π].若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线;若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.【例1】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +r r 共线,则||b c +的最小值为.【例2】(1)已知e 为单位向量,向量a 满足(a -e )·(a -5e )=0,则|a +e |的最大值为()A.4B.5C.6D.7(2)平面向量a ,b 满足|a |=3|b |,且|a -b |=4,则a 与a -b 夹角的余弦值的最小值为________.【变式1】(2023·安庆模拟)已知非零向量a ,b 的夹角为θ,|a +b |=2,且|a ||b |≥43,则夹角θ的最小值为()A.π6B.π4C.π3D.π2【变式2】(2023·杭州模拟)已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围为____________.【变式3】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +rr 共线,则||b c +的最小值为.考点三:求向量数量积的最值(范围)规律方法向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集或方程有解等问题,然后利用函数、不等式或方程的有关知识来解决.【例3】(1)(2023·开封模拟)等腰直角三角形ABC 的直角顶点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,点C 在第一象限,且AB =1,O 为坐标原点,则OC →·OA →的取值范围是()0,2-240,1+22,1,1(2)(2023·全国乙卷)已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA →·PD →的最大值为()A.1+22B.1+222C.1+2D.2+2【变式1】(2023·台州模拟)已知P 是边长为2的正六边形ABCDEF 内(含边界)一点,M 为边BC 的中点,则AP →·AM →的取值范围是()A.[-2,6]B.[-1,9]C.[-2,4]D.[-1,6]【变式2】(2023·邵阳模拟)已知四边形ABCD 是边长为1的正方形,P 为对角线AC 上一点,则PA →·(PB →+PD →)的最小值是()A.0B.-14C.-12D.-2【变式3】(2024高三·江苏·专题练习)已知点M 为直角ABC 外接圆O 上的任意一点,90,1,ABC AB BC ∠=︒=()OA OB BM -⋅的最大值为.强化训练单选题1.(2023·陕西咸阳·模拟预测)已知向量a ,b,且5a b == ,6a b += ,则()ta b t +∈R 的最小值为()A.245B.4C.165D.1252.(23-24高三上·江西吉安·期中)ABC 中,D 为AC 上一点且满足34CD CA = ,若P 为BD 上一点,且满足AP AB AC λμ=+,,λμ为正实数,则下列结论正确的是()A.λμ的最小值为116B.λμ的最大值为1C.114λμ+的最大值为16D.114λμ+的最小值为43.(2024·内蒙古呼和浩特·一模)在ABC 中,D 为线段AC 的一个三等分点,2AD DC =.连接BD ,在线段BD 上任取一点E ,连接AE ,若AE aAC bAB =+,则22a b +的最小值为()A.134B.52C.413D.254.(2023·安徽安庆·二模)已知非零向量a ,b的夹角为θ,2a b += ,且43a b ≥ ,则夹角θ的最小值为()A.π6B.π4C.π3D.π25.(2024·全国·模拟预测)已知非零且不垂直的平面向量,a b满足||||6a b += ,若a 在b 方向上的投影与b 在a 方向上的投影之和等于()2a b ⋅ ,则,a b夹角的余弦值的最小值为()A.227B.127C.13D.236.(23-24高三下·北京海淀·开学考试)已知AB 是圆O :221x y +=的直径,C 、D 是圆O 上两点,且60COD ∠=,则()OC OD AB +⋅的最小值为()A.0B.C.3-D.-7.在ABC 中,点D 为AC 边上的中点,点E 满足3EC BE =,点P 是直线BD ,AE 的交点,过点P 做一条直线交线段AC 于点M ,交线段BC 于点N (其中点M ,N 均不与端点重合)设CM mCA = ,CN nCB =,则m n +的最小值为()C.75D.1658.(23-24高三上·陕西安康·阶段练习)已知O 是ABC 所在平面内一点,若0,,,,,OA OB OC AM xAB AN y AC MO ON x y λ++==== 均为正数,则xy 的最小值为()A.12B.49C.1D.43二、多选题1.(2024·河南·模拟预测)已知O 是坐标原点,平面向量a OA = ,b OB = ,c OC = ,且a是单位向量,2a b ⋅= ,12a c ⋅= ,则下列结论正确的是()A.c a c=- B.若A ,B ,C 三点共线,则2133a b =+C.若向量b a - 与c a -垂直,则2b c a +- 的最小值为1D.向量b a - 与b 的夹角正切值的最大值为42.(2024·广东·模拟预测)如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则下列说法正确的有()A.1233BD BA BC=+ B.132BD BO ⋅=C.BP BC ⋅存在最大值D.x y +1+3.(2023·全国·模拟预测)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,60BAD ∠=︒,12AB AD AA ===,P 为1CC 的中点,点Q 满足[][]()10,1,0,1DQ DC DD λμλμ=+∈∈,则下列结论中正确的是()A.若13λμ+=,则四面体1A BPQ 的体积为定值B.若1A BQ △的外心为O ,则11A B AO ⋅为定值2C.若1AQ =,则点Q 的轨迹长度为4D.若1λ=且12μ=,则存在点1E A B ∈,使得AE EQ +三、填空题1.(2024·湖北·模拟预测)已知向量a ,b 满足2a =r ,1= b ,且a ,b的夹角为π3,则()a b λλ-∈R 的最小值是.2.(23-24高三上·山西太原·期末)已知非零向量a ,b 夹角为2π3,则|2|||a b b +的最小值为.3.(2024高三·全国·专题练习)在四边形ABCD 中,AB AC AD ===AB AD ⊥,则CB CD ⋅的最小值为.四、解答题1.如图,在△ABC 中,2AB =,AC =,cos BAC ∠=D 为BC 的中点,E 为AB 边上的动点(不含端点),AD 与CE 交于点O ,AE xAB =.(1)若14x =,求CO OE 的值;(2)求AO CE ⋅的最小值,并指出取到最小值时x 的值.2.(22-23高三·北京·阶段练习)已知非零平面向量a ,b 的夹角为23π,1a a b =+= .(1)证明:a b -= ;(2)设t ∈R ,求a tb +的最小值.3.(22-23高三上·河南安阳·阶段练习)已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x θθ⎛⎫=+= ⎪⎝⎭(1)若),4(3c =- 且()π,0,π4x θ=∈时,a 与c 的夹角为钝角,求cos θ的取值范围;(2)若π3θ=函数()f x a b =⋅ ,求()f x 的最小值.4.(2023·四川成都·模拟预测)如图,A ,B 是单位圆(圆心为O )上两动点,C 是劣弧 AB (含端点)上的动点.记OC OA OB λμ=+(λ,μ均为实数).(1)若O 到弦AB 的距离是12,求λμ+的取值范围;(2)若532OA OB -≤ ,向量2OA OB +和向量OA OB + 的夹角为θ,求2cos θ的最小值.5.(2022高三·全国·专题练习)如图,已知点G 是边长为1的正三角形ABC 的中心,线段DE 经过点G ,并绕点G 转动,分别交边,AB AC 于点,D E ,设,AD m AB AE n AC ==,其中01,01m n <≤<≤.(1)求11m n的值;(2)求ADEV面积的最小值,并指出相应的,m n的值.。

