有限元六面体网格的典型生成方法及发展趋势

合集下载

映射法在三维六面体有限元网格生成中的应用

映射法在三维六面体有限元网格生成中的应用

ξ(1 - η)ζxEST +ξη(1 - ζ) xENB +ξηζxENT
(16)
当自然区域被分割成六面体子区域后用无限插值公式就可以生成网格节点 ,将节点按正确的
第4期
杨伟军等 :映射法在三维六面体有限元网格生成中的应用
·43 ·
拓扑相连就形成了网格 1 无限插值在许多类型的区域内能生成很好的网格 1 它将复杂区域分 割成简单区域 ,然后在每一个子区域内进行插值 1
逻辑空间中使用 ξ= (ξ1 ,ξ2 , …,ξk) ,在自然空间中使用 x = ( x1 , x2 , …, xn) 1 很明显 ξ1 =ξ,ξ2 =η,ξ3 =ζ以及 x1 = x , x2 = y , x3 = z .
在逻辑空间中 ,用 U3 表示 E3 中的单位立方体 1 自然空间中的物体有两个重要的参数 :
图 4 六面体网格 局部加密
图 5 在空心椭圆柱内 生成六面体网格
图 6 曲面柱内生成 六面体网格
5 结论
本文针对三维六面体有限元网格生成的复杂性 , 提出了解决这一问题的关键技术 ———映 射 1 详细阐述了映射的实质和在网格生成中的具体应用 1 最后实例中生成的六面体网格表明 映射对于三维网格生成起着举足轻重的作用 1
成形状规则的区域 ,同时也可以将生成网格后的实体映射到自然空间得到真实网格 1
315 无限映射
无限映射又叫无限插值 1 基于无限映射的网格生成方法有两个优点 :与偏微分法相比网
格的计算速度快以及能直接控制网格节点的位置 1
在基本的无限插值公式中 ,一次 Lagrange 多项式 1 - ξ,ξ,1 - η和η以及 1 - ζ和ζ都被用
格生成过程即告完成 1如图 1 所示 1 从以上流程可以

