外文资料及翻译(1)

合集下载

外文文献及翻译

外文文献及翻译

外文文献原稿和译文原稿DATABASEA database may be defined as a collection interrelated data store together with as little redundancy as possible to serve one or more applications in an optimal fashion .the data are stored so that they are independent of programs which use the data .A common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base .One system is said to contain a collection of database if they are entirely separate in structure .A database may be designed for batch processing , real-time processing ,or in-line processing .A data base system involves application program, DBMS, and database.THE INTRODUCTION TO DATABASE MANAGEMENT SYSTEMSThe term database is often to describe a collection of related files that is organized into an integrated structure that provides different people varied access to the same data. In many cases this resource is located in different files in different departments throughout the organization, often known only to the individuals who work with their specific portion of the total information. In these cases, the potential value of the information goes unrealized because a person in other departments who may need it does not know it or it cannot be accessed efficiently. In an attempt to organize their information resources and provide for timely and efficient access, many companies have implemented databases.A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, the names, telephone numbers, and addresses of all the people you know. You may have recorded this data in an indexed address book, or you may have stored it on a diskette using a personalcomputer and software such as DBASE Ⅲor Lotus 1-2-3. This is a collection of related data with an implicit meaning and hence is a database.The above definition of database is quite general. For example, we may consider the collection of words that made up this page of text to be usually more restricted. A database has the following implicit properties:● A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot be referred to as a database.● A database is designed, built, and populated with data for a specific purpose. It has an intended group of user and some preconceived applications in which these users are interested.● A database represents some aspect of the real world, sometimes called the miniworld. Changes to the miniworld are reflected in the database.In other words, a database has some source from which data are derived, some degree of interaction with events in the real world, and an audience that is actively interested in the contents of the database.A database management system (DBMS) is composed of three major parts: (1) a storage subsystem that stores and retrieves data in files; (2)a modeling and manipulation subsystem that provides the means with which to organize the data and to add, delete, maintain, and update the data; and (3) an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems.●Managers who require more up-to-date information to make effective decisions.●Customers who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.●Users who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.●Organizations that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or p oorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “mange” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers. In a file-oriented system, user needing special information may communicate their needs to a programmer, who, when time permits, will write one or more programs to extract the data and prepare the information. The availability of a DBMS, however, offers users a much faster alternative communications path.DATABASE QUERYIf the DBMS provides a way to interactively enter and update the database ,as well as interrogate it ,this capability allows for managing personal database. However, it does not automatically leave an audit trail of actions and does not provide the kinds of controls necessary in a multi-user organization .There controls are only available when a set of application programs is customized for each data entry and updating function.Software for personal computers that perform some of the DBMS functions has been very popular .Individuals for personal information storage and processing intended personal computers for us .Small enterprises, professionals like doctors, architects, engineers, lawyers and so on have also used these machines extensively. By the nature of intended usage ,database system on there machines are except from several of the requirements of full-fledged database systems. Since data sharing is not intended, concurrent operations even less so ,the software can be less complex .Security and integrity maintenance are de-emphasized or absent .as data volumes will be small, performance efficiency is also less important .In fact, the only aspect of a database system that is important is data independence. Data independence ,as stated earlier ,means that application programs and user queries need not recognize physical organization of data on secondary storage. The importance of this aspect , particularly for the personal computer user ,is that this greatly simplifies database usage . The user can store ,access and manipulate data at ahigh level (close to the application)and be totally shielded from the low level (close to the machine )details of data organization.DBMS STRUCTURING TECHNIQUESSpatial data management has been an active area of research in the database field for two decades ,with much of the research being focused on developing data structures for storing and indexing spatial data .however, no commercial database system provides facilities for directly de fining and storing spatial data ,and formulating queries based on research conditions on spatial data.There are two components to data management: history data management and version management .Both have been the subjects of research for over a decade. The troublesome aspect of temporal data management is that the boundary between applications and database systems has not been clearly drawn. Specifically, it is not clear how much of the typical semantics and facilities of temporal data management can and should be directly incorporated in a database system, and how much should be left to applications and users. In this section, we will provide a list of short-term research issues that should be examined to shed light on this fundamental question.The focus of research into history data management has been on defining the semantics of time and time interval, and issues related to understanding the semantics of queries and updates against history data stored in an attribute of a record. Typically, in the context of relational databases ,a temporal attribute is defined to hold a sequence of history data for the attribute. A history data consists of a data item and a time interval for which the data item is valid. A query may then be issued to retrieve history data for a specified time interval for the temporal attribute. The mechanism for supporting temporal attributes is to that for supporting set-valued attributes in a database system, such as UniSQL.In the absence of a support for temporal attributes, application developers who need to model and history data have simply simulated temporal attributes by creating attribute for the time interval ,along with the “temporal” attribute. This of course may result in duplication of records in a table, and more complicated search predicates in queries. The one necessary topic of research in history data management is to quantitatively establish the performance (and even productivity) differences betweenusing a database system that directly supports attributes and using a conventional database system that does not support either the set-valued attributes or temporal attributes.Data security, integrity, and independenceData security prevents unauthorized users from viewing or updating the database. Using passwords, users are allowed access to the entire database of the database, called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.Data integrity refers to the accuracy, correctness, or validity of the data in the database. In a database system, data integrity means safeguarding the data against invalid alteration or destruction. In large on-line database system, data integrity becomes a more severe problem and two additional complications arise. The first has to do with many users accessing the database concurrently. For example, if thousands of travel agents book the same seat on the same flight, the first agent’s booking will be lost. In such cases the technique of locking the record or field provides the means for preventing one user from accessing a record while another user is updating the same record.The second complication relates to hardware, software or human error during the course of processing and involves database transaction which is a group of database modifications treated as a single unit. For example, an agent booking an airline reservation involves several database updates (i.e., adding the passenger’s name and address and updating the seats-available field), which comprise a single transaction. The database transaction is not considered to be completed until all updates have been completed; otherwise, none of the updates will be allowed to take place.An important point about database systems is that the database should exist independently of any of the specific applications. Traditional data processing applications are data dependent.When a DMBS is used, the detailed knowledge of the physical organization of the data does not have to be built into every application program. The application program asks the DBMS for data by field name, for example, a coded representationof “give me customer name and balance due” would be sent to the DBMS. Without a DBMS the programmer must reserve space for the full structure of the record in the program. Any change in data structure requires changes in all the applications programs.Data Base Management System (DBMS)The system software package that handles the difficult tasks associated with creating ,accessing and maintaining data base records is called a data base management system (DBMS). A DBMS will usually be handing multiple data calls concurrently.It must organize its system buffers so that different data operations can be in process together .It provides a data definition language to specify the conceptual schema and most likely ,some of the details regarding the implementation of the conceptual schema by the physical schema.The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model “.At the present time ,there are four underling structures for database management systems. They are :List structures.Relational structures.Hierarchical (tree) structures.Network structures.Management Information System(MIS)An MIS can be defined as a network of computer-based data processing procedures developed in an organization and integrated as necessary with manual and other procedures for the purpose of providing timely and effective information to support decision making and other necessary management functions.One of the most difficult tasks of the MIS designer is to develop the information flow needed to support decision making .Generally speaking ,much of the information needed by managers who occupy different levels and who have different levels and have different responsibilities is obtained from a collection of exiting information system (or subsystems)Structure Query Language (SQL)SQL is a data base processing language endorsed by the American NationalStandards Institute. It is rapidly becoming the standard query language for accessing data on relational databases .With its simple ,powerful syntax ,SQL represents a great progress in database access for all levels of management and computing professionals.SQL falls into two forms : interactive SQL and embedded SQL. Embedded SQL usage is near to traditional programming in third generation languages .It is the interactive use of SQL that makes it most applicable for the rapid answering of ad hoc queries .With an interactive SQL query you just type in a few lines of SQL and you get the database response immediately on the screen.译文数据库数据库可以被定义为一个相互联系的数据库存储的集合。

产业集群的外文翻译及原文(族群与集群竞争力)

产业集群的外文翻译及原文(族群与集群竞争力)

英文文献资料(一)Clusters and the New Economics of CompetitionMichael E. Porter(Harvard university)Why Clusters Are Critical to CompetitionModern competition depends on productivity, not on access to inputs or the scale of individual enterprises.Productivity rests on how companies compete,not on the particular fields they compete panies can be highly productive in any industry–shoes, agriculture, or semiconductors – if they employ sophisticated methods, use advanced technology,and offer unique products and services. All industries can employ advanced technology; all industries can be knowledge intensive.The sophistication with which companies compete in a particular location, however, is strongly influenced by the quality of the local business environment.1 Companies cannot employ advanced logistical techniques, for example, without a high quality transportation infrastructure. Nor can companies effectively compete on sophisticated service without well-educated employees. Businesses cannot operate efficiently under onerous regulatory red tape or under a court system that fails to resolve disputes quickly and fairly. Some aspects of the business environment, such as the legal system, for example, or corporate tax rates, affect all industries. In advanced economies, however, the more decisive aspects of the business environment are often cluster specific; these constitute some of the most important microeconomic foundations for competition.Clusters affect competition in three broad ways:first, by increasing the productivity of companies based in the area; second, by driving the direction and pace of innovation, which underpins future productivity growth; and third, by stimulating the formation of new businesses, which expands and strengthens the cluster itself. A cluster allows each member to benefit as if it had greater scale or as if it had joined with others formally – without requiring it to sacrifice its flexibility.Clusters and Productivity. Being part of a cluster allows companies to operate more productively in sourcing inputs; accessing information, technology,and needed institutions; coordinating with related companies; and measuring and motivating improvement.Better Access to Employees and Suppliers. Companies in vibrant clusters can tap into an existing pool of specialized and experienced employees, thereby lowering their search and transaction costs in recruiting. Because a cluster signals opportunity and reduces the risk of relocation for employees, it can also be easier to attract talented people from other locations, a decisive advantage in some industries.A well-developed cluster also provides an efficient means of obtaining other important inputs.Such a cluster offers a deep and specialized supplier base. Sourcing locally instead of from distant suppliers lowers transaction costs. It minimizes the need for inventory, eliminates importing costs and delays, and –because local reputation is important –lowers the risk that suppliers will overprice or renege on commitments. Proximity improves communications and makes it easier for suppliers to provide ancillary or support services such as installation and debugging. Other things being equal, then, local outsourcing is a better solution than distantoutsourcing, especially for advanced and specialized inputs involving embedded technology, information, and service content.Formal alliances with distant suppliers can mitigate some of the disadvantages of distant outsourcing. But all formal alliances involve their own complex bargaining and governance problems and can inhibit a company’s flexibility. The close, informal relationships possible among companies in a cluster are often a superior Arrangement.In many cases, clusters are also a better alternative to vertical pared with in-house units, outside specialists are often more cost effective and responsive, not only in component production but also in services such as training. Although extensive vertical integration may have once been the norm, a fast-changing environment can render vertical integration inefficient, ineffective, and inflexible.Even when some inputs are best sourced from a distance, clusters offer advantages. Suppliers trying to penetrate a large, concentrated market will price more aggressively, knowing that as they do so they can realize efficiencies in marketing and in service.Working against a cluster’s advantages in assembling resources is the possibility that competition will render them more expensive and scarce. But companies do have the alternative of outsourcing many inputs from other locations, which tends to limit potential cost penalties. More important, clusters increase not only the demand for specialized inputs but also their supply.Access to Specialized Information. Extensive market, technical, and competitive information accumulates within a cluster, and members have preferred access to it. In addition, personal relationships and community ties foster trust and facilitate the flow of information. These conditions make information more transferable.Complementarities. A host of linkages among cluster members results in a whole greater than the sum of its parts. In a typical tourism cluster, for example, the quality of a visitor’s experience depends not only on the appeal of the primary attraction but also on the quality and efficiency of complementary businesses such as hotels, restaurants, shopping outlets, and transportation facilities. Because members of the cluster are mutually dependent, good performance by one can boost the success of the others.Complementarities come in many forms. The most obvious is when products complement one another in meeting customers’ needs, as the tourism example illustrates. Another form is the coordination of activities across companies to optimize their collective productivity. In wood products, for instance, the efficiency of sawmills depends on a reliable supply of high-quality timber and the ability to put all the timber to use – in furniture (highest quality), pallets and boxes (lower quality), or wood chips (lowest quality). In the early 1990s, Portuguese sawmills suffered from poor timber quality because local landowners did not invest in timber management. Hence most timber was processed for use in pallets and boxes, a lower-value use that limited the price paid to landowners. Substantial improvement in productivity was possible, but only if several parts of the cluster changed simultaneously.Logging operations, for example, had to modify cutting and sorting procedures, while sawmills had to develop the capacity to process wood in more sophisticated ways. Coordination to develop standard wood classifications and measures was an important enabling step. Geographically dispersed companies are less likely to recognize and capture such linkages.Other complementarities arise in marketing. A cluster frequently enhances the reputation of a location in a particular field, making it more likely that buyers will turn to a vendor based there.Italy’s strong reputation for fashion and design, for example, benefits companies involved in leather goods, footwear, apparel, and accessories. Beyond reputation, cluster members often profit from a variety of joint marketing mechanisms, such as company referrals, trade fairs, trade magazines, and marketing delegations.Finally, complementarities can make buying from a cluster more attractive for customers. Visiting buyers can see many vendors in a single trip. They also may perceive their buying risk to be lower because one location provides alternative suppliers. That allows them to multisource or to switch vendors if the need arises. Hong Kong thrives as a source of fashion apparel in part for this reason.Access to Institutions and Public Goods. Investments made by government or other public institutions– such as public spending for specialized infrastructure or educational programs – can enhance a company’s productivity. The ability to recruit employees trained at local programs, for example, lowers the cost of internal training. Other quasi-public goods, such as the cluster’s information and technology pools and its reputation, arise as natural by-products of competition.It is not just governments that create public goods that enhance productivity in the private sector. Investments by companies –in training programs, infrastructure, quality centers, testing laboratories, and so on – also contribute to increased productivity. Such private investments are often made collectively because cluster participants recognize the potential for collective benefits.Better Motivation and Measurement. Local rivalry is highly motivating. Peer pressure amplifies competitive pressure within a cluster,even among noncompeting or indirectly competing companies. Pride and the desire to look good in the local community spur executives to attempt to outdo one another.Clusters also often make it easier to measure and compare performances because local rivals share general circumstances – for example, labor costs and local market access – and they perform similar activities. Companies within clusters typically have intimate knowledge of their suppliers’ costs. Managers are able to compare costs and employees’performance with other local companies. Additionally, financial institutions can accumulate knowledge about the cluster that can be used to monitor performance.Clusters and Innovation. In addition to enhancing productivity, clusters play a vital role in a company’s ongoing ability to innovate. Some of the same characteristics that enhance current productivity have an even more dramatic effect on innovation and productivity growth.Because sophisticated buyers are often part of a cluster, companies inside clusters usually have a better window on the market than isolated competitors do. Computer companies based in Silicon Valley and Austin, Texas, for example, plug into customer needs and trends with a speed difficult to match by companies located elsewhere. The ongoing relationships with other entities within the cluster also help companies to learn early about evolving technology, component and machinery availability, service and marketing concepts, and so on. Such learning is facilitated by the ease of making site visits and frequent face-to-face contact.Clusters do more than make opportunities for innovation more visible. They also provide the capacity and the flexibility to act rapidly. A company within a cluster often can source what it needs to implement innovations more quickly. Local suppliers and partners can and do get closely involved in the innovation process, thus ensuring a better match with customers’ requirements.Companies within a cluster can experiment at lower cost and can delay large commitments until they are more assured that a given innovation will pan out. In contrast, a company relying ondistant suppliers faces greater challenges in every activity it coordinates with other organizations –in contracting, for example, or securing delivery or obtaining associated technical and service support. Innovation can be even harder in vertically integrated companies, especially in those that face difficult trade-offs if the innovation erodes the value of in-house assets or if current products or processes must be maintained while new ones are developed.Reinforcing the other advantages for innovation is the sheer pressure – competitive pressure, peer pressure, constant comparison – that occurs in a cluster. Executives vie with one another to set their companies apart. For all these reasons, clusters can remain centers of innovation for decades.Clusters and New Business Formation.It is not surprising, then, that many new companies grow up within an existing cluster rather than at isolated locations. New suppliers, for example, proliferate within a cluster because a concentrated customer base lowers their risks and makes it easier for them to spot market opportunities. Moreover, because developed clusters comprise related industries that normally draw on common or very similar inputs, suppliers enjoy expanded opportunities.Clusters are conducive to new business formation for a variety of reasons. Individuals working within a cluster can more easily perceive gaps in products or services around which they can build businesses. Beyond that, barriers to entry are lower than elsewhere. Needed assets, skills, inputs, and staff are often readily available at the cluster location, waiting to be assembled into a new enterprise.Local financial institutions and investors, already familiar with the cluster, may require a lower risk premium on capital. In addition, the cluster often presents a significant local market, and an entrepreneur may benefit from established relationships. All of these factors reduce the perceived risks of entry – and of exit, should the enterprise fail.The formation of new businesses within a cluster is part of a positive feedback loop. An expanded cluster amplifies all the benefits I have described – it increases the collective pool of competitive resources, which benefits a ll the cluster’s members. The net result is that companies in the cluster advance relative to rivals at other locations.英文文献中文翻译(二)来源:哈佛商业评论Vol.76第6期 1998年作者:迈克·E. 波特出版时间:1998簇群与新竞争经济学(美)迈克·E. 波特为什么簇群对竞争至关重要?现代竞争取决于生产力, 而非取决于投入或单个企业的规模。

