2016年四川高职单招数学试题(附答案)
【精校】2016年普通高等学校招生全国统一考试(四川卷)数学理

2016年普通高等学校招生全国统一考试(四川卷)数学理一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合A={x|-2≤x ≤2},Z 为整数集,则A ∩Z 中元素的个数是( ) A.3 B.4 C.5 D.6解析:∵A={x|-2≤x ≤2},Z 为整数集,∴A ∩Z={-2,-1,0,1,2},则A ∩Z 中元素的个数是5. 答案:C.2.设i 为虚数单位,则(x+i)6的展开式中含x 4的项为( ) A.-15x 4 B.15x 4 C.-20ix 4 D.20ix 4解析:(x+i)6的展开式中含x 4的项为46C x 4·i 2=-15x 4. 答案:A3.为了得到函数y=sin(2x-3π)的图象,只需把函数y=sin2x 的图象上所有的点( ) A.向左平行移动3π个单位长度 B.向右平行移动3π个单位长度C.向左平行移动6π个单位长度D.向右平行移动6π个单位长度 解析:把函数y=sin2x 的图象向右平移6π个单位长度,可得函数y=sin2(x-6π)=sin(2x-3π)的图象. 答案:D.4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48 C.60 D.72解析:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有44A =24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个. 答案:D5.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) A.2018年 B.2019年 C.2020年 D.2021年解析:设第n 年开始超过200万元, 则130×(1+12%)n-2015>200,化为:(n-2015)lg1.12>lg2-lg1.3,n-2015>0.300.110.05=3.8.取n=2019.因此开始超过200万元的年份是2019年.答案:B.6.秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.9B.18C.20D.35解析:初始值n=3,x=2,程序运行过程如下所示:v=1i=2 v=1×2+2=4i=1 v=4×2+1=9i=0 v=9×2+0=18i=-1 跳出循环,输出v的值为18.答案:B7.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足111y xy xy≥-⎧⎪≥-⎨⎪≤⎩,,,则p是q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:(x-1)2+(y-1)2≤2表示以(1,1)为圆心,以2为半径的圆内区域(包括边界);满足111y xy xy≥-⎧⎪≥-⎨⎪≤⎩,,,的可行域如图有阴影部分所示,故p是q的必要不充分条件.答案:A8.设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )A.3B.2 3C.2D.1解析:由题意可得F(2p,0),设P(202y p ,y0),显然当y 0<0,k OM <0;当y 0>0,k OM >0. 要求k OM 的最大值,设y 0>0,则()1133OM OF FM OF FP OF OP OF =+=+=+-u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r =1233OP OF +u u u r u u u r =(2063y p p +,03y) 可得k OM=02000232632y y p y pp y p =≤=++, 当且仅当y 02=2p 2,取得等号. 答案:C9.设直线l 1,l 2分别是函数f(x)=ln 01ln 1x x x x -⎧⎨⎩,<<,,>,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)解析:设P 1(x 1,y 1),P 2(x 2,y 2)(0<x 1<1<x 2), 当0<x <1时,f ′(x)=-1x ,当x >1时,f ′(x)=1x, ∴l 1的斜率k 1=-11x ,l 2的斜率k 2=21x , ∵l 1与l 2垂直,且x 2>x 1>0,∴k 1·k 2=-11x ·21x =-1,即x 1x 2=1. 直线l 1:y=-11x (x-x 1)-lnx 1,l 2:y=21x (x-x 2)+lnx 2. 取x=0分别得到A(0,1-lnx 1),B(0,-1+lnx 2),|AB|=|1-lnx 1-(-1+lnx 2)|=|2-(lnx 1+lnx 2)|=|2-lnx 1x 2|=2. 联立两直线方程可得交点P 的横坐标为x=12122x x x x +, ∴S △PAB =12|AB|·|x P |=12×2×12122x x x x +=122x x +=1121x x +.∵函数y=x+1x在(0,1)上为减函数,且0<x 1<1, ∴111x x +>1+1=2,则0<1111x x +<12,∴0<1121x x +<1.∴△PAB 的面积的取值范围是(0,1). 答案:A.10.在平面内,定点A ,B ,C ,D 满足DA DB DC ==u u u r u u u r u u u r ,DA DB DB DC DC DA ⋅=⋅=⋅u u ur u u u r u u u r u u u r u u u r u u u r =-2,动点P ,M 满足|AP|=1,PM MC =u u u u r u u u u r ,则|BM u u u u r |2的最大值是( )A.434B.494D.374+ 解析:由DA DB DC ==u u u r u u u r u u u r,可得D 为△ABC 的外心,又DA DB DB DC DC DA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,可得()0DB DA DC ⋅-=u u u r u u u r u u u r ,()DC DB DA ⋅-u u u r u u u r u u u r,即0DB AC DC AB ⋅=⋅=u u u r u u u r u u u r u u u r,即有DB ⊥AC ,DC ⊥AB ,可得D 为△ABC 的垂心, 则D 为△ABC 的中心,即△ABC 为正三角形.由DA DB ⋅u u u r u u u r=-2,即有DA DA ⋅u u u r u u u r cos120°=-2,解得DA u u u r =2,△ABC 的边长为4cos30°以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,,C(3,D(2,0),由|AP u u u r|=1,可设P(cos θ,sin θ),(0≤θ<2π),由PM MC =u u u u r u u u u r ,可得M 为PC 的中点,即有M(3cos 2θ+,cos 2θ),则2223cos sin 3()(22BM θθ+=-++u u u u r = ()()22sin 3cos 44θθ-+==3712sin()64πθ+-, 当sin(θ-6π)=1,即θ=23π时,取得最大值,且为494.答案:B二、填空题:本大题共5小题,每小题5分,共25分. 11.cos28π-sin 28π= .解析:cos 28π-sin 28π=cos(2×8π)=cos 42π=.答案:212.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .解析:∵同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,∴这次试验成功的概率p=1-(12)2=34, ∴在2次试验中成功次数X ~B(2,34),∴在2次试验中成功次数X 的均值E(X)=2×34=32. 答案:32.13.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .解析:∵三棱锥的四个面都是腰长为2的等腰三角形,结合给定的三棱锥的正视图,可得:三棱锥的底面是底为1,棱锥的高为1,故棱锥的体积V=13×(12×1)×1=3.答案:314.已知函数f(x)是定义在R 上的周期为2的奇函数,当0<x <1时,f(x)=4x ,则f(-52)+f(1)= . 解析:∵f(x)是定义在R 上周期为2的奇函数,∴f(-52)=f(-2-12)=f(-12)=-f(12), ∵x ∈(0,1)时,f(x)=4x ,∴f(-52)=-2,∵f(x)是定义在R 上周期为2的奇函数, ∴f(-1)=f(1),f(-1)=-f(1),∴f(1)=0,∴f(-52)+f(1)=-2. 答案:-215.在平面直角坐标系中,当P(x ,y)不是原点时,定义P 的“伴随点”为P ′(22yx y +,22xx y-+);当P 是原点时,定义P 的“伴随点“为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是 (写出所有真命题的序列). 