有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势

有限元六面体网格的典型生成方法及发展趋势吕 军,王忠金,王仲仁(哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001)摘 要:工程问题三维有限元仿真的主要困难是模型的建立,而模型的建立需要采用合适的方法来生成高质量的三维有限元网格.以金属塑性成形过程的三维有限元仿真为例,说明了采用六面体单元的必要性.针对典型的有限元六面体网格生成方法,系统地分析了各种方法的实现原理和发展趋势,并探讨了六面体网格生成总的发展趋势.分析结果说明,复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.关键词:数值仿真;有限元法;网格生成;六面体网格中图分类号:TG 302 文献标识码:A 文章编号:036726234(2001)0420485206G eneration of f inite element hexahedral mesh and its trend of developmentL αJ un ,WAN G Zhong 2jin ,WAN G Zhong 2ren(School of Materials Science and Engineering ,Harbin Institute of Technology ,Harbin 150001,China )Abstract :The major difficulty with the 3-D finite element simulation of an engineering problem lies in the construction of models ,which needs the proper generation of 3-D finite element hexahedral mesh of high quality.The necessity to use a hexahedral unit is justified by taking the 3-D finite element simulation of the plastic formation of metals as an example.The theories behind and trends of development of different ways of generating finite element hexahedral meshes are systematically analysed ,and the general trend of development for generation of hexadedral mesh is discussed as well.It is concluded that the full automatic generation of hexahedral mesh in complex domains is the key to the popularization of full automatic genera 2tion of hexahedral mesh.K ey w ords :numerical simulation ;finite element method ;mesh generation ;hexahedral mesh 有限元法是求解工程问题的一种近似数值方法,近年来在工程领域中得到了广泛的应用[1,2].有限元仿真的一个重要步骤是对连续体进行离散化,为使离散出的网格能更精确地逼近连续区域和有限元计算的结果在预定误差范围内,应保证离散化后得到质量较高的网格.为此提出了许多方法来生成有限元网格[35].目前,二维有限元收稿日期:2001-01-20.基金项目:金属精密热加工重点实验室基金资助项目.作者简介:吕 军(1974-),男,博士研究生;王仲仁(1934-),男,教授,博士生导师.网格生成方面已比较成熟,提出了许多行之有效的方法.但在三维有限元网格尤其是六面体网格的生成方面还没有通用的算法,存在许多难点问题需进一步解决.本文论述了采用六面体单元的必要性,并分析了有限元六面体网格的典型生成方法.最后,对六面体网格生成的发展趋势进行了探讨.1 采用六面体单元的必要性在有限元仿真过程中,单元类型的选择对整个有限元仿真的计算效率、自动化程度、计算精度等都将产生重要影响.因此单元类型的选择在各 第33卷 第4期 哈 尔 滨 工 业 大 学 学 报 Vol.33,No.42001年8月 J OURNAL OF HARB IN INSTITU TE OF TECHNOLO GY Aug.,2001个领域的有限元仿真中都占有重要地位.在体积成形刚塑性/刚粘塑性有限元仿真中,单元类型选择的重要性尤为突出.这是因为刚塑性/刚粘塑性有限元仿真有三个突出的特点:(1)塑性成形往往是一个大变形过程,有限元计算中通常需要进行多次网格重划分,而网格重划分需要耗费大量的时间,且每次都会损失一定的精度.(2)塑性变形过程是一个非线性问题,需要进行迭代求解,计算效率问题更为突出.(3)刚塑性/刚粘塑性有限元仿真时必须进行多次工件与模具间的动态接触处理,每一次的处理都会使得工件的有限元模型产生一定的体积损失而影响计算精度.这三种问题的处理都与单元类型的选择密切相关.选择合理的单元类型,就可用较少的网格重划分次数、相同或较少的高斯积分点数来达到较高的计算精度和计算效率,这在有限元仿真中是非常重要的.六面体单元由于变形特性好、计算精度高等优点而在很多三维有限元仿真领域中得到了广泛的应用.在金属体积成形的三维有限元仿真中,要求单元既要有一定的“刚性”(即抗畸变能力)以避免频繁的网格重划分,又要有一定的“柔性”(即良好的变形特性)以准确地仿真变形过程,还必须有较高的计算精度.在体积成形三维有限元仿真中常采用四面体和六面体单元.大量计算结果表明:采用六面体单元进行三维有限元仿真可采用较少的网格重划分次数达到较高的计算精度,故六面体单元是金属体积成形过程三维有限元仿真的首选单元[6,7].2 有限元六面体网格的典型生成方法六面体网格在三维有限元仿真中有四面体网格无法比拟的优越性,但现有的有关三维有限元网格生成方法的文献往往偏重于介绍四面体网格的生成方法,对六面体网格生成方法介绍得很少.实现可靠的、高质量的六面体有限元网格自动生成是三维有限元仿真领域的瓶颈问题.当前,有限元六面体网格的典型生成方法主要有以下几种.2.1 映射单元法映射单元法是三维网格生成中最早使用的方法之一.这种方法先把三维实体交互地分成几个大的20节点六面体区,然后使用形函数映射技术把各个六面体区域映射为很多细小的8节点六面体单元[8].这种方法易于实现,可以生成规整的结构化网格;缺点是当三维实体的表面是十分复杂的自由曲面时,该方法的逼近精度不高,且人工分区十分麻烦、难以实现自动化.近年来,一些研究者采用“整体规划技术(Integer programming technique)”来进行实体的自动分区[9],但该技术很难对复杂形体(如塑性加工中的复杂锻件)进行自动分区.曲面映射是三维映射的特例,采用曲面映射技术可以对几何曲面进行离散化处理[10,11].文献[12]详细研究了基于映射单元法的有限元六面体网格自动生成技术,采用加权因子控制网格生成过程中自然坐标的分割,可以生成密度不同的有限元网格.对原域为单连通凸区域的简单形体及原域为复连通凹区域的复杂形体,该种方法均可生成质量较高的网格,生成的六面体网格如图1所示.图1 映射单元法Fig.1 Mapped element method 映射单元法的发展趋势是:实现简单、规则形状形体的自动分区,提高手工分区的交互性,能方便地进行复杂的三维形体的分区.2.2 基于栅格法这种方法预先产生网格模板,然后将要进行网格化的物体加到其上,并在实体内部尽可能多地填充规则的长方体或正方体网格,在实体的边界上根据实体边界的具体特征更改网格的形状和相互连接关系,使得边界上的六面体单元尽可能地逼近物体的边界形状.文献[13]采用这种方法生成了六面体单元.这种方法能实现网格生成的自动化,网格的生成速度也非常快.其最大弱点是边界单元的质量较差;另一个缺点是所生成的单元尺寸相近,网格密度很难得到控制.1998年发布的MARC/HexMesh模块中采用了基于栅格法,并对这种方法进行了改进,使得初始填充在实体内部的单元尺寸较大、实体边界单元的尺寸较小,这样可以较好地控制网格密度[14].但是,对于复杂三维形体,MARC/ HexMesh模块产生的边界六面体网格的质量仍然不够理想.Tekkaya[15]将改进八叉树法与基于・684・哈 尔 滨 工 业 大 学 学 报 第33卷栅格法相结合来生成边界过渡网格,首先根据工件的边界来区分内部网格和边界网格,然后应用网格细化和均匀化处理来改进边界单元的质量,如图2所示.图2 基于栅格法Fig.2 Grid 2based method 这种方法的发展趋势是:控制实体内部的初始规则网格的尺寸,以控制最终形成的网格的密度;采用网格结构重组(包括拆分和合并单元)和网格优化算法来提高边界单元的质量.2.3 几何变换法这种方法由二维四边形网格经过旋转、扫描、拉伸等几何变换而形成六面体网格,几何变换后删除重节点及四边形、进行单元及节点的重新编号[16].这种方法生成的六面体网格如图3所示;优点是比较容易实现,在当今大多数的大型CAD 软件前置处理中均有此功能.但是,这种方法只适用于形状简单的三维形体,且主要依靠人机交互的方式来实现.图3 几何变换法Fig.3 G eometry transformation method 这种方法的发展趋势是使四边形有限元网格能够以自由曲线为路径进行扫描,尽量减少人机交互的步骤.2.4 改进八叉树法这种方法的基础是三维物体的八叉树表示.所作的改进类似于四叉树法的改进,但三维物体的边界处理更加复杂;它具有改进四叉树法同样的利弊.Y erry 等[17]首先提出并实现了这种方法,他们将物体边界简化为42种可能的模式(18种单平面和24种双平面切割八叉元).这种方法与基于栅格法结合生成“过渡网格”,效果较好[15].著名的有限元分析软件MARC/Auto 2Forge 模块中采用了这种方法,生成的六面体网格如图4所示.图4 改进八叉树法Fig.4 Modified 2octree method 这种方法的发展趋势是:与基于栅格法结合使用来提高过渡网格的质量,并减少仿真过程中的畸形单元,提高形体尖角处单元的质量.2.5 模块拼凑法Yang 等[18,19]把工件分为一定数量的子模块,然后对每一类形状简单的子模块规定一种六面体网格生成方法,整个工件的有限元网格即可由这些子模块内的网格拼凑而成,如图5所示.但是,实际生产中的工件(尤其是模锻件)的形状往往非常复杂,很难对其进行子模块的自动划分,采用专家系统的方法往往也是不可行的.因此,这种方法只能针对形状相对简单和变化较少的工件来生成六面体网格. 这种方法的发展趋势是完善专家系统的知识库,使其能适应更复杂形状工件的子模块自动划分.2.6 单元转换法由于多种四面体网格自动生成算法已经达到实用化的程度,在自动生成四面体网格后,可以把一个直边四节点四面体单元分成四个六面体单元[20,21],这样可以把四面体网格自动地转化为六面体网格,如图6所示.这种方法的缺点是得到的网格是杂乱无章的非结构化六面体网格,网格的质量不高;为了较好地逼近复杂物体的曲面边界,需要生成较多的直边四面体单元,因而也将得到数量极多的六面体单元,这会使得有限元仿真的时间过长.对同时具有内外复杂边界的三维问题(如内部有空洞缺陷的复杂锻件分析),该方法是实现六面体网格自动生成的一种比较有效的方・784・ 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势法.文献[22]对单元转换法进行了改进,将十节点曲边四面体转换为六面体,并采用非线性约束优化算法大幅度提高了六面体网格的单元质量.图5 模块拼凑法Fig.5 Modular method图6 单元转换法Fig.6 Element conversion method 这种方法的发展趋势是减少不必要的四面体单元的数量,采用网格结构重组技术以剔除不必要的单元,采用约束优化算法提高六面体单元的质量.2.7 B 样条曲面拟合插值法这种方法基于三维物体的边界曲面B 样条表示,采用插值拟合曲面来生成六面体网格[23].在几何构形确定的情况下,这种方法即可自动生成六面体网格.通过调整B 样条函数中的参数可以控制网格密度,生成的六面体网格如图7所示.这种方法的优点是边界曲面逼近好,形体的几何表示与网格生成在数学方法上一致;缺点是局部网格的处理比较困难,这是整体域剖分所带来的问题.图7 B 样条曲面拟合插值法Fig.7 B 2spline surface interpolation method 这种方法的发展趋势是采用B 样条曲面和实体造型相结合的方式来描述三维物体,采用模块法来处理物体内部的局部网格.2.8 采用波前法逐层由实体表面向实体内部生成六面体网格(Plastering algorithm)Blacker 和Meyers [24]于1993年提出了这种方法,该方法实际上是二维四边形网格逐层推进生成法[25](Paving algorithm )在三维空间上的拓展.在三维实体内部,各个六面体单元的边与边、面与面之间的相互关系十分复杂,并且只有满足一定条件的实体表面上的节点才能生成完全的六面体网格,故这种方法的实现具有很高的难度.生成的网格如图8所示.该方法生成的六面体网格的单元质量(尤其是边界单元的质量)是所有算法中最好的,但该方法的实现仍需解决一些技术细节上的问题.图8 Plastering 算法Fig.8 Plastering algorithm 这种方法的发展趋势是优化实体表面的布点,避免在向实体内部逐层推进时产生尺寸过小和形状不合理的单元,避免单元间的裂缝.2.9 采用中轴面分解和整体规划技术生成六面体网格这种方法首先将三维实体分解成一定数量的简单子域,然后在每个子域内生成六面体网格[26].在将实体分解成子域过程中采用中轴面(Medial Surface )分解技术,并采用整体规划技术来确定每条边的分割数,进而控制六面体网格的密度[9].根据形体的中轴面可以确定必要的子域,子域可以定义为13种可能类型中的一种[27].中轴面分解方法也可以拓展应用于带有凹边或凹顶点的实体及退化情况,从而可以实现复杂实体(如带有孔、凹角等)的六面体网格生成[28].该方法生成的六面体网格的单元质量很高并且疏密有致,如图9所示. 这种方法的发展趋势是实现复杂形体的全自动中轴面分解;尽可能形成容易网格化的子域;提高边界单元的质量,避免产生形状不好的单元(如・884・哈 尔 滨 工 业 大 学 学 报 第33卷狭长单元).图9 中轴面分解法Fig.9 Medial surface subdivision method3 六面体网格生成的发展趋势有限元六面体网格生成问题近年来成为三维网格生成方法研究的热点和难点,出现了许多种算法,但至今尚未提出一种通用的有限元六面体网格自动生成方法.下列问题将成为六面体网格生成的研究前沿,也将是未来的发展趋势.3.1 开发复杂域六面体网格的全自动生成方法全自动网格生成方法因其高效性、处理复杂情况的能力和便于集成到计算机集成制造系统(CIMS )等优点,已成为网格生成的发展趋势.现有的网格自动生成方法在时效、稳定性和通用性等方面与实用要求都有一些差距,六面体网格生成方面尤为突出,问题的关键在于开发有效、高效的自动生成方法.复杂域的网格生成是全自动网格生成的前提,人们正在研究能在任意复杂域内生成六面体网格的方法,并注重方法的可靠性.复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.3.2 网格密度定义和控制技术的研究三维网格密度定义和控制一直没有行之有效的方法,生成疏密有致的六面体网格并且使密网格和疏网格之间的单元均匀过渡将是六面体网格生成的发展趋势之一.3.3 基于几何造型的六面体网格生成及其集成基于几何造型的网格生成是通往有限元仿真技术集成到计算机集成制造系统的必由之路,目前的网格生成方法大都从造型系统中得到形体描述,但几乎都与造型系统松散结合.实现六面体网格生成与几何造型系统的集成将是未来的发展方向.3.4 六面体网格显示技术及正确性检测六面体网格缺乏有效的显示技术.正因为缺乏直观的显示来验证其正确性,其正确性的检测就显得格外重要;目前在这方面尚缺乏快速有效的方法.六面体网格显示技术的关键是提出正确、可靠和高效的消隐处理算法.4 结 论在三维有限元仿真中采用六面体单元有很多优点,实现可靠、高质量的有限元六面体网格自动生成一直是CAD/CAE 领域内的一个难点,也是制约三维有限元仿真走向实用化的瓶颈问题.解决这个问题的关键是在现有方法的基础上提出稳定、高效和通用的复杂域六面体网格全自动生成方法,以使得六面体网格在三维有限元仿真领域中的应用真正走向实用化.参考文献:[1]GHOUAL I M A ,DUVAU T G.Local analytical de 2sign sensitivity analysis of the forging problem using FEM[J ].Comput Methods Appl Mech Eng ,1998,163:55270.[2]FISH F ,PANDHEERADI M ,BEL SKY V.E fficient solutions schemes for interface problems[J ].Finite El 2ements in Analysis and Design ,1996,22:2672280.[3]施云生,沈国强.基于边界适应的有限元网格自动生成及局部调整技术[J ].锻压技术,1998(4):28230.[4]JOUN M S ,L EE M C.Quadrilateral finite element generation and mesh quality control for metal forming simulation[J ].Int J Num Methods Eng ,1997,40:405924075.[5]JOE B.Tetrahedral mesh generation in polyhedral re 2gions based on convex polyhedron decompositions[J ].Int J Num Methods Eng ,1994,37:6932713.[6]SCHN EIDERS R.A 2grid based algorithm for the gen 2eration of hexahedral element meshes [J ].Eng with Comput ,1996(12):1682177.[7]TEKK A Y A A E ,K AVA K L I S.3-D simulation of metal forming processes with automatic mesh genera 2tion[J ].Steel Res ,1995,66(9):3772383.[8]COO K W A ,OA KES W R.Mapping methods for generating three 2dimensional meshes [J ].Comput in Mech Eng ,1982,8:67272.[9]TAM T ,ARMSTRON G C G.Finite element mesh controlled by integer programing [J ].Int J Num Methods Eng ,1993,36:258122605.[10]VARDHAN I K V R ,PRASAD N S.Mesh genera 2tion for spherical and conical surfaces using transfinite interpolation[J ].Comput &Struct ,1989,32(6):135921362.[11]LAU T S ,LO S H.Finite element mesh generation・984・ 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势over analytical curved surfaces[J].Comput&Struct,1996,59(2):3012309.[12]蒋浩民,刘润广,王忠金,等.基于映射法的三维有限元网格自动划分[J].塑性工程学报,1998,5(3):27231.[13]L EE Y K,Y AN G D Y.A new automatic mesh gen2eration technique and its application to the finite ele2 ment analysis of practical forging process[J].AdvTech Plasticity,1996,1:4092413.[14]News Letter[J].Nippon MARC Analysis Res Corpo2ration Japan,1998,3:9.[15]TEKK A Y A A E.Fully automatic simulation of bulkmetal forming processes[A].Proc NUMIFORM’98[C].Rotterdam:Netherlands,1998.[16]NA GESH K,SRIK AN T A.Automatic mesh genera2tion in2-D and3-D objects[J].Adv Eng S oft2 ware,1989,11(1):19225.[17]YERR Y M A,SHEPHARD M S.Automatic threedimensional mesh generation by the modified2octreetechnique[J].Int J Num Methods Eng,1984,20(11):196521990.[18]Y AN G D Y,Y OON J H,L EE N K.Modularremeshing:a practical method of3-D remeshing inforging of complicated Parts[J].Adv Tech Plasticity,1990,1:1712178.[19]Y OON J H,Y AN G D Y.A three dimensional rigid2plastic finite element analysis of bevel gear forging byusing a remeshing Technique[J].Int J Mech Sci,1990,32(4):2772291.[20]陈 军.虚拟模具制造及金属成形过程三维仿真技术[D].上海:上海交通大学,1996.[21]XIE G,RAMAEKER J A H,Graded mesh genera2tion and transformation[J].Finite Elements in Analy2sis and Design,1994,17:41255.[22]左 旭.集成于CAD系统的汽车零件多工位体积成形三维CAE仿真[D].上海:上海交通大学,1998.[23]王忠金.模锻过程的三维数值模拟及连杆终锻成形规律的研究[D].长春:吉林工业大学,1995.[24]BLACKER T D,MEYERS R J.Seams and wedgesin plastering:a3-D hexahedral mesh generation al2gorithm[J].Eng with Comput,1993,9:83293. [25]BLACKER T D,STEPHENSON M B.Paving:anew approach to automated quadrilateral mesh genera2tion[J].Int J Num Methods Eng,1991,32:8112847.[26]L I T S,MCKEA G R M,ARMSTRON G C G.Hex2ahedral meshing using midpoint subdivision and integerprogramming[J].Comput Methods Appl Mech Eng,1995,124:1772193.[27]PRICE M A,ARMSTRON G C G,SABIN M A.Hexahedral mesh generation by medial surface subdivi2sion:PartⅠ.solids with convex edges[J].Int JNum Methods Eng,1995,38:333523359.[28]PRICE M A,ARMSTRON G C G.Hexahedral meshgeneration by medial surface subdivision:PartⅡsolids with flat and concave edges[J].Int J NumMethods Eng,1997,40:1112136.(责任编辑 王小唯)・94・哈 尔 滨 工 业 大 学 学 报 第33卷。