传动系统离合器论文中英文对照资料外文翻译文献

传动系统离合器论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献Transmission SystemA Basic Parts of the transmission systemThe transmission system applies to the components needed to transfer the drive from the engine to the road wheels. The main components and their purposes are (1) Clutch --- to disengage the drive--- to provide a smooth take-up of the drive(2) Gearbox --- to increase the torque applied to the driving road wheels--- to enable the engine to operate within a given range of speed irrespective of the vehicle speed--- to give reverse motion of the vehicle--- to provide a neutral position so that the engine can run without moving the vehicle(3) Final drive --- to turn the drive through 90°--- to reduce the speed of the drive by a set amount to match the engine to the vehicle(4) Differential --- to allow the inner driving road wheel to rotate slower than the outerwheel when the vehicle is cornering, whilst it ensures that adrive is applied equally to both wheels.B Clutch and Clutch ServiceIn order to transmit the power of the engine to the road wheels of a car, a friction clutch and a change-speed gearbox are normally employed. The former is necessary in order to enable the drive to be taken up gradually and smoothly, while the latter provides different ratios of speed reduction from the engine to the wheels, to suit the particular conditions of running,A clutch performs two tasks:(1) it disengages the engine from the gearbox to allow for gear changing.(2) it is a means for gradually engaging the engine to the driving wheels, when a vehicle is to be moved from rest the clutch must engage a stationary gearbox shaft with the engine; this must be rotating at a high speed to provide sufficient power or else the load will be too great and the engine will start (come to test).C Clutch ActionTo start the engine, the driver must depress the clutch pedal. This disengages the gearbox from the engine. To move the car, the driver must reengage the gearbox to the engine. However, the engagement of the parts must be gradual. An engine at idle develops little power. If the two parts were connected too quickly, the engine would stall. The load must be applied gradually to operate the car smoothly.A driver depresses the clutch pedal to shift the gears inside the gearbox. After the driver releases the clutch pedal, the clutch must act as solid coupling device. It must transmit all engine power to the gearbox, without slipping.The clutch mechanism include three basic parts: driving member, driven member, operating members.●The driving memberThe driving member consists of two parts: the flywheel and the pressure plate. The flywheel is bolted directly to the engine crankshaft and rotates when the crankshaft turns. The pressure plate is bolted to the flywheel. The result is that both flywheel and pressure plate rotate together.●The driven memberThe driven member, or clutch disc, is located between the flywheel and pressure plate. The disc has a splined hub that locks to the splined input shaft on the gearbox .Any rotation of the clutch disc turns the input shaft .Likewise, any motion of the input shaft moves the clutch disc. The splines allow the clutch disc to move forward and backward on the shaft as it engages and disengages.The inner part of the clutch disc, called the hub flange, has a number of small coil springs. These springs are called torsional springs. They let the middle part of theclutch disc turn slightly on the hub. Thus, the springs absorb the torsional vibrations of the crankshaft. When the springs have compressed completely, the clutch moves back until the springs relax. In other words, the clutch absorbs these engine vibrations, preventing the vibrations from going through the drive train.●Operating MembersThese are the parts that release pressure from the clutch disc. The operating members consist of the clutch pedal, clutch return spring, clutch linkage, clutch fork, and throwout bearing. The clutch linkage includes the clutch pedal and a mechanical or hydraulic system to move the other operating members.When the clutch pedal is depressed, the clutch linkage operates the clutch fork .The clutch fork, or release fork, moves the throwout bearing against the pressure plate release levers. These levers then compress springs that normally hold the clutch disc tightly against the flywheel.At this point, the torque of the engine cannot turn the gearbox input shaft. The gears in the gearbox may be shifted or the vehicle can be brought to a full stop.When the clutch pedal is released, the pressure plate forces the clutch disc against the flywheel. The clutch return spring helps raise the pedal.D Clutch ServiceThe major parts of the clutch assembly need no maintenance or lubrication during normal service. However, all linkage parts need lubrication at points of contact. The linkage itself must be adjusted to prevent wear of the clutch disc.●Free-play AdjustmentYou can make only one adjustment on the clutch linkage —the free-play adjustment. Free play is the allowable space between the throwout bearing and the pressure plate release levers. This space is important because it prevents pressure on the levers that could keep the clutch from engaging fully. In other words, the throwout bearing must be slightly away from the pressure plate levers so that the bearing applies no pressure on the levers. On the other hand, there must not be too much freeplay between the bearing and the levers. With too much clearance, the clutch cannot fully disengaged when the driver press the clutch pedal to the floor. In most cases, you measure the free play at the clutch pedal, rather than at the bell housing.The free play allows some motion at the beginning of the clutch pedal travel, before the pedal meets resistance. Since the distance varies with the type of pressure plate, check the service manual. Usually, free play should be about 20 to 25mm.Free play can be adjusted at some point where the clutch linkage consists of threaded rods with locknuts. The rod closest to the clutch fork is the most common adjustment point. Begin by locating the rod and locknut beneath the vehicle. Then determine which way to turn the adjustment nuts to get the correct free play at the pedal. You can get a rough estimate of free play by moving the clutch fork to see if it still has some movement. The best way to make the adjustment is to loosen the locknut and move the adjustment nut a few turns. Then check the free play at the pedal. Continue making adjustments until you have the correct free play. When the free-play adjustment meets the manufacturer’s specification, tighten the locknut.Check the free-play adjustment every six months and make any adjustment. Clutches need adjustment that often, since free play decreases slightly as the clutch disc wears. However, the need for frequent adjustments means a problem in the clutch mechanism itself.There must be free play between the throwout bearing and pressure plate release levers. Problems can result from “riding the clutch”. A driver who rests one foot on the clutch pedal causes the throwout bearing to rub against the clutch release levers. As a result, the throwout bearing becomes worn quickly. Also, the clutch disc may wear out due to slippage because the parts are not fully engaged.●Clutch FaultsThe following are the main faults:Slip —failure of the surface to grip resulting in the driven plate revolving slower than the engine flywheel : Clutch gets hot and emits an odor.Spin or drag —failure of the plates to separate resulting in noise from thegearbox when selecting a gear: most noticeable when thevehicle is stationary.Judder —a vibration which occurs when the clutch is being engaged , i.e. when the vehicle is stationary.Fierceness —sudden departure of the vehicle even though the pedal is being released gradually.E The Clutches(supplementary contract)A clutch is a friction device used to connect and disconnect a driving force from a driven member. In automotive applications, it is used in conjunction with an engine flywheel to provide smooth engagement and disengagement of the engine and manual transmission.Since an internal combustion engine develops little power or torque at low rpm, it must gain speed before it will move the vehicle. However, if a rapidly rotating engine is suddenly connected to the drive line of a stationary vehicle, a violent shock will result.So gradual application of load, along with some slowing of engine speed , is needed to provide reasonable and comfortable starts. In vehicles equipped with a manual transmission, this is accomplished by means of a mechanical clutch.The clutch utilizes friction for its operation. The main parts of the clutch are a pressure plate, and a driven disk. The pressure plate is coupled with the flywheel, while the driven disk is fitted to the disk by the springs so that the torque is transmitted owing to friction forces from the engine to the input shaft of the transmission. Smooth engagement is ensured by slipping of the disk before a full pressure is applied.The automobiles are equipped with a dry spring-loaded clutch. The clutch is termed “dry”because the surfaces of the pressure plate and driven disks are dry in contrast to oil-bath clutches in which the plate and disks operate in a bath of oil. It is called “springloaded”because the pressure plate and the driven disk are always pressed to each other by springs and are released only for a time to shift gears or to brake the automobile.In addition to the plate and disk, the clutch includes a cover, release levers, a release yoke, pressure springs and a control linkage. The clutch cover is a steel stamping bolted to the flywheel. The release levers are secured inside the cover on the supporting bolts. The outer ends of the release levers are articulated to the pressure plate. Such a construction allows the pressure plate to approach the cover or move away from it, all the time rotating with the cover or move away from it, all the time rotating with the flywheel. The springs spaced around the circumference between the pressure plate and the clutch cover clamp the driven disk between the pressure plate and the flywheel.The springs are installed with the aid of projections and sockets provided on the cover and pressure plate. The pressure plate sockets have thermal-insulation gaskets for protecting the springs against overheating.The clutch release mechanism can be operated either mechanically or hydraulically. The mechanically-operated release mechanism consists of a pedal, a return spring, a shaft with lever, a rod m release yoke lever, a release yoke, a release ball bearing with support and a clutch release spring. When the clutch pedal is depressed, the rod and shaft with yoke shift the release bearing and support assembly. The release bearing presses the inner ends of the release levers, the pressure plate is moved away from the driven disk and the clutch is disengaged. To engage the clutch , the pedal is released, the release bearing and support assembly is shifted back by the return spring thus releasing the release levers so that the pressure plate is forced by its springs towards the flywheel to clamp the driven disk and engage the clutch.The clutch hydraulically-operated release mechanism consists of a clutch pedal , clutch release spring , a main cylinder , a pneumatic booster, pipelines and hoses and a lever of the clutch release yoke shaft. Time main cylinder accommodates a piston with a cup. The pneumatic booster serves to decrease the pedal force required disengage the clutch. The booster includes two housings with the servo diaphragm clamped in between. The housing accommodates pneumatic, hydraulic and servo plungers. When the clutch pedal is pushed, the fluid pressure from the main cylinder is transmitted through the pipelines and hoses to the hydraulic and servo plungers of the pneumaticbooster.The servo arrangement is intended for automatic change of the air pressure in the pneumatic cylinder proportionally to the force applied to the pedal. The plunger moves with the diaphragm, the outlet valve closes and the inlet valve opens thus admitting the compressed air to the pneumatic plunger piston. The forces created by the pneumatic and hydraulic plungers are added together and are applied through the push rod to the release yoke shaft lever; the lever turns the shaft and the release yoke, thus disengaging the clutch. After the clutch pedal is released, the outlet valve opens and the air from the cylinder is let out to the atmosphere.Automatic clutches were used in certain U.S. and European cars. American Motors’“E-Stick”clutch eliminated the need for physical operation of the clutch system called “Hydrak”, which consisted of a fluid flywheel connected to a single, dry disk clutch.In the “E-Stick” set up, the pressure plate levers “engage” the clutch disk rather than “release” them. Also, the clutch remains disengaged until a servo unit is applied by oil pressure when the shift lever is placed “in gear” with the engine running.The “Hydrak”unit also begins operation when the lever is “in gear”. This activates a booster unit, which disengages the clutch disk. The hydraulic clutch parts are bridged over by a free-wheel unit, which goes into action when the speed of the rear wheel is higher than the speed of the engine. A special device controls engagement of the mechanical clutch, depending on whether the rear axle is in traction or is pushed by car momentum.A more-or-les unusual clutch pressure plate set-up is used on late model Chrysler and American Motors cars. Called a semi-centrifugal clutch, the pressure plate has six cylindrical rollers which move outward under centrifugal force until they contact the cover. As engine speed increases, the rollers wedge themselves between the pressure plate and cover so that the faster the clutch rotates, the greater the pressure exerted on the pressure plate and disk.传动系统A基本传动系统的组成部份传动系统是将发动机动力转移到驱动轮的结构。

外文文献翻译(图片版)

外文文献翻译(图片版)

本科毕业论文外文参考文献译文及原文学院经济与贸易学院专业经济学(贸易方向)年级班别2007级 1 班学号3207004154学生姓名欧阳倩指导教师童雪晖2010 年 6 月 3 日目录1 外文文献译文(一)中国银行业的改革和盈利能力(第1、2、4部分) (1)2 外文文献原文(一)CHINA’S BANKING REFORM AND PROFITABILITY(Part 1、2、4) (9)1概述世界银行(1997年)曾声称,中国的金融业是其经济的软肋。

当一国的经济增长的可持续性岌岌可危的时候,金融业的改革一直被认为是提高资金使用效率和消费型经济增长重新走向平衡的必要(Lardy,1998年,Prasad,2007年)。

事实上,不久前,中国的国有银行被视为“技术上破产”,它们的生存需要依靠充裕的国家流动资金。

但是,在银行改革开展以来,最近,强劲的盈利能力已恢复到国有商业银行的水平。

但自从中国的国有银行在不久之前已经走上了改革的道路,它可能过早宣布银行业的改革尚未取得完全的胜利。

此外,其坚实的财务表现虽然强劲,但不可持续增长。

随着经济增长在2008年全球经济衰退得带动下已经开始软化,银行预计将在一个比以前更加困难的经济形势下探索。

本文的目的不是要评价银行业改革对银行业绩的影响,这在一个完整的信贷周期后更好解决。

相反,我们的目标是通过审查改革的进展和银行改革战略,并分析其近期改革后的强劲的财务表现,但是这不能完全从迄今所进行的改革努力分离。

本文有三个部分。

在第二节中,我们回顾了中国的大型国有银行改革的战略,以及其执行情况,这是中国银行业改革的主要目标。

第三节中分析了2007年的财务表现集中在那些在市场上拥有浮动股份的四大国有商业银行:中国工商银行(工商银行),中国建设银行(建行),对中国银行(中银)和交通银行(交通银行)。

引人注目的是中国农业银行,它仍然处于重组上市过程中得适当时候的后期。

第四节总结一个对银行绩效评估。

能源类外文文献翻译(译文1)

能源类外文文献翻译(译文1)

太阳能蒸馏:一种有前途的供水代替技术,它使用免费的能源,技术简单,清洁Hassan E.S.Fath埃及,亚历山大,亚历山大大学机械学院工程系摘要:太阳能蒸馏为盐水淡化提供了一种替代技术,它使用免费的能源、技术简单、清洁,为人类提供所需的部分淡水。