解析:①若点A(x ,y)的“伴随点”是点A ′(22y x y +,22x x y -+),则点A ′(22yx y+,22xx y -+)的“伴随点”是点(-x ,-y),故不正确;②由①可知,单位圆的“伴随曲线”是它自身,故正确;③若曲线C 关于x 轴对称,点A(x ,y)关于x 轴的对称点为(x ,-y),“伴随点”是点A ′(22y x y -+,22xx y-+),则其“伴随曲线”C ′关于y 轴对称,故正确; ④设直线方程为y=kx+b(b ≠0),点A(x ,y)的“伴随点”是点A ′(m ,n),则 ∵点A(x ,y)的“伴随点”是点A ′(22y x y +,22x x y -+),∴n x m y =-,∴x=-bnkn m+,y=bmkn m+,∵m=22y x y +,∴代入整理可得221k m n n b+--=0表示圆,故不正确. 答案:②③.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a 的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x 的值,并说明理由.解析:(Ⅰ)根据各组的累积频率为1,构造方程,可得a 值;(Ⅱ)由图可得月均用水量不低于3吨的频率,进而可估算出月均用水量不低于3吨的人数;(Ⅱ)由图可得月均用水量低于2.5吨的频率及月均用水量低于3吨的频率,进而可得x 值.答案:(Ⅰ)∵0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a)=1, ∴a=0.3;(Ⅱ)由图可得月均用水量不低于3吨的频率为:0.5×(0.12+0.08+0.04)=0.12,由30×0.12=3.6得:全市居民中月均用水量不低于3吨的人数约为3.6万;(Ⅱ)由图可得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%;月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%;则x=2.5+0.5×0.850.730.30.5-⨯=2.9吨.17.在△ABC中,角A,B,C所对的边分别是a,b,c,且cos cos sinA B Ca b c+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=65bc,求tanB.解析:(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明.(Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可.答案:(Ⅰ)在△ABC中,∵cos cos sinA B Ca b c+=,∴由正弦定理得:cos cos sinsin sin sinA B CA B C+=,∴()sincos sin cos sin1 sin sin sin sinA BA B B AA B A B++==,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)b2+c2-a2=65bc,由余弦定理可得cosA=35.sinA= 45,cossi4n3AA=,cos cos sinsin sin sinA B CA B C+==1,cossi4n1BB=,tanB=4.18.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12 AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(Ⅱ)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.解析:(I)延长AB 交直线CD 于点M ,由点E 为AD 的中点,可得AE=ED=12AD ,由BC=CD=12AD ,可得ED=BC ,已知ED ∥BC.可得四边形BCDE 为平行四边形,即EB ∥CD.利用线面平行的判定定理证明得直线CM ∥平面PBE 即可.(II)如图所示,由∠ADC=∠PAB=90°,异面直线PA 与CD 所成的角为90°AB ∩CD=M ,可得AP ⊥平面ABCD.由CD ⊥PD ,PA ⊥AD.因此∠PDA 是二面角P-CD-A 的平面角,大小为45°.PA=AD.不妨设AD=2,则BC=CD=12AD=1.可得P(0,0,2),E(0,1,0),C(-1,2,0),利用法向量的性质、向量夹角公式、线面角计算公式即可得出. 答案:(I)延长AB 交直线CD 于点M ,∵点E 为AD 的中点,∴AE=ED=12AD , ∵BC=CD=12AD ,∴ED=BC , ∵AD ∥BC ,即ED ∥BC.∴四边形BCDE 为平行四边形,即EB ∥CD.∵AB ∩CD=M ,∴M ∈CD ,∴CM ∥BE ,∵BE ⊂平面PBE ,∴CM ∥平面PBE ,∵M ∈AB ,AB ⊂平面PAB ,∴M ∈平面PAB ,故在平面PAB 内可以找到一点M(M=AB ∩CD),使得直线CM ∥平面PBE. (II)如图所示,∵∠ADC=∠PAB=90°,异面直线PA 与CD 所成的角为90°,AB ∩CD=M ,∴AP ⊥平面ABCD.∴CD ⊥PD ,PA ⊥AD.因此∠PDA 是二面角P-CD-A 的平面角,大小为45°.∴PA=AD.不妨设AD=2,则BC=CD=12AD=1.∴P(0,0,2),E(0,1,0),C(-1,2,0), ∴EC uuu r =(-1,1,0),PE u u u r =(0,1,-2),AP u u u r =(0,0,2),设平面PCE 的法向量为n r =(x ,y ,z),则00n PE n EC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r ,,可得:200y z x y -=-+=⎧⎨⎩,.令y=2,则x=2,z=1,∴n r =(2,2,1).设直线PA 与平面PCE 所成角为θ,则sin θ=|cos <AP u u u r ,n r >|=13AP n AP n⋅==u u u r r u u u r r . 19.已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n+1,其中q >0,n ∈N *. (Ⅰ)若2a 2,a 3,a 2+2成等差数列,求a n 的通项公式;(Ⅱ)设双曲线222n y x a -=1的离心率为e n ,且e 2=53,证明:e 1+e 2+...+e n >1433n n n --. 解析:(Ⅰ)由条件利用等比数列的定义和性质,求得数列{an}为首项等于1、公比为q 的等比数列,再根据2a 2,a 3,a 2+2成等差数列求得公比q 的值,可得{a n }的通项公式.(Ⅱ)利用双曲线的定义和简单性质求得e n根据e 2=53=,求得q 的值,可得{a n }的解析式,再利用放缩法可得∴e n(43)n-1,从而证得不等式成立. 答案:(Ⅰ)∵S n+1=qS n+1①,∴当n ≥2时,S n =qS n-1+1 ②,两式相加你可得a n+1=q ·a n , 即从第二项开始,数列{a n }为等比数列,公比为q.当n=1时,∵数列{a n }的首项为1,∴a 1+a 2=S 2=q ·a 1+1,∴a 2=q=a 1·q ,∴数列{a n }为等比数列,公比为q.∵2a 2,a 3,a 2+2成等差数列,∴2q+q+2=2q 2,求得q=2,或 q=-12. 根据q >0,故取q=2,∴a n =2n-1,n ∈N *.(Ⅱ)设双曲线222ny x a -=1的离心率为e n ,∴e n=由于数列{a n }为首项等于1、公比为q 的等比数列,∴e 2=53=,q=43, ∴a n =(43)n-1,∴e n143n -=. ∴e 1+e 2+...+e n >1+43+(43)2+…+(43)n-1=1143314343n n n n ---=-⎛⎫ ⎪⎝⎭,原不等式得证.20.已知椭圆E :2222x y a b+=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l :y=-x+3与椭圆E 有且只有一个公共点T.(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析:(Ⅰ)根据椭圆的短轴端点C 与左右焦点F 1、F 2构成等腰直角三角形,结合直线l 与椭圆E 只有一个交点,利用判别式△=0,即可求出椭圆E 的方程和点T 的坐标;(Ⅱ)设出点P 的坐标,根据l ′∥OT 写出l ′的参数方程,代人椭圆E 的方程中,整理得出方程,再根据参数的几何意义求出|PT|2、|PA|和|PB|,由|PT|2=λ|PA|·|PB|求出λ的值. 