有限元的发展历史和趋势

有限元的发展历史和趋势

有限元的发展历史和趋势摘要1965年,“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。

有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。

有限元法起源于固体力学,并逐步扩展到热传导、计算流体力学、电磁学等不同领域,已经成为数学物理中很重要的数值计算方法。

关键词有限元数值发展趋势前言有限元方法在数值计算方法中具有极为重要的地位,有限元方法在应用中不仅本身具有很大的潜力,而且,结合其它理论和方法还有广阔的发展前景。

1有限元的发展历程有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。

有限元法是受内外动力的综合作用而产生的。

1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。

有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。

1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。

有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。

在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。

在国内,我国数学家冯康在特定的环境中独立于西方提出了有限元法。

1965年,他发表论文《基于变分原理的差分格式》,标志着有限元法在我国的诞生。

冯康的这篇文章不但提出了有限元法,而且初步发展了有限元法。

他得出了有限元法在特定条件下的表达式,独创了“冯氏大定理”并且初步证明了有限元法解的收敛性。

有限元软件应用范围及发展趋势

有限元软件应用范围及发展趋势

有限元软件应用范围及发展趋势学号:姓名:学号:2009年10月有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元是那些集合在一起能够表示实际连续域的离散单元。

有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。

有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。

经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。

20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。

不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。

有限元网格划分

有限元网格划分

有限元网格划分摘要:总结近十年有限元网格划分技术发展状况。

首先,研究和分析有限元网格划分的基本原则;其次,对当前典型网格划分方法进行科学地分类,结合实例,系统地分析各种网格划分方法的机理、特点及其适用范围,如映射法、基于栅格法、节点连元法、拓扑分解法、几何分解法和扫描法等;再次,阐述当前网格划分的研究热点,综述六面体网格和曲面网格划分技术;最后,展望有限元网格划分的发展趋势。

关键词:有限元网格划分;映射法;节点连元法;拓扑分解法;几何分解法;扫描法;六面体网格1 引言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

2 有限元网格划分的基本原则有限元方法的基本思想是将结构离散化,即对连续体进行离散化,利用简化几何单元来近似逼近连续体,然后根据变形协调条件综合求解。

所以有限元网格的划分一方面要考虑对各物体几何形状的准确描述,另一方面也要考虑变形梯度的准确描述。

为正确、合理地建立有限元模型,这里介绍划分网格时应考虑的一些基本原则。

2.1 网格数量网格数量直接影响计算精度和计算时耗,网格数量增加会提高计算精度,但同时计算时耗也会增加。

当网格数量较少时增加网格,计算精度可明显提高,但计算时耗不会有明显增加;当网格数量增加到一定程度后,再继续增加网格时精度提高就很小,而计算时耗却大幅度增加。

所以在确定网格数量时应权衡这两个因素综合考虑。

2.2 网格密度为了适应应力等计算数据的分布特点,在结构不同部位需要采用大小不同的网格。

在孔的附近有集中应力,因此网格需要加密;周边应力梯度相对较小,网格划分较稀。

有限元法概述

有限元法概述
但真正的应用实际问题是到1960年以后,随着电子数 值计算机的广泛应用和发展,有限单元法的发展速度才显 著加快。现代有限元法第一个成功的尝试,是将刚架位移 法推广应用于弹性力学平面问题,这是Turner,Clough 等人在分析飞机结构时于1956年得到的成果。他们第一 次给出了用三角形单元求得平面应力问题的正确解答。
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。