太阳能蒸馏系统的发展已经证明:当天气情况良好,并且需求不太大时,比如少于200立方米/天,它在海水淡化过程中有一定的适用性。

太阳能蒸馏器的产量低这个问题迫使科学家研究许多提高蒸馏器产量和热效率,以此来降低产水的费用。

本文对许多最新发展的单效和多效太阳能蒸馏器进行了整体评论和技术评估。

同时,对蒸馏器构造的发展、各部件在运行过程中出现的问题、对环境的影响也进行了阐述。

关键词:太阳能;海水淡化1.简介在淡水需求超出了淡水资源所能满足的量的地方,对低质量的水进行去盐处理是一种合适的淡水来源途径。

对盐水或海水脱盐处理取得淡水满足了社会基本的需求。

一般说来,它不会对环境造成严重的损害作用。

因此,进行海水淡化的工序和工厂在数量上和能力上都有了巨大的进步。

许多不同的海水淡化技术被用来从盐水中分离淡水,包括有:多级闪蒸(MSF)、多效(ME)、蒸汽压缩(VC)、反渗透(RO)、离子交换、电渗析、相变和溶剂萃取。

但是,这些技术只能产生少量的淡水,因而是昂贵的。

另一方面,用来驱动这些技术的传统能源也会对环境产生消极的作用。

而太阳能蒸馏为盐水淡化技术提供了一种有前途的替代处理过程,它使用免费的能源,技术简单,清洁,并能为人类提供所需的部分淡水。

太阳能蒸馏系统的发展已经证明:当天气情况良好,并且需求不太大时,比如少于200立方米/天,它在海水淡化过程中有一定的适用性。

太阳能蒸馏器的产量和热效率,以此来最小化产水费用。

这些方法中包括被动的和主动的单效蒸馏器。

一些工作者也曾试图都产生的水蒸气在外部凝结(在额外的凝结表面上)。

另一方面,浪费的凝结潜热也被利用,从而增加馏出水的产量和提高效率。

外文翻译中英文——预应力混凝土建筑

外文翻译中英文——预应力混凝土建筑

外文资料:Prestressed Concrete BuildingsPrestressed concrete has been widely and successfully applied to building construction of all types.Both precast pretensioned members and cast-tensioned structures are extensively employed,sometimes in competition with one another, most effectively in combination wit each other.Prestressed concrete offers great advantages for incorporation in a totalaspects of these, that is, structure plus other building. It is perhaps the “integrative”functions,which have made possible the present growth in use of prestressed concrete buildings.These advantages include the following:Structural strength; Structure rigidity;Durability;Mold ability,into desired forms and shapes;Fire resistance;Architectural treatment of surfaces;Sound insulation;Heat insulation; Economy; Availability, through use of local materials and labor to a high degree.Most of the above are also properties of conventionally reinforced concrete. Presrressing,however,makes the structural system more effective by enabling elimination of the technical of difficulty,e.g.,cracks that spoil the architectural treatment.Prestressing greatly enhance the structure efficiency and economy permitting longer spans and thinner elements.Above all,it gives to the architect-engineer a freedom for variation and an ability to control behavior under service conditions.Although prestressed concrete construction involves essentially the same consideration and practices as for all structures, a number of special points require emphasis or elaboration.The construction engineer is involved in design only to a limited extent. First,he muse be able to furnish advice to the architect and engineer on what can he done. Because of his specialized knowledge of techniques relating to prestressed concrete construction, he supplies a very needed service to the architect-engineer.Second, the construction engineer may be made contractually responsible for the working drawings;that is,the layout of tendons,anchorage details,etc.It is particularly important that he gives careful attention to the mild steel and concrete details to ensure these are compatible with his presressing details.Third, the construction engineer is concerned with temporary stresses, stresses at release, stresses in picking, handling and erection, and temporary condition prior to final completion of the structure, such as the need of propping for a composite pour.Fourth,although the responsibility for design rests with the design engineer, nevertheless the construction engineer is also vitally concerned that the structure be successful form the point of view of structural integrity and service behavior. Therefore he will want to look at the bearing and connection details, camber, creep, shrinkage,thermal movements,durability provisions,etc.,and advise the design engineer of any deficiencies he encounters.Information on new techniques and especially application of prestressing to buildings are extensively available in the current technical literature of national and international societies.The International Federation of Prestressing(I.F.P)has attempted to facilitate the dissemination of this information by establishing a Literature Exchange Service,in which the prestressing journals of some thirty countries are regularly exchanged.In addition,an Abstract is published intermittently by I.F.P The Prestressed Concrete Institute(USA)regularly publishes a number of journals and pamphlets on techniques and applications, and proceduresare set up for their dissemination to architects and engineers as well as directly to the construction engineer. It is important that he keep abreast of these national and worldwide developments, so as to be able to recommend the latest and best that is available in the art,and to encourage the engineer to make the fullest and most effective use of prestressed concrete in their buildings.With regard to working drawings, the construction engineer must endeavor to translate the design requirements into the most practicable and economical details of accomplishment,in such a way that the completed element or structure fully complies with the design requirement;for example, the design may indicate only the center of gravity of prestressing and the effective prestress force. The working drawing will have to translate this into tendons having finite physical properties and dimensions.If the center of gravity of pre-stressing is a parabolic path then,for pre-tensioning,and approximation by chords is required,with hold-down points suitably located.The computation of pre-stress losses,form transfer stress to effective stress, must reflect the actual manufacturing and construction process used,as well as thorough knowledge of the properties of the particular aggregates and concrete mix to be employed.With post-tensioning, anchorages and their bearing plates must be laid out in their physical dimension. It is useful in the preparation of complex anchorage detail layouts to use full-scale drawings, so as to better appreciate the congestion of mild steel and anchorages at the end of the member. Tendons and reinforcing bars should be shown in full size rather than as dotted lines. This will permit consideration to be given as to how the concrete can be placed and consolidated.The end zone of both pre-tensioned and post-tensioned concrete memberssubject to high transverse or bursting stresses. These stresses are also influenced by minor concrete details,such as chamfers.Provision of a grid of small bars (sometimes heavy wire mesh is used), as close to the end of a girder as possible, will help to confine and distribute the concentrated forces. Closely spaced stirrups and/or tightly spaced spiral are usually needed at the end of heavily stressed members.Recent tests have confirmed that closeness of spacing is much more effective than increase in the size of bars. Numerous small bars, closely spaced, are thus the best solution.Additional mild-steel stirrups may also be required at hold-down points to resist the shear. This is also true wherever post-tensioned tendons make sharp bends. Practical consideration of concretion dictates the spacing of tendons and ducts. The general rules are that the clear spacing small be one-and-one-half times the maximum size of coarse aggregate. In the overall section, provision must be made for the vibrator stinger.Thus pre-stressing tendons must either be spaced apart in the horizontal plane, or, in special cases, bundled.In the vertical plane close contact between tendons is quite common.With post-tensioned ducts,however,in intimate vertical contact,careful consideration has to be given to prevent one tendon form squeezing into the adjacent duct during stressing.This depends on the size of duct and the material used for the duct.A full-scale layout of this critical cross section should be ually,the best solution is to increase the thickness ( and transverse strength ) of the duct, so that it will span between the supporting shoulders of concrete.As a last rest\ort it may be necessary to stress and grout one duct before stressing the adjacent one.This is time-consuming and runs the risks of grout blockage due to leaks from one duct to the other. Therefore the author recommendsthe use of heavier duct material,or else the respacing of the ducts.The latter,of course, may increase the prestressing force required.中文翻译:预应力混凝土建筑预应力混凝土已经广泛并成功地用于各种类型的建筑。

毕设外文文献+翻译1

毕设外文文献+翻译1

外文翻译外文原文CHANGING ROLES OF THE CLIENTS、ARCHITECTSAND CONTRACTORS THROUGH BIMAbstract:Purpose –This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes.Design/methodology/approach–Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed.Findings –One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R).Originality/value –This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application in hospital building projects.Keywords:Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type :General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still faces serious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user’s dissatisfaction, and energy inefficiency. It is evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different setof skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored. There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and to develop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively, allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to man age and finance their building projects and real estate. The government’s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Healthto obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client. Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world.The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction. The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client’s capacity and strategy to organize innovative tendering procedures.A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect enters a partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as well as innovative engineering through an efficient construction process. In another case, the architect can stand at the client’s side in a strategic advisory role instead of being the designer. In this case, the architect’s responsibility is translating client’s requirements and wishes into the architectural values to be included in the design specification, and evaluating the contractor’s proposal against this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequences in the payment schemes. In the traditional building process, the honorarium for the architect is usually based on a percentage of the project costs; this may simply mean that the more expensive the building is, the higher the honorarium will be. The engineer receives the honorarium based on the complexity of the design and the intensity of the assignment. A highly complex building, which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium. A traditional contractor usually receives the commission based on the tender to construct the building at the lowest price by meeting the minimum specifications given by the client. Extra work due to modifications is charged separately to the client. After the delivery, the contractor is no longer responsible for the long-term use of the building. In the traditional procurement method, all risks are placed with the client.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractor have a wider responsibility on the quality of the design and the building, the payment is linked to a measurement system of the functional and technical performance of the building over a certain period of time. The honorarium becomes an incentive to achieve the optimal quality. If the building actors succeed to deliver a higher added-value thatexceed the minimum client’s requirements, they will receive a bonus in accordance to the client’s extra gain. The level of transparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses an innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamic life-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carries sufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect, as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc.The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually include members well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design until the project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply common values and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded on open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client.BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an application to generate digital (2D or 3D) drawings. BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project lifecycle, BIM develops andevolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the client’s requirements and expected building performance. The functionalities of BIM to support the design process extend to multidimensional (nD), including: three-dimensional visualisation and detailing, clash detection, material schedule, planning, cost estimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office– which is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-date information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors.The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and Intellectual Property Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:the development of BIM, the definition of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management;and the management of information, in terms of data flow and storage, identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working using BIM differ from the IPR in a traditional teamwork?”. In terms of combined work, the IPR of each element is at tached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for the electrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of the IPR.How does collaborative working, using BIM, effect the contractual relationship? On the one hand,collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM A ddendum confirms: ‘This does not effectuate or require a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum and its Attachments’ (ConsensusDOCS, 2008). On the other hand, changes in terms of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment for the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary.4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the changing roles can be concluded as: the implementation of an integrated procurement method and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sections have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are:the selected procurement method and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; and the roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty of Dentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows:using 3D visualisation to enhance the coordination and communication among the building actors, and the user participation in design;integrating the architectural design with structural analysis, energy analysis, cost estimation, and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management of the facility through the registration of medical installations andequipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the most important new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows. Both UMC and MMC opted for a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. Using BIM, both hospitals intend to get a much better insight in these aspects over the life-cycle period. The life-cycle sustainability criteria are included in the assignments for the design teams. Multidisciplinary designers and engineers are asked to collaborate more closely and to interact with the end-users to address life-cycle requirements. However, ensuring the building actors to engage in an integrated collaboration to generate sustainable design solutions that meet the life-cycle performance expectations is still difficult. These actors are contracted through a traditional procurement method. Their tasks are specific, their involvement is rather short-term in a certain project phase, their responsibilities and liabilities are limited, and there is no tangible incentive for integrated collaboration.From the current progress of both projects, it can be observed that the type and structure of BIM relies heavily on the choice for BIM software applications. Revit Architecture and Revit Structure by Autodesk are selected based on the argument that it has been widely used internationally and it is compatible with AutoCAD, a widely known product of the same software manufacturer. The compatibility with AutoCAD is a key consideration at MMC since the drawings of the existing buildings were created with this application. These 2D drawings were then used as the basis to generate a 3D model with the BIM software application. The architectural model generated with Revit Architecture and the structural model generated by Revit Structure can be linked directly. In case of a change in the architectural model, a message will be sent to the structural engineer. He can then adjust the structural model, or propose a change in return to the architect, so that the structural model is always consistent with the architectural one.Despite the attempt of the design team to agree on using the same software application, the MEP consultant is still not capable to use Revit; and therefore, a conversion of the model from and to Revit is still required. Another weakness of this “closed approach”, which is dependent to the use of the same software applications, may appear in the near future when the project further progresses into the construction phase. If the contractor uses another software application, considerable extra work will be needed to make the model creted during the design phase to be compatible for use in the construction phase.。

外文文献

外文文献

英文文献资料外文文献一:Food safety: the shocking truth about the food industrySource: Author: Marion Nestle、Refrigeration technology, pasteurization, pesticides, disease control, these technologies so that safe food into the 20th century, public health's greatest achievements. This book view is that food safety problems also depend on politics. September 2001 events to dispel this view of the doubts about aviation aircraft used by terrorists as a destruction of weapons to civilians and public figures have anthrax spores sent folder of letters, the consequences of these events shows, food, water can easily become a a tool for terrorists, it has also become the federal government for food safety control problem.This chapter will sum up this book referred to in the various food safety problems. Some of them threatened to keep animals healthy, very few will lead to a number of human diseases. Even so, these issues impact on human well-being is deep; large-scale destruction of breeding animals, affecting the livelihood of many people, limiting personal freedom. The 20th century, 90's and early 21st century, an outbreak of mad cow disease and foot and mouth disease Although this is only because of errors caused by the production process, but still brings a lot of destructive. In contrast, bio-terrorism is the deliberate use of biological and chemical substances to achieve their political objectives. For food safety issues,Bio-terrorism extends food safety issues and political outreach; deliberate destruction, excluding any consequences of innocent injury.In this chapter, we will discuss how the rise of bio-terrorism, food safety issues and extend the extension of food safety issues. In the United States, food safety, usually refers to the family food supply reliability. E-mail from the anthrax incident, the food safety issues, also includes safety from biological terrorism. Our discussion will be the beginning of some zoonotic diseases: such as mad cow disease, foot and mouth disease, anthrax. In recent years, these zoonotic diseases harmful to humans is relatively small. Today, for these zoonotic diseases, we are concerned that they may give rise to disease, destruction of food supply system,To become a tool for bio-terrorism aspect. This chapter summarizes the discussion of this book, fromsociety and from a personal point of view what action should be taken to face these issues, as well as food safety issues present and future.The political animal diseasesOne of the consequences of globalization is that of food cross-border long-distance rapid transit, affecting food supply all kinds of disease can easily spread from one country to another country. Animal diseases have a commercial impact, if a country has come to infectious diseases of animals, other countries will refuse to import the kinds of animal meat. The impact of business at the same time there are political consequences.Britain's mad cow disease and foot and mouth disease occurred as a result of beef in the production process caused by mismanagement, compared to the U.S. anthrax letters is a result of vandalism. However, this three kinds of threatening to cause great panic, they are difficult to detect control, can cause severe disease. Moreover, these three kinds of threats against people for the food supply, as well as confidence in the Government.Mad cow is the mid-20th century, 90 of the most popular of a food security crisis, the epidemic is mainly limited to the United Kingdom. With regard to BSE-related issues and our discussion, mainly because of political issues and scientific issues intertwined Among them, public confidence had a great impact. For example, the British Government in the BSE crisis in the practice is also considered to result in distrust of genetically modified food one of the reasons. The beginning of the 20th century, 80 years, no one had heard of the disease, but in 1999, this disease affects at least 175,000 British cattle. The consequences are very serious: 400 million head of livestock were slaughtered, the loss of 70 billion U.S. dollars,Spread to 18 countries worldwide national boycott of British beef. By 2001 only, although "only" 120 people died of the human variant of mad cow disease, it is estimated the death toll will reach 10 million people. Because mad cow disease revealed the modern politics of food safety issues, it is worth detailing.英文文献中文翻译06013618 胡冬敏外文翻译一:作者:玛丽恩·内斯特尔出版时间:2004年11月食品安全:令人震惊的食品行业真相(美)玛丽恩·内斯特尔冷藏技术,巴氏消毒,杀虫剂,疾病控制,这些技术使安全食品成为20世纪公众健康最伟大的成就之一。