必修4平面向量数量积考点归纳

必修4平面向量数量积考点归纳

“平面向量”误区警示“平面向量”概念繁多容易混淆,对于初学者更是一头雾水.现将与平面向量基本概念相关的误区整理如下.⑴向量就是有向线段解析:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.有向线段是向量的一种表示方法,不能说向量就是有向线段.⑵若向量 AB 与CD相等,则有向线段AB 与 CD 重合解析:长度相等且方向相同的向量叫做相等向量.因此,若AB = CD ,则有向线段AB 与 CD 长度相等且方向相同,但它们可以不重合.⑶若向量 AB ∥CD,则线段AB∥CD解析:方向相同或相反的非零向量叫做平行向量.故由AB与CD平行,只能得到线段AB 与 CD 方向相同或相反,它们可能平行也可能共线.⑷若向量 AB 与CD共线,则线段AB 与 CD 共线解析:平行向量也叫做共线向量,共线向量就是方向相同或相反的非零向量.故由 AB 与 CD 共线,只能得到线段AB 与 CD 方向相同或相反,它们可能平行也可能共线.⑸若 a ∥ b , b ∥ c ,则 a ∥ c解析:由于零向量与任一向量平行,故当 b = 0 时,向量 a 、 c 不一定平行.当且仅当 a 、 b 、 c 都为非零向量时,才有 a ∥ c .⑹若 | a | =| b | ,则a=b或a=-b解析:由 | a |= | b |,只能确定向量 a 与 b 的长度相等,不能确定其方向有何关系.当 a 与 b 不共线时, a = b 或 a =- b 都不能成立.⑺单位向量都相等解析:长度等于一个长度单位的向量叫做单位向量,由于单位向量的方向不一定相同,故单位向量也不一定相等.⑻若 | a | =0,则a=0解析:向量和实数是两个截然不同的概念,向量组成的集合与实数集合的交集是空集.故若 | a |= 0,则a=0,不能够说 a =0.平面向量数量积四大考点解析考点一 .考查概念型问题例 1. 已知a、b、c是三个非零向量,则下列命题中真命题的个数( )⑴ a b a b a // b ;⑵ a,b反向 a b a b⑶ a b a b a b ;⑷ a=b a b b cA.1B.2C.3D.4评注:两向量同向时,夹角为0( 或 0° ) ;而反向时,夹角为π(或180° );两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0 或π,反过来若两向量的夹角为0 或π ,则两向量共线.考点二、考查求模问题例 2. 已知向量a2,2 ,b 5,k ,若 a b 不超过5,则k的取值范围是__________。

高中 平面向量的数量积 知识点+例题

高中 平面向量的数量积 知识点+例题

辅导讲义――平面向量的数量积[巩固2] 已知a 、b 均为单位向量,它们的夹角为︒60,那么.____=-b a[例7] 已知)1,(x a =,)3,2(x b =,x ≥0,则22ba b a +⋅的取值范围是_________.[巩固] 若P 是边长为2的正三角形ABC 边BC 上的动点,则)(AC AB AP +⋅ 的值恒为______.题型一:平面向量数量积的运算[例](1)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为___________.(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[巩固](1)已知平面向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是________.知识模块2经典题型9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.10.已知△ABC 的内角为A 、B 、C ,其对边分别为a 、b 、c ,B 为锐角,向量m =(2sin B ,-3), n =(cos 2B ,2cos 2B2-1),且m ∥n .(1)求角B 的大小;(2)如果b =2,求S △ABC 的最大值.11.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB →方向上的投影为________..12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于__________. 能力提升训练13.如图所示,在平面四边形ABCD 中,若AC =3,BD =2,则(AB →+DC →)·(AC →+BD →)=________.14.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.15.已知向量p =(2sin x ,3cos x ),q =(-sin x,2sin x ),函数f (x )=p ·q .(1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=1,c =1,ab =23,且a >b ,求a ,b 的值.。

平面向量数量积运算专题(附答案)

平面向量数量积运算专题(附答案)