有限元方法的发展及应用

有限元方法的发展及应用

有限元⽅法的发展及应⽤有限元⽅法的发展及应⽤摘要:有限元法是⼀种⾼效能、常⽤的计算⽅法。

有限元法在早期是以变分原理为基础发展起来的,所以它⼴泛地应⽤于以拉普拉斯⽅程和泊松⽅程所描述的各类物理场中。

⾃从1969年以来,某些学者在流体⼒学中应⽤加权余数法中的迦辽⾦法或最⼩⼆乘法等同样获得了有限元⽅程,因⽽有限元法可应⽤于以任何微分⽅程所描述的各类物理场中,⽽不再要求这类物理场和泛函的极值问题有所联系。

基本思想:由解给定的泊松⽅程化为求解泛函的极值问题。

1有限元法介绍1.1有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是⽤较简单的问题代替复杂问题后再求解。

它是起源于20世纪50年代末60年代初兴起的应⽤数学、现代⼒学及计算机科学相互渗透、综合利⽤的边缘科学。

有限元法的基本思想是将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适的(较简单的)近似解,然后推导求解这个域总的满⾜条件(如结构的平衡条件),从⽽得到问题的解。

这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。

由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。

有限元法最初应⽤在⼯程科学技术中,⽤于模拟并且解决⼯程⼒学、热学、电磁学等物理问题。

1.2有限元法优缺点有限元⽅法是⽬前解决科学和⼯程问题最有效的数值⽅法,与其它数值⽅法相⽐,它具有适⽤于任意⼏何形状和边界条件、材料和⼏何⾮线性问题、容易编程、成熟的⼤型商⽤软件较多等优点。

(1)概念浅显,容易掌握,可以在不同理论层⾯上建⽴起对有限元法的理解,既可以通过⾮常直观的物理解释来理解,也可以建⽴基于严格的数学理论分析。

(2)有很强的适⽤性,应⽤范围极其⼴泛。

它不仅能成功地处理线性弹性⼒学问题、费均质材料、各向异性材料、⾮线性应⽴-应变关系、⼤变形问题、动⼒学问题已及复杂⾮线性边界条件等问题,⽽且随着其基本理论和⽅法的逐步完善和改进,能成功地⽤来求解如热传导、流体⼒学、电磁场等领域的各类线性、⾮线性问题。

扫掠法有限元网格生成方法

扫掠法有限元网格生成方法

扫掠法有限元网格生成方法曾卓;陈家新【摘要】In order to improve the quality of the finite element mesh generation, placement of interior node is a crucial step in the generation of hexahedral meshes using sweeping algorithms. A new algorithm based on sweeping method for hexahedral mesh generation is processed for complex sweep volume. The algorithm uses source surface which has divided good grid and connection of surface structured grid, generates the target surface with affine map projection step by step. It puts forward positioning of the new algorithm based on the internal node Roca algorithm. By the use of wave front inside extroversion of theory, it generates all the hexahedral grid. Example shows that the proposed algorithm is effective, reliable and robust, and it can handle the hexahedral mesh generation problem of a great deal of complex 2.5-dimensional geometries.%为了提高有限元网格的生成质量,扫掠法生成六面体网格过程中内部节点定位成为关键一步,在研究复杂扫掠体六面体有限元网格生成算法过程中,提出了一种基于扫掠法的六面体网格生成算法,算法利用源曲面已经划分好的网格和连接曲面的结构化网格,用仿射映射逐层投影,生成目标曲面,提出基于Roca算法的内部节点定位的新算法,运用由外向内推进的波前法思想,生成全部的六面体网格.通过实例表明,该算法快速,稳定,可靠,可处理大量复杂2.5维实体六面体网格生成问题.【期刊名称】《计算机工程与应用》【年(卷),期】2013(049)002【总页数】3页(P219-221)【关键词】有限元网格生成;扫掠法;六面体网格;内部节点定位【作者】曾卓;陈家新【作者单位】河南科技大学电子信息工程学院,河南洛阳471023;河南科技大学电子信息工程学院,河南洛阳471023【正文语种】中文【中图分类】TP392随着有限元法被广泛应用于各个领域,作为有限元前处理关键技术的有限元网格划分技术成为主要研究方向。

有限元的应用

有限元的应用

《有限元极限分析法发展及其在岩土工程中的应用》
《有限元法的应用现状研究》 《有限元法及其在生物力学中的应用》 《有限元方法及其应用》
《结构自适应有限元分析中的高质量网格生成方案》
《国内生物力学中有限元的应用研究进展》
《有限元法及CAE技术在现代机械工程中的应用》
《有限元法在我国汽车行业中的应用与展望》
有限元文献学习综述
汇报人:张超
目录
一、有限元的发展
二、有限元法的应用 三、有限元法案例 四、参考文献
一、有限元的发展
有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方 法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学 相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中 ,用 于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法 无法求解的问题和边界条件及结构形状都不规则的复杂问题 ,有限元法则是 一种有效的分析方法。
运输是物流的重要环节,但在运输过程中包装件不可避免地会遇到碰撞、跌落 等冲击,致使产品遭到致命损坏。采用有限元技术模拟包装件在运输中碰撞、 跌落等状态 ,能够减少或避免不必要的人工反复实物实验和破坏性实验 ,缩小 实验周期和费用。吴彦颖通过跌落模拟分析计算了不同工况下运输包装件的 冲击力学响应,并结合以往的环境试验结果 ,得出了缓冲包装的可靠性和包装 件内部无法检测部件的环境适应性结论;还将理论模拟结果与模拟试验测量结 果进行对比,验证了数值模型和模拟方法的有效性。国内对产品采用不同材料 作为缓冲包装均进行了有限元跌落模拟分析
一、有限元的发展
有限元法的发展现状: 有限元法是R.Courant于1943年首先提出的。自从提出有限元概念以来,有限 元理论及其应用得到了迅速发展。过去不能解决或能解决但求解精度不高的 问题,都得到了新的解决方案。 传统的FEM假设:分析域是无限的;材料是同质的,甚至在大部分的分析中认为 材料是各向同性的;对边界条件简化处理。但实际问题往往是分析域有限、 材料各向异性或边界条件难以确定等。 在FEM应用领域不断扩展、求解精度不断提高的同时 ,FEM 也从分析比较向优 化设计方向发展。印度 Mahanty 博士用 ANSYS对拖拉机前桥进行优化设计 ,结 果不但降低了约40%的前桥自重,还避免了在制造过程中的大量焊接工艺 ,降 低了生产成本。 FEM在国内的应用也十分广泛。自从我国成功开发了国内第一个通用有限元 程序系统JIGFEX后,有限元法渗透到工程分析的各个领域中 ,从大型的三峡工 程到微米级器件都采用FEM进行分析,在我国经济发展中拥有广阔的发展前景。

六面体网格剖分算法的研究现状

六面体网格剖分算法的研究现状

六面体网格剖分算法的研究现状∗李丹金灿刘晓平合肥工业大学计算机与信息学院可视化与协同计算(VCC)研究室,安徽合肥 230009摘 要:总结了有限元六面体网格生成方法的研究进展。

首先,指出了六面体网格不同于其他网格的优点。

其次对当前的主要研究热点——全六面体网格生成进行了阐述。

最后简要地探讨了该领域的发展趋势。

关键词:有限元面体网格格生成Present Situation of Research on Finite Element All-hexMesh Generation MethodsLi Dan Jin Can Liu Xiao-pingVCC Division, School of Computer and Information, Hefei University of Technology, Hefei,230009, ChinaAbstract: This paper presents the advances of research in all-hex mesh generation for finite element computation. Firstly, the advantages of all-hex mesh different from other meshes are presented. Secondly, the main research fields-all-hex mesh generation are discussed in detail. Finally, the trends of this field are presented briefly.Keywords: Finite Element; all-hex mesh; mesh generation1 前言有限元分析是结合工业建模、计算机技术和数值计算而产生的新兴学科。