钢筋混凝土中英文资料外文翻译文献

钢筋混凝土中英文资料外文翻译文献

钢筋混凝土中英文资料翻译1 外文翻译1.1 Reinforced ConcretePlain concrete is formed from a hardened mixture of cement ,water ,fine aggregate, coarse aggregate (crushed stone or gravel),air, and often other admixtures. The plastic mix is placed and consolidated in the formwork, then cured to facilitate the acceleration of the chemical hydration reaction lf the cement/water mix, resulting in hardened concrete. The finished product has high compressive strength, and low resistance to tension, such that its tensile strength is approximately one tenth lf its compressive strength. Consequently, tensile and shear reinforcement in the tensile regions of sections has to be provided to compensate for the weak tension regions in the reinforced concrete element.It is this deviation in the composition of a reinforces concrete section from the homogeneity of standard wood or steel sections that requires a modified approach to the basic principles of structural design. The two components of the heterogeneous reinforced concrete section are to be so arranged and proportioned that optimal use is made of the materials involved. This is possible because concrete can easily be given any desired shape by placing and compacting the wet mixture of the constituent ingredients are properly proportioned, the finished product becomes strong, durable, and, in combination with the reinforcing bars, adaptable for use as main members of anystructural system.The techniques necessary for placing concrete depend on the type of member to be cast: that is, whether it is a column, a bean, a wall, a slab, a foundation. a mass columns, or an extension of previously placed and hardened concrete. For beams, columns, and walls, the forms should be well oiled after cleaning them, and the reinforcement should be cleared of rust and other harmful materials. In foundations, the earth should be compacted and thoroughly moistened to about 6 in. in depth to avoid absorption of the moisture present in the wet concrete. Concrete should always be placed in horizontal layers which are compacted by means of high frequency power-driven vibrators of either the immersion or external type, as the case requires, unless it is placed by pumping. It must be kept in mind, however, that over vibration can be harmful since it could cause segregation of the aggregate and bleeding of the concrete.Hydration of the cement takes place in the presence of moisture at temperatures above 50°F. It is necessary to maintain such a condition in order that the chemical hydration reaction can take place. If drying is too rapid, surface cracking takes place. This would result in reduction of concrete strength due to cracking as well as the failure to attain full chemical hydration.It is clear that a large number of parameters have to be dealt with in proportioning a reinforced concrete element, such as geometrical width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so on. Consequently, trial and adjustment is necessary in the choice of concrete sections, with assumptions based on conditions at site, availability of the constituent materials, particular demands of the owners, architectural and headroom requirements, the applicable codes, and environmental reinforced concrete is often a site-constructed composite, in contrast to the standard mill-fabricated beam and column sections in steel structures.A trial section has to be chosen for each critical location in a structural system. The trial section has to be analyzed to determine if its nominal resisting strength is adequate to carry the applied factored load. Since more than one trial is often necessary to arrive at the required section, the first design input step generates into a series of trial-and-adjustment analyses.The trial-and –adjustment procedures for the choice of a concrete section lead to the convergence of analysis and design. Hence every design is an analysis once a trial section is chosen. The availability of handbooks, charts, and personal computers and programs supports this approach as a more efficient, compact, and speedy instructionalmethod compared with the traditional approach of treating the analysis of reinforced concrete separately from pure design.1.2 EarthworkBecause earthmoving methods and costs change more quickly than those in any other branch of civil engineering, this is a field where there are real opportunities for the enthusiast. In 1935 most of the methods now in use for carrying and excavating earth with rubber-tyred equipment did not exist. Most earth was moved by narrow rail track, now relatively rare, and the main methods of excavation, with face shovel, backacter, or dragline or grab, though they are still widely used are only a few of the many current methods. To keep his knowledge of earthmoving equipment up to date an engineer must therefore spend tine studying modern machines. Generally the only reliable up-to-date information on excavators, loaders and transport is obtainable from the makers.Earthworks or earthmoving means cutting into ground where its surface is too high ( cuts ), and dumping the earth in other places where the surface is too low ( fills). Toreduce earthwork costs, the volume of the fills should be equal to the volume of the cuts and wherever possible the cuts should be placednear to fills of equal volume so as to reduce transport and double handlingof the fill. This work of earthwork design falls on the engineer who lays out the road since it is the layout of the earthwork more than anything else which decides its cheapness. From the available maps ahd levels, the engineering must try to reach as many decisions as possible in the drawing office by drawing cross sections of the earthwork. On the site when further information becomes available he can make changes in jis sections and layout,but the drawing lffice work will not have been lost. It will have helped him to reach the best solution in the shortest time.The cheapest way of moving earth is to take it directly out of the cut and drop it as fill with the same machine. This is not always possible, but when it canbe done it is ideal, being both quick and cheap. Draglines, bulldozers and face shovels an do this. The largest radius is obtained with the dragline,and the largest tonnage of earth is moved by the bulldozer, though only over short distances.The disadvantages of the dragline are that it must dig below itself, it cannot dig with force into compacted material, it cannot dig on steep slopws, and its dumping and digging are not accurate.Face shovels are between bulldozers and draglines, having a larger radius of action than bulldozers but less than draglines. They are anle to dig into a vertical cliff face in a way which would be dangerous tor a bulldozer operator and impossible for a dragline.Each piece of equipment should be level of their tracks and for deep digs in compact material a backacter is most useful, but its dumping radius is considerably less than that of the same escavator fitted with a face shovel.Rubber-tyred bowl scrapers are indispensable for fairly level digging where the distance of transport is too much tor a dragline or face shovel. They can dig the material deeply ( but only below themselves ) to a fairly flat surface, carry it hundreds of meters if need be, then drop it and level it roughly during the dumping. For hard digging it is often found economical to keep a pusher tractor ( wheeled or tracked ) on the digging site, to push each scraper as it returns to dig. As soon as the scraper is full,the pusher tractor returns to the beginning of the dig to heop to help the nest scraper.Bowl scrapers are often extremely powerful machines;many makers build scrapers of 8 cubic meters struck capacity, which carry 10 m ³ heaped. The largest self-propelled scrapers are of 19 m ³ struck capacity ( 25 m ³ heaped )and they are driven by a tractor engine of 430 horse-powers.Dumpers are probably the commonest rubber-tyred transport since they can also conveniently be used for carrying concrete or other building materials. Dumpers have the earth container over the front axle on large rubber-tyred wheels, and the container tips forwards on most types, though in articulated dumpers the direction of tip can be widely varied. The smallest dumpers have a capacity of about 0.5 m ³, and the largest standard types are of about 4.5 m ³. Special types include the self-loading dumper of up to 4 m ³and the articulated type of about 0.5 m ³. The distinction between dumpers and dump trucks must be remembered .dumpers tip forwards and the driver sits behind the load. Dump trucks are heavy, strengthened tipping lorries, the driver travels in front lf the load and the load is dumped behind him, so they are sometimes called rear-dump trucks.1.3 Safety of StructuresThe principal scope of specifications is to provide general principles and computational methods in order to verify safety of structures. The “ safety factor ”, which according to modern trends is independent of the nature and combination of the materials used, can usually be defined as the ratio between the conditions. This ratio is also proportional to the inverse of the probability ( risk ) of failure of the structure.Failure has to be considered not only as overall collapse of the structure but also as unserviceability or, according to a more precise. Common definition. As the reaching of a “limit state ” which causes the construction not to accomplish the task it was designedfor. There are two categories of limit state :(1)Ultimate limit sate, which corresponds to the highest value of the load-bearing capacity. Examples include local buckling or global instability of the structure; failure of some sections and subsequent transformation of the structure into a mechanism; failure by fatigue; elastic or plastic deformation or creep that cause a substantial change of the geometry of the structure; and sensitivity of the structure to alternating loads, to fire and to explosions.(2)Service limit states, which are functions of the use and durability of the structure. Examples include excessive deformations and displacements without instability; early or excessive cracks; large vibrations; and corrosion.Computational methods used to verify structures with respect to the different safety conditions can be separated into:(1)Deterministic methods, in which the main parameters are considered as nonrandom parameters.(2)Probabilistic methods, in which the main parameters are considered as random parameters.Alternatively, with respect to the different use of factors of safety, computational methods can be separated into:(1)Allowable stress method, in which the stresses computed under maximum loads are compared with the strength of the material reduced by given safety factors.(2)Limit states method, in which the structure may be proportioned on the basis of its maximum strength. This strength, as determined by rational analysis, shall not be less than that required to support a factored load equal to the sum of the factored live load and dead load ( ultimate state ).The stresses corresponding to working ( service ) conditions with unfactored live and dead loads are compared with prescribed values ( service limit state ) . From the four possible combinations of the first two and second two methods, we can obtain some useful computational methods. Generally, two combinations prevail:(1)deterministic methods, which make use of allowable stresses.(2)Probabilistic methods, which make use of limit states.The main advantage of probabilistic approaches is that, at least in theory, it is possible to scientifically take into account all random factors of safety, which are then combined to define the safety factor. probabilistic approaches depend upon :(1) Random distribution of strength of materials with respect to the conditions offabrication and erection ( scatter of the values of mechanical properties through out the structure );(2) Uncertainty of the geometry of the cross-section sand of the structure ( faults and imperfections due to fabrication and erection of the structure );(3) Uncertainty of the predicted live loads and dead loads acting on the structure;(4)Uncertainty related to the approximation of the computational method used ( deviation of the actual stresses from computed stresses ).Furthermore, probabilistic theories mean that the allowable risk can be based on several factors, such as :(1) Importance of the construction and gravity of the damage by its failure;(2)Number of human lives which can be threatened by this failure;(3)Possibility and/or likelihood of repairing the structure;(4) Predicted life of the structure.All these factors are related to economic and social considerations such as:(1) Initial cost of the construction;(2) Amortization funds for the duration of the construction;(3) Cost of physical and material damage due to the failure of the construction;(4) Adverse impact on society;(5) Moral and psychological views.The definition of all these parameters, for a given safety factor, allows construction at the optimum cost. However, the difficulty of carrying out a complete probabilistic analysis has to be taken into account. For such an analysis the laws of the distribution of the live load and its induced stresses, of the scatter of mechanical properties of materials, and of the geometry of the cross-sections and the structure have to be known. Furthermore, it is difficult to interpret the interaction between the law of distribution of strength and that of stresses because both depend upon the nature of the material, on the cross-sections and upon the load acting on the structure. These practical difficulties can be overcome in two ways. The first is to apply different safety factors to the material and to the loads, without necessarily adopting the probabilistic criterion. The second is an approximate probabilistic method which introduces some simplifying assumptions ( semi-probabilistic methods ) 。

外文参考文献(带中文翻译)

外文参考文献(带中文翻译)

外文资料原文涂敏之会计学 8051208076Title:Future of SME finance(/docs/pos_papers/2004/041027_SME-finance_final.do c)Background – the environment for SME finance has changedFuture economic recovery will depend on the possibility of Crafts, Trades and SMEs to exploit their potential for growth and employment creation.SMEs make a major contribution to growth and employment in the EU and are at the heart of the Lisbon Strategy, whose main objective is to turn Europe into the most competitive and dynamic knowledge-based economy in the world. However, the ability of SMEs to grow depends highly on their potential to invest in restructuring, innovation and qualification. All of these investments need capital and therefore access to finance.Against this background the consistently repeated complaint of SMEs about their problems regarding access to finance is a highly relevant constraint that endangers the economic recovery of Europe.Changes in the finance sector influence the behavior of credit institutes towards Crafts, Trades and SMEs. Recent and ongoing developments in the banking sector add to the concerns of SMEs and will further endanger their access to finance. The main changes in the banking sector which influence SME finance are:•Globalization and internationalization have increased the competition and the profit orientation in the sector;•worsening of the economic situations in some institutes (burst of the ITC bubble, insolvencies) strengthen the focus on profitability further;•Mergers and restructuring created larger structures and many local branches, which had direct and personalized contacts with small enterprises, were closed;•up-coming implementation of new capital adequacy rules (Basel II) will also change SME business of the credit sector and will increase its administrative costs;•Stricter interpretation of State-Aide Rules by the European Commission eliminates the support of banks by public guarantees; many of the effected banks are very active in SME finance.All these changes result in a higher sensitivity for risks and profits in the finance sector.The changes in the finance sector affect the accessibility of SMEs to finance.Higher risk awareness in the credit sector, a stronger focus on profitability and the ongoing restructuring in the finance sector change the framework for SME finance and influence the accessibility of SMEs to finance. The most important changes are: •In order to make the higher risk awareness operational, the credit sector introduces new rating systems and instruments for credit scoring;•Risk assessment of SMEs by banks will force the enterprises to present more and better quality information on their businesses;•Banks will try to pass through their additional costs for implementing and running the new capital regulations (Basel II) to their business clients;•due to the increase of competition on interest rates, the bank sector demands more and higher fees for its services (administration of accounts, payments systems, etc.), which are not only additional costs for SMEs but also limit their liquidity;•Small enterprises will lose their personal relationship with decision-makers in local branches –the credit application process will become more formal and anonymous and will probably lose longer;•the credit sector will lose more and more its “public function” to provide access to finance for a wide range of economic actors, which it has in a number of countries, in order to support and facilitate economic growth; the profitability of lending becomes the main focus of private credit institutions.All of these developments will make access to finance for SMEs even more difficult and / or will increase the cost of external finance. Business start-ups and SMEs, which want to enter new markets, may especially suffer from shortages regarding finance. A European Code of Conduct between Banks and SMEs would have allowed at least more transparency in the relations between Banks and SMEs and UEAPME regrets that the bank sector was not able to agree on such a commitment.Towards an encompassing policy approach to improve the access of Crafts, Trades and SMEs to financeAll analyses show that credits and loans will stay the main source of finance for the SME sector in Europe. Access to finance was always a main concern for SMEs,but the recent developments in the finance sector worsen the situation even more. Shortage of finance is already a relevant factor, which hinders economic recovery in Europe. Many SMEs are not able to finance their needs for investment.Therefore, UEAPME expects the new European Commission and the new European Parliament to strengthen their efforts to improve the framework conditions for SME finance. Europe’s Crafts, Trades and SMEs ask for an encompassing policy approach, which includes not only the conditions for SMEs’ access to lending, but will also strengthen their capacity for internal finance and their access to external risk capital.From UEAPM E’s point of view such an encompassing approach should be based on three guiding principles:•Risk-sharing between private investors, financial institutes, SMEs and public sector;•Increase of transparency of SMEs towards their external investors and lenders;•improving the regulatory environment for SME finance.Based on these principles and against the background of the changing environment for SME finance, UEAPME proposes policy measures in the following areas:1. New Capital Requirement Directive: SME friendly implementation of Basel IIDue to intensive lobbying activities, UEAPME, together with other Business Associations in Europe, has achieved some improvements in favour of SMEs regarding the new Basel Agreement on regulatory capital (Basel II). The final agreement from the Basel Committee contains a much more realistic approach toward the real risk situation of SME lending for the finance market and will allow the necessary room for adaptations, which respect the different regional traditions and institutional structures.However, the new regulatory system will influence the relations between Banks and SMEs and it will depend very much on the way it will be implemented into European law, whether Basel II becomes burdensome for SMEs and if it will reduce access to finance for them.The new Capital Accord form the Basel Committee gives the financial market authorities and herewith the European Institutions, a lot of flexibility. In about 70areas they have room to adapt the Accord to their specific needs when implementing it into EU law. Some of them will have important effects on the costs and the accessibility of finance for SMEs.UEAPME expects therefore from the new European Commission and the new European Parliament:•The implementation of the new Capital Requirement Directive will be costly for the Finance Sector (up to 30 Billion Euro till 2006) and its clients will have to pay for it. Therefore, the implementation – especially for smaller banks, which are often very active in SME finance –has to be carried out with as little administrative burdensome as possible (reporting obligations, statistics, etc.).•The European Regulators must recognize traditional instruments for collaterals (guarantees, etc.) as far as possible.•The European Commission and later the Member States should take over the recommendations from the European Parliament with regard to granularity, access to retail portfolio, maturity, partial use, adaptation of thresholds, etc., which will ease the burden on SME finance.2. SMEs need transparent rating proceduresDue to higher risk awareness of the finance sector and the needs of Basel II, many SMEs will be confronted for the first time with internal rating procedures or credit scoring systems by their banks. The bank will require more and better quality information from their clients and will assess them in a new way. Both up-coming developments are already causing increasing uncertainty amongst SMEs.In order to reduce this uncertainty and to allow SMEs to understand the principles of the new risk assessment, UEAPME demands transparent rating procedures –rating procedures may not become a “Black Box” for SMEs:•The bank should communicate the relevant criteria affecting the rating of SMEs.•The bank should inform SMEs about its assessment in order to allow SMEs to improve.The negotiations on a European Code of Conduct between Banks and SMEs , which would have included a self-commitment for transparent rating procedures by Banks, failed. Therefore, UEAPME expects from the new European Commission and the new European Parliament support for:•binding rules in the framework of the new Capital Adequacy Directive, which ensure the transparency of rating procedures and credit scoring systems for SMEs;•Elaboration of national Codes of Conduct in order to improve the relations between Banks and SMEs and to support the adaptation of SMEs to the new financial environment.3. SMEs need an extension of credit guarantee systems with a special focus on Micro-LendingBusiness start-ups, the transfer of businesses and innovative fast growth SMEs also depended in the past very often on public support to get access to finance. Increasing risk awareness by banks and the stricter interpretation of State Aid Rules will further increase the need for public support.Already now, there are credit guarantee schemes in many countries on the limit of their capacity and too many investment projects cannot be realized by SMEs.Experiences show that Public money, spent for supporting credit guarantees systems, is a very efficient instrument and has a much higher multiplying effect than other instruments. One Euro form the European Investment Funds can stimulate 30 Euro investments in SMEs (for venture capital funds the relation is only 1:2).Therefore, UEAPME expects the new European Commission and the new European Parliament to support:•The extension of funds for national credit guarantees schemes in the framework of the new Multi-Annual Programmed for Enterprises;•The development of new instruments for securitizations of SME portfolios;•The recognition of existing and well functioning credit guarantees schemes as collateral;•More flexibility within the European Instruments, because of national differences in the situation of SME finance;•The development of credit guarantees schemes in the new Member States;•The development of an SBIC-like scheme in the Member States to close the equity gap (0.2 – 2.5 Mio Euro, according to the expert meeting on PACE on April 27 in Luxemburg).•the development of a financial support scheme to encourage the internalizations of SMEs (currently there is no scheme available at EU level: termination of JOP, fading out of JEV).4. SMEs need company and income taxation systems, which strengthen their capacity for self-financingMany EU Member States have company and income taxation systems with negative incentives to build-up capital within the company by re-investing their profits. This is especially true for companies, which have to pay income taxes. Already in the past tax-regimes was one of the reasons for the higher dependence of Europe’s SMEs on bank lending. In future, the result of rating will also depend on the amount of capital in the company; the high dependence on lending will influence the access to lending. This is a vicious cycle, which has to be broken.Even though company and income taxation falls under the competence of Member States, UEAPME asks the new European Commission and the new European Parliament to publicly support tax-reforms, which will strengthen the capacity of Crafts, Trades and SME for self-financing. Thereby, a special focus on non-corporate companies is needed.5. Risk Capital – equity financingExternal equity financing does not have a real tradition in the SME sector. On the one hand, small enterprises and family business in general have traditionally not been very open towards external equity financing and are not used to informing transparently about their business.On the other hand, many investors of venture capital and similar forms of equity finance are very reluctant regarding investing their funds in smaller companies, which is more costly than investing bigger amounts in larger companies. Furthermore it is much more difficult to set out of such investments in smaller companies.Even though equity financing will never become the main source of financing for SMEs, it is an important instrument for highly innovative start-ups and fast growing companies and it has therefore to be further developed. UEAPME sees three pillars for such an approach where policy support is needed:Availability of venture capital•The Member States should review their taxation systems in order to create incentives to invest private money in all forms of venture capital.•Guarantee instruments for equity financing should be further developed.Improve the conditions for investing venture capital into SMEs•The development of secondary markets for venture capital investments in SMEs should be supported.•Accounting Standards for SMEs should be revised in order to ease transparent exchange of information between investor and owner-manager.Owner-managers must become more aware about the need for transparency towards investors•SME owners will have to realise that in future access to external finance (venture capital or lending) will depend much more on a transparent and open exchange of information about the situation and the perspectives of their companies.•In order to fulfil the new needs for transparency, SMEs will have to use new information instruments (business plans, financial reporting, etc.) and new management instruments (risk-management, financial management, etc.).外文资料翻译涂敏之会计学 8051208076题目:未来的中小企业融资背景:中小企业融资已经改变未来的经济复苏将取决于能否工艺品,贸易和中小企业利用其潜在的增长和创造就业。