答案:(Ⅰ)设短轴一端点为C(0,b),左右焦点分别为F 1(-c ,0),F 2(c ,0),其中c >0,则c 2+b 2=a 2;由题意,△F 1F 2C 为直角三角形,∴|F 1F 2|2=|F 1C|2+|F 2C|2,解得b=c=2a ,∴椭圆E 的方程为22222x y b b +=1; 代人直线l :y=-x+3,可得3x 2-12x+18-2b 2=0,又直线l 与椭圆E 只有一个交点,则△=122-4×3(18-2b 2)=0,解得b 2=3, ∴椭圆E 的方程为2263x y +=1; 由b 2=3,解得x=2,则y=-x+3=1,所以点T 的坐标为(2,1);(Ⅱ)设P(x 0,3-x 0)在l 上,由k OT =12,l ′平行OT , 得l ′的参数方程为0023x x t y x t =+=-+⎧⎨⎩,,代人椭圆E 中,得(x 0+2t)2+2(3-x 0+t)2=6,整理得2t 2+4t+x 02-4x 0+4=0;设两根为t A ,t B ,则有t A ·t B =()2022x -;而|PT|2)2=2(x 0-2)2,A|,B|,且|PT|2=λ|PA|·|PB|,∴λ=2PTPA PB⋅=()()222245522xx-=-,即存在满足题意的λ值.21.设函数f(x)=ax2-a-lnx,其中a∈R. (Ⅰ)讨论f(x)的单调性;(Ⅱ)确定a的所有可能取值,使得f(x)>1x-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).解析:(I)利用导数的运算法则得出f′(x),通过对a分类讨论,利用一元二次方程与一元二次不等式的关系即可判断出其单调性;(Ⅱ)令g(x)=f(x)-1x-e1-x=ax2-lnx-1x+e1-x-a,可得g(1)=0,从而g′(1)≥0,解得a≥12,当a≥12时,F′(x)=3112331222x xx xa e ex x x--+-+-+≥+,可得F′(x)在a≥12时恒大于0,即F(x)在x∈(1,+∞)单调递增.由F(x)>F(1)=2a-1≥0,可得g(x)也在x∈(1,+∞)单调递增,进而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,综合可得a所有可能取值.答案:(Ⅰ)由题意,f′(x)=21212axaxx x--=,x>0,①当a≤0时,2ax2-1≤0,f′(x)≤0,f(x)在(0,+∞)上单调递减.②当a>0时,f′(x)=2a x xx⎛⎝⎭⎝⎭,当x∈(0)时,f′(x)<0,当x∈,+∞)时,f′(x)>0,故f(x)在(0,12a)上单调递减,在+∞)上单调递增.(Ⅱ)原不等式等价于f(x)-1x+e1-x>0在x∈(1.+∞)上恒成立,一方面,令g(x)=f(x)-1x+e1-x=ax2-lnx-1x+e1-x-a,只需g(x)在x∈(1.+∞)上恒大于0即可,又∵g(1)=0,故g′(x)在x=1处必大于等于0.令F(x)=g′(x)=2ax-1x+21x-e1-x,g′(1)≥0,可得a≥12.另一方面,当a≥12时,F′(x)=3111232331212221x x xx xa e e ex x x x x---+-+-+≥+-+=+,∵x∈(1,+∞),故x3+x-2>0,又e1-x>0,故F′(x)在a≥12时恒大于0.∴当a≥12时,F(x)在x∈(1,+∞)单调递增.∴F(x)>F(1)=2a-1≥0,故g(x)也在x∈(1,+∞)单调递增. ∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.综上,a≥12.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2016年普通高等学校招生全国统一考试(四川卷)数学试题 (理科)解析版

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C 【解析】试题分析:由题意,{2,1,0,1,2}AZ =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般 是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.2. 设i 为虚数单位,则6()x i +的展开式中含x 4的项为( )(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r rr C i x -,即含4x 的项为46444615C i x x -=-.3. 为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度 【答案】D 【解析】试题分析:由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,在函数()sin()f x A ωx φ=+的图象平移变换中要注意人“ω”的影响,变换有两种顺序:一种y sin x =的图象向左平移φ个单位得sin()y x φ=+,再把横坐标变为原来的1ω倍,纵坐标不变,得sin()y ωx φ=+的图象,另一种是把y sin x =的图象横坐标变为原来的1ω倍,纵坐标不变,得sin y ωx =的图象,向左平移φω个单位得sin()y ωx φ=+的图象.4. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) (A )24 (B )48 (C )60 (D )72 【答案】D考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..5. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 【答案】B 【解析】试题分析:设第n 年的研发投资资金为n a ,1130a =,则1130 1.12n n a -=⨯,由题意,需1130 1.12200n n a -=⨯≥,解得5n ≥,故从2019年该公司全年的投入的研发资金超过200万,选B.考点:等比数列的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.6. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A )9 (B )18 (C )20 (D )35 【答案】B考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.7. 设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A考点:1.充分条件、必要条件的判断;2.线性规划.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考,本题条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得结论.8. 设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为 (A)3 (B )23(C)2 (D )1 【答案】C 【解析】试题分析:设()()22,2,,P pt pt M x y (不妨设0t >),则22,2.2p FP pt pt ⎛⎫=-⎪⎝⎭由已知得13FM FP =,22,2362,3p p p x t pt y ⎧-=-⎪⎪∴⎨⎪=⎪⎩, 22,332,3p p x t pt y ⎧=+⎪⎪∴⎨⎪=⎪⎩,22112122OM t k t t t ∴==≤=++,()max 2OM k ∴=,故选C. 考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P 的坐标,利用向量法求出点M 的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k 斜率用参数t 表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.9. 设直线l1,l2分别是函数f(x)=ln,01,ln,1,x xx x-<<⎧⎨>⎩图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△P AB的面积的取值范围是(A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,+∞)【答案】A考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B坐标,由两直线相交得出P点坐标,从而求得面积,题中把面积用1x表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.10. 在平面内,定点A,B,C,D满足DA=DB=DC,DA⋅DB=DB⋅DC=DC⋅DA=-2,动点P,M满足AP=1,PM=MC,则2BM的最大值是(A)434(B)494(C(D【答案】B 【解析】考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DADB DC ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()(22214x y BM +++=,因此可用圆的性质得出最值.二、填空题:本大题共5小题,每小题5分,共25分. 11. 22cos sin 88ππ-=. 【答案】2【解析】试题分析:由二倍角公式得22cos sin 88ππ-=cos42=π考点:三角函数二倍角公式.