精心整理平面向量数量积运算题型一平面向量数量积的基本运算例1(1)(2014·天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF.若·=1,则λ的值为________.(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么·的最小值为()A.-4+B.-3+C.-4+题型二例2()A.B.C.(2)()A.B.-题型三例3)A.2C.2(2)|+3|=1,2则|b|=________.高考题型精练1.(2015·山东)已知菱形ABCD的边长为a,∠ABC=60°,则·等于()A.-a2B.-a2C.a2D.a22.(2014·浙江)记max{x,y}=min{x,y}=设a,b为平面向量,则()A.min{|a+b|,|a-b|}≤min{|a|,|b|}B.min{|a+b|,|a-b|}≥min{|a|,|b|}C.max{|a+b|2,|a-b|2}≤|a|2+|b|2D.max{|a+b|2,|a-b|2}≥|a|2+|b|23.(2015·湖南)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为()A.6B.7C.8D.94.的垂线l,PA.-C.-5.A.(0,]C.(,]6.A.2C.42个a 和2个b的夹角为(9.向量f(e122110.如图,在△ABC中,O为BC中点,若AB=1,AC=3,〈,〉=60°,则||=________.11.已知向量a=(sin x,),b=(cos x,-1).当a∥b时,求cos2x-sin2x的值;12.在△ABC中,AC=10,过顶点C作AB的垂线,垂足为D,AD=5,且满足=.(1)求|-|;(2)存在实数t≥1,使得向量x=+t,y=t+,令k=x·y,求k的最小值.平面向量数量积运算题型一平面向量数量积的基本运算例1(1)(2014·天津)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF.若·=1,则λ的值为________.(2)已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为切点,那么·的最小值为()A.-4+B.-3+C.-4+2D.-3+2答案(1)2(2)D解析(1)如图,·=(+)·(=2×2又∵·=∴-=1(2)则tan从而cos·=||·||·=x2·===x2+1即x2方法二则||=||=·=||||cos=()2cos=·(1-2sin2)=.令x=sin2,0<x≤1,则·==2x+-3≥2-3,当且仅当2x=,即x=时取等号.故·的最小值为2-3.方法三以O为坐标原点,建立平面直角坐标系xOy,则圆O的方程为x2+y2=1,设A(x1,y1),B(x1,-y1),P(x0,0),则·=(x1-x0,y1)·(x1-x0,-y1)=x-2x1x0+x-y.由OA⊥PA?·=(x1,y1)·(x1-x0,y1)=0?x-x1x0+y=0,又x+y所以x1x从而·=x=x-2=2x+x故·点评(2)有|a|2=a答案9解析题型二例2() A.C. D.π(2)若平面向量a与平面向量b的夹角等于,|a|=2,|b|=3,则2a-b与a+2b的夹角的余弦值等于()A. B.-C. D.-答案(1)A(2)B解析(1)由(a-b)⊥(3a+2b)得(a-b)·(3a+2b)=0,即3a2-a·b-2b2=0.又∵|a|=|b|,设〈a,b〉=θ,即3|a|2-|a|·|b|·cosθ-2|b|2=0,∴|b|2-|b|2·cosθ-2|b|2=0.∴cosθ=.又∵0≤θ≤π,∴θ=.(2)记向量2a-b与a+2b的夹角为θ,又(2a-b)2=4×222(a+2b)2(2a-b=8-18故cosθ即2a-b点评答案解析∴点O∴BC题型三例3)A.2C.2D.6(2)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为________.答案(1)A(2)5解析(1)因为平面向量a和b,|a|=1,|b|=2,且a与b的夹角为120°,所以|2a+b|===2.(2)方法一以D为原点,分别以DA、DC所在直线为x、y轴建立如图所示的平面直角坐标系,设DC=a,DP=x.∴D(0,0),A(2,0),C(0,a),B(1,a),P(0,x),=(2,-x),=(1,a-x),∴+3=(5,3a-4x),|+3|2=25+(3a-4x)2≥25,∴|+3|方法二∴=(1=+=∴+3|+3|2=2∴|+3|点评a=(x,y)化:|a|=1,2则|b|=答案解析-b·e2=0,即1212111=1.所以|b|=.高考题型精练1.(2015·山东)已知菱形ABCD的边长为a,∠ABC=60°,则·等于()A.-a2B.-a2C.a2D.a2答案 D解析如图所示,由题意,得BC=a,CD=a,∠BCD=120°.BD2=BC2+CD2-2BC·CD·cos120°=a2+a2-2a·a×=3a2,∴BD=a.∴·=||||cos30°=a2×=a2.2.(2014·浙江)记max{x,y}=min{x,y}=设a,b为平面向量,则()A.min{|a+b|,|a-b|}≤min{|a|,|b|}B.min{|a+b|,|a-b|}≥min{|a|,|b|}C.max{|a+b|2,|a-b|2}≤|a|2+|b|2D.max{|2222答案解析|a+b|>|a2>|a|2+|b|2;当|++|A.6C.8答案解析∴AC∴4.的垂线l,PA.-C.-D.答案 A解析以OA,OB所在直线分别作为x轴,y轴,O为坐标原点建立平面直角坐标系,则A(1,0),B(0,1),C(,),直线l的方程为y-=x-,即x-y-=0.设P(x,x-),则p=(x,x-),而b-a=(-1,1),所以p·(b-a)=-x+(x-)=-.5.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]答案 D解析.又⊥所以点当P与当P故选D.6.A.2C.4答案解析所以=.所以·=2个a 和2个b的夹角为(答案解析设a与b的夹角为θ,由于x i,y i(i=1,2,3,4)均由2个a和2个b排列而成,记S=(x i·y i),则S有以下三种情况:①S=2a2+2b2;②S=4a·b;③S=|a|2+2a·b+|b|2.∵|b|=2|a|,∴①中S=10|a|2,②中S=8|a|2cosθ,③中S=5|a|2+4|a|2cosθ.易知②最小,即8|a|2cosθ=4|a|2,∴cosθ=,可求θ=,故选B.8.(2014·江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,·=2,则·的值是________.答案22解析由=3,得==,=+=+,=-=+-=-.因为·=2,所以(+)·(-)=2,即2-·-2=2.又因为2=25,2=64,所以·=22.9.设非零向量a,b的夹角为θ,记f(a,b)=a cosθ-b sinθ.若e1,e2均为单位向量,且e1·e2=,则向量f(e1,e2)与f(e2,-e1)的夹角为________.答案解析由e1·e2=,可得cos〈e1,e2〉==,故〈e1,f(e1,e2)f(e2,-f(e1,e2所以f(e1故向量f10.答案解析),即2=(1+311.(1)当a(2)b=2,sin B解(1)所以tan故cos2x==.(2)f(x)=2(a+b)·b=2(sin x+cos x,-)·(cos x,-1)=sin2x+cos2x+=sin(2x+)+.由正弦定理,得=,所以sin A===.所以A=或A=.因为b>a,所以A=.所以f(x)+4cos(2A+)=sin(2x+)-.因为x∈[0,],所以2x+∈[,].所以-1≤f(x)+4cos(2A+)≤-.所以f(x)+4cos(2A+)的取值范围为[-1,-].12.在△ABC中,AC=10,过顶点C作AB的垂线,垂足为D,AD=5,且满足=.(1)求|-|(2)解(1)可知||=在Rt△在Rt△所以BC所以|-|(2)由(1)由x=+知k=x=(+t)·(=t||2+(t=256t+=80t2+所以当t=1时,k取得最小值516.。

