常用坐标系及其转换
大地测量常用坐标系及其转换

常用坐标系及其转换
1、常用坐标系
大地坐标系:以地球椭球面为参考面的地球椭球面坐标系(LBH)。
(参心、地心)
空间直角坐标系(XYZ)
站心(局部)直角坐标系(UNE)极坐标系
直角坐标系原点位于测站点
U轴与测站点法线重合,指向天顶
N轴垂直于U轴,指向(北)
E轴形成左手系(东)
站心极坐标系用极距、方位角和高度角表示
常用坐标系及其转换
1、常用坐标系
高斯直角坐标系(xyH)
高斯投影的条件是:
满足正形投影条件(柯西黎曼方程)
中央子午线投影后为直线
中央子午线投影后长度不变(其它线变长)
2、坐标系转换
XYZ LBH(同一参考系下换算)
XYZ NEU(同一参考系下换算,已知站心的大地或空间直角坐标) 不同参考系下坐标系转换(用XYZ转换公式,B 模型和M
模型,七参数-平移量旋转量各3,一个尺度因子;
四参数一般是针对平面坐标的转换-2个平移,一个旋转,一个尺度) LBH xyH(球面化为平面,注意中央子午线选取和分带,H为大地高)
2、坐标系转换
不同坐标系之间常用BURSA 模型,七参数)
2、坐标系转换
局部小范围内,对高斯平面坐标可用四参数模型
四、我国的大地坐标系
(一)、1954年北京坐标系
(二)、1980年国家大地坐标系
(三)、2000中国大地坐标系CGCS2000
(四)、新1954年北京坐标系
(五)、1978地心坐标系
(六)、1988地心坐标系。
坐标系转换方法和技巧

坐标系转换方法和技巧1.二维坐标系转换:二维坐标系转换是将平面上的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
2.三维坐标系转换:三维坐标系转换是将空间中的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
3.地理坐标系转换:地理坐标系转换是将地球表面点的经纬度坐标转换为平面坐标系(如UTM坐标系)或其他地理坐标系中的点。
常用的方法有投影转换和大地坐标转换。
-投影转换:根据不同的地理投影模型,将地理坐标系中的点投影到平面上。
常用的地理投影包括墨卡托投影、兰伯特投影等。
-大地坐标转换:根据椭球模型和大地测量的理论,将地理坐标系中的点转换为具有X、Y、Z三维坐标的点。
常见的大地坐标系包括WGS84和GCJ-02等。
4.坐标系转换的技巧:-精度控制:在坐标系转换过程中,需要注意精度的控制,以确保转换后的坐标满足要求。
-参考点选择:在坐标系转换过程中,选取合适的参考点可以提高转换的准确性和稳定性。
-坐标系转换参数的确定:在进行坐标系转换时,需要确定旋转角度、平移量和比例尺等参数,可以通过多点共面条件、最小二乘法等方法进行确定。
-转换效率优化:针对大规模的坐标系转换,可以采用分块处理、并行计算等技术来提高转换效率。
在进行坐标系转换时,需要根据具体的需求选择适当的方法和技巧,并结合具体的软件工具进行实现。
同时,还需要注意坐标系转换的精度和准确性,确保转换结果符合要求。
第1讲坐标系种类及坐标转换

第1讲坐标系种类及坐标转换在数学和物理学中,坐标系是用于表示和定位点的一组数学规则。
它可以帮助我们在平面或空间中精确地描述和测量位置、方向和距离。
坐标系通常由坐标轴和原点组成,坐标轴是一条直线,它们与原点形成直角。
有多种类型的坐标系,每一种都有特定的用途和应用。
以下是常见的几种坐标系:1.直角坐标系:直角坐标系也称为笛卡尔坐标系,是最常见的坐标系。
它由两条垂直的坐标轴和一个原点组成。
坐标轴可以是水平的x轴和垂直的y轴,或者在三维空间中可以加上一个垂直的z轴。
直角坐标系使用(x,y,z)来表示点的坐标,其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。