【名师点睛】这是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解.12. 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 . 【答案】32考点:离散型随机变量的均值【名师点睛】本题考查随机变量的均值(期望),根据期望公式,首先求出随机变量的所有可能取值12,,,n x x x ,再求得对应的概率(1,2,,)i P i n =,则均值为1ni i i x P =∑.13. 已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=. 考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.14. 已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= .【答案】-2考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把5()2f -和(1)f ,利用奇偶性与周期性化为(0,1)上的函数值即可.15. 在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,平面曲线C 上所有点的“伴随点”所构成的曲线'C 定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”'C 关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是_____________(写出所有真命题的序列). 【答案】②③考点:对新定义的理解、函数的对称性.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨)、一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(I)求直方图中a的值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (III )若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由. 【答案】(Ⅰ)0.30a =;(Ⅱ)36000;(Ⅲ)2.9.试题解析:(Ⅰ)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a +0.20+0.26+0.5×a +0.06+0.04+0.02=1,解得a =0.30. (Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85, 而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85, 所以2.5≤x <3.由0.3×(x –2.5)=0.85–0.73, 解得x =2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 考点:频率分布直方图.【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.试题解析:(Ⅰ)根据正弦定理,可设sin a A =sin b B =sin c C =k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c中,有 cos sin A k A +cos sin B k B =sin sin C k C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C ,所以sin A sin B =sin C .(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B , 故sin tan 4cos B B B ==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.18. (本小题满分12分)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为边AD 的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.E D CB PA【答案】(Ⅰ)详见解析;(Ⅱ)1 3 .试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.,所以CD∥EB从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=2.在Rt△PAH中,2,所以sin∠APH=AHPH=13.所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)设平面PCE的法向量为n=(x,y,z),由0,0,PEEC⎧⋅=⎪⎨⋅=⎪⎩nn得20,0,x zx y-=⎧⎨+=⎩设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα=||||||n APn AP⋅⋅13=.所以直线PA与平面PCE所成角的正弦值为1 3.P考点:线线平行、线面平行、向量法.【名师点睛】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),一种方法可根据定义作出这个角(注意还要证明),然后通过解三角形求出这个角.另一种方法建立空间直角坐标系,用向量法求角,这种方法主要是计算,不需要“作角、证明”,关键是记住相应公式即可.19. (本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式; (Ⅱ)设双曲线2221ny x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>. 【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.(Ⅱ)先利用双曲线的离心率定义得到n e 的表达式,再由253e =解出q 的值,要证明题设不等式,一般想法是求出和12n e e e +++L ,但数列{}n e 的和不可求,因此我们利用放缩法得1n n e q ->,从而有12n e e e +++L 11n q q ->+++L ,右边的和是等比数列的和,可求,此和即为要证不等式的右边. 最后利用等比数列的求和公式计算证明.试题解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立.所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q+q -=,由已知,0q >,故 =2q .所以1*2()n n a n -=?N .考点:数列的通项公式、双曲线的离心率、等比数列的求和公式.【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第(Ⅰ)问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n -代换n (2n ≥),然后两式相减,可得n a 的递推式,利用这种方法解题时要注意1a ;在第(Ⅱ)问中,不等式的证明用到了放缩法,这是证明不等式常用的方法,本题放缩的目的是为了求数列的和.另外放缩时要注意放缩的“度”.不能太大,否则得不到结果.20. (本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.试题解析:(I )由已知,222(2)a a c +=,即a =,所以a =,则椭圆E 的方程为222212x y b b +=. 由方程组22221,23,x y b b y x ⎧+=⎪⎨⎪=-+⎩得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b ,此方程①的解为=2x , 所以椭圆E 的方程为22163x y +=. 点T 坐标为(2,1).(II )由已知可设直线l ' 的方程为1(0)2y x m m =+≠, 有方程组123y x m y x ⎧=+⎪⎨⎪=-+⎩,, 可得22321.3m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩, 所以P 点坐标为(222,133m m -+ ),2289P T m =.设点A ,B 的坐标分别为1122(,)(,)A x y B x y , . 由方程组2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩,, 可得2234(412)0x mx m ++-=.②故存在常数45λ=,使得2PT PA PB λ=⋅. 考点:椭圆的标准方程及其几何性质.【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题解决问题的能力和数形结合的思想.