有限元分析的基本过程可以分为三个阶段:有限元模型的建立(工业建模,即前处理)、有限元分析(数值计算)、结果处理和评价(即后处理)。

有限元网格划分及发展趋势_古成中

有限元网格划分及发展趋势_古成中

有限元网格划分及发展趋势*古成中+,吴新跃GUChengzhong+,WUXinyue海军工程大学船舶与动力学院,武汉430033CollegeofPowerEngineering,NavalUniversityofEngineering,Wuhan430033,China+Correspondingauthor:E-mail:charminggu@126.comGUChengzhong,WUXinyue.AreviewofFEMandtrendofdevelopment.JournalofFrontiersofComputerScienceandTechnology,2008,2(3):248-259.Abstract:Thispapersummarizesthedevelopmentofsearchinmeshgenerationforfiniteelementcomputationinlasttenyears.Firstly,theprincipleofmeshingisresearched.Secondly,themainresearchfields,suchasmappingmethods,grid-basedapproach,pointdistributionandtriangulationapproach,topologydecompositionapproach,geometrydecompositionapproach,sweepingapproach,arediscussedandclassified.Unitingin-stances,itanalysessystematicallytheprinciple,characteristicsandscopesofthesemethods.Thirdly,thefrontedgeisnarratedandhexahedralmeshisreviewed.Finally,thispaperprospectsthetrendFEM.Keywords:finiteelementmeshgeneration;mappingapproach;grid-basedapproach;pointdistributionandtriangulationapproach;topologydecompositionapproach;geometrydecompositionapproach;sweepingap-proach;hexahedralmesh摘要:总结近十年有限元网格划分技术发展状况。

六面体网格自动生成算法的分析与实现

六面体网格自动生成算法的分析与实现

型边界,保证核心六面体网格和实体模型之间空隙足够小。

本文还讨论了三维六面体网格的隐藏技术,隐藏了六面体网格中杂乱堆积的不可见边,取得了良好的视觉效果。

本文采用多个领域的实体模型实例,对设计的六面体自动生成方法的有效性与可靠性进行了验证,为金属成型、生物医学等科学领域中三维六面体网格建立提供了有效工具。

关键词:六面体网格,栅格法,自动生成,细化点第四章表面六面体网格生成方法四边形不用考虑异面相交的情况。

任意两个四边形的共面相交也有很多情况,但本文的二十七叉树情况比较特殊,六面体间的相邻关系如图4.3所示。

只有1-9号六面体单元可能和大六面体相交,10.27号六面体单元只可能与自己一样大小的单元相交,这种情况可以使用上面的顶点编号比较法,找出内部面,从而找出外部面。

本文的四边形共面相交可以归纳为9种情况,用二维图的表4一l表示。

表4-1不同层六面体单元四边形之间相交情况汇总Table4-1AllsituationofIntersectofquadrilateralbetweenthedifferentlayersofhexahedralunit共面图共点共边关联点共面图共点共边关联点AAEAFE—BF.CG—D无EFA.EB.FC.GD.HBBEBGA.EC—FG—D无EGA-EB.FC.GD.H无无A—EB—FC.GD.H无FHA-EB—FC—GD.HCCECGA—EB—FD.G无GHA.EB.FC.GD.H39。

六面体网格生成办法

六面体网格生成办法
2 α = xη + yη2 ,
ห้องสมุดไป่ตู้
β = xξ xη + yξ yη ,
γ = xξ2 + yξ2
和代数法相比,偏微分方程法的计算较为复杂,需要求解偏微分方程,右端强迫函数的选取 也不方便,可以通过强迫函数的选取得到希望的映射网格。
・21・
上海交通大学博士学位论文
3.2.3 超单元映射法
等 参 超 单 元 网 格 生 成 法 是 由 Zienkiewicz 和 Phillips 最早提出的[31,42],其基本思想是将划分区域分 成更简单的子块(超单元) ,子块被映射为自然坐标系 中的单位直角形(正方形) ,根据每个方向给定的分级 权系数,将自然坐标系中的直角形(正方形)离散并 反向变换回超单元。在三维情况使用超单元生成法时, 要划分的实体用 20 节点六面体单元分成数个子区域 (图3-3) 。在超单元内一点的坐标 x,y 和 z 和自然坐 标之间的关系由下式确定
・20・
第 3 章 六面体单元生成方法及相关技术
x (ξ , η , ζ ) F (ξ ,η , ζ ) = y (ξ , η , ζ ) z (ξ ,η , ζ )
(0 ≤ ξ ≤ 1,
0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1)
(3-1)
多变量的坐标变换式(3-1)使用无限插值(Transfinite Interpolation)来完成。在三维情况下,使 用混合函数和与之相联系的参数(特定点的位置及偏导数)来显式地决定式(3-1),然后通过对每 个单变量的循环完成无限插值。一般来说,这些混合函数和参数都选取为区域边界处的函数和参 数。文献[40]给出了几种无限插值函数及其参数的选取。 代数法无限插值网格生成法的特点是计算简单,可以采用中间变量的方法方便地控制网格的 密度,对边界简单的区域,可以生成质量较高的网格,但缺点是不适应复杂边界的划分,边界不 规则时生成的网格的质量很差,并可能产生奇异性。可以通过将划分区域分解为子区域的方法, 在子区域上应用,可以在一定程度上克服这些缺点,但不易实现自动划分。

(完整版)有限元网格剖分方法概述

(完整版)有限元网格剖分方法概述

有限元网格剖分方法概述在采用有限元法进行结构分析时,首先必须对结构进行离散,形成有限元网格,并给出与此网格相应的各种信息,如单元信息、节点坐标、材料信息、约束信息和荷载信息等等,是一项十分复杂、艰巨的工作。

如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。

因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。

有限元网格生成技术发展到现在, 已经出现了大量的不同实现方法,列举如下:1.映射法映射法是一种半自动网格生成方法,根据映射函数的不同,主要可分为超限映射和等参映射。

因前一种映射在几何逼近精度上比后一种高,故被广泛采用。

映射法的基本思想是:在简单区域内采用某种映射函数构造简单区域的边界点和内点,并按某种规则连接结点构成网格单元。

也就是根据形体边界的参数方程,利用映射函数,把参数空间内单元正方形或单元三角形(对于三维问题是单元立方体或单元四面体)的网格映射到欧氏空间,从而生成实际的网格。

这种方法的主要步骤是,首先人为地把分析域分成一个个简单可映射的子域,每个子域为三角形或四边形,然后根据网格密度的需要,定义每个子域边界上的节点数,再根据这些信息,利用映射函数划分网格。

这种网格控制机理有以下几个缺点:(1)它不是完全面向几何特征的,很难完成自动化,尤其是对于3D区域。

(2)它是通过低维点来生成高维单元。

例如,在2D问题中,先定义映射边界上的点数,然后形成平面单元。

这对于单元的定位,尤其是对于远离映射边界的单元的定位,是十分困难的,使得对局部的控制能力下降。

(3)各映射块之间的网格密度相互影响程度很大。

也就是说,改变某一映射块的网格密度,其它各映射块的网格都要做相应的调整。

其优点是:由于概念明确,方法简单,单元性能较好,对规则均一的区域,适用性很强,因此得到了较大的发展,并在一些商用软件如ANSYS等得到应用。

有限元的发展历史现状及应用前景

有限元的发展历史现状及应用前景

有限元分析的发展趋势“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。

有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。

<br> 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:<br> 增加产品和工程的可靠性;<br> 在产品的设计阶段发现潜在的问题<br> 经过分析计算,采用优化设计方案,降低原材料成本<br> 缩短产品投向市场的时间<br> 模拟试验方案,减少试验次数,从而减少试验经费<br><br> 国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。