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲 平面向量的数量积 (精讲)(含答案解析)

第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。

平面向量的数量积知识点整理

平面向量的数量积知识点整理

平面向量的数量积知识点整理1.定义与性质:-向量的数量积定义为:设有两个向量A=(A₁,A₂)和A=(A₁,A₂),则它们的数量积定义为A·A=A₁A₁+A₂A₂。

-数量积的结果是一个实数。

2.计算方法:-垂直坐标法:直接计算坐标相乘再相加。

-几何解释法:通过几何图形来计算,利用向量的长度和夹角的三角函数关系。

-运算律:满足交换律、分配律和结合律。

3.辅助定理:-平行四边形法则(平行四边形法则):设有向量A、A和A,则有A·A+A·A=A·(A+A)。

-向量延长线法则:设有向量A和向量A,则有A·A=A·A。

4.性质:-零向量性质:零向量与任何向量的数量积都等于0,即A·A=A。

-等量向量性质:等量向量的数量积等于它们的模长的乘积,即A·A=∣A∣∣A∣。

-单位向量性质:单位向量与任意向量的数量积等于原向量的模长乘以单位向量的模长,即A·A=∣A∣,其中A为单位向量。

-归一型:对于任何非零向量A,总是可以找到一个单位向量A,使得A=∣A∣A。

5.夹角与正交性:- 夹角余弦定理:设有向量A和向量A,则有A·A =∣A∣∣A∣cosθ,其中θ为A与A之间的夹角。

-夹角性质:若A·A=0,则A与A垂直,称为正交向量或垂直向量。

-垂直定理:当且仅当A·A=0时,A与A垂直。

6.平面向量能否为0?-若A·A=0,则向量A与向量A相互垂直。

-反之,若向量A与向量A相互垂直,则A·A=0。

7.一些常用公式的推导:- 向量投影:设有向量A和向量A,A为向量A在向量A上的投影,则有A = (∣A∣cosθ)A,其中θ为两向量之间的夹角,A为单位向量。

- 向量投影的计算公式:向量A在向量A上的投影A的大小为∣A∣cosθ,其中A为两向量之间的夹角。

8.应用:-判断两向量是否垂直。

平面向量的数量积知识点整理

平面向量的数量积知识点整理

平面向量的数量积知识点整理平面向量的数量积是向量分析中比较重要的概念之一、它的定义形式上类似于常见的点乘,可以用来刻画向量的夹角、垂直关系以及向量在另一个向量上的投影等。

在此处,我将整理出平面向量的数量积的相关知识点,并进行详细解释。

一、平面向量的数量积的定义在二维平面内,对于任意两个向量A、B,其数量积(又称为点积或内积)定义为:A·B = ,A,,B,cosθ其中,A,是向量A的模(长度),B,是向量B的模,θ是A和B 之间的夹角。

二、数量积的性质1.交换律:A·B=B·A2.分配律:(A+B)·C=A·C+B·C3.数量积的倍乘:-(kA)·B=k(A·B)-A·(kB)=k(A·B)4.数量积的平方:A·A=,A,^2三、向量夹角的判断对于任意两个非零向量A、B,如果它们的数量积满足A·B=0,则称A和B是垂直的;如果数量积满足A·B>0,则称A和B是锐角的;如果数量积满足A·B<0,则称A和B是钝角的。

四、向量在另一个向量上的投影对于一个非零向量A和任意一个向量B,A在B上的投影定义为:投影向量P=(A·B/,B,^2)B五、数量积的几何意义1.两个向量的夹角等于它们之间的数量积和它们的模的乘积的余弦值的反余弦:θ = arccos(A·B / [,A,,B,])2.向量A在向量B上的投影的模等于A与B的数量积除以B的模的平方:P,=,A·B,/,B,^2六、数量积的应用1.判断两个向量是否垂直:-若A·B=0,则A和B垂直;-若A⊥B,则A和B垂直。