在涉及到直线与椭圆(圆锥曲线)的交点问题时,一般都设交点坐标为1122(,),(,)x y x y ,同时把直线方程与椭圆方程联立,消元后,可得1212,x x x x +,再把PA PB ⋅用12,x x 表示出来,并代入刚才的1212,x x x x +,这种方法是解析几何中的“设而不求”法.可减少计算量,简化解题过程.21. (本小题满分14分)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(Ⅰ)讨论f (x )的单调性;(Ⅱ)确定a 的所有可能取值,使得11()x f x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(Ⅰ)当x ∈0,(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x单调递增;(Ⅱ)1[,)2a ??.试题解析:(I )2121'()20).ax f x ax x x x-=-=>( 0a ≤当时, '()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =此时,当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增. (II )令()g x =111e x x --,()s x =1e x x --. 则'()s x =1e 1x --.而当1x >时,'()s x >0,所以()s x 在区间1+)∞(,内单调递增.又由(1)s =0,有()s x >0,从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<>1.综上,1[,)2a ??. 考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.。
2016高职试题及答案

2016高职试题及答案2016年高职试题及答案导言:2016年的高职试题及答案是许多考生和教育界关注的焦点。
本文将针对2016年高职试题及答案进行详细探讨,以便帮助考生更好地了解试题难度和准备应对考试。
一、历史科目试题及答案在2016年的高职考试中,历史科目试题主要包括对历史事件、人物和文化的了解。
下面是某年高职历史科目试题及答案的一部分:试题:请简要介绍中国古代四大发明之一的造纸术,并说明其对世界文明的影响。
答案:造纸术是中国古代重要的发明之一,最早出现在东汉时期。
通过将纤维素纤维合成纸张,将信息传达更加方便和快捷。
造纸术的发明不仅在中国起到了革命性的作用,还对世界文明起到了深远的影响。
它促进了文化交流和学术发展,在军事、商业和科学领域都起到了巨大的推动作用。
二、数学科目试题及答案数学科目在高职考试中占有重要的地位。
下面是2016年高职数学科目试题及答案的一部分:试题:将点 A (3, 4) 绕原点逆时针旋转 90 度,求旋转后的坐标。
答案:点 A (3, 4) 绕原点逆时针旋转 90 度后,新的坐标可以通过将原坐标中的 x 和 y 互换,并将新的 x 坐标取反来得到。
因此,旋转后的坐标为 (-4, 3)。
三、外语科目试题及答案外语科目通常是考察考生的听说读写能力以及对语言规则的理解。
以下是2016年高职外语科目试题及答案的一部分:试题:根据所提供的对话内容,从选项中选择恰当的回答完成对话。
A: Can you help me with this homework?B: _________________________.a) Yes, I can.b) You're welcome.c) I'm sorry to hear that.答案:a) Yes, I can.结论:通过对2016年高职试题及答案的分析,可以看出历史、数学和外语科目都是高职考试中的重要内容。
为了取得好成绩,考生需要通过充分准备来增强对于知识点的掌握。
2016年全国普通高等学校招生全国统一考试理数(四川卷)

2016年普通高等学校招生全国统一考试(四川卷)数学(理工类)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设集合{|22}A x x =-≤≤,Z 为整数集,则A I Z 中元素的个数是(A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点(A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2–(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A )3(B )23(C )2(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA u u u r =DB u u u r =DC u u u r ,DA u u u r ﹒DB u u u r =DB u u u r ﹒DC u u u r =DC u u u r ﹒DA u u u r =-2,动点P ,M 满足AP u u u r =1,PM u u u u r =MC u u uu r ,则2BM u u u u u r 的最大值是(A )434(B )494(C )3763+(D )37233+二、填空题:本大题共5小题,每小题5分,共25分。
2016年普通高等学校招生全国统一考试理科数学(四川卷)

2016年普通高等学校招生全国统一考试四川理科数学1.(2016四川,理1)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.2.(2016四川,理2)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4B.15x4C.-20i x4D.20i x4答案A二项式(x+i)6展开的通项T r+1=C x6-r i r,则其展开式中含x4是当6-r=4,即r=2,则展开式中含x4的项为C62x4i2=-15x4,故选A.3.(2016四川,理3)为了得到函数y=sin(2x-π3)的图象,只需把函数y=sin 2x的图象上所有的点()A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向左平行移动π6个单位长度D.向右平行移动π6个单位长度答案D由题意,为得到函数y=sin(2x-π3)=sin[2(x-π6)],只需把函数y=sin 2x的图象上所有点向右平行移动π6个单位长度,故选D.4.(2016四川,理4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72答案D由题意,要组成没有重复的五位奇数,则个位数应该为1,3,5,其他位置共有A44种排法,所以其中奇数的个数为3A44=72,故选D.5.(2016四川,理5)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年答案B设从2015年后第n年该公司全年投入的研发资金开始超过200万元,由已知得130×(1+12%)n>200,∴1.12n>200130,两边取常用对数得n lg 1.12>lg200130,∴n>lg2-lg1.3lg1.12≈0.30-0.110.05=3.8.∴n ≥4,故选B .6.(2016四川,理6)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n ,x 的值分别为3,2,则输出v 的值为( )A.9B.18C.20D.35答案B 程序运行如下n=3,x=2→v=1,i=2≥0→v= 1×2+2=4,i=1≥0→v=4×2+1=9,i=0≥0→v=9×2+ 0=18,i=-1<0 ,结束循环,输出v=18,故选B .7.(2016四川,理7)设p :实数x ,y 满足(x-1)2+(y-1)2≤2,q :实数x ,y 满足{y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案A 画出可行域 (如图所示),可知命题q 中不等式组表示的平面区域△ABC 在命题p 中不等式表示的圆盘内,即p q ,q ⇒p ,所以p 是q 的必要不充分条件.故选A .8.(2016四川,理8)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p>0)上任意一点,M 是线段PF 上的点,且|PM|=2|MF|,则直线OM 的斜率的最大值为( ) A.√33B.23C.√22D.1答案C 设P (2pt 2,2pt ),M (x ,y )(不妨设t>0),F (p2,0),则FP ⃗⃗⃗⃗⃗ =(2pt 2-p 2,2pt),FM ⃗⃗⃗⃗⃗⃗ =(x -p 2,y). ∵FM⃗⃗⃗⃗⃗⃗ =13FP ⃗⃗⃗⃗⃗ , ∴{x -p2=2p3t 2-p6,y =2pt 3,∴{x =2p3t 2+p3,y =2pt3.∴k OM =2t2t 2+1=1t+12t ≤12√12=√22, 当且仅当t=√22时等号成立.∴(k OM )max =√22 ,故选C .9.(2016四川,理9)设直线l 1,l 2分别是函数f (x )={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)答案A 设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义 易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1. 