这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。

有限元法的发展现状及应用

有限元法的发展现状及应用

有限元法的发展现状及应用一、本文概述有限元法,作为一种广泛应用于工程和科学领域的数值分析方法,自其诞生以来,已经经历了数十年的发展和完善。

本文旨在全面概述有限元法的发展现状及其在各个领域的应用。

我们将回顾有限元法的基本原理和历史背景,以便读者对其有一个清晰的认识。

接着,我们将重点介绍有限元法在不同领域的应用,包括土木工程、机械工程、航空航天、电子工程等。

我们还将探讨有限元法在发展过程中面临的挑战以及未来的发展趋势。

通过阅读本文,读者将对有限元法的现状和发展趋势有一个全面的了解,并能更好地理解该方法在工程和科学领域的重要性和应用价值。

二、有限元法的基本理论有限元法(Finite Element Method,FEM)是一种数值分析技术,广泛应用于工程和科学问题的求解。

其基本理论可以概括为离散化、单元分析、整体分析和数值求解四个主要步骤。

离散化是将连续的求解域划分为有限个互不重叠且相互连接的单元。

这些单元可以是三角形、四边形、四面体、六面体等,具体形状和大小取决于问题的特性和求解的精度要求。

离散化的过程实际上是将无限维的连续问题转化为有限维的离散问题。

单元分析是有限元法的核心步骤之一。

在单元分析中,首先需要对每个单元选择合适的近似函数(也称为形函数或插值函数)来描述单元内的未知量。

然后,根据问题的物理定律和边界条件,建立每个单元的有限元方程。

这些方程通常包括节点的平衡方程、协调方程和边界条件方程等。

整体分析是将所有单元的有限元方程按照一定的规则(如矩阵叠加法)组合成一个整体的有限元方程组。

这个方程组包含了所有节点的未知量,可以用来求解整个求解域内的未知量分布。

数值求解是有限元法的最后一步。

通过求解整体有限元方程组,可以得到所有节点的未知量值。

然后,利用插值函数,可以计算出整个求解域内的未知量分布。

还可以根据需要对计算结果进行后处理,如绘制云图、生成动画等,以便更直观地展示求解结果。

有限元法的基本理论具有通用性和灵活性,可以应用于各种复杂的工程和科学问题。

复杂机械零件的六面体有限元网格生成方法_曹华军

复杂机械零件的六面体有限元网格生成方法_曹华军

1/ 2
1/ 2

1/ 2
m )T C ( )dV ve ( e 1
(6)
式中,m 为整体结构的单元数量。 对于某确定问题的有限元计算,可以采用总体 误差指标 和单元误差指标 e 。两个误差满足如下 精度准则
1
有限元网格的误差估算理论
应力改进值 泛函数变分为
v
1 )T N i dV 0 ( i e 2 i 1, 2, , ne
2
(2)
2.1
模型关键区域识别与计算域规划
模型关键区域识别
对 ne 个方程组进行求解即可得到节点的应力 恢复值,从而计算出整体计算域内的应力恢复值。 位移近似解与精确解的误差 eu 定义为
( R) =
( Ri ) i 1
m
i=1,2,...,m
m为结构单元应力恢复使应力在计算域内具有与位移相同的连续性是单元内部应力恢复后的改进值其求解问题可描述为ne在针对具体有限元模型进行仿真计算时基于有限元网格误差估算理论可分析关注区域的误差特性及其导致误差的因素进而优化网格划分策略获得高效高质量网格
第 50 卷第 15 期 2014 年 8 月


工 程
Hexahedral Mesh Generation Method for Complex Mechanical Structure
CAO Huajun SHU Linsen XU Lei LI Hao
(The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030)
(a) #形策略

有限元网格划分方法与基本原理

有限元网格划分方法与基本原理

结构有限元分析中的网格划分技术及其应用实例结构有限元分析中的网格划分是否直接关系到解算的效果。

本文简述了网格划分应用的基本理论,并以空间自由曲面覆盖件和大型整体网络钢筋壳体产品的有限元分析中的网格划分为实例对象,详细讲述了空间自由和三维实体的网格划分基本理论及其在工程中的实际应用,非常具有现实意义和借鉴价值。

一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。

Pro/E和S oildWorks是特征参数化造型的代表,而 CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。

现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。

在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。

其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。

数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。

三维六面体网格的生成算法及质量优化方法

三维六面体网格的生成算法及质量优化方法

三维六面体网格的生成算法及质量优化方法
左旭;卫原平;陈军;阮雪榆
【期刊名称】《模具工业》
【年(卷),期】1998()6
【摘要】讨论了目前主要的六面体网格生成算法及网格质量优化方法,并对每种方法的优缺点和发展方向进行了评述。