外文翻译资料及译文

外文翻译资料及译文

附录C:外文翻译资料Article Source:Business & Commercial Aviation, Nov 20, 2000. 5-87-88 Interactive Electronic Technical Manuals Electronic publications can increase the efficiency of your digital aircraft and analogtechnicians.Benoff, DaveComputerized technical manuals are silently revolutionizing the aircraft maintenance industry by helping the technician isolate problems quickly, and in the process reduce downtime and costs by more than 10 percent.These electronic publications can reduce the numerous volumes of maintenance manuals, microfiche and work cards that are used to maintain engines, airframes, avionics and their associated components."As compared with the paper manuals, electronic publications give us greater detail and reduced research times," said Chuck Fredrickson, general manager of Mercury Air Center in Fort Wayne, Ind.With all the advances in computer hardware and software technologies, such as high quality digital multimedia, hypertext and the capability to store and transmit digital multimedia via CD-ROMs/ networks, technical publication companies have found an effective, cost-efficient method to disseminate data to technicians.The solution for many operators and OEMs is to take advantage of today's technology in the form of Electronic Technical Manuals (ETM) or Interactive Technical Manuals (IETM). An ETM is any technical manual prepared in digital format that has the ability to be displayed using any electronic hardware media. The difference between the types of ETM/IETMs is the embedded functionality and implementation of the data."The only drawback we had to using ETMs was getting enough computers to meet our technicians' demand," said Walter Berchtold, vice president of maintenance at Jet Aviation's West Palm Beach, Fla., facility.A growing concern is the cost to print paper publications. In an effort to reduce costs, some aircraft manufacturers are offering incentives for owners to switch from paper to electronic publications. With an average printing cost of around 10 cents per page, a typical volume of a paper technical manual can cost the manufacturer over $800 for each copy. When producing a publication electronically, average production costs for a complete set of aircraft manuals are approximately $20 per copy. It is not hard to see the cost advantages of electronic publications.Another advantage of ETMs is the ease of updating information. With a paper copy, the manufacturer has to reprint the revised pages and mail copies to all the owners. When updates are necessary for an electronic manual, changes can either be e-mailed to theowners or downloaded from the manufacturer's Web site.So why haven't more flight departments converted their publications to ETM/IETMs? The answer lies in convincing technicians that electronic publications can increase their efficiency."We had an initial learning curve when the technicians switched over, but now that they are familiar with the software they never want to go back to paper," said Fredrickson.A large majority of corporate technicians also said that while they like the concept of having a tool that aids the troubleshooting process, they are fearful to give up all of their marked-up paper manuals.In 1987, a human factors study was conducted by the U.S. government to compare technician troubleshooting effectiveness, between paper and electronic methodology, and included expert troubleshooting procedures with guidance through the events. Results of the project indicated that technicians using electronic media took less than half the time to complete their tasks than those using the paper method, and technicians using the electronic method accomplished 65 percent more in that reduced time.The report also noted that new technicians using the electronic technical manuals were 12-percent more efficient than the older, more experienced technicians. (Novices using paper took 15 percent longer than the experts.)It is interesting that 90 percent of the technicians who used the electronic manuals said they preferred them to the paper versions. This proved to the industry that with proper training, the older technicians could easily transition from paper to electronic media.Electronic publications are not a new concept, although how they are applied today is. "Research over the last 20 years has provided a solid foundation for today's IETM implementation," said Joseph Fuller of the U.S. Naval Surface Warfare Center. "IETMs such as those for the Apache, Comanche, F-22, JSTAR and V-22 have progressed from concept to military and commercial implementation."In the late 1970s, the U.S. military investigated the feasibility of converting existing paper and microfilm. The Navy Technical Information Presentation System (NTIPS) and the Air Force Computer- based Maintenance Aid System (CMAS) were implemented with significant cost savings.The report stated that transition to electronic publications resulted in reductions in corrective maintenance time, fewer false removals of good components, more accurate and complete maintenance data collection reports, reduction in training requirements and reduced system downtime.The problem that the military encountered was ETMs were created in multiple levels of complexity with little to no standardization. Options for publications range from simple page-turning programs to full-functioning automated databases.This resulted in the classification of ETMs so that the best type of electronic publication could be selected for the proper application.Choosing a LevelWith all of the OEM and second- and third-party electronic publications that are available it is important that you choose the application level that is appropriate for your operation.John J. Miller, BAE Systems' manager of electronic publications, told B/CAthat "When choosing the level of an ETM/IETM, things like complexity of the aircraft and its systems, ease of use, currency of data and commonality of data should be the deciding factors; and, of course, price. If operational and support costs are reduced when you purchase a full-functioning IETM, then you should purchase the better system."Miller is an expert on the production, sustainment and emerging technologies associated with electronic publications, and was the manager of publications for Boeing in Philadelphia.Electronic publications are classified in one of five categories. A Class 1 publication is a basic electronic "page turner" that allows you to view the maintenance manual as it was printed. With a Class 2 publication all the original text of the manual is viewed as one continuous page with no page breaks. In Class 3, 4 and 5 publications the maintenance manual is viewed on a computer in a frame-based environment with increasing options as the class changes. (See sidebar.)Choosing the appropriate ETM for your operation is typically limited to whatever is being offered on the market, but since 1991 human factors reports state the demand has increased and, therefore, options are expected to follow.ETM/IETM ProvidersCompanies that create ETM/IETMs are classified as either OEM or second party provider. Class 1, 3 and 4 ETM/IETMs are the most commonly used electronic publications for business and commercial operators and costs can range anywhere from $100 to $3,000 for each ETM/ IETM. The following are just a few examples ofETM/IETMs that are available on the market.Dassault Falcon Jet offers operatorsof the Falcon 50/50EX, 900/900EX and 2000 a Class 4 IETM called the Falcon Integrated Electronic Library by Dassault (FIELD). Produced in conjunction with Sogitec Industries in Suresnes Cedex, France, the electronic publication contains service documentation, basic wiring, recommended maintenance and TBO schedules, maintenance manual, tools manual, service bulletins, maintenance and repair manual, and avionics manual.The FIELD software allows the user to view the procedures and hot- link directly to the Illustrated parts catalog. The software also enables the user to generate discrepancy forms, quotation sheets, annotations in the manual and specific preferences for each user.BAE's Miller said most of the IETM presentation systems have features called "Technical Notes." If a user of the electronic publication notices a discrepancy or needs to annotate the manual for future troubleshooting, the user can add a Tech Note (an electronic mark-up) to the step or procedure and save it to the base document. The next time that or another user is in the procedure, clicking on the tech note icon launches a pop-up screen displaying the previous technician's comments. The same electronic transfer of tech notes can be sent to other devices by using either a docking station or through a network server. In addition, systems also can use "personal notes" similar to technical notes that are assigned ID codes that only the authoring technician can access.Requirements for the FIELD software include the minimum of a 16X CD-ROM drive,Pentium II 200 MHz computer, Windows 95, Internet Explorer 4 SP 1 and Database Access V3.5 or higher.Raytheon offers owners of Beech and Hawker aircraft a Class 4 IETM called Raytheon Electronic Publication Systems (REPS). The REPS software links the frame-based procedures with the parts catalog using a single CD-ROM.Raytheon Aircraft Technical Publications said other in- production Raytheon aircraft manual sets will be converted to the REPS format, with the goal of having all of them available by 2001. In addition Raytheon offers select Component Maintenance Manuals (CMM). The Class 1 ETM is a stand-alone "page-turner" electronic manual that utilizes the PDF format of Adobe Acrobat.Other manufacturers including Bombardier, Cessna and Gulfstream offer operators similar online and PDF documentation using a customer- accessed Web account.Boeing is one manufacturer that has developed an onboard Class 5 IETM. Called the Computerized Fault Reporting System (CFRS), it has replaced the F-15 U.S. Air Force Fault Reporting Manuals. Technologies that are currently being applied to Boeing's military system are expected to eventually become a part of the corporate environment.The CFRS system determines re-portable faults by analyzing information entered during a comprehensive aircrew debrief along with electronically recovered maintenance data from the Data Transfer Module (DTM). After debrief the technicians can review aircraft faults and schedule maintenance work to be performed. The maintenance task is assigned a Job Control Number (JCN) and is forwarded electronically to the correct work center or shop. Appropriate information is provided to the Air Force's Core Automated Maintenance System (CAMS).When a fault is reported by pilot debrief, certain aircraft systems have the fault isolation procedural data on a Portable Maintenance Aid (PMA). The JCN is selected on a hardened laptop with a wireless Local Area Network (LAN) connection to the CFRS LAN infrastructure. The Digital Wiring Data System (DWDS) displays aircraft wiring diagrams to the maintenance technician for wiring fault isolation. On completion of maintenance, the data collected is provided to the Air Force, Boeing and vendors for system analysis.Third party IETM developers such as BAE Systems and Dayton T. Brown offer OEMs the ability to subcontract out the development of Class 1 through 5 ETM/IETMs. For example, Advantext, Inc. offers PDF and IPDF Class 1 ETMs for manufacturers such as Piper and Bell Helicopters. Technical publications that are available include maintenance manuals, parts catalogs, service bulletins, wiring diagrams, service letters and interactive parts ordering forms.The difference between the PDF and IPDF version is that the IPDF version has the ability to search for text and include hyperlinks. A Class 1 ETM, when printed, is an exact reproduction of the OEM manuals, including any misspellings or errors. Minimum requirements for the Advantext technical publications is a 486 processor, 16 MB RAM with 14 MB of free hard disk space and a 4X CD-ROM or better.Aircraft Technical Publishers (ATP) offers Class 1, 2 and 3 ETM/ IETMsfor the Beechjet 400/400A; King Air 300/ 350, 200 and 90; Learjet 23/24/25/28/29/35/36/55; Socata TB9/10/20/21 and TBM 700A; Sabreliner 265-65, -70 and -80; andBeech 1900. The libraries can include maintenance manuals, Illustrated parts bulletins, wiring manuals, Airworthiness Directives, Service Bulletins, component maintenance manuals and structural maintenance manuals. System minimum requirements are Pentium 133 MHz, Windows 95 with 16 MB RAM, 25 MB free hard disk space and a 4X CD-ROM or better.Additional providers such as Galaxy Scientific are providing ETM/ IETMs to the FAA. This Class 2, 3 and 4 publication browser is used to store, display and edit documentation for the Human Factors Section of the administration."Clearly IETMs have moved from research to reality," said Fuller, and the future looks to hold more promise.The Future of Tech PubsThe use of ETM/IETMs on laptop and desktop computers has led research and development corporations to investigate the human interface options to the computer. Elements that affect how a technician can interface with a computer are the work environment, economics and ease of use. Organizations such as the Office of Naval Research have focused their efforts on the following needs of technicians: -- Adaptability to the environment.-- Ease of use.-- Improved presentation of complex system relationship.-- Maximum reuse and distribution of engineering data.-- Intelligent data access.With these factors in mind, exploratory development has begun in the areas of computer vision, augmented reality display and speech recognition.Computer vision can be created using visual feedback from a head- mounted camera. The camera identifies the relative position and orientation of an object in an observed scene, and the object is used to correlate the object with a three-dimensional model. In order for a computer vision scenario to work, engineering data has to be provided through visually compatible software.When systems such as Sogitech's View Tech electronic publication browser and Dassault Systemes SA's Enovia are combined, a virtual 3D model is generated.The digital mockup allows the engineering information to directly update the technical publication information. If a system such as CATIA could be integrated into a Video Reference System (VRS), then it could be possible that a technician would point the camera to the aircraft component, the digital model identifies the component and the IETM automatically displays the appropriate information.This example of artificial intelligence is already under development at companies like Boeing and Dassault. An augmented reality display is a concept where visual cues are presented to users on a head-mounted, see-through display system.The cues are presented to the technician based on the identification of components on a 3D model and correlation with the observed screen. The cues are then presented as stereoscopic images projected onto the object in the observed scene.In addition a "Private Eye" system could provide a miniature display of the maintenance procedure that is provided from a palm- size computer. Limited success hascurrently been seen in similar systems for the disabled. The user of a Private Eye system can look at the object selected and navigate without ever having to touch the computer. Drawbacks from this type of system are mental and eye fatigue, and spatial disorientation.Out of all the technologies, speech recognition has developed into an almost usable and effective system. The progression through maintenance procedures is driven by speaker-independent recognition. A state engine controls navigation, and launches audio responses and visual cues to the user. Voice recognition software is available, although set up and use has not been extremely successful.Looking at other industries, industrial manufacturing has already started using "Palm Pilot" personal digital assistants (PDAs) to aid technicians in troubleshooting. These devices allow the technician to have the complete publication beside them when they are in tight spaces. "It would be nice to take the electronic publications into the aircraft, so we are not constantly going back to the work station to print out additional information," said Jet Aviation's Berchtold.With all the advantages that a ETM/ IETM offers it should be noted that electronic publications are not the right solution all of the time, just as CBT is not the right solution for training in every situation. Only you can determine if electronic publications meet your needs, and most technical publication providers offer demo copies for your review. B/CA IllustrationPhoto: Photograph: BAE Systems' Christine Gill prepares a maintenance manual for SGML conversion BAE Systems; Photograph: Galaxy Scientific provides the FAA's human factors group with online IETM support.; Photograph: Raytheon's Class 4 IETM "REPS" allows a user to see text and diagrams simultaneously with hotlinks to illustrated parts catalogs.外文翻译资料译文部分文章出处:民航商业杂志,2000-11-20,5-87-88交互式电子技术手册的电子出版物可以提高数字飞机和模拟技术的效率。

5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand

5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand

外文文献翻译(附原文)外文译文一:产业集群的竞争优势——以中国大连软件工业园为例Weilin Zhao,Chihiro Watanabe,Charla-Griffy-Brown[J]. Marketing Science,2009(2):123-125.摘要:本文本着为促进工业的发展的初衷探讨了中国软件公园的竞争优势。

产业集群深植于当地的制度系统,因此拥有特殊的竞争优势。

根据波特的“钻石”模型、SWOT模型的测试结果对中国大连软件园的案例进行了定性的分析。

产业集群是包括一系列在指定地理上集聚的公司,它扎根于当地政府、行业和学术的当地制度系统,以此获得大量的资源,从而获得产业经济发展的竞争优势。

为了成功驾驭中国经济范式从批量生产到开发新产品的转换,持续加强产业集群的竞争优势,促进工业和区域的经济发展是非常有必要的。

关键词:竞争优势;产业集群;当地制度系统;大连软件工业园;中国;科技园区;创新;区域发展产业集群产业集群是波特[1]也推而广之的一个经济发展的前沿概念。

作为一个在全球经济战略公认的专家,他指出了产业集群在促进区域经济发展中的作用。

他写道:集群的概念,“或出现在特定的地理位置与产业相关联的公司、供应商和机构,已成为了公司和政府思考和评估当地竞争优势和制定公共决策的一种新的要素。

但是,他至今也没有对产业集群做出准确的定义。

最近根据德瑞克、泰克拉[2]和李维[3]检查的关于产业集群和识别为“地理浓度的行业优势的文献取得了进展”。

“地理集中”定义了产业集群的一个关键而鲜明的基本性质。

产业由地区上特定的众多公司集聚而成,他们通常有共同市场、,有着共同的供应商,交易对象,教育机构和其它像知识及信息一样无形的东西,同样地,他们也面临相似的机会和威胁。