2.极坐标系:极坐标系用于描述平面上的点,它由一个原点和一个角度和距离组成。
极坐标系以原点为中心,用一个角度(通常用弧度表示)表示点与参考线(通常是x轴)之间的角度,用一个距离表示点与原点之间的距离。
极坐标系使用(r,θ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线之间的角度。
3.柱坐标系:柱坐标系是三维空间中的一种坐标系,它由一个原点、一个角度、一个距离和一个高度组成。
柱坐标系类似于极坐标系,但增加了一个垂直的z轴来表示高度。
柱坐标系使用(r,θ,z)来表示点的坐标,其中r表示点与原点的水平距离,θ表示点与参考线(通常是x轴)之间的角度,z表示点的高度。
4.球坐标系:球坐标系也是三维空间中的一种坐标系,它由一个原点、一个纬度、一个经度和一个距离组成。
球坐标系使用(r,θ,φ)来表示点的坐标,其中r表示点与原点的距离,θ表示点与参考线(通常是z轴)之间的纬度,φ表示点在参考平面上的经度。
在不同的坐标系之间进行转换时,我们需要使用特定的转换公式。
以直角坐标系和极坐标系为例,我们可以使用以下公式进行转换:x = r * cos(θ)y = r * sin(θ)r = sqrt(x^2 + y^2)θ = atan2(y, x)这些公式使我们能够在不同坐标系之间相互转换,并确保保持位置的准确性。
浅析几种常用坐标系和坐标转换

浅析⼏种常⽤坐标系和坐标转换⼀般来讲,GPS直接提供的坐标(B,L,H)是1984年世界⼤地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为⼤地⾼即是到WGS-84椭球⾯的⾼度。
⽽在实际应⽤中,我国地图采⽤的是1954北京坐标系或者1980西安坐标系下的⾼斯投影坐标(x,y,),不过也有⼀些电⼦地图采⽤1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),⾼程⼀般为海拔⾼度h。
GPS的测量结果与我国的54系或80系坐标相差⼏⼗⽶⾄⼀百多⽶,随区域不同,差别也不同,经粗落统计,我国西部相差70⽶左右,东北部140⽶左右,南部75⽶左右,中部45⽶左右。
现就上述⼏种坐标系进⾏简单介绍,供⼤家参阅,并提供各坐标系的基本参数,以便⼤家在使⽤过程中⾃定义坐标系。
1、1984世界⼤地坐标系WGS-84坐标系是美国国防部研制确定的⼤地坐标系,是⼀种协议地球坐标系。
WGS-84坐标系的定义是:原点是地球的质⼼,空间直⾓坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)⽅向,即国际协议原点CIO,它由IAU和IUGG共同推荐。
X轴指向BIH定义的零度⼦午⾯和CTP⾚道的交点,Y轴和Z,X轴构成右⼿坐标系。
WGS-84椭球采⽤国际⼤地测量与地球物理联合会第17届⼤会测量常数推荐值,采⽤的两个常⽤基本⼏何参数:长半轴a=6378137m;扁率f=1:298.2572235632、1954北京坐标系1954北京坐标系是将我国⼤地控制⽹与前苏联1942年普尔科沃⼤地坐标系相联结后建⽴的我国过渡性⼤地坐标系。
属于参⼼⼤地坐标系,采⽤了前苏联的克拉索夫斯基椭球体。
其长半轴 a=6378245,扁率 f=1/298.3。
1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。
3、1980西安坐标系1978年,我国决定建⽴新的国家⼤地坐标系统,并且在新的⼤地坐标系统中进⾏全国天⽂⼤地⽹的整体平差,这个坐标系统定名为1980年西安坐标系。
常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换一、大地坐标系和空间大地直角坐标系及其关系大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。