【总页数】4页(P6-9)
【关键词】有限元;CAE;体积成形;六面体网格;金属成形;CAD
【作者】左旭;卫原平;陈军;阮雪榆
【作者单位】上海交通大学
【正文语种】中文
【中图分类】TG302
【相关文献】
1.三维有限元六面体网格几何自适应再生成方法 [J], 王忠雷;赵国群;黄丽丽;马新武
2.三维连续金属/陶瓷复合材料六面体有限元网格自动生成算法 [J], 张洪梅;范群波;李国举;
3.三维连续金属/陶瓷复合材料六面体有限元网格自动生成算法 [J], 张洪梅;范群波;李国举
4.栅格法三维六面体网格自动生成算法与优化 [J], 黄丽丽;赵国群;马新武;张洪梅
5.基于实体局部表面曲率和厚度的变密度三维六面体网格自动生成算法 [J], 张洪梅;赵国群
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元六面体网格的典型生成方法及发展趋势吕 军,王忠金,王仲仁(哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001)摘 要:工程问题三维有限元仿真的主要困难是模型的建立,而模型的建立需要采用合适的方法来生成高质量的三维有限元网格.以金属塑性成形过程的三维有限元仿真为例,说明了采用六面体单元的必要性.针对典型的有限元六面体网格生成方法,系统地分析了各种方法的实现原理和发展趋势,并探讨了六面体网格生成总的发展趋势.分析结果说明,复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.关键词:数值仿真;有限元法;网格生成;六面体网格中图分类号:T G302 文献标识码:A 文章编号:0367-6234(2001)04-0485-06G eneration of finite element hexahedral meshand its trend of developmentL Jun,WANG Zhong -jin,WANG Zhong -ren(School of M aterials Science and Engineering,Harbin Institute o f T echnology ,Harbin 150001,China)Abstract:The major difficulty w ith the 3-D finite element simulation of an engineering problem lies in the construction of models,w hich needs the proper generation of 3-D finite element hex ahedral mesh of high quality.The necessity to use a hex ahedral unit is justified by taking the 3-D finite element simulation ofthe plastic formation of metals as an ex ample.T he theories behind and trends of development of different w ays of generating finite element hexahedral meshes are systematically analysed,and the general trend of development for generation of hexadedral mesh is discussed as w ell.It is concluded that the full automatic g eneration of hexahedral mesh in com plex domains is the key to the popularization of full automatic genera -tion of hexahedral mesh.Key words:numerical simulation;finite element method;mesh generation;hexahedral mesh有限元法是求解工程问题的一种近似数值方法,近年来在工程领域中得到了广泛的应用[1,2].有限元仿真的一个重要步骤是对连续体进行离散化,为使离散出的网格能更精确地逼近连续区域和有限元计算的结果在预定误差范围内,应保证离散化后得到质量较高的网格.为此提出了许多方法来生成有限元网格[35].目前,二维有限元收稿日期:2001-01-20.基金项目:金属精密热加工重点实验室基金资助项目.作者简介:吕 军(1974-),男,博士研究生;王仲仁(1934-),男,教授,博士生导师.网格生成方面已比较成熟,提出了许多行之有效的方法.但在三维有限元网格尤其是六面体网格的生成方面还没有通用的算法,存在许多难点问题需进一步解决.本文论述了采用六面体单元的必要性,并分析了有限元六面体网格的典型生成方法.最后,对六面体网格生成的发展趋势进行了探讨.1 采用六面体单元的必要性在有限元仿真过程中,单元类型的选择对整个有限元仿真的计算效率、自动化程度、计算精度等都将产生重要影响.因此单元类型的选择在各第33卷 第4期 哈 尔 滨 工 业 大 学 学 报Vol.33,No.42001年8月JOURNAL OF HARBIN INST IT UTE OF T ECH NOLOGYAug.,2001个领域的有限元仿真中都占有重要地位.在体积成形刚塑性/刚粘塑性有限元仿真中,单元类型选择的重要性尤为突出.这是因为刚塑性/刚粘塑性有限元仿真有三个突出的特点:(1)塑性成形往往是一个大变形过程,有限元计算中通常需要进行多次网格重划分,而网格重划分需要耗费大量的时间,且每次都会损失一定的精度.(2)塑性变形过程是一个非线性问题,需要进行迭代求解,计算效率问题更为突出.(3)刚塑性/刚粘塑性有限元仿真时必须进行多次工件与模具间的动态接触处理,每一次的处理都会使得工件的有限元模型产生一定的体积损失而影响计算精度.这三种问题的处理都与单元类型的选择密切相关.选择合理的单元类型,就可用较少的网格重划分次数、相同或较少的高斯积分点数来达到较高的计算精度和计算效率,这在有限元仿真中是非常重要的.六面体单元由于变形特性好、计算精度高等优点而在很多三维有限元仿真领域中得到了广泛的应用.在金属体积成形的三维有限元仿真中,要求单元既要有一定的 刚性 (即抗畸变能力)以避免频繁的网格重划分,又要有一定的 柔性 (即良好的变形特性)以准确地仿真变形过程,还必须有较高的计算精度.在体积成形三维有限元仿真中常采用四面体和六面体单元.大量计算结果表明:采用六面体单元进行三维有限元仿真可采用较少的网格重划分次数达到较高的计算精度,故六面体单元是金属体积成形过程三维有限元仿真的首选单元[6,7].2 有限元六面体网格的典型生成方法六面体网格在三维有限元仿真中有四面体网格无法比拟的优越性,但现有的有关三维有限元网格生成方法的文献往往偏重于介绍四面体网格的生成方法,对六面体网格生成方法介绍得很少.实现可靠的、高质量的六面体有限元网格自动生成是三维有限元仿真领域的瓶颈问题.当前,有限元六面体网格的典型生成方法主要有以下几种.2.1 映射单元法映射单元法是三维网格生成中最早使用的方法之一.这种方法先把三维实体交互地分成几个大的20节点六面体区,然后使用形函数映射技术把各个六面体区域映射为很多细小的8节点六面体单元[8].这种方法易于实现,可以生成规整的结构化网格;缺点是当三维实体的表面是十分复杂的自由曲面时,该方法的逼近精度不高,且人工分区十分麻烦、难以实现自动化.近年来,一些研究者采用 整体规划技术(Integer programm ing technique) 来进行实体的自动分区[9],但该技术很难对复杂形体(如塑性加工中的复杂锻件)进行自动分区.曲面映射是三维映射的特例,采用曲面映射技术可以对几何曲面进行离散化处理[10,11].文献[12]详细研究了基于映射单元法的有限元六面体网格自动生成技术,采用加权因子控制网格生成过程中自然坐标的分割,可以生成密度不同的有限元网格.对原域为单连通凸区域的简单形体及原域为复连通凹区域的复杂形体,该种方法均可生成质量较高的网格,生成的六面体网格如图1所示.图1 映射单元法F ig.1 M apped element method映射单元法的发展趋势是:实现简单、规则形状形体的自动分区,提高手工分区的交互性,能方便地进行复杂的三维形体的分区.2.2 基于栅格法这种方法预先产生网格模板,然后将要进行网格化的物体加到其上,并在实体内部尽可能多地填充规则的长方体或正方体网格,在实体的边界上根据实体边界的具体特征更改网格的形状和相互连接关系,使得边界上的六面体单元尽可能地逼近物体的边界形状.文献[13]采用这种方法生成了六面体单元.这种方法能实现网格生成的自动化,网格的生成速度也非常快.其最大弱点是边界单元的质量较差;另一个缺点是所生成的单元尺寸相近,网格密度很难得到控制.1998年发布的MARC/H exM esh 模块中采用了基于栅格法,并对这种方法进行了改进,使得初始填充在实体内部的单元尺寸较大、实体边界单元的尺寸较小,这样可以较好地控制网格密度[14].但是,对于复杂三维形体,MARC/HexM esh 模块产生的边界六面体网格的质量仍然不够理想.Tekkaya [15]将改进八叉树法与基于486 哈 尔 滨 工 业 大 学 学 报 第33卷栅格法相结合来生成边界过渡网格,首先根据工件的边界来区分内部网格和边界网格,然后应用网格细化和均匀化处理来改进边界单元的质量,如图2所示.图2 基于栅格法Fig.2 G rid -based met hod这种方法的发展趋势是:控制实体内部的初始规则网格的尺寸,以控制最终形成的网格的密度;采用网格结构重组(包括拆分和合并单元)和网格优化算法来提高边界单元的质量.2.3 几何变换法这种方法由二维四边形网格经过旋转、扫描、拉伸等几何变换而形成六面体网格,几何变换后删除重节点及四边形、进行单元及节点的重新编号[16].这种方法生成的六面体网格如图3所示;优点是比较容易实现,在当今大多数的大型CAD 软件前置处理中均有此功能.但是,这种方法只适用于形状简单的三维形体,且主要依靠人机交互的方式来实现.图3 几何变换法Fig.3 Geometry tr ansformation method这种方法的发展趋势是使四边形有限元网格能够以自由曲线为路径进行扫描,尽量减少人机交互的步骤.2.4 改进八叉树法这种方法的基础是三维物体的八叉树表示.所作的改进类似于四叉树法的改进,但三维物体的边界处理更加复杂;它具有改进四叉树法同样的利弊.Yerry 等[17]首先提出并实现了这种方法,他们将物体边界简化为42种可能的模式(18种单平面和24种双平面切割八叉元).这种方法与基于栅格法结合生成 过渡网格 ,效果较好[15].著名的有限元分析软件MARC/Auto -Forge 模块中采用了这种方法,生成的六面体网格如图4所示.图4 改进八叉树法Fig.4 M odified -octree method这种方法的发展趋势是:与基于栅格法结合使用来提高过渡网格的质量,并减少仿真过程中的畸形单元,提高形体尖角处单元的质量.2.5 模块拼凑法Yang 等[18,19]把工件分为一定数量的子模块,然后对每一类形状简单的子模块规定一种六面体网格生成方法,整个工件的有限元网格即可由这些子模块内的网格拼凑而成,如图5所示.但是,实际生产中的工件(尤其是模锻件)的形状往往非常复杂,很难对其进行子模块的自动划分,采用专家系统的方法往往也是不可行的.因此,这种方法只能针对形状相对简单和变化较少的工件来生成六面体网格.这种方法的发展趋势是完善专家系统的知识库,使其能适应更复杂形状工件的子模块自动划分.2.6 单元转换法由于多种四面体网格自动生成算法已经达到实用化的程度,在自动生成四面体网格后,可以把一个直边四节点四面体单元分成四个六面体单元[20,21],这样可以把四面体网格自动地转化为六面体网格,如图6所示.这种方法的缺点是得到的网格是杂乱无章的非结构化六面体网格,网格的质量不高;为了较好地逼近复杂物体的曲面边界,需要生成较多的直边四面体单元,因而也将得到数量极多的六面体单元,这会使得有限元仿真的时间过长.对同时具有内外复杂边界的三维问题(如内部有空洞缺陷的复杂锻件分析),该方法是实现六面体网格自动生成的一种比较有效的方487 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势法.文献[22]对单元转换法进行了改进,将十节点曲边四面体转换为六面体,并采用非线性约束优化算法大幅度提高了六面体网格的单元质量.图5 模块拼凑法Fig.5 M odularmethod图6 单元转换法Fig.6 Element conversion method这种方法的发展趋势是减少不必要的四面体单元的数量,采用网格结构重组技术以剔除不必要的单元,采用约束优化算法提高六面体单元的质量.2.7 B 样条曲面拟合插值法这种方法基于三维物体的边界曲面B 样条表示,采用插值拟合曲面来生成六面体网格[23].