2.判断两个向量的夹角的大小:-若A·B>0,则0°<θ<90°;-若A·B<0,则90°<θ<180°。

(整理)平面向量数量积的坐标表示

(整理)平面向量数量积的坐标表示

平面向量的数乘运算的坐标运算一、知识精讲1.两向量的数量积与两向量垂直的坐标表示设向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积两个向量的数量积等于它们的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=02.三个重要公式[小问题·大思维]1.已知向量a=(x,y),与向量a共线的单位向量a0的坐标是什么?提示:∵a0=±a|a|=±1x2+y2(x,y),∴a0=(-xx2+y2,-yx2+y2)或a 0=(xx 2+y 2,y x 2+y 2).2.向量a =(x 1,y 1),b =(x 2,y 2),则向量a 在向量b 方向上的投影怎样用a ,b 的坐标表示?提示:向量a 在向量b 方向上的投影为|a |cos θ(θ为向量a 与b 的夹角),而cos θ=a·b |a ||b |, ∴|a |cos θ=a·b |b |=x 1x 2+y 1y 2x 22+y 22. 二、典例精析例1、已知向量a =(1,3),b =(2,5),c =(2,1),求:(1)2a ·(b -a );(2)(a +2b )·c .[自主解答] 法一:(1)∵2a =2(1,3)=(2,6),b -a =(2,5)-(1,3)=(1,2),∴2a ·(b -a )=(2,6)·(1,2)=2×1+6×2=14.(2)∵a +2b =(1,3)+2(2,5)=(1,3)+(4,10)=(5,13),∴(a +2b )·c =(5,13)·(2,1)=5×2+13×1=23.法二:(1)2a ·(b -a )=2a·b -2a 2=2(1×2+3×5)-2(1+9)=14.(2)(a +2b )·c=a·c +2b·c=1×2+3×1+2(2×2+5×1)=23.本例条件中“c =(2,1)”若变为“c =(2,k )”,且“(a -c )⊥b ”,求k .解:∵a =(1,3),c =(2,k ),∴a -c =(-1,3-k ),又(a -c )⊥b ,∴-1×2+(3-k )×5=0,∴k =135. 变式训练若向量a =(4,-3),|b |=1,且a·b =5,求向量b .例2、平面直角坐标系xOy 中,O 是原点(如图).已知点A (16,12)、B (-5,15).(1)求| OA u u r |,|AB u u u r |;(2)求∠OAB .变式练习已知a ,b 为平面向量,a =(4,3),2a +b =(3,18),则a ,b 的夹角θ的余弦值等于( )A.865 B .-865 C.1665 D .-1665 答案:C例3、已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,如图,求D 点及AD u u u r 的坐标.变式练习设a=(m+1,-3),b=(1,m-1),若(a+b)⊥(a-b),求m的值.解:法一:∵a+b=(m+2,m-4),a-b=(m,-m-2),又(a+b)⊥(a-b),∴(a+b)·(a-b)=0,即(m+2,m-4)·(m,-m-2)=0.∴m2+2m-m2+2m+8=0.∴m=-2.法二:∵(a+b)⊥(a-b),∴(a+b)·(a-b)=0,a2=b2,则m2+2m+10=2+m2-2m,解得m=-2.解题高手已知向量a=(3,-1)和b=(1,3),若a·c=b·c,试求模为2的向量c 的坐标.三、课后检测一、选择题1.(2012·辽宁高考)已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( )A .-1B .-12 C.12 D .1解析:由a =(1,-1),b =(2,x )可得a ·b =2-x =1,故x =1.答案:D2.已知点A (-1,0)、B (1,3),向量a =(2k -1,2),若AB u u u r ⊥a ,则实数k 的值为( )A .-2B .-1C .1D .2解析:AB u u u r =(2,3),a =(2k -1,2),由AB u u u r ⊥a 得2×(2k -1)+6=0,解得k =-1.答案:B3.已知向量OA u u u r =(2,2),OB u u u r =(4,1),在x 轴上有一点P ,使AP u u u r ·BP u u u r 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:设P (x,0),则AP u u u r =(x -2,-2),BP u u u r =(x -4,-1),∴AP u u u r ·BP u u u r =(x -2)(x -4)+2=x 2-6x +10=(x -3)2+1,故当x =3时,AP u u u r ·BP u u u r 最小,此时P (3,0).答案:C4.平行四边形ABCD 中,AC 为一条对角线,若AB u u u r =(2,4),AC u u u r =(1,3),则AD u u u r ·BDu u u r 等于( )A .6B .8C .-8D .