所以x 2=1x 1.所以切线l 1的方程分别为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2),即y-ln x 1=-x 1(x -1x 1).分别令x=0得A (0,-1+ln x 1),B (0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,ln x 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A .10.(2016四川,理10)在平面内,定点A ,B ,C ,D 满足|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |,DA ⃗⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =-2,动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是 ( )A.434B.494C.37+6√34D.37+2√334答案B 由已知易得∠ADC=∠ADB=∠BDC=120°,|DA ⃗⃗⃗⃗⃗ |=|DB⃗⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2.以D 为原点,直线DA 为x 轴,过D 的DA 垂线为y 轴 建立平面直角坐标系 ,如图,则A (2,0),B (-1,-√3),C (-1,√3).设P (x ,y ),由已知|AP ⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1, ∵PM⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y )与点(-1,-3√3)距离平方的14, ∴(|BM ⃗⃗⃗⃗⃗⃗ |2)max =14(√32+(0+3√3)2+1)2=494,故选B .11.(2016四川,理11)cos 2π8-sin 2π8= . 答案√22解析由三角函数二倍角公式 得,cos 2π8-sin 2π8=cos π4=√22.12.(2016四川,理12)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 . 答案32解析同时抛掷两枚质地均匀的硬币,可能的结果 有(正正),(正反),(反正),(反反),所以试验一次成功的概率为1-(12)2=34.所以在2次试验中成功次数X 的取值为0,1,2,其中P (X=0)=(14)2=116,P (X=1)=C 21×34×14=38,P (X=2)=34×34=916, 所以在2次试验中成功次数X 的均值是EX=0×116+1×38+2×916=32.13.(2016四川,理13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 . 答案√33解析由三棱锥的正视图知,三棱锥的高为1,底面边长分 别为2√3 ,2,2,所以底面三角形的高为√22-(√3)2=1,所以,三棱锥的体积为V=13×12×2√3×1×1=√33.14.(2016四川,理14)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=4x ,则f (-52)+f (1)= .答案-2解析因为函数f (x )是定义在R 上周期为2的奇函数,所以f (-1)+f (1)=0,f (-1)=f (-1+2)=f (1) . 所以f (1)=0,f (-52)=f (-12-2)=f (-12)=-f (12)=-412=-2,所以f (-52)+f (1)=-2.15.(2016四川,理15)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P'(yx 2+y 2,-xx 2+y 2);当P 是原点时,定义P 的“伴随点”为它自身.平面曲线C 上所有点的“伴随点”所构成的曲线C'定义为曲线C 的“伴随曲线.”现有下列命题:①若点A 的“伴随点”是点A',则点A'的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C'关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是 (写出所有真命题的序号). 答案②③解析对于①,若令P (1,1),则其伴随点 为P'(12,-12),而P'(12,-12)的伴随点为(-1,-1),而不是P ,故①错误;对于②,令单位圆上点的坐标为P (cos x ,sin x ),其伴随点为P'(sin x ,-cos x )仍在单位圆 上,故②正确;对于③,设A (x ,y )与B (x ,-y )为关于x 轴对称的两点,则A 的“伴随点”为A'(y x 2+y 2,-xx 2+y 2),B 点的伴随点为B'(-y x 2+y 2,-xx 2+y 2),A'与B'关于y 轴对称,故③正确; 对于④,取直线l :y=1.设其“伴随曲线”为C ,其上任一点M (x ,y ), 与其对应的直线l 上的点为N (t ,1).则由定义可知{x =1t 2+1,y =-tt 2+1,①②①2+②2得x 2+y 2=1+(-t )2(t 2+1)2=11+t 2=x , 整理得x 2+y 2-x=0,显然不是一条直线.故④错误; 所以正确的序号为②③.16.(2016四川,理16)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨).估计x 的值,并说明理由. 解(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02. 由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85, 而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3. 由0.3×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 17.(2016四川,理17)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cosAa +cosBb =sinCc . (1)证明:sin A sin B=sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B. 解(1)根据正弦定理,可设a sinA =b sinB =c sinC=k (k>0).则a=k sin A ,b=k sin B ,c=k sin C.代入cosA a +cosB b =sinC c 中,有cosA ksinA +cosB ksinB =sinCksinC ,变形可得sin A sin B=sin A cos B+cos A sin B= sin(A+B ).在△ABC 中,由A+B+C=π,有sin(A+B )=sin(π-C )=sin C ,所以sin A sin B=sin C. (2)由已知,b 2+c 2-a 2=65bc , 根据余弦定理,有cos A=b 2+c 2-a 22bc =35,所以sin A=√1-cos 2A =45.由(1),sin A sin B=sin A cos B+cos A sin B , 所以45sin B=45cos B+35sin B ,故tan B=sinBcosB=4. 18.(2016四川,理18)如图,在四棱锥P-ABCD 中,AD ∥BC ,∠ADC=∠PAB=90°,BC=CD=12AD ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°.(1)在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由;(2)若二面角P-CD-A 的大小为45°,求直线PA 与平面PCE 所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下: 由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)方法一:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角,所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=√22.在Rt△PAH中,PH=√PA2+AH2=3√22,所以sin∠APH=AHPH =13.方法二:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA ⊥AB ,可得PA ⊥平面ABCD. 设BC=1,则在Rt △PAD 中,PA=AD=2.