在几何构形确定的情况下,这种方法即可自动生成六面体网格.通过调整B 样条函数中的参数可以控制网格密度,生成的六面体网格如图7所示.这种方法的优点是边界曲面逼近好,形体的几何表示与网格生成在数学方法上一致;缺点是局部网格的处理比较困难,这是整体域剖分所带来的问题.图7 B 样条曲面拟合插值法Fig.7 B -spline surface inter polation method这种方法的发展趋势是采用B 样条曲面和实体造型相结合的方式来描述三维物体,采用模块法来处理物体内部的局部网格.2.8 采用波前法逐层由实体表面向实体内部生成六面体网格(Plastering algorithm)Blacker 和Meyers [24]于1993年提出了这种方法,该方法实际上是二维四边形网格逐层推进生成法[25](Paving algorithm )在三维空间上的拓展.在三维实体内部,各个六面体单元的边与边、面与面之间的相互关系十分复杂,并且只有满足一定条件的实体表面上的节点才能生成完全的六面体网格,故这种方法的实现具有很高的难度.生成的网格如图8所示.该方法生成的六面体网格的单元质量(尤其是边界单元的质量)是所有算法中最好的,但该方法的实现仍需解决一些技术细节上的问题.图8 Plastering 算法F ig.8 Plaster ing algorithm这种方法的发展趋势是优化实体表面的布点,避免在向实体内部逐层推进时产生尺寸过小和形状不合理的单元,避免单元间的裂缝.2.9 采用中轴面分解和整体规划技术生成六面体网格这种方法首先将三维实体分解成一定数量的简单子域,然后在每个子域内生成六面体网格[26].在将实体分解成子域过程中采用中轴面(M edial Surface)分解技术,并采用整体规划技术来确定每条边的分割数,进而控制六面体网格的密度[9].根据形体的中轴面可以确定必要的子域,子域可以定义为13种可能类型中的一种[27].中轴面分解方法也可以拓展应用于带有凹边或凹顶点的实体及退化情况,从而可以实现复杂实体(如带有孔、凹角等)的六面体网格生成[28].该方法生成的六面体网格的单元质量很高并且疏密有致,如图9所示.这种方法的发展趋势是实现复杂形体的全自动中轴面分解;尽可能形成容易网格化的子域;提高边界单元的质量,避免产生形状不好的单元(如488 哈 尔 滨 工 业 大 学 学 报 第33卷狭长单元).图9 中轴面分解法Fig.9 M edial surface subdivision method3 六面体网格生成的发展趋势有限元六面体网格生成问题近年来成为三维网格生成方法研究的热点和难点,出现了许多种算法,但至今尚未提出一种通用的有限元六面体网格自动生成方法.下列问题将成为六面体网格生成的研究前沿,也将是未来的发展趋势.3.1 开发复杂域六面体网格的全自动生成方法全自动网格生成方法因其高效性、处理复杂情况的能力和便于集成到计算机集成制造系统(CIM S)等优点,已成为网格生成的发展趋势.现有的网格自动生成方法在时效、稳定性和通用性等方面与实用要求都有一些差距,六面体网格生成方面尤为突出,问题的关键在于开发有效、高效的自动生成方法.复杂域的网格生成是全自动网格生成的前提,人们正在研究能在任意复杂域内生成六面体网格的方法,并注重方法的可靠性.复杂域内六面体网格全自动生成的实现是全自动网格生成真正走向实用化、通用化必须解决的难题.3.2 网格密度定义和控制技术的研究三维网格密度定义和控制一直没有行之有效的方法,生成疏密有致的六面体网格并且使密网格和疏网格之间的单元均匀过渡将是六面体网格生成的发展趋势之一.3.3 基于几何造型的六面体网格生成及其集成基于几何造型的网格生成是通往有限元仿真技术集成到计算机集成制造系统的必由之路,目前的网格生成方法大都从造型系统中得到形体描述,但几乎都与造型系统松散结合.实现六面体网格生成与几何造型系统的集成将是未来的发展方向.3.4 六面体网格显示技术及正确性检测六面体网格缺乏有效的显示技术.正因为缺乏直观的显示来验证其正确性,其正确性的检测就显得格外重要;目前在这方面尚缺乏快速有效的方法.六面体网格显示技术的关键是提出正确、可靠和高效的消隐处理算法.4 结 论在三维有限元仿真中采用六面体单元有很多优点,实现可靠、高质量的有限元六面体网格自动生成一直是CAD/CAE 领域内的一个难点,也是制约三维有限元仿真走向实用化的瓶颈问题.解决这个问题的关键是在现有方法的基础上提出稳定、高效和通用的复杂域六面体网格全自动生成方法,以使得六面体网格在三维有限元仿真领域中的应用真正走向实用化.参考文献:[1]GHOU AL I M A ,DU VAU T G.L ocal analy tical de -sign sensitiv ity analysis of the forging problem using F EM [J].Comput Methods Appl M ech Eng ,1998,163:55-70.[2]FI SH F,PA NDHEERADI M ,BEL SKY V.Efficient solutions schemes for inter face pr oblems[J].F inite E-l ements in A nalysis and Design,1996,22:267-280.[3]施云生,沈国强.基于边界适应的有限元网格自动生成及局部调整技术[J].锻压技术,1998(4):28-30.[4]JO U N M S,L EE M C.Q uadr ilateral finite element generation and mesh quality control for metal for ming simulation[J].Int J N um M et hods Eng,1997,40:4059-4075.[5]JO E B.T etrahedral mesh gener ation in polyhedral re -gions based on conv ex polyhedron decompositions[J].Int J N um M ethods Eng ,1994,37:693-713.[6]SCHN EI DERS R.A -grid based alg orithm for the g en -eration of hex ahedr al element meshes[J].Eng w ith Comput,1996(12):168-177.[7]T EK KA YA A E,K AVA KL I S.3-D simulat ion of metal forming processes w ith auto matic mesh genera -tion[J].Steel Res,1995,66(9):377-383.[8]COOK W A ,OA KES W R.M apping methods for g enerat ing three -dimensio nal meshes [J].Comput in M ech Eng ,1982,8:67-72.[9]T A M T ,A RM ST RON G C G.Finite element mesh contr olled by integer pr ograming [J ].Int J Num M ethods Eng ,1993,36:2581-2605.[10]VA RDHAN I K V R,PRA SA D N S.Mesh genera -tion for spherical and conical sur faces using tr ansfinite inter polation[J].Comput &Struct,1989,32(6):1359-1362.[11]LA U T S,L O S H.Finite element mesh generation489 第4期 吕 军,等:有限元六面体网格的典型生成方法及发展趋势over analytical curved surfaces[J].Comput&Struct,1996,59(2):301-309.[12]蒋浩民,刘润广,王忠金,等.基于映射法的三维有限元网格自动划分[J].塑性工程学报,1998,5(3):27-31.[13]LEE Y K,YA NG D Y.A new automatic mesh g en-eration technique and its application to the finite ele-ment analysis of practical forging process[J].AdvT ech Plasticity,1996,1:409-413.[14]News Letter[J].N ippon MA RC Analysis Res Cor po-ration Japan,1998,3:9.[15]T EK KAY A A E.Fully automatic simulation of bulkmetal forming processes[A].Pr oc NU M I FORM 98[C].Rotter dam:N etherlands,1998.[16]NAG ESH K,SRI KAN T A.Automatic mesh genera-t ion in2-D and3-D objects[J].Adv Eng Soft-w are,1989,11(1):19-25.[17]YERRY M A,SHEPHARD M S.Automat ic threedimensional mesh generation by the modified-octreetechnique[J].Int J Num M ethods Eng,1984,20(11):1965-1990.[18]YA NG D Y,Y OON J H,L EE N K.M odularremeshing:a practical met hod of3-D remeshing inforging of complicated Parts[J].A dv T ech P lasticity,1990,1:171-178.[19]YOO N J H,YAN G D Y.A three dimensional r igid-plast ic finite element analysis of bevel gear forging byusing a r emeshing T echnique[J].I nt J M ech Sci,1990,32(4):277-291.[20]陈 军.虚拟模具制造及金属成形过程三维仿真技术[D].上海:上海交通大学,1996.[21]XIE G,RAM A EK ER J A H,Gr aded mesh genera-tion and transfo rmation[J].Finite Elements in Analy-sis and Design,1994,17:41-55.[22]左 旭.集成于CAD系统的汽车零件多工位体积成形三维CA E仿真[D].上海:上海交通大学,1998.[23]王忠金.模锻过程的三维数值模拟及连杆终锻成形规律的研究[D].长春:吉林工业大学,1995. [24]BLA CK ER T D,M EY ERS R J.Seams and wedg esin plastering:a3-D hexahedral mesh generation a-lgor ithm[J].Eng wit h Comput,1993,9:83-93. [25]BLA CK ER T D,ST EPHENSON M B.Paving:anew approach to automated quadrilateral mesh genera-t ion[J].I nt J Num M ethods Eng,1991,32:811-847.[26]L I T S,M CK EA G R M,ARM ST RO NG C G.Hex-ahedral meshing using midpoint subdiv ision and integ erprog ramming[J].Comput M ethods A ppl M ech Eng,1995,124:177-193.[27]PRICE M A,ARM ST RON G C G,SABIN M A.Hexahedral mesh generation by medial sur face subdiv-ision:Part .solids w ith conv ex edges[J].Int JNum M ethods Eng,1995,38:3335-3359.[28]PRI CE M A,A RM ST R ONG C G.Hexahedral meshgeneration by medial surface subdiv i sion:Partsolids with flat and concave edges[J].Int J NumM et hods Eng,1997,40:111-136.(责任编辑 王小唯)490哈 尔 滨 工 业 大 学 学 报 第33卷。

相关文档
最新文档