在全球产业集群有许多种发展模式。

比如美国加州的硅谷和马萨诸塞州的128鲁特都是知名的产业集群。

前者以微电子、生物技术、和风险资本市场而闻名,而后者则是以软件、计算机和通讯硬件享誉天下[4]。

工业工程英文文献及外文翻译

工业工程英文文献及外文翻译

附录附录1:英文文献Line Balancing in the Real WorldAbstract:Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of years spent solving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have been proposed in the past, and despite the problem’s practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR, and the actual problem faced by the industry.Keyword:Line Balancing, Assembly lines, OptimizationLine Balancing in the Real WorldEmanuel FalkenauerOptimal DesignAv. Jeanne 19A boîte2, B-1050 Brussels, Belgium+32 (0)2 646 10 741 IntroductionAssembly Line Balancing, or simply Line Balancing (LB), is the problem of assigning operations to workstations along an assembly line, in such a way that the assignment be optimal in some sense. Ever since Henry Ford’s introduction of assembly lines, LB has been an optimization problem of significant industrial importance: the efficiency difference between an optimal and a sub-optimal assignment can yield economies (or waste) reaching millions of dollars per year.LB is a classic Operations Research (OR) optimization problem, having been tackled by OR over several decades. Many algorithms have been proposed for the problem. Yet despite the practical importance of the problem, and the OR efforts that have been made to tackle it, little commercially available software is available to help industry in optimizing their lines. In fact, according to a recent survey by Becker and Scholl (2023), there appear to be currently just two commercially available packages featuring both a state of the art optimization algorithm and auser-friendly interface for data management. Furthermore, one of those packages appears to handle only the “clean” formulation of the problem (Simple Assembly Line Balancing Problem, or SALBP), which leaves only one package available for industries such as automotive. This situation appears to be paradoxical, or at least unexpected: given the huge economies LB can generate, one would expect several software packages vying to grab a part of those economies.It appears that the gap between the available OR results and their dissemination in Today’s industry, is probably due to a misalignment between the academic LB problem addressed by most of the OR approaches, and the actual problem being faced by the industry. LB is a difficult optimization problem even its simplest forms are NP-hard – see Garry and Johnson, 1979), so the approach taken by OR has typically been to simplify it, in order to bring it to a level of complexity amenable to OR tools. While this is a perfectly valid approach in general, in the particular case of LB it led some definitions of the problem hat ignore many aspects of the real-world problem.Unfortunately, many of the aspects that have been left out in the OR approach are in fact crucial to industries such as automotive, in the sense that any solution ignoring (violating) those aspects becomes unusable in the industry.In the sequel, we first briefly recall classic OR definitions of LB, and then review how the actual line balancing problem faced by the industry differs from them, and why a solution to the classic OR problem maybe unusable in some industries.2 OR Definitions of LBThe classic OR definition of the line balancing problem, dubbed SALBP (Simple Assembly Line Balancing Problem) by Becker and Scholl (2023), goes as follows. Given a set of tasks of various durations, a set of precedence constraints among the tasks, and a set of workstations, assign each task to exactly one workstation in such a way that no precedence constraint is violated and the assignment is optimal. The optimality criterion gives rise to two variants of the problem: either a cycle time is given that cannot be exceeded by the sum of durations of all tasks assigned to any workstation and the number of workstations is to be minimized, or the number of workstations is fixed and the line cycle time, equal to the largest sum of durations of task assigned to a workstation, is to be minimized.Although the SALBP only takes into account two constraints (the precedence constraints plus the cycle time, or the precedence constraints plus the number of workstations), it is by far the variant of line balancing that has been the most researched. We have contributed to that effort in Falkenauer and Delchambre (1992), where we proposed a Grouping Genetic Algorithm approach that achieved some of the best performance in the field. The Grouping Genetic Algorithm technique itself was presented in detail in Falkenauer (1998).However well researched, the SALBP is hardly applicable in industry, as we will see shortly. The fact has not escaped the attention of the OR researches, and Becker and Scholl (2023) define many extensions to SALBP, yielding a commondenomination GALBP (Generalized Assembly Line Balancing Problem). Each of the extensions reported in their authoritative survey aims to handle an additional difficulty present in real-world line balancing. We have tackled one of those aspects in Falkenauer (1997), also by applying the Grouping Genetic Algorithm.The major problem with most of the approaches reported by Becker and Scholl (2023) is that they generalize the simple SALBP in just one or two directions. The real world line balancing, as faced in particular by the automotive industry, requires tackling many of those generalizations simultaneously.3 What Differs in the Real World?Although even the simple SALBP is NP-hard, it is far from capturing the true complexity of the problem in its real-world incarnations. On the other hand, small instances of the problem, even though they are difficult to solve to optimality, are a tricky target for line balancing software, because small instances of the problem can be solved closet optimality by hand. That is however not the case in the automotive and related industries (Bus, truck, aircraft, heavy machinery, etc.), since those industries routinely feature Assembly lines with dozens or hundreds of workstations, and hundreds or thousands of Operations. Those industries are therefore the prime targets for line balancing software.Unfortunately, those same industries also need to take into account many of the GALBP extensions at the same time, which may explain why, despite the impressive OR Work done on line balancing; only one commercially available software seemstube currently available for those industries.We identify below some of the additional difficulties (with respect to SALBP) that must be tackled in a line balancing tool, in order to be applicable in those industries.3.1 Do Not Balance but Re-balanceMany of the OR approaches implicitly assume that the problem to be solved involves a new, yet-to-be-built assembly line, possibly housed in a new, yet-to-be-built factory. To our opinion, this is the gravest oversimplification of the classic OR approach, for in practice, this is hardly ever the case. The vast majority of real-world line balancing tasks involve existing lines, housed in existing factories – infect, the target line typically needs tube rebalanced rather than balanced, the need arising from changes in the product or the mix of models being assembled in the line, the assembly technology, the available workforce, or the production targets. This has some far-reaching implications, outlined below.3.2 Workstations Have IdentitiesAs pointed out above, the vast majority of real-world line balancing tasks involves existing lines housed in existing factories. In practice, this seemingly “uninteresting” observation has one far-reaching consequence, namely that each workstation in the line does have its own identity. This identity is not due to any “incapacity of abstraction” on part of the process engineers, but rather to the fact that the workstations are indeed not identical: each has its own space constraints (e.g. a workstation below a low ceiling cannot elevate the car above the operators’ heads),its own heavy equipment that cannot be moved spare huge costs, its own capacity of certain supplies (e.g. compressed air), its own restrictions on the operations that can be carried out there (e.g. do not place welding operations just beside the painting shop), etc.3.3 Cannot Eliminate WorkstationsSince workstations do have their identity (as observed above), it becomes obvious that a real-world LB tool cannot aim at eliminating workstations. Indeed, unless the eliminated workstations were all in the front of the line or its tail, their elimination would create gaping holes in the line, by virtue of the other workstations’ retaining of their identities, including their geographical positions in the workshop. Also, it softens the case that many workstations that could possibly be eliminated by the algorithm are in fact necessary because of zoning constraints.4 ConclusionsThe conclusions inspection 3 stems from our extensive contacts with automotive and related industries, and reflects their true needs. Other “exotic” constraints may apply in any given real-world assembly line, but line balancing tool for those industries must be able to handle at least those aspects of the problem. This is very far from the “clean” academic SALBP, as well as most GALBP extensions reported by Becker and Scholl (2023). In fact, such a tool must simultaneously solve several-hard problems:• Find a feasible defined replacement for all undefined (‘ANY’) ergonomicconstraints on workstations, i.e. One compatible with the ergonomic constraints and precedence constraints defined on operations, as well as zoning constraints and possible drifting operations• Solve the within-workstation scheduling problem on all workstations, for all products being assembled on the line• Assign the operations to workstations to achieve the best average balance, while keeping the peak times at a manageable level. Clearly, the real-world line balancing problem described above is extremely difficult to solve. This is compounded byte size of the problem encountered in the target industries, which routinely feature assembly lines with dozens or hundreds of workstations with multiple operators, and hundreds or thousands of operations.We’ve identified a number of aspects of the line balancing problem that are vital in industries such as automotive, yet that have been either neglected in the OR work on the problem, or handled separately from each other. According to our experience, a line balancing to applicable in those industries must be able to handle all of them simultaneously. That gives rise to an extremely complex optimization problem.The complexity of the problem, and the need to solve it quickly, may explain why there appears to be just one commercially available software for solving it, namely outline by Optimal Design. More information on Outline, including its rich graphic user interface, is available at .References1 Becker C. and Scholl, A. (2023) `A survey on problems and methods in generalized assemblyline balancing', European Journal of Operations Research, in press. Available online at :10.1016/j.ejor.2023.07.023. Journal article.2 Falkenauer, E. and Delchambre, A. (1992) `Genetic Algorithm for Bin Packing and Line Balancing', Proceedings of the 1992 IEEE International Conference on Robotics and Automation, May10-15, 1992, Nice, France. IEEE Computer Society Press, Los Alamitos, CA. Pp. 1186-1192. Conference proceedings.3 Falkenauer, E. (1997) `A Grouping Genetic Algorithm for Line Balancing with Resource Dependent Task Times', Proceedings of the Fourth International Conference on Neural Information Processing (ICONIP’97), University of Otego, Dunedin, New Zealand, November 24-28, 1997. Pp. 464-468. Conference proceedings.4 Falkenauer, E. (1998) Genetic Algorithms and Grouping Problems, John Wiley& Sons, Chi Chester, UK. Book.5 Gary. R. and Johnson D. S. (1979) Computers and Intractability - A Guide to the Theory of NP-completeness, Co., San Francisco, USA. Book.附录2:中文文献生产线平衡在现实世界摘要:生产线平衡(LB)是一种经典旳,精心研究旳明显工业重要性旳运筹学(OR)优化问题。

外文翻译国际商务谈判(适用于毕业论文外文翻译+中英文对照)

外文翻译国际商务谈判(适用于毕业论文外文翻译+中英文对照)

西京学院本科毕业设计(论文)外文资料翻译教学单位:经济系专业:国际经济与贸易(本)学号:0700090641姓名:王欢外文出处:《国际商务谈判》附件:1.译文;2.原文;3.评分表2010年11月1.译文译文(一)国际商务谈判是国际商务活动中,处于不同国家或不同地区的商务活动当事人为了达成某笔交易,彼此通过信息交流,就交易的各项要件进行协商的行为过程。

可以说国际商务谈判是一种在对外经贸活动中普遍存在的﹑解决不同国家的商业机构之间不可避免的利害冲突﹑实现共同利益的一种必不可少的手段。

国际商务谈判与一般贸易谈判具有共性,即以经济利益为目的,以价格为谈判核心。

因为价格的高低最直接﹑最集中的表明了谈判双方的利益切割,而且还由于谈判双方在其他条件,诸如质量﹑数量﹑付款形式﹑付款时间等利益要素上的得与失,在很多情况下都可以折算为一定的价格,并通过价格的升降而得到体现或予以补偿。

在国际买卖合同中价格术语包括单价和总价。

单价则是由计量单位,单价,计价货币以及贸易术语构成。

例如,一个价格术语可以这样来说:“每吨CIF伦敦1500美元包含3%佣金”。

总价格是合同中交易的总额。

在谈判过程中,应该由谁先出价,如何回应对方的报价,做出多少让步才适当,到最后双方达成都能接受的协议,整个这一过程被称之为谈判之舞。

通常情况下,谈判者的目标价位不会有重叠:卖方想为自己的产品或服务争取的价格,会高出买方愿意付出的价格。

然而,有时候谈判者的保留点却会相互重叠,也就是说大多数买方愿意付出的价格都会高于卖方可以接受的最低价格,在这种议价区间的前提下,谈判的最终结果会落在高于卖方的保留点而低于买方的保留点之间的某个点上。

议价区间可以为正数,也可以为负数。

在正议价区间,谈判者的保留点会互相重叠的,即买方愿意出的最高价格高于卖方可以接受的最低价格。

这意味着谈判者能达成协议的话,那么结果肯定在这个区间之内。

负议价区间可能根本不存在或是负数,这可能会造成花费巨大的时间来做一件毫无结果的协议,谈判者将会浪费时间成本。

毕业论文外文翻译范例

毕业论文外文翻译范例

外文原文(一)Savigny and his Anglo-American Disciple s*M. H. HoeflichFriedrich Carl von Savigny, nobleman, law reformer, champion of the revived German professoriate, and founder of the Historical School of jurisprudence, not only helped to revolutionize the study of law and legal institutions in Germany and in other civil law countries, but also exercised a profound influence on many of the most creative jurists and legal scholars in England and the United States. Nevertheless, tracing the influence of an individual is always a difficult task. It is especially difficult as regards Savigny and the approach to law and legal sources propounded by the Historical School. This difficulty arises, in part, because Savigny was not alone in adopting this approach. Hugo, for instance, espoused quite similar ideas in Germany; George Long echoed many of these concepts in England during the 1850s, and, of course, Sir Henry Sumner Maine also espoused many of these same concepts central to historical jurisprudence in England in the 1860s and 1870s. Thus, when one looks at the doctrinal writings of British and American jurists and legal scholars in the period before 1875, it is often impossible to say with any certainty that a particular idea which sounds very much the sort of thing that might, indeed, have been derived from Savigny's works, was, in fact, so derived. It is possible, nevertheless, to trace much of the influence of Savigny and his legal writings in the United States and in Great Britain during this period with some certainty because so great was his fame and so great was the respect accorded to his published work that explicit references to him and to his work abound in the doctrinal writing of this period, as well as in actual law cases in the courts. Thus, Max Gutzwiller, in his classic study Der einfluss Savignys auf die Entwicklung des International privatrechts, was able to show how Savigny's ideas on conflict of laws influenced such English and American scholars as Story, Phillimore, Burge, and Dicey. Similarly, Andreas Schwarz, in his "Einflusse Deutscher Zivilistik im Auslande," briefly sketched Savigny's influence upon John Austin, Frederick Pollock, and James Bryce. In this article I wish to examine Savigny's influence over a broader spectrum and to draw a picture of his general fame and reputation both in Britain and in the United States as the leading Romanist, legal historian, and German legal academic of his day. The picture of this Anglo-American respect accorded to Savigny and the historical school of jurisprudence which emerges from these sources is fascinating. It sheds light not only upon Savigny’s trans-channel, trans-Atlantic fame, but also upon the extraordinarily*M.H.Hoeflich, Savigny and his Anglo-American Disciples, American Journal of Comparative Law, vol.37, No.1, 1989.cosmopolitan outlook of many of the leading American and English jurists of the time. Of course, when one sets out to trace the influence of a particular individual and his work, it is necessary to demonstrate, if possible, precisely how knowledge of the man and his work was transmitted. In the case of Savigny and his work on Roman law and ideas of historical jurisprudence, there were three principal modes of transmission. First, there was the direct influence he exercised through his contacts with American lawyers and scholars. Second, there was the influence he exercised through his books. Third, there was the influence he exerted indirectly through intermediate scholars and their works. Let us examine each mode separately.I.INFLUENCE OF THE TRANSLATED WORKSWhile American and British interest in German legal scholarship was high in the antebellum period, the number of American and English jurists who could read German fluently was relatively low. Even those who borrowed from the Germans, for instance, Joseph Story, most often had to depend upon translations. It is thus quite important that Savigny’s works were amongst the most frequently translated into English, both in the United States and in Great Britain. His most influential early work, the Vom Beruf unserer Zeitfur Rechtsgeschichte und Gestzgebung, was translated into English by Abraham Hayward and published in London in 1831. Two years earlier the first volume of his History of Roman Law in the Middle Ages was translated by Cathcart and published in Edinburgh. In 1830, as well, a French translation was published at Paris. Sir Erskine Perry's translation of Savigny's Treatise on Possession was published in London in 1848. This was followed by Archibald Brown's epitome of the treatise on possession in 1872 and Rattigan's translation of the second volume of the System as Jural Relations or the Law of Persons in 1884. Guthrie published a translation of the seventh volume of the System as Private International Law at Edinburgh in 1869. Indeed, two English translations were even published in the far flung corners of the British Raj. A translation of the first volume of the System was published by William Holloway at Madras in 1867 and the volume on possession was translated by Kelleher and published at Calcutta in 1888. Thus, the determined English-speaking scholar had ample access to Savigny's works throughout the nineteenth century.Equally important for the dissemination of Savigny's ideas were those books and articles published in English that explained and analyzed his works. A number of these must have played an important role in this process. One of the earliest of these is John Reddie's Historical Notices of the Roman law and of the Progress of its Study in Germany, published at Edinburgh in 1826. Reddie was a noted Scots jurist and held the Gottingen J.U.D. The book, significantly, is dedicated to Gustav Hugo. It is of that genre known as an external history of Roman law-not so much a history of substantive Roman legal doctrine but rather a historyof Roman legal institutions and of the study of Roman law from antiquity through the nineteenth century. It is very much a polemic for the study of Roman law and for the Historical School. It imparts to the reader the excitement of Savigny and his followers about the study of law historically and it is clear that no reader of the work could possibly be left unmoved. It is, in short, the first work of public relations in English on behalf of Savigny and his ideas.Having mentioned Reddie's promotion of Savigny and the Historical School, it is important to understand the level of excitement with which things Roman and especially Roman law were greeted during this period. Many of the finest American jurists were attracted-to use Peter Stein's term-to Roman and Civil law, but attracted in a way that, at times, seems to have been more enthusiastic than intellectual. Similarly, Roman and Civil law excited much interest in Great Britain, as illustrated by the distinctly Roman influence to be found in the work of John Austin. The attraction of Roman and Civil law can be illustrated and best understood, perhaps, in the context of the publicity and excitement in the English-speaking world surrounding the discovery of the only complete manuscript of the classical Roman jurist Gaius' Institutes in Italy in 1816 by the ancient historian and German consul at Rome, B.G. Niebuhr. Niebuhr, the greatest ancient historian of his time, turned to Savigny for help with the Gaius manuscript (indeed, it was Savigny who recognized the manuscript for what it was) and, almost immediately, the books and journals-not just law journals by any means-were filled with accounts of the discovery, its importance to legal historical studies, and, of course, what it said. For instance, the second volume of the American Jurist contains a long article on the civil law by the scholarly Boston lawyer and classicist, John Pickering. The first quarter of the article is a gushing account of the discovery and first publication of the Gaius manuscript and a paean to Niebuhr and Savigny for their role in this. Similarly, in an article published in the London Law Magazine in 1829 on the civil law, the author contemptuously refers to a certain professor who continued to tell his students that the text of Gaius' Institutes was lost for all time. What could better show his ignorance of all things legal and literary than to be unaware of Niebuhr's great discovery?Another example of this reaction to the discovery of the Gaius palimpsest is to be found in David Irving's Introduction to the Study of the Civil Law. This volume is also more a history of Roman legal scholarship and sources than a study of substantive Roman law. Its pages are filled with references to Savigny's Geschichte and its approach clearly reflects the influence of the Historical School. Indeed, Irving speaks of Savigny's work as "one of the most remarkable productions of the age." He must have been truly impressed with German scholarship and must also have been able to convince the Faculty of Advocates, forwhom he was librarian, of the worth of German scholarship, for in 1820 the Faculty sent him to Gottingen so that he might study their law libraries. Irving devotes several pages of his elementary textbook on Roman law to the praise of the "remarkable" discovery of the Gaius palimpsest. He traces the discovery of the text by Niebuhr and Savigny in language that would have befitted an adventure tale. He elaborates on the various labors required to produce a new edition of the text and was particularly impressed by the use of a then new chemical process to make the under text of the palimpsest visible. He speaks of the reception of the new text as being greeted with "ardor and exultation" strong words for those who spend their lives amidst the "musty tomes" of the Roman law.This excitement over the Verona Gaius is really rather strange. Much of the substance of the Gaius text was already known to legal historians and civil lawyers from its incorporation into Justinian's Institutes and so, from a substantive legal perspective, the find was not crucial. The Gaius did provide new information on Roman procedural rules and it did also provide additional information for those scholars attempting to reconstruct pre-Justinianic Roman law. Nevertheless, these contributions alone seem hardly able to justify the excitement the discovery caused. Instead, I think that the Verona Gaius discovery simply hit a chord in the literary and legal community much the same as did the discovery of the Rosetta Stone or of Schliemann’s Troy. Here was a monument of a great civilization brought newly to light and able to be read for the first time in millenia. And just as the Rosetta Stone helped to establish the modern discipline of Egyptology and Schliemann's discoveries assured the development of classical archaeology as a modern academic discipline, the discovery of the Verona Gaius added to the attraction Roman law held for scholars and for lawyers, even amongst those who were not Romanists by profession. Ancillary to this, the discovery and publication of the Gaius manuscript also added to the fame of the two principals involved in the discovery, Niebuhr and Savigny. What this meant in the English-speaking world is that even those who could not or did not wish to read Savigny's technical works knew of him as one of the discoverers of the Gaius text. This fame itself may well have helped in spreading Savigny's legal and philosophical ideas, for, I would suggest, the Gaius "connection" may well have disposed people to read other of Savigny's writings, unconnected to the Gaius, because they were already familiar with his name.Another example of an English-speaking promoter of Savigny is Luther Stearns Cushing, a noted Boston lawyer who lectured on Roman law at the Harvard Law School in 1848-49 and again in 1851- 1852.Cushing published his lectures at Boston in 1854 under the title An Introduction to the Study of Roman Law. He devoted a full chapter to a description of the historical school and to the controversy betweenSavigny and Thibaut over codification. While Cushing attempted to portray fairly the arguments of both sides, he left no doubt as to his preference for Savigny's approach:The labors of the historical school have established an entirely new and distinct era in the study of the Roman jurisprudence; and though these writers cannot be said to have thrown their predecessors into the shade, it seems to be generally admitted, that almost every branch of the Roman law has received some important modification at their hands, and that a knowledge of their writings, to some extent, at least, is essentially necessary to its acquisition.译文(一)萨维尼和他的英美信徒们*M·H·豪弗里奇弗雷德里奇·卡尔·冯·萨维尼出身贵族,是一位出色的法律改革家,也是一位倡导重建德国教授协会的拥护者,还是历史法学派的创建人之一。