-6解析:如图,AD u u u r =BC u u u r =AC u u u r -AB u u u r =(1,3)-(2,4)=(-1,-1),BD u u u r =AD u u u r -AB u u u r =(-1,-1)-(2,4)=(-3,-5),则AD u u u r ·BD u u u r =(-1)×(-3)+(-1)×(-5)=8.答案:B二、填空题5.已知向量a =(3,4),b =(2,-1),如果向量a +xb 与-b 垂直,则实数x 的值为________. 解析:∵向量a +xb 与-b 垂直,∴(a +xb )·(-b )=-a·b -xb 2=-2-5x =0,∴x =-25. 答案:-256.已知A (1,2),B (3,4),|n |=2,则|AB u u u r ·n |的最大值为________.解析:AB u u u r =(2,2),|AB u u u r |=22,|AB u u u r ·n |≤|AB u u u r ||n |=4,当且仅当AB u u u r 与n 共线且同向时取等号.答案:47.向量BA u u u r =(4,-3),向量BC u u u r =(2,-4),则△ABC 的形状为________.解析:AC u u u r =BC u u u r -BA u u u r =(2,-4)-(4,-3)=(-2,-1),而AC u u u r ·BC u u u r =(-2,-1)·(2,-4)=0,所以AC u u u r ⊥BC u u u r ,又|AC u u u r |≠|BC u u u r |,所以△ABC 是直角非等腰三角形.答案:直角三角形8.若将向量a =(2,1)围绕原点按逆时针方向旋转π4得到向量b ,则向量b 的坐标为________.解析:设b =(x ,y ),由已知条件得|a |=|b |,a·b =|a ||b |cos 45°.∴⎩⎪⎨⎪⎧ x 2+y 2=5,2x +y =5×5×22,解得⎩⎨⎧ x =22,y =322,或⎩⎨⎧ x =322,y =-22. ∵向量a 按逆时针旋转π4后,向量对应的点在第一象限,∴x >0,y >0,∴b =⎝⎛⎭⎫22,322. 答案:⎝⎛⎭⎫22,322 三、解答题9.已知在△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .(1)求证:AB ⊥AC ;(2)求向量AD u u u r ;(3)求证:AD 2=BD ·CD .解:(1)∵AB u u u r =(-1,-2)-(2,4)=(-3,-6),AC u u u r =(4,3)-(2,4)=(2,-1),AB u u u r ·AC u u u r =-3×2+(-6)×(-1)=0,∴AB ⊥AC . (2) BC u u u r =(4,3)-(-1,-2)=(5,5).设BD u u u r =λBC u u u r =(5λ,5λ)则AD u u u r =AB u u u r +BD u u u r=(-3,-6)+(5λ,5λ)=(5λ-3,5λ-6),由AD ⊥BC 得5(5λ-3)+5(5λ-6)=0,解得λ=910, ∴AD u u u r =(32,-32). (3)证明:AD 2u u u u r =94+94=92, |BD u u u r |=50λ2=922,|BC u u u r |=52,|CD u u u r |=|BC u u u r |-|BD u u u r |=22. ∴|AD u u u r |2=|BD u u u r |·|CD u u u r |,即AD 2=BD ·CD .10.平面内有向量OA u u u r =(1,7),OB u u u r =(5,1),OP u u u r =(2,1),点M 为直线OP 上的一动点. (1)当MA u u u r ·MB u u u r 取最小值时,求OM u u u r 的坐标;(2)在(1)的条件下,求cos ∠AMB 的值.解:(1)设OM u u u r =(x ,y ),∵点M 在直线OP 上,∴向量OM u u u r 与OP u u u r 共线,又OP u u u r =(2,1). ∴x ×1-y ×2=0,即x =2y .∴OM u u u r =(2y ,y ).又MA u u u r =OA u u u r -OM u u u r ,OA u u u r =(1,7), ∴MA u u u r =(1-2y,7-y ).同理MB u u u r =OB u u u r -OM u u u r =(5-2y,1-y ).于是MA u u u r ·MB u u u r =(1-2y )(5-2y )+(7-y )(1-y )=5y 2-20y +12. 可知当y =202×5=2时,MA u u u r ·MB u u u r 有最小值-8,此时OM u u u r =(4,2).(2)当OM u u u r =(4,2),即y =2时,有MA u u u r =(-3,5),MB u u u r =(1,-1), |MA u u u r |=34,|MB u u u r |=2,MA u u u r ·MB u u u r =(-3)×1+5×(-1)=-8.cos ∠AMB =MA u u u r ·MB u u u r |MA u u u r ||MB u u u r |=-834×2=-41717.。