同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用.空间大地直角坐标系是-种以地球质心为原点购亘墮®坐标系,一般用X 、化Z 表 示点BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。
对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。
现今,利用卫星大地测量的手段*可以迅速地测定点的空间大地直角坐拯,广泛应用于导航定位等空间技术。
同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。
、大地坐标系和空间大地直角坐标系的转换如图7- 23所示’尸点的位置用空间 大地直角坐标〔X, Y, Z)表示,其相应 的大地坐标为(E, L)a 将该图与图?一5上式表明了 2种基本坐标系之间的关系。
加以比较可见,图7-5中的子午椭圆平面 相当于图7-23中的OJVP 平面.其中 PPz=Z.相当于图7-5中的j7;OP 3相当 丫于图7-5中的仏两平面的经度乙可视为相同,等于"叽 于是可以直接写岀X=jrcQsi f Y=jrsinL, Z=y将式(7-21).式(7-20)分别代入上式, 井考虑式(7-26)得X=Ncos^cosZr ”Y =NcQsBsinL > (7—78)Z=N (1—护〉sin^ ;BB 7-231.由大地坐标求空间大地直角坐标当已知椭球面上任一点P 的大地坐标(B, L)时,可以按式(7-78)直接求该点的 空间大地直角坐标(X, Y, Z)。
测量中的常用坐标系及坐标转换概述

三、坐标转换
5、高斯投影的邻带换算
应用高斯投影正反算公式间接进行换带计算:实质是把椭球 面上的大地坐标作为过渡坐标,首先把某投影带(比如I带)内 有关点的平面坐标(x,y) I ,利用高斯投影反算公式换算成椭球 面上的大地坐标(B ,ι),进而得到L=L10+ ι,然后再由大地坐 标(B ,ι),利用投影正算公式换算成相邻带第Ⅱ带的平面坐标 (x,y) Ⅱ,在这一步计算中,要根据第Ⅱ带的中央子午线L20来 计算经差ι,此时ι=L- L20
大地高H:某点沿投影方向到基准面(参考椭球面)的距离。
在大地坐标系中,某点的位置用(B , L,H)来表示。
二、测量中的各种坐标系
2、空间直角坐标系
定义:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤 道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴。
在空间直角坐标系中,某点的位置用(X,Y,Z)来表示。
二、测量中的各种坐标系
3、平面直角坐标系
在小区域进行测量工作若采用大地坐标来表示地面点位置是不方便的, 通常采用平面直角坐标系。 测量工作以x轴为纵轴,以y轴为横轴 投影坐标:为了建立各种比例尺地形图的控制及工程测量控制,一般应 将椭球面上各点的大地坐标按照一定的规律投影到平面上,并以相应的 平面直角坐标表示。
三、坐标转换
3、大地坐标同空间直角坐标的变换
X N cos B cos L Y N cos B sin L Z N (1 e 2 ) sin B
三、坐标转换
4、大地坐标与高斯平面坐标的变换
将大地坐标转换为高斯平面坐标,按照高斯投影正算公式 进行。
高斯投影正算公式:
x X 0 0.5 N sin B cos B l 2 y N cos B l 1 / 6 N cos3 B l 3 (1 t 2 2 )
坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。