作Ay ⊥AD ,以A 为原点,以AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 的方向分别为x 轴,z 轴的正方向,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),P (0,0,2),C (2,1,0),E (1,0,0).所以PE⃗⃗⃗⃗⃗ =(1,0,-2),EC ⃗⃗⃗⃗⃗ =(1,1,0),AP ⃗⃗⃗⃗⃗ =(0,0,2). 设平面PCE 的法向量为n =(x ,y ,z ). 由{n ·PE⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x -2z =0,x +y =0.设x=2,解得n =(2,-2,1).设直线PA 与平面PCE 所成角为α, 则sin α=|n ·AP ⃗⃗⃗⃗⃗⃗ ||n |·|AP⃗⃗⃗⃗⃗⃗ |=2×√2+(-2)+1=13.所以直线PA 与平面PCE 所成角的正弦值为13.19.(2016四川,理19)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q>0,n ∈N *. (1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式; (2)设双曲线x 2-y 2a n2=1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.解(1),S n+1=qS n +1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n ≥1. 又由S 2=qS 1+1得到a 2=qa 1, 故a n+1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n-1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2, 即2q 2=3q+2,则(2q+1)(q-2)=0, 由已知,q>0,故q=2. 所以a n =2n-1(n ∈N *). (2)由(1)可知,a n =q n-1.所以双曲线x 2-y 2a n2=1的离心率e n =√1+a n2=√1+q 2(n -1). 由e 2=√1+q 2=53,解得q=43.因为1+q 2(k-1)>q 2(k-1),所以√1+q 2(k -1)>q k-1(k ∈N *). 于是e 1+e 2+…+e n >1+q+…+q n-1=q n -1q -1, 故e 1+e 2+…+e n >4n -3n 3n -1.20.(2016四川,理20)已知椭圆E :x 2a2+y 2b2=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y=-x+3与椭圆E 有且只有一个公共点T. (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l'平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P ,证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值. 解(1)由已知,a=√2b ,则椭圆E 的方程为x 22b2+y 2b2=1.由方程组{x 22b 2+y 2b2=1,y =-x +3,得3x 2-12x+(18-2b 2)=0. ① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x=2, 所以椭圆E 的方程为x 26+y 23=1,点T 坐标为(2,1). (2)由已知可设直线l'的方程为y=12x+m (m ≠0),由方程组{y =12x +m ,y =-x +3,可得{x =2-2m3,y =1+2m3.所以P 点坐标为(2-2m 3,1+2m 3),|PT|2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组{x 26+y 23=1,y =12x +m , 可得3x 2+4mx+(4m 2-12)=0. ②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-3√22<m<3√22. 由②得x 1+x 2=-4m 3,x 1x 2=4m 2-123.所以|PA|=√(2-2m 3-x 1)2+(1+2m3-y 1)2=√52|2-2m3-x 1|, 同理|PB|=√52|2-2m3-x 2|. 所以|PA|·|PB|=54|(2-2m 3-x 1)(2-2m 3-x 2)| =54|(2-2m 3)2-(2-2m 3)(x 1+x 2)+x 1x 2| =54|(2-2m 3)2-(2-2m 3)(-4m 3)+4m 2-123| =109m 2.故存在常数λ=45,使得|PT|2=λ|PA|·|PB|.21.(2016四川,理21)设函数f (x )=ax 2-a-ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数). 解(1)f'(x )=2ax-1x =2ax 2-1x(x>0). 当a ≤0时,f'(x )<0,f (x )在(0,+∞)内单调递减.当a>0时,由f'(x )=0,有x=√2a. 此时,当x ∈(0,1√2a )时,f'(x )<0,f (x )单调递减; 当x ∈(1√2a,+∞)时,f'(x )>0,f (x )单调递增. (2)令g (x )=1x −1e x -1,s (x )=e x-1-x. 则s'(x )=e x-1-1.而当x>1时,s'(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x>1时,g (x )>0.当a ≤0,x>1时,f (x )=a (x 2-1)-ln x<0. 故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a>0.当0<a<12时,√2a >1. 由(1)有f (√2a )<f (1)=0,而g (√2a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x>1时,h'(x )=2ax-1x +1x 2-e 1-x >x-1x +1x 2−1x =x 3-2x+1x 2>x 2-2x+1x 2>0. 因此,h (x )在区间(1,+∞)单调递增. 又因为h (1)=0,所以当x>1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).。
四川高职单招数学试题(附答案)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2 B.{}0,1 C.{}0,2 D .{}0,1,2 2. 不等式的解集是( )A.x<3 B.x >-1 C .x <-1或x>3 D.-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( ) A.2 B.3 C.4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数 D. 既增又减函数 5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D .127. 已知{a n}为等差数列,a 2+a8=12,则a 5等于( ) A.4 ﻩB.5 C.6 ﻩ D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b,则λ=( ) A .6- B.6 C.32 D .32- 点)5,0(到直线x y 2=的距离为(ﻩﻩ)21<-xA.25 B.5 C .23ﻩﻩD.2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 ﻩﻩﻩ B .10种 C .9种 ﻩﻩD .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f(x)是定义在R 上的周期为2的函数,当x∈[﹣1,1)时,f(x )=,则f()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m.(用四舍五入法将结果精确到个位.参考数据:s in67°≈0.92,cos67°≈0.39,si n37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx﹣y﹣m+3=0交于点P(x ,y).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M ,M ].例如,当φ1(x)=x 3,φ2(x)=s inx 时,φ1(x )∈A ,φ2(x)∈B .现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A ”的充要条件是“∀b ∈R ,∃a ∈D,f(a )=b ”; ②函数f(x)∈B的充要条件是f(x )有最大值和最小值;③若函数f(x ),g (x )的定义域相同,且f (x)∈A,g (x )∈B ,则f (x)+g (x )∉B. ④若函数f (x)=aln(x+2)+(x>﹣2,a ∈R )有最大值,则f (x)∈B.其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。