平面向量的数量积

平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。

专题20 平面向量的数量积-2018年高考数学(文)热点题型和提分秘籍

专题20 平面向量的数量积-2018年高考数学(文)热点题型和提分秘籍

1.理解平面向量数量积的含义及其几何意义2.了解平面向量的数量积与向量投影的关系3.掌握数量积的坐标表达式,会进行平面向量数量积的运算4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系热点题型一平面向量的数量积运算例1、【2017课标II,文12】已知ABC∆是边长为2的等边三角形,P为平面ABC内一点,则()PA PB PC⋅+的最小是()A.2- B. D.1-【答案】B【热点题型】【高频考点解读】【变式探究】 (1)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =__________。

(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点.则DE →·CB →的值为__________,DE →·DC →的最大值为__________。

【答案】(1)2 (2)1 1【解析】(1)由c =t a +(1-t )b 得,b ·c =t a ·b +(1-t )b 2=0,整理得t |a ||b |c os60°+(1-t )|b |2=0,化简得12t +1-t =0,所以t =2。

(2)方法一:如图所示,以AB ,A D 所在的直线分别为x ,y 轴建立直角坐标系,设E (t ,0),0≤t ≤1,则D (0,1),B (1,0),C (1,1),DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=1。

【提分秘籍】向量数量积的两种计算方法(1)当已知向量的模和夹角θ时,可利用定义法求解,即a·b =|a ||b |cos θ。

(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2。

【举一反三】已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=__________。

高考数学专题二 微专题19 平面向量的数量积及最值与范围问题

高考数学专题二 微专题19 平面向量的数量积及最值与范围问题
专题二 平面向量、三角函数与解三角形
微专题19
平面向量的数量积 及最值与范围问题
考情分析
平面向量的数量积有关的最值和范围问题是高考的热点之一, 其基本题型是根据已知条件求某个变量的范围、最值,比如向 量的模、数量积、夹角、系数的范围等.解决思路是建立目标 函数的解析式,转化为求函数(二次函数、三角函数)等的最值 或应用基本不等式.同时向量兼顾“数”与“形”的双重身份, 所以还有一种思路是数形结合,应用图形的几何性质.一般难 度较大.
=x-322+(y-2)2-245.
又x-322+(y-2)2 表示圆 x2+y2=1 上一点到点32,2距离的平方,圆 心(0,0)到点32,2的距离为52, 所以P→A·P→B∈52-12-245,52+12-245, 即P→A·P→B∈[-4,6].
跟踪训练2 (1)如图,已知 AOB 是半径为 4,圆心角为π2的扇形,点 E,
(2)已知向量 a,b 满足a-b=3,a=2b,设 a-b 与 a+b 的夹角为 θ, 则 cos θ 的最小值为
A.45
√B.35
C.13
D.25
令b2=t,则a2=4b2=4t, 则a-b2=(a-b)2=a2-2a·b+b2=9,2a·b=5t-9, 由 5t-9=2a·b≤2ab=4t 得 t≤9, 由 5t-9=2a·b≥-2ab=-4t 得 t≥1, 所以 1≤t≤9,a+b= a+b2= a2+2a·b+b2= 10t-9, 所以 cos θ=aa++bb·aa--bb= 1a02t--b92×3= 10tt-9= 10tt-2 9, 令 y=10tt-2 9,显然 y>0,t2-10yt+9y=0,
解得1≤z≤3,所以z的最大值是3,即λ+μ的最大值是3.

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结

平面向量的数量积知识点及归纳总结知识点精讲一、平面向量的数量积(1) 已知两个非零向量a 和b ,作OA →=a ,OB →=b ,∠AOB =θ(0≤θ≤π)叫作向量a 与b 的夹角.记作,a b ,并规定,a b []0,π∈.如果a 与b 的夹角是2π,就称a 与b 垂直,记为a b ⊥.(2) |a || b |cos ,a b 叫作a 与b 的数量积(或内积),记作a b ⋅,即a b ⋅=| a || b |cos ,a b . 规定:零向量与任一向量的数量积为0.两个非零向量a 与b 垂直的充要条件是a b ⋅=0. 两个非零向量a 与b 平行的充要条件是a b ⋅=±| a || b |. 二、平面向量数量积的几何意义数量积a b ⋅等于a 的长度| a |与b 在a 方向上的射影| b |cos θ的乘积.即a b ⋅=| a || b |cos θ.( b 在a 方向上的射影| b |cos θa b a⋅=;a 在b 方向上的射影| a |cos θa b b⋅=).三.平面向量数量积的重要性质 性质1 ||cos e a a e a θ⋅=⋅=. 性质2 .a b a b 0⊥⇔⋅=性质3 当a 与b 同向时||||a b a b ⋅=;当当a 与b 反向时-||||a b a b ⋅=.22||a a a a ⋅==或||a 性质4 cos ().||||a ba 0b 0a b 且θ⋅=≠≠性质5 ||||||.a b a b ⋅≤注利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题. 四、平面向量数量积满足的运算律 (1)a b=b a ⋅⋅(交换律);(2)()=()(a b a b a b λλλλ⋅⋅=⋅为实数); (3)(+)=a b c a c b c ⋅⋅+⋅(分配律)。

平面向量的数量积知识点整理

平面向量的数量积知识点整理

平面向量的数量积知识点整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平面向量的数量积一、平面向量数量积的含义1. 平面向量数量积的运算1.已知2,5,(1)||a b a b ==若; (2) a b ⊥;(3) a b 与的夹角为030,分别求.2.△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅_________3.在ABC ∆中,已知7=AB ,5=BC ,6=AC ,则________2.夹角问题1.已知|a |=4,|b|=3, a ·b=6,求a 与b 夹角2.已知,a b 是两个非零向量,且a b a b ==-,则与的夹角为____3.已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为_____4.若1,2,a b c a b ===+,且c a ⊥,则向量a 与向量b 的夹角为5.已知向量、不共线,且||||=,则+与-的夹角为 __________6.在ABC ∆中=,= ,=,则下列推导正确的是__ _① 若0<•则ABC ∆是钝角三角形 ② 若0=•,则ABC ∆是直角三角形③ 若•=•, 则ABC ∆是等腰三角形 ④ 若||||c b a -=,则ABC ∆是直角三角形 ⑤ 若c a b c b a •=•=•,则△ABC 是正三角形 3.运算律1.下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅则a c =;⑥22a a =;⑦2a b b a a ⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量数量积的八大热点问题
一、平行问题
这类题主要考查向量平行的充要条件:若向量()()
a x y
b x y →=→=1122,,,,且b →≠→
0,则a b x y x y →→
⇔-=//12210。

例1. (2005广东)已知向量()()a b x →=→=236,,,,且a b →→
//,则x =_______。

解:由a b →→
//,根据向量平行的充要条件,得:
2630⨯-=x ,解得x =4。

应填4。

二、垂直问题
这类问题主要考查两向量垂直的充要条件:若向量()()a x y b x y →=→
=1122,,,,则a b x x y y →→
⇔+=⊥12120。

例2. (2005福建)在△ABC 中,∠C =90°,()()AB k AC →=→
=,,,123,则k 的值是( )
A. 5
B. -5
C.
32
D. -
32
解:由()BC AC AB k →=→-→=-22,,又∠C =90°,则BC AC →→⊥
由向量垂直的充要条件,得:
()22320-+⨯=k ,解得k =5
故选A 。