坐标转换就是转换参数。
常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。
对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。
确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。
其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。
对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。
详细方法见第三类。
3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。
浅谈几种坐标系的坐标转换

浅谈几种坐标系的坐标转换在计算机图形学和计算机视觉领域,不同的坐标系在模拟和仿真方面发挥着重要的作用。
在这篇文章中,我们将浅谈几种坐标系的坐标转换。
这些坐标系包括笛卡尔坐标系、极坐标系、柱坐标系、球坐标系、欧拉角坐标系和四元数坐标系。
1. 笛卡尔坐标系笛卡尔坐标系是所有坐标系中使用最普遍的坐标系。
在笛卡尔坐标系中,一个点在一个平面内由x,y坐标确定,在3D空间中由x,y,z坐标确定。
笛卡尔坐标系是一种直角坐标系,其中的任何一点都可以由其从原点到该点的距离和其与x轴之间的角度确定。
2. 极坐标系极坐标系是一种使用极径和极角来确定环境中一个点的位置的坐标系。
在极坐标系中,距离和角度都是必需的。
它可以表示欧几里德平面上的所有点,但不适合用于仿真。
3. 柱坐标系柱坐标系是一种使用半径、角度和高度来定位三维空间中某个点的坐标系。
柱坐标系通常用于有相关圆柱体或柱状物的仿真问题。
4. 球坐标系球坐标系是一种使用经度、纬度和距离来定位三维空间中某个点的坐标系。
球坐标系适合模拟宇宙和行星的运动。
5. 欧拉角坐标系欧拉角坐标系是一种使用三个地址向量来描述中心在旋转、移动或缩放的三维物体的位置的坐标系。
用户可以选择旋转的角度以及旋转的方向和顺序。
欧拉角坐标系是用于机器人学、模拟和游戏编程中常用的坐标系。
6. 四元数坐标系四元数坐标系是一种四元数作为坐标系统的数学模型,用于描述三维空间中旋转。
四元数坐标系具有良好的数学性质,适合用于计算机图形学和数据处理方面。
关于坐标系的转换,通常包括从笛卡尔坐标系到其他坐标系的转换和从其他坐标系到笛卡尔坐标系的转换。
这可以通过一些基本的公式和规则来实现。
例如,笛卡尔坐标系到极坐标系的转换可以使用以下公式:r = sqrt(x^2 + y^2)theta = atan(y / x)其中r是极径,theta是极角。
综上所述,坐标系在计算机图形学和计算机视觉领域中扮演着非常重要的角色,它们可以用于描述物体的位置、方向和大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、WGS-84大地坐标系 (地心坐标系)
WGS-84(World Geodetic System,1984年) 是美国国防部研制确定的大地坐标系。
几何定义:
ZWGS84
原点—在地球质心
BIH定义的
Z轴—指向 BIH 1984.0 零子午圈
定义的协议地球 (1984.0)
P
N
CTP
赤道
平面
(CTP)方向。
位置并不是固定的,因而, 地极点在地球表面上的位 置,是随时间而变化的, 这种现象称为极移。
研究分析表明,极移周期有两种:一种周期约为 一年,振幅约为0.1″的变化;另一种周期约为432天, 振幅约为0.2″的变化,即张德勒(S.C.Chandler )周期 变化。
➢ 地极移动在平面上的投影
+0.5″
➢ 为什么选用空间直角坐标系? 任一点的空 间位置可由该点在三个坐标