(完整word版)外文文献及翻译doc

(完整word版)外文文献及翻译doc

Criminal Law1.General IntroductionCriminal law is the body of the law that defines criminal offenses, regulates the apprehension, charging, and trial of suspected offenders,and fixes punishment for convicted persons. Substantive criminal law defines particular crimes, and procedural law establishes rules for the prosecution of crime. In a democratic society, it is the function of the legislative bodies to decide what behavior will be made criminal and what penalties will be attached to violations of the law.Capital punishment may be imposed in some jurisdictions for the most serious crimes. And physical or corporal punishment may still be imposed such as whipping or caning, although these punishments are prohibited in much of the world. A convict may be incarcerated in prison or jail and the length of incarceration may vary from a day to life.Criminal law is a reflection of the society that produce it. In an Islamic theocracy, such as Iran, criminal law will reflect the religious teachings of the Koran; in an Catholic country, it will reflect the tenets of Catholicism. In addition, criminal law will change to reflect changes in society, especially attitude changes. For instance, use of marijuana was once considered a serious crime with harsh penalties, whereas today the penalties in most states are relatively light. As severity of the penaltieswas reduced. As a society advances, its judgments about crime and punishment change.2.Elements of a CrimeObviously, different crimes require different behaviors, but there are common elements necessary for proving all crimes. First, the prohibited behavior designated as a crime must be clearly defined so that a reasonable person can be forewarned that engaging in that behavior is illegal. Second, the accused must be shown to have possessed the requisite intent to commit the crime. Third, the state must prove causation. Finally, the state must prove beyond a reasonable doubt that the defendant committed the crime.(1) actus reusThe first element of crime is the actus reus.Actus is an act or action and reus is a person judicially accused of a crime. Therefore, actus reus is literally the action of a person accused of a crime. A criminal statute must clearly define exactly what act is deemed “guilty”---that is, the exact behavior that is being prohibited. That is done so that all persons are put on notice that if they perform the guilty act, they will be liable for criminal punishment. Unless the actus reus is clearly defined, one might not know whether or not on e’s behavior is illegal.Actus reus may be accomplished by an action, by threat of action,or exceptionally, by an omission to act, which is a legal duty to act. For example, the act of Cain striking Abel might suffice, or a parent’s failure to give to a young child also may provide the actus reus for a crime.Where the actus reus is a failure to act, there must be a duty of care. A duty can arise through contract, a voluntary undertaking, a blood relation, and occasionally through one’s official position. Duty also can arise from one’s own creation of a dangerous situation.(2)mens reaA second element of a crime is mens rea. Mens rea refers to an individual’s state of mind when a crime is committed. While actus reus is proven by physical or eyewitness evidence, mens rea is more difficult to ascertain. The jury must determine for itself whether the accused had the necessary intent to commit the act.A lower threshold of mens rea is satisfied when a defendant recognizes an act is dangerous but decides to commit it anyway. This is recklessness. For instance, if Cain tears a gas meter from a wall, and knows this will let flammable gas escape into a neighbor’s house, he could be liable for poisoning. Courts often consider whether the actor did recognise the danger, or alternatively ought to have recognized a danger (though he did not) is tantamount to erasing intent as a requirement. In this way, the importance of mens rea hasbeen reduced in some areas of the criminal law.Wrongfulness of intent also may vary the seriousness of an offense. A killing committed with specific intent to kill or with conscious recognition that death or serious bodily harm will result, would be murder, whereas a killing affected by reckless acts lacking such a consciousness could be manslaughter.(3)CausationThe next element is causation. Often the phrase “but for”is used to determine whether causation has occurred. For example, we might say “Cain caused Abel”, by which we really mean “Cain caused Abel’s death. ”In other words, ‘but for Cain’s act, Abel would still be alive.” Causation, then, means “but for” the actions of A, B would not have been harmed. In criminal law, causation is an element that must be proven beyond a reasonable doubt.(4) Proof beyond a Reasonable DoubtIn view of the fact that in criminal cases we are dealing with the life and liberty of the accused person, as well as the stigma accompanying conviction, the legal system places strong limits on the power of the state to convict a person of a crime. Criminal defendants are presumed innocent. The state must overcome this presumption of innocence by proving every element of the offense charged against the defendant beyond a reasonable doubt to thesatisfaction of all the jurors. This requirement is the primary way our system minimizes the risk of convicting an innocent person.The state must prove its case within a framework of procedural safeguards that are designed to protect the accused. The state’s failure to prove any material element of its case results in the accused being acquitted or found not guilty, even though he or she may actually have committed the crime charged.3. Strict LiabilityIn modern society, some crimes require no more mens rea, and they are known as strict liability offenses. For in stance, under the Road Traffic Act 1988 it is a strict liability offence to drive a vehicle with an alcohol concentration above the prescribed limit.Strict liability can be described as criminal or civil liability notwithstanding the lack mens rea or intent by the defendant. Not all crimes require specific intent, and the threshold of culpability required may be reduced. For example, it might be sufficient to show that a defendant acted negligently, rather than intentionally or recklessly.1. 概述刑法是规定什么试犯罪,有关犯罪嫌疑人之逮捕、起诉及审判,及对已决犯处以何种刑罚的部门法。

机械类外文文献翻译(中英文翻译)

机械类外文文献翻译(中英文翻译)

机械类外文文献翻译(中英文翻译)英文原文Mechanical Design and Manufacturing ProcessesMechanical design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.People who perform the various functions of mechanical design are typically called designers, or design engineers. Mechanical design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes.As stated previously, the purpose of mechanical design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a particular product is designed.Mechanical design should be considered to be an opportunity to use innovative talents to envision a design of a product, to analyze the systemand then make sound judgments on how the product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts or equations which alone can be used to provide all the correct decisions required to produce a good design.On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function.Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that if the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what new, untried ideas should be incorporated.New designs generally have "bugs" or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasized that, if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.During the beginning stages of design, creativity should be allowedto flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the design which is ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted.Basically, there are only three means of communication available tous. These are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, no one will ever know how competent that person is!The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great deal to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the final analysis, the real failure would lie in deciding not to make the presentation at all. To communicate effectively, the following questions must be answered:(1) Does the design really serve a human need?(2) Will it be competitive with existing products of rival companies?(3) Is it economical to produce?(4) Can it be readily maintained?(5) Will it sell and make a profit?Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.Quite often, a problem will occur during the manufacturing cycle [3].It may be that a change is required in the dimensioning or tolerancing of a part so that it can be more readily produced. This fails in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way.Designing starts with a need, real or imagined. Existing apparatus may need improvements in durability, efficiently, weight, speed, or cost. New apparatus may be needed to perform a function previously done by men, such as computation, assembly, or servicing. With the objective wholly or partly defined, the next step in design is the conception of mechanisms and their arrangements that will perform the needed functions.For this, freehand sketching is of great value, not only as a record of one's thoughts and as an aid in discussion with others, but particularly for communication with one's own mind, as a stimulant for creative ideas.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive east. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strength of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles ofmechanics, such as those of statics for reaction forces and for the optimumutilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress。

外文资料及翻译

外文资料及翻译

外文资料及译文原文:Television Video SignalsAlthough over 50 years old , the standard television signal is still one of the most common way to transmit an image. Figure 8.3 shows how the television signal appears on an oscilloscope. This is called composite video, meaning that there are vertical and horizontal synchronization (sync) pulses mixed with the actual picture information.These pulses are used in the television receiver to synchronize the vertical and horizontal deflection circuits to match the video being displayed. Each second of standard video contains 30 complete images, commonly called frames , A video engineer would say that each frame contains 525 lines, the television jargon for what programmers call rows. This number is a little deceptive because only 480 to 486 of these lines contain video information; the remaining 39to 45 lines are reserved for sync pulses to keep the television’s circuits synchronized with the video signal.Standard television uses an interlaced format to reduce flicker in the displayed image. This means that all the odd lines of each frame are transmitted first, followed by the even lines. The group of odd lines is called the odd field, and the group of even lines is called the even field. Since each frame consists of two fields, the video signal transmits 60 fields per second. Each field starts with a complex series of vertical sync pulses lasting 1.3 milliseconds. This is followed by either the even or odd lines of video. Each line lasts for 63.5 microseconds, including a 10.2 microsecond horizontal sync pulse, separating one line from the next. Within each line, the analog voltage corresponds to the gray scale of the image, with brighter values being in the direction away from the sync pulses. This place the sync beyond the black range. In video jargon, the sync pulses are said to be blacker than black..The hardware used for analog-to-digital conversion of video signals is called a frame grabber. This is usually in the form of an electronics card that plugs into a computer, and connects to a camera through a coaxial cable. Upon command from software, the frame grabber waits for the beginning of the next frame, as indicated by the vertical sync pulses. During the following two fields, each line of video is sampled many times, typically 512,640 or 720 samples per line, at 8bits per sample. These samples are stored in memory as one row of the digital image.This way of acquiring a digital image results in an important difference between the vertical and horizontal directions. Each row in the digital image corresponds to one line in the video signal, and therefore to one row of wells in the CCD. Unfortunately,the columns are not so straightforward. In the CCD, each row contains between about 400 and 800 wells (columns), depending on the particular device used. When a row of wells is read from the CCD, the resulting line of video is filtered into a smooth analog signal, such as in Figure 8.3. In other words, the video signal does not depend on how many columns are present in the CCD. The resolution in the horizontal direction is limited by how rapidly the analog signal is allowed to change. This is usually set at 3.2 MHz for color television, resulting in a rise time of about 100 nanoseconds, i.e, about1/500th of the 53.2 microsecond video line.When the video signal is digitized in the frame grabber, it is converted back into conclusions. However, these columns in the digitized image have no relation to the columns in the CCD. The number of columns in the digital image depends solely on how many times the frame grabber samples each line of video. For example, a CCD might have 800 wells per row, while the digitized image might only have 512 pixels (i.e columns) perrow.The number of columns in the digitized image is also important for another reason. The standard television image has an aspect ratio of 4 to 3, i.e. it is slightly wider than it is high. Motion pictures have the wider aspect ratio of 25 to 9. CCDs used for scientific applications often have an aspect ratio of 1 to 1, i.e , a perfect square. In any event, the aspect ratio of a CCD is fixed by the placement of the electrodes, and cannot be altered. However, the aspect ratio of the digitized image depends on the number of samples per line. This becomes a problem when the image is displayed, either on a video monitor or in a hardcopy. If the aspect ratio isn’t properly reproduced, the image looks squashed horizontally or vertically.The 525 line video signal described here is called NTSC (National Television Systems Committee), a standard defined way back in 1954. This is the system used in the United States and Japan. In Europe there are two similar standards called PAL (Phase Alternation by Line) and SECAM (Sequential Chrominance and Memory). The basic concepts are the same, just the numbers are different. Both PAL and SECAM operate with 25 interlaced frames per second, with 625 lines per frame. Just as with NTSC, some of these lines occur during the vertical sync, resulting in about 576 lines that carry picture information. Other more subtle differences relate to how color and sound are added to the signal.The most straightforward way of transmitting color television would be to have three separate analog signals, one for each of the three colors the human eye can detect: red, green and blue. Unfortunately, the historical development of television did not allow such a simple scheme. The color television signal was developed to allow existing blackand white television sets to remain in use without modification. This was done by retaining the same signal for brightness information , but adding a separate signal for color information. In video jargon, the brightness is called the luminance signal, while the color is the chrominance signal. The chrominance signal is contained on a 3.58 MHz carrier wave added to the black and white video signal. Sound is added in this same way, on a 4.5 MHz carrier wave. The television receiver separates these three signals, processes them individually, and recombines them in the final diplay.译文:关键词:核心,合成信号,电压耦合电视信号尽管已经拥有50年的历史了,电视信号依然是常用的传递信息的途径之一。

08湿度传感器系统毕业论文中英文资料外文翻译文献 (1)

08湿度传感器系统毕业论文中英文资料外文翻译文献 (1)