点评:本题运用∠C =90°,转化为BC AC →→
⊥,进而转化为x x y y 12120+=,从而求出k 。

三、求模问题
若()a x y →=,则||a x y →=+2
22
,或||a x y →=
+22,对于求模有时还运用平方法。

例3. (2005湖北)已知向量()()a b k →=-→=225,,,,若||a b →+→
不超过5,则k 的取值范围是__________。

解:由()a b k →+→=+32,,又||a b →+→
≤5,由模的定义,得:
()92252
++≤k
解得:-≤≤62k ,故填[]
-62,。

评注:本题是已知模的逆向题,运用定义即可求参数的取值范围。

例4. (1)(2004全国)已知a b →→,均为单位向量,它们的夹角为60°,那么||a b →+→
3=( )
A.
7
B.
10
C.
13
D. 4
(2)(2004湖南)已知向量()a →=cos sin θθ,,向量(
)
b →
=
-31,,
则||2a b →-→
的最大值是___________。

解:(1)||||||||cos ||a b a a b b →+→=→+→→︒+→=++=3660913913222
所以||a b →+→
=313,故选C 。

(2)由题意,知||||sin a b a b →=→=→→=-⎛⎝ ⎫

⎪1223,,·πθ
又||sin 24488316222
a b a a b b →-→=→-→→+→=--⎛⎝ ⎫
⎭⎪≤·πθ
则||2a b →-→
的最大值为4。

评注:模的问题采用平方法能使过程简化。

四、求夹角问题
求夹角可用cos ||||
θ=→→→→a b
a b ··解决。

例5. (2005北京)若||||a b c a b →=→=→=→+→12,,,且c a →→⊥,则向量a →与b →
的夹角为( )
A. 30°
B. 60°
C. 120°
D. 150°
解:设所求两向量的夹角为θ,由c a →→
⊥,有
()a b a →+→→=·0,即a b a →→=-→·||2 又cos ||||||||||
θ=→→→→=-→→→=-a b a b a a b ·21
2
所以θ=120°,而选C 。

五、辩析型问题
主要考查向量的数量积是向量间的一种乘法运算,结果是一个数量,注意与实数的乘法运算区别,特别是不满足结合律,消去律。

例6. (2004湖北)已知a b c →→→,,为非零的平面向量。

甲:a b a c →→=→→··,乙:b c →=→
,则( )
A. 甲是乙的充分条件但不是必要条件
B. 甲是乙的必要条件但不是充分条件
C. 甲是乙的充要条件
D. 甲既不是乙的充分条件也不是乙的必要条件
解:命题甲:由a b a c →→=→→
·· 得a b c →→-→
=·()0
从而a →=→0,或b c →=→
,或a b c →→-→⊥()。

命题乙:b c →=→
故乙⇒甲,但甲/⇒,故甲是乙的必要但不充分条件,而选B 。

六、求向量
例7. (2004江苏)平面向量a b →→,中,已知()a b →=→=431,,||,且a b →→
=·5,则向量
b →
=____________。

解:设a b →→
,所成的角为θ
又||a →=5,则cos ||||
θ=→→
→→=a b
a b ·1
故向量a b →→
,共线并同向
又||b →=1,故()b a a →=→→=-=-⎛⎝ ⎫⎭
⎪||
15434
535,,
七、求数量积
例8. (2004浙江)已知平面上三点A 、B 、C 满足||||||AB BC CA →=→=→
=345,,,则AB BC BC CA CA AB →→+→→+→→
···的值等于___________。

解法1:运用定义a b a b →→=→→
·||||cos θ
()AB BC AB BC B →→=→→
-·||||cos π
=-=-⨯+-⨯⨯=1212345234
222
cos B
()()BC CA BC CA C C CA AB CA AB A A →→=→→
-=-=-⨯+-⨯⨯=-→→=→→
-=-=-⨯+-⨯⨯=-··||||cos cos ||||cos cos ππ202045324516
1515534253
9
222
222
以上三式相加,得所求为-25 解法2:整体处理
由()||||||()AB BC CA AB BC CA AB BC BC CA CA AB →+→+→=→+→+→+→→+→→+→→22222···
即0916252=+++→→+→→+→→
()AB BC BC CA CA AB ···
得AB BC BC CA CA AB →→+→→+→→
=-···25,故填-25。

解法3:挖掘隐含AB BC →→
=·0。

由平面上三点A ,B ,C 构成以B 为直角顶点的直角三角形,知AB BC →→
=·0
故AB BC BC CA CA AB →→+→→+→→···
=→→+→→=→→+→=→→=-→=-BC CA CA AB CA BC AB CA AC
CA ····()
2
25
八、交汇问题
是指向量与立几、解几、数列、三角等的交汇题,创新题。

例9. (1)(2005上海)直角坐标平面xoy 中,若定点A (1,2)与动点P (x ,y )满足OP OA →→
=·4,则
点P 的轨迹方程是___________________。

(2)(2005湖南)已知直线ax by c ++=0与圆O x y :2
2
1+=相交于A 、B 两点,且AB =
3,则
OA OB →→
=·___________。

解:(1)由OP OA →→
=·4,有
()()124,·,x y =,即x y +=24
故应填x y +-=240
(2)先由圆的几何性质,求得两向量的夹角是120°,则
OA OB OA OB →→=→→︒=-·||||cos12012
故填-
12。

评注:第(2)小题关键是运用几何法求出两向量的夹角,再运用向量的数量积公式即可。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档