面的投影(X,Y,Z)唯一地确定,通过坐 标平移、旋转和尺度转换,可以将一个点的 位置方便的从一个坐标系转换至另一个坐标 系。与某一空间直角坐标系所相应的大地坐 标系(B,L,H),只是坐标表现形式不 同,实质上是完全等价的,两者之间可相互 转化。
B arctan{Z(N H) /[ X 2 Y 2 N(1 e2) H)]}
H Z / sin B N (1 e2 )
式中, N a / 1 e2 sin2 B ,N为该点的卯酉圈
曲率半径。
➢ 瞬时地球坐标系 原点:地球质心 Z轴—指向瞬时地球自转轴 X轴—指向格林尼治子午面
与瞬时赤道的交点
PN(协议)
P
Z
M
O
X
Y
E (协议)
赤道 平面
Y
平地球坐标系的Z轴指
X
向国际协定原点CIO 。
PS
➢ 协议地球坐标系和瞬时地球坐标系之间的转换 地极的瞬时坐标由国际地球自转服务组织
(International Earth Rotation Service-IERS)根据多 个台站计算出来的。协议地球坐标系和瞬时地球坐 标系之间的转换关系为:
X cos cos
Pn
Y sin cos
Z sin
X2 Y2 Z2
arctan Y
arctan X Z
X2 Y2
s
r M δz
α
x
y
γ
x
Ps
y
天球 赤道
➢ 岁差和章动的影响
岁差:地球实际上不是一个理 想的球体,地球自转轴 方向不再保持不变,这 使春分点在黄道上产生 缓慢的西移,这种现象 在天文学中称为岁差。
➢ 协议天球坐标系: 或仅作匀速直线运动 为了建立一个与惯性坐标系统相接近的坐标
系,人们通常选择某一时刻,作为标准历元,并将 此刻地球的瞬时自转轴(指向北极)和地心至瞬时 春分点的方向,经过瞬时的岁差和章动改正后,分 别作为X轴和Z轴的指向,由此建立的坐标系称为协 议天球坐标系。
协议天球坐标系CIS (惯性坐标系):z
右手坐标系。
PS
大地坐标系的定义: 地球椭圆的中心与
地球质心重合,椭球短 轴与地球自转轴重合, 大地纬度B为过地面点 的椭球法线与椭球赤道 面的夹角,大地经度L 为过地面点的椭球子午 面与格林尼治平子午面 之间的夹角,大地高H 为地面点沿椭球法线至 椭球面的距离。
起始子午面 (首子午面)
大地经度L
PN 赤道
P 平面
H
O B
n L
大地纬度B PS
任一地面点P在地球坐标系中的坐标,可表示为 (X,Y,Z)或(B,L,H),两种坐标系之间的转 换为:
X (N H ) cosB cosL
Y (N H ) cosBsin L
Z [( N (1 e2 ) H ]sin B
L arctan Y X
第十章 坐标系统
§2.1 天球坐标系和地球坐标系 §2.2 WGS-84坐标系和我国的大地坐标系 §2.3 坐标系统之间的转换 §2.4 时间系统
➢ 为什么提出坐标系? 描述物体运动,必须有参照物,为描述物
体运动而选择的所有参照物叫参照系(参考 系)。参照系是粗略的,不精确的,必须建 立坐标系。准确和完善的描述物体的运动, 观测的结果模拟及 表示或解释需要建立一个 坐标系统。
Z
PN
P Z O
赤道 平面
Y轴—与x轴、z轴构
X
Y
Y
成右手系
E
X
PS
注:极移的存在,致使地面点的坐标具有类似周期性
的变化,使用起来十分不便。
➢ 协议地球坐标系(CTS)
1960年国际大测量
Z
与地球物理联合会决定 以1900.0~1905.0五年地 球自转轴瞬时位置的平 均值作为地球的固定级 称为国际协定原点CIO。
➢ GPS定位采用坐标系在:空间的位置和方向应保持不变,
或仅作匀速直线运动。
在GPS定位测量中,采用两类坐标系, 即天球坐标系与地球坐标系,两坐标系的坐 标原点均在地球的质心,而坐标轴指向不 同。天球坐标系是一种惯性坐标系,其坐标 原点及各坐标轴指向在空间保持不变,用于 描述卫星运行位置和状态。地球坐标系随同 地球自转,可看作固定在地球上的坐标系, 用于描述地面观测站的位置。