湿度传感器系统中英文资料外文翻译文献英文:The right design for a relative humidity sensor systemOptimizing the response characteristics and accuracy of a humidity sensor system1 OverviewTo make the right choice when selecting a relative humidity sensor for an application, it is important to know and to be able to judge the deciding factors. In addition to long-term stability, which is a measure on how much a sensor changes its properties over time, these factors also include the measurement accuracy and the response characteristics of the sensor. Capacitive humidity sensors are based on the principle that a humidity-sensitive polymer absorbs or releases moisture as a function of the relative ambient humidity. Because this method is only a spot measurement at the sensor location, and usually the humidity of the surroundings is the desired quantity, the sensor must be brought into moisture equilibrium with the surroundings to obtain a precise measurement value. This process is realized by various transport phenomena (cf. the section titled "The housing effect on the response time"), which exhibit a time constant. Accuracy and response time are thus closely dependent on each other, and the design of a humidity measurement system becomes a challenge.2Measurement accuracyThe term measurement accuracy of a humidity sensor is understood primarily to refer to the deviation of the value measured by the sensor from the actual humidity. To determine the measurement accuracy, references, such as chilled mirror hygrometers, whose own tolerance must be taken into account, are used. In addition to this trivial component, humidity sensors require a given time for reaching stable humidity and temperature equilibrium (the humidity is a function of temperature and decreases with increasing temperature; a difference betweensensor and ambient temperature leads to measurement errors). This response time thus has a significant effect on the value measured by the sensor and thus on the determined accuracy.This time-dependent characteristic is explained in more detail in the following.3Response characteristics and response timeThe response characteristics are defined by various parameters. These are:●The actual response characteristics of the humidity sensor at constant temperature.(1) How quickly the sensitive polymer absorbs or releases moisture until equilibrium is reached (intrinsic response time)(2) How fast the entire system reaches humidity equilibrium (housing effect)●The thermal response characteristics of the humidity sensor at a non-constant temperature●(3) The thermal mass of the sensor(4) The system's thermal mass, which is thermally coupled to the sensor (e.g. printed circuit board)(5) Heat sources in the direct surroundings of the sensor (electronic components)(1) and (3) are determined entirely by the sensor itself, (1) primarily by the characteristics of the sensitive polymer.(2) and (4) are primarily determined by the construction of the entire system (shape and size of housing andreadout circuitry).(5) is determined by heat-emitting electronic components.These points will be discussed in more detail in the following.The intrinsic response time (1)Qualitatively, the response characteristics of capacitive humidity sensors look like the following (Fig. 1).Fig. 1: Typical and idealized response characteristics of capacitive humidity sensors (schematic)Because these response characteristics are especially pronounced at high humidity values, an isothermal humidity jump from 40% to 100% was selected here for illustration. The desired ideal behavior of the sensor is indicated in blue. In practice, however, the sensor behaves according to the red line, approximately according to:RH-t=(E-S)*(1-e)+S(t)Here, the time span 1 is usually very short (typ. 1 – 30 min.), in contrast, the time span 2 is very long (typ. Many hours to days). Here the connection of measurement accuracy and response characteristics becomes clear (t until RH=100% is reached). The value at t4 (Fig. 1) is considered to be an exact measured value. However, this assumes that both the humidity and also the temperature remain stable during this entire time, and that the testing waits until this very long measurement time is completed. These conditions are both very hard to achieve and unusual in practice. For the calibration, there are the following two approaches, which both find use in practice (cf. Fig. 2):1.The measured value at t2 (Fig. 1) is used as a calibration reference.Advantage:The required measurement time for reaching the end value (in the example 100%) is clearly shortened,corresponds to practice, and achieves an apparent short responsetime of the sensor (cf. Fig. 2).Disadvantage:●If the conditions are similar for a long time (e.g., wet periods in outdoor operation),the sensors exceed the correct end value (in the example 100%) undesirably by upto 10% (cf. Fig. 2).2. The measured value at t4 (Fig. 1) is used as a calibration reference.Advantage:●Even for similar conditions over a long time (e.g., wet periods in outdoor operation),an exact measurement result is obtained (cf. Fig. 2).Disadvantage:●For a humidity jump like in Fig. 1, the sensors very quickly deliver the measuredvalue at t2, but reaching a stable end value (about 3-6% higher) takes a long time(apparent longer response time)(cf. Fig. 2).In order to take into account both approaches optimally, the measured values at t3 (cf. Fig. 1) are used as the calibration reference by Sensirion AG.Fig. 2: Response characteristics of different humidity measurement systemsThe housing effect on the response time (2)Here, two types of transport phenomena play a deciding role:●Convection: For this very fast process, the air, whose humidity is to be determined,is transported to the sensor by means of ventilation.●Diffusion: This very slow process is determined by the thermal, molecularself-motion of the water molecules. It occurs even in "stationary" air (e.g., within ahousing), but leads to a long response time.In order to achieve favorable response characteristics in the humidity measurement system, the very fast convection process must be supported by large housing openings and the slow diffusion process must be supported by a small housing around the sensor (small "dead volume") with "stationary" air reduced to a minimum. The following applies:Thermal effects (3), (4), and (5)Because the total thermal mass of the humidity measurement system (sensor + housing) has a significant effect on its response time, the total thermal mass must be kept as low as possible. The greater the total thermal mass, the more inert the measurement system becomes thermally and its response time, which is temperature-dependent, increases. In order to prevent measurement errors, the sensor should not be mounted in the vicinity of heatgenerating components.4Summary –what should be taken into account when designing a humidity measurement systemIn order to achieve error-free operation of a humidity-measurement system with response times as short as possible, the following points should be taken into account especially for the selection of the sensor and for the design of the system.●The selection of the humidity sensor element. It should●be as small as possible,●have a thermal mass that is as low as possible,●work with a polymer, which exhibits minimal fluctuations in measured values duringthe time span 2(cf. Fig. 1); testing gives simple information on this condition,●provide calibration, which corresponds to the requirements (see above), e. g.,SHT11/SHT15 from Sensirion.●The housing design (cf. Formula 1). It should●have air openings that are as large as possible in the vicinity of the sensor or thesensor should be operated outside of the housing à good convection!●enclose a "dead volume" that is as small as possible around the sensor àlittlediffusion!●The sensor should be decoupled thermally as much as possible from other components,so that the response characteristics of the sensor are not negatively affected by the thermal inertia of the entire system.(e.g., its own printed circuit board for the humidity sensor, structurally partitioning the housing to create a small volume for the humidity sensor, see Fig. 3)Fig. 3: Mounting example for Sensirion sensors SHT11 and SHT15 with slits for thermal decoupling●The sensor should not be mounted in the vicinity of heat sources. If it was, measuredtemperature would increase and measured humidity decrease.5Design proposalThe challenge is to realize a system that operates cleanly by optimally taking into account all of the points in section 4. The already calibrated SMD humidity sensors SHT11 and SHT15 from Sensirion are the ideal solution. For optimum integration of the sensors in a measurement system, Sensirion AG has also developed a filter cap as an adapter aid, which takes into account as much as possible the points in section 4 and also protects the sensor against contaminants with a filter membrane. Fig. 4 shows schematically how the sensors can be ideally integrated into a housing wall by means of the filter cap SF1.Fig. 4: Filter cap for SHT11 and SHT15In addition to the advantages mentioned above, there is also the option of building an IP67-compatible humidity measurement device (with O-ring, cf. Fig. 4) with optimalperformance. Detailed information is available on the Sensirion Web site.译文:相对湿度传感器系统的正确设计湿度传感器系统精度及响应特性的优化1.综述为了在相对湿度的应用方面对传感器做出正确的选择,了解和评估那些起决定作用的因素是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一曲人性美的田园牧歌
———《边城》之美
摘要: 沈从文以乡下人的主体视角审视城乡对峙的现状, 热情讴歌了湘西人民的人性美, 描绘了一个瑰丽而温馨的边城世界, 展现出一个诗意的自然环境: 精致柔美而宁静, 远离都市的喧嚣与浮华。

从而提出了他的人与自然和谐共存, 本于自然, 回归自然的哲学。

关键词: 人性美; 田园牧歌; 桃源仙境
《边城》是沈从文的代表作, 也是中国现代文学史上优秀的中篇小说之一, 被人们誉为中国现代文学牧歌传说中的顶峰一颗千古不磨的珠玉。

20世纪20年代初, “京派”文人作家群的首席小说家、“乡下人”,沈从文, 从湘西地区的灵山秀水中走出, 以其30年复杂的人生阅历为基础, 通过老船夫、翠翠等人物形象的描绘, 对人类生命与人性的释放形式及其原因进行了探究、认知与感慨, 热情讴歌了湘西人民的人性美。

可以说, 《边城》是沈从文理想人生的缩影, 是一首作家写给故乡的赞美诗, 是作者远离边城而作于都市的梦, 是一曲优美动人的湘西人性美的颂歌。

施蛰存说: “从文处于苗汉杂居的湘西, 他最熟悉的是这一地区的风土人情。

非但熟悉, 而且热爱”。

在沈从文童年记忆中, 存储着一幅理想世界中美丽湘西地域风俗画: 那里的男人豪爽仗义, 刚健顽强; 那里的女人纯朴善良, 热情厚道。

他们重承诺, 守信义, 敢爱敢恨, 对爱情忠贞不渝。

这些普通的山民村妇、痴男怨女和他们的动人故事与美好人性, 便成了沈从文永远的生命崇拜图腾。

由此, 沈从文怀着探究人生“生命的形式”, 抨击否定虚伪人性, 赞美宣示美好人性的初衷, 创作了《边城》。

“有一小溪, 溪边有座白色小塔, 塔下住了一户单独的人家。

这人家只一个老人, 一个女孩子, 一只黄狗。

小溪流下去, 绕山岨流, 约三里便汇入茶峒的大河。

人若过溪越小山走去, 则只一里路就到了茶峒城边。

溪流如弓, 山路如弦, 故远近有了小小差异。

小溪宽约二十丈, 河床为大片石头作成。

静静的水即或深到一篙不能落底, 却依然清澈透明, 河中游鱼来去皆可以计数。


这是《边城》展示给我们的、一幅好似浓墨勾勒渲染的水墨风景画: 山环
水抱, 芳草鲜明, 落英缤纷, 阡陌交通, 怡然自得。

作者用以韵味隽永的语言, 赞颂了未受现代文明污染的优美的人生方式和生命形态, 表现了一种返璞归真的价值取向。

近水人家多在桃杏花里, 春天只需注意,凡有桃花处必有人家, 凡有人家处必可沽酒。

夏天则晒晾在日光下耀目的紫花布衣裤, 可作为人家所在的旗帜。

秋冬来时, 房屋在悬崖上的, 滨水的, 无处不朗然入目。

黄泥的墙, 乌黑的瓦……。

这些充满了自然真朴与生息的传神描写, 给人以极美的享受。

如今, 城镇的物质建设虽然显得腾飞发达, 在其背后, 又露出对生态触目惊心的破坏。

在生活空间日趋狭小的背景下, 人的心灵显得更加狭窄。

为了自身的利益, 大家似乎都卷入你争我夺的漩涡之中。

今天, 数千里之遥, 朝发夕至, 交通可谓便捷, 但人的沟通却是那样的艰难。

《边城》充分体现了沈从文创作这篇小说的宗旨: “我要表现的本是一种‘人生形式’, 一种优美、健康、自然而又不悖乎人生形式……为人类‘爱’字作一度恰如其分的说明。

”人性美在《边城》中发挥到了极致: “管这渡船的,就是住在塔下的那个老人。

活了七十年, 从二十岁起便守在这小溪边, 五十年来不知把船来去渡了若干人。

年纪虽那么老了, 本来应当休息了, 但天不许他休息, 他仿佛便不能够同这一分生活离开。

他从不思索自己的职务对于本人的意义, 只是静静的很忠实的在那里活下去。

”的确, 沈从文通过边城人性美的描写, 表现出了他的理想的人生形式。

边地山城, 民风淳朴, 沈从文在渲染自然美的同时, 更赞美了生活在这儿的纯朴的人们。

老船夫为人朴直、忠于职守、无私奉献, 有一副重义轻利的古道热肠, 他守在小溪边, 数十年如一日, 也从来不肯轻易接受别人一丝一毫的馈赠, 即使硬给他还要退回去, 实在难却的, 则买了烟和茶再招待乡亲。

他疼爱翠翠, 在她烦心的时候为她讲故事、唱歌; 操心她的亲事, 想促成她的爱情, 引翠翠注意夜晚的歌声。

翠翠是老船夫生活的精神依托。

这相依为命的祖孙俩使我们看到了人世间至纯至美的祖孙之爱。

“翠翠在风日里长养着, 把皮肤变得黑黑的, 触目为青山绿水, 一对眸子清明如水晶。

自然既长养她且教育她, 为人天真活泼, 处处俨然如一只小兽物。

人又那么乖, 如山头黄麂一样, 从不想到残忍事情, 从不发愁, 从不动气。

平时在渡船上遇陌生人对她有所注意时, 便把光光的眼睛瞅着那陌生人, 作成随时皆可举步逃入深山的神气, 但明白了人无机心后, 就又从从容容的在水边玩耍了。


翠翠是湘西山水孕育出来的一个美的精灵和化身, 她有着水晶一样清澈透明的性情。

随着情窦初开, 她伤春感怀,心事重重, 喜欢把野花戴在头上装扮新娘
子, 喜欢摘象征着爱情的虎耳草。

朦朦胧胧中, 她又多了些思索, 多了些梦-------譬如看到团总家王小姐有一副麻花纹的银手镯, 心中便有些韵羡、发痴。

可是, 她纯净的爱情, 超过一切世俗利害关系。

翠翠和恋人初次见面的场景非常有浪漫情调。

那时,二佬曾经说过一句话, 说: “你在这里, 大鱼会吃掉你。

”结果这个大鱼吃你这句话, 就成了后来两个人关系发展的一种隐喻。

只要提起这句话, 翠翠心头就会洋溢起浓郁的诗意,一种温柔的回忆。

翠翠在爱情中的表现向来被视为人性美的表现。

说到天宝、傩送两位年轻人的时候, 又写得那样受人欢迎: “两个年青人皆结实如小公牛, 能驾船, 能泅水, 能走长路。

凡从小乡城里出身的年青人所能够作的事, 他们无一不作, 作去无一不精。

年纪较长的, 如他们爸爸一样, 豪放豁达, 不拘常套小节。

年幼的则气质近于那个白脸黑发的母亲, 不爱说话, 眼眉却秀拔出群, 一望即知其为人聪明而又富于感情。

”他们勤劳能干、吃苦耐劳, 虽为船总的儿子,但绝非纨绔子弟。

天宝是一个敢作敢为的人, 同时又是一个胸怀宽广的人。

他爱上了翠翠, 却走“车路”请媒人, 失败后外出闯滩, 忍痛割爱, 成全弟弟。

傩送是一个心地善良,敢于追求, 富有责任心的人。

他和翠翠一见钟情, 不走车路, 要走“马路”以比唱情歌定输赢, 可第一天晚上却想代替不善歌唱的大哥去邀唱。

在这场奇异的感情角逐中, 兄弟二人都展示了坦荡磊落的情怀。

因此, 这二男一女双凤求凰式的爱情纠葛, 绝不是个廉价庸俗的三角恋爱故事, 而是一首充满凄美苍凉意味的田园牧歌。

更让人称奇的那只小狗也显得格外乖巧、懂事: “有时又和祖父黄狗一同在船上, 过渡时和祖父一同动手, 船将近岸边, 祖父正向客人招呼: ‘慢点, 慢点’时, 那只黄狗便口衔绳子, 最先一跃而上, 且俨然懂得如何方为尽职似的,把船绳紧衔着拖船拢岸。


“边城人”虽有富贵贫贱之分和社会地位高低差别, 但他们都互相亲善着, 扶持着。

如涨水码头船总顺顺大方洒脱、仗义慷慨、诚心公道, 被誉为涨水码头一方豪杰绅士。

无论谁有求于他, 他都慷慨解囊, 替人解难, 不因家境富实而盛气凌人, 而能够常常体恤穷苦人。

比如,送给老船夫鸭、粽子等。

老船夫死后, 他资助并组织安排以料理丧事。

“边城”的人们未经商业文化的浸染, 商人亦好义远利。

比如, 屠户见老船夫前来买肉, 特意切一块好肉给他, 执意不收老人的钱。

船工、翠翠、天宝、傩送、商客各式人等均待人以诚。

“凡是只求个心安理得”, 淳朴自然、真挚善良的“边
城人”让我们感受到了一种浓浓的人情美、人性美, 边城因此也成为读者心中一个安静的、平和的桃园仙境。

至此, 作者那种人与自然“和谐共存”, 本于自然, 回归自然的思想, 读者也就不难明白了。

看多了高楼华厦, 看惯了车水马龙, 我们的心憧憬着一片远方的土地, 沈从文笔下的湘西是我们心中朦胧勾勒出的天堂。

青山、绿水、河边的艄公、十六岁的翠翠、江流木排上的天宝、龙舟中生龙活虎的傩送……《边城》中的一切都是那样纯净自然, 景致柔美而宁静, 远离都市的喧嚣与浮华, 有一种出尘而卓然的清丽, 似林泉深处悠然飘出的牧歌, 展现出一个诗意的生存环境。

沈从文以“乡下人”的主体视角审视当时城乡对峙的现状, 批判现代文明在进入中国的过程中所显露出的丑陋。

《边城》里的文字是鲜活的, 处处是湿润透明的湘楚景色,处处是淳朴赤诚的风味人情。

在我们这个霓虹闪烁的大都市里, 它好似一股清泉, 一缕清风, 吹走了人们脸上的尘土,带来一丝温馨。

我们呼唤文学作品中的纯净而美好的风景和人情, 期待它由“童话变为现实”。

相关文档
最新文档