四川高职单招数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.
二 .数学 单项选择(共10小题,计30分)
1.设集合{}{}0,1,2,0,1M N ==,则M
N =( )
A .{}2
B .{}0,1
C .{}0,2
D .{}0,1,2 2. 不等式的解集是( )
A .x<3
B .x>-1
C .x<-1或x>3
D .-1 A .2 B .3 C .4 D .6 4. 函数12+-=x y 在定义域R 内是( ) A. 减函数 B. 增函数 C. 非增非减函数 D. 既增又减函数 5. 设 1.5 0.9 0.48 14,8 ,2a b c -⎛⎫=== ⎪ ⎝⎭ ,则,,a b c 的大小顺序为 ( ) A 、a b c >> B 、a c b >> C 、b a c >> D 、c a b >> 6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 C . 13 D.12 7. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) 8.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( ) A .6- B .6 C .32 D .3 2 - 9 点)5,0(到直线x y 2=的距离为( ) A .2 5 B .5 C . 2 3 D . 2 5 10. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每 个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种 D .8种 二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ . 12.(5分)(2014•四川)设f (x )是定义在R 上的周期为2的函数,当x∈[﹣1,1)时,f (x )=,则f ()= _________ . 13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈,cos67°≈,sin37°≈,cos37°≈,≈) 14.(5分)(2014•四川)设m∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ . 15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含 于区间[﹣M ,M].例如,当φ1(x )=x 3 ,φ2(x )=sinx 时,φ1(x )∈A,φ2(x )∈B.现有如下命题: ①设函数f (x )的定义域为D ,则“f(x )∈A”的充要条件是“∀b∈R,∃a∈D,f (a )=b”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值; ③若函数f (x ),g (x )的定义域相同,且f (x )∈A,g (x )∈B,则f (x )+g (x )∉B . ④若函数f (x )=aln (x+2)+(x >﹣2,a∈R)有最大值,则f (x )∈B. 其中的真命题有 _________ .(写出所有真命题的序号) 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。 (1)求数列{}n a 的通项公式; (2)记数列1 {}n a 的前n 项和n T ,求得使1|1|1000 n T -<成立的n 的最小值。 17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次 击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少 (3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 18.(本小题满分12分) 一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N 。 (I )请将字母标记在正方体相应的顶点处(不需说明理由) (II )证明:直线//MN 平面BDH (III )求二面角A EG M --余弦值 19.(12分)(2014•四川)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图 象上(n∈N * ). (1)若a 1=﹣2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2﹣,求数列{}的前n 项和T n . 20.(本小题13分)如图,椭圆22 2 2 : 1+ =x y E a b 的离心率是 2,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点。当直线l 平行于x 轴时,直线l 被椭圆E 截得的 线段长为。 (1) 球椭圆E 的方程; (2) 在平面直角坐标系xoy 中,是否存在与点P 不同的定点Q ,使得= QA PA QB PB 恒成立若存在,求出点Q 的坐标;若不存在,请说明理由。 21.(14分)(2014•四川)已知函数f (x )=e x ﹣ax 2 ﹣bx ﹣1,其中a ,b∈R,e=…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.