协议天球 坐标系
三、站心赤道直角坐标系和站心地平直角坐标系
站心地平直角坐标系能够比较直观方便的描述
卫星与观测站之间的瞬时距离、方位角和高度角,
了解卫星在天空中的分布情况。
O-XYZ球心空间直角坐标系 P-xyz站心地平直角坐标系
Z
Z
z
x
y
P
Y
XH
P- XY Z站心赤道直角坐标系
O Y
B L
X
返回
§2.2 WGS-84坐标系和我国的大地坐标系
Πn
γ
M
ε
点 要为的南基黄 准极 点。和基准面。
Ps
黄道
天球 赤道
Πs
远日点
地球
春分点
太阳
近日点
秋分点
天球空间直角坐标(X,Y,Z)的定义:
原点—地球质心M Z轴—指向天球北极Pn X轴—指向春分点 Y轴—垂直于XMZ平面,
与X轴和Z轴构成右 手坐标系统。
Z
Pn
Πn
M
ε γ
X
黄道
Y
Πs
天球球面坐标(α,δ,γ)的定义:
BJ54坐标系的几何定义:
大地原点在前苏联的普尔科沃天文台。空 间直角坐标系的原点在参考椭球的中心,Z轴 平行于地球质心指向地极原点JYD1968的方向, X轴在大地起始子午面内与Z轴垂直指向经度 零方向, Y轴与Z、X轴构成右手坐标系。
1954北京坐标系椭球常数采用克拉索夫斯基 Krassovsky椭球参数,基本常数为:
自BJ54建立以来,在该坐标系内进行了许多地区 的局部平差,其成果得到了广泛的应用。
§2.1 天球坐标系和地球坐标系
一、天球坐标系
天球:指以地球质心M为中心,半径r为任意长度
的一个假想的球体 。
Pn
天 轴 赤 球 赤黄黄天 转 轴 点 其 P球垂道相道黄 中 黄 天 中 交 靠 注 面s道赤南轴轴;中P春黄球时道赤直面交。通极心道球靠点近:,n交:与天与的天P分道向,的和道 的 。 的过, 面 的 近 为 南 是:春n角地天极天延轴点 上 北 黄 交P为面 平 天 大地通 且 的 交 北 北 天 分 建s球:球。极 伸 与称:从 半 道 点北与 面 球 圆球过 垂 直 点 天 黄 极 点 立公黄相夹直 天:为当天 球 与 。天天 质 , 赤 ,天 直 线 。 极 极 的 参和转道交角线 球地天太球 运 天极心球 称 道 称球 于 与 其 的 , 交 考天的与的。为 的球极阳南 行 球,M赤 为 面 为系球轨赤大天交自,在半赤为与道天与天的道道道圆天:球天球重赤面的。
➢ 怎样定义一个坐标系?
坐标系固连在参照系上,且与参照系同
步运动。要完全定义一个三维空间直角坐标
系必须明确指出:
P
①坐标原点的位置。
r
②三个坐标轴的指向。
③长度单位。
空间直角坐标系符合右手法则或左手法则:
z
z
ቤተ መጻሕፍቲ ባይዱ
o
y
o
y
x 右手坐标系
x 左手坐标系
注: 一经定义坐标系,空间一点对应一组坐标,坐 标系不同,坐标值也不同。
x
x
y Ry (xp )Rx ( y p ) y
z
CTS
z
t
➢ 协议地球坐标系和协议天球坐标系之间的转换
X
x
Y Ry (xp )Rx ( yp )Rz (G )N y
Z
CTS
z
CIS
协议地球坐标 系(平地球坐 标系)
瞬时极地 球坐标系
真天球 坐标系
平天球 坐标系
1975.0
-0.2″
1
CIO 1971.0
+0.2″
瞬时极:随时间变化的极点。 瞬时自转轴:随时间变化的自转轴。
➢ 瞬时天球坐标系:
原点:地球质心 坐标轴指向: z轴——指向瞬时地球自
转轴 x轴——指向瞬时春分点 y轴——与x轴、z轴构成
右手坐标系
Z
Pn
Πn
M
ε γ
X
黄道
Y
Πs
在空间的位置和方向应保持不变,
z
天球中心与地球质心M
Pn
重合,赤经α为含天轴和
春分点的天球子午面与 过天体s的天球子午面之 间的夹角,赤纬δ为原点 M至天体s的连线与天球 赤道面之间的夹角,向
s
r M δz
α
x
y
γ
y 天球
径γ为原点M至天体s的距