四川高职单招试题及答案

四川高职单招试题及答案一、单项选择题(每题2分,共10题,满分20分)1. 四川高职单招考试中,下列哪个科目是必考科目?A. 语文B. 数学C. 英语D. 物理答案:A2. 四川高职单招考试的报名通常在每年的哪个月份进行?A. 1月B. 3月C. 6月D. 9月答案:B3. 四川高职单招考试的面试环节通常占总成绩的百分比是多少?A. 10%B. 20%C. 30%D. 40%答案:C4. 四川高职单招考试中,以下哪项不是考试内容?A. 专业知识测试B. 综合素质测试C. 体育测试D. 艺术特长测试答案:D5. 四川高职单招考试的录取结果通常在什么时候公布?A. 考试结束后一周B. 考试结束后一个月C. 考试结束后两个月D. 考试结束后三个月答案:B二、多项选择题(每题3分,共5题,满分15分)6. 四川高职单招考试中,以下哪些因素会影响录取结果?A. 考试成绩B. 面试表现C. 个人特长D. 社会关系答案:A、B、C7. 四川高职单招考试的报名流程通常包括哪些步骤?A. 网上报名B. 现场确认C. 缴纳报名费D. 领取准考证答案:A、B、C、D8. 四川高职单招考试中,以下哪些科目可能会作为考试内容?A. 语文B. 数学C. 英语D. 计算机应用基础答案:A、B、C、D9. 四川高职单招考试的面试环节通常考察哪些方面的能力?A. 语言表达能力B. 逻辑思维能力C. 团队协作能力D. 专业知识掌握程度答案:A、B、C、D10. 四川高职单招考试的录取原则通常包括哪些?A. 公平、公正、公开B. 择优录取C. 专业优先D. 地区优先答案:A、B三、判断题(每题1分,共5题,满分5分)11. 四川高职单招考试的报名资格仅限于四川省内的考生。
(错)12. 四川高职单招考试的面试环节是可选的,考生可以根据自己的情况选择是否参加。
(错)13. 四川高职单招考试的录取结果一旦公布,考生就不能再申请复核。
(错)14. 四川高职单招考试的报名费用是固定的,不会因为报考的专业不同而有所变化。
2016年普通高等学校招生全国统一考试(四川卷)数学试题(文科)解析版

2016年普通高等学校招生全国统一考试(四川卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的•1. 设i为虚数单位,则复数(1 i)2=( )(A) 0 (B)2 (C) 2 i (D)2+2 i【答案】C【解析】试题分析:由题意,(1 i)2 =1 2i • i2 = 2i,故选C.考点:复数的运算.【名师点睛】本题考查复数的运算•数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.2. 设集合A={x|1 辽5},Z为整数集,则集合A n Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3【答案】B【解析】试题分析:由题意= 故其中的元素个数为》选B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.3. 抛物线y2 =4x的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) ( 1,0)【答案】D【解析】试题分析:由题意,y2 =4x的焦点坐标为(1,0),故选D.考点:抛物线的定义.【名师点睛】本题考查抛物线的定义•解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.4. 为了得到函数y =sin(x,§)的图象,只需把函数y=sinx的图象上所有的点( )(A)向左平行移动个单位长度(B) 向右平行移动二个单位长度3 3TT TT(C)向上平行移动一个单位长度(D) 向下平行移动一个单位长度3 3【答案】A【解析】TT 7T 试题分析:由題意,为得到函数潭=站(尤+彳儿只需数y = sinx的區僚上所有点向左移彳个单位,3 J故选A.考点:三角函数图像的平移•【名师点睛】本题考查三角函数的图象平移,函数y二f(x)的图象向右平移a个单位得y=f(x-a) 的图象,而函数y二f (x)的图象向上平移a个单位得y二f (x) • a的图象.左右平移涉及的是x的变化,上下平移涉及的是函数值f (x)加减平移的单位.5. 设p:实数x, y满足x 1且y . 1 , q:实数x, y满足x y 2,则p是q的( )(A)充分不必要条件(B) 必要不充分条件(C)充要条件(D) 既不充分也不必要条件【答案】A【解析】试题分析:由题意,x 1且y . 1,则x y 2,而当x y 2时不能得出,x 1且y • 1.故p是q的充分不必要条件,选 A.考点:充分必要条件•【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立•这类问题往往与函数、三角、不等式等数学知识结合起来考•有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6. 已知a函数f(x) =x3 -12x的极小值点,贝U a=( )(A)-4 (B) -2 (C)4 (D) 2【答案】D【解析】试题分析:「X =3x -1^3 x 2 X-2,令f x =0得x = -2或x=2,易得f x在-2,2上单调递减,在 2, •::上单调递增,故 f x 极小值为f 2,由已知得a =2,故选D.考点:函数导数与极值.【名师点睛】本题考查函数的极值•在可导函数中函数的极值点x 0是方程f '(x) =0的解,但x 0是极 大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 X D 附近,如果x :::x 0时, f '(x) ::: 0 , x X O 时 f '(x) ■ 0 ,则 X D 是极小值点,如果 x X D 时,f '(x) ■ 0 , x X 。
2016年普通高等学校招生全国统一考试(四川卷)数学文

2016年普通高等学校招生全国统一考试(四川卷)数学文一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设i 为虚数单位,则复数(1+i)2=( ) A.0 B.2 C.2i D.2+2i解析:(1+i)2=1+i 2+2i=1-1+2i=2i. 答案:C.2.设集合A={x|1≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是( ) A.6 B.5 C.4 D.3解析:∵集合A={x|1≤x ≤5},Z 为整数集,则集合A ∩Z={1,2,3,4,5}.∴集合A ∩Z 中元素的个数是5. 答案:B.3.抛物线y 2=4x 的焦点坐标是( ) A.(0,2) B.(0,1) C.(2,0) D.(1,0)解析:抛物线y 2=4x 的焦点坐标是(1,0). 答案:D4.为了得到函数y=sin(x+3π)的图象,只需把函数y=sinx 的图象上所有的点( ) A.向左平行移动3π个单位长度 B.向右平行移动3π个单位长度C.向上平行移动3π个单位长度D.向下平行移动3π个单位长度解析:由已知中平移前函数解析式为y=sinx , 平移后函数解析式为:y=sin(x+3π),可得平移量为向左平行移动3π个单位长度. 答案:A5.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=12.∴p是q的充分不必要条件.答案:A6.已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4B.-2C.4D.2解析:f′(x)=3x2-12;∴x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点,∴a=2.答案:D7.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)A.2018年B.2019年C.2020年D.2021年解析:设第n年开始超过200万元,则130×(1+12%)n-2015>200,化为:(n-2015)lg1.12>lg2-lg1.3,n-2015>0.300.110.05=3.8.取n=2019.因此开始超过200万元的年份是2019年.答案:B.8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )A.35B.20C.18D.9解析:∵输入的x=2,n=3,故v=1,i=2,满足进行循环的条件,v=4,i=1,满足进行循环的条件,v=9,i=0,满足进行循环的条件,v=18,i=-1不满足进行循环的条件,故输出的v值为:18.答案:C9.已知正三角形ABC的边长为ABC内的动点P,M满足|AP|=1,PM MC=,则|BM|2的最大值是( )A.43 4B.49 4解析:如图所示,建立直角坐标系.B(0,0),0),3). ∵M 满足|AP |=1,∴点M 的轨迹方程为:)2+(y-3)2=1,令θ,y=3+sin θ,θ∈[0,2π).又PM MC =,则12cos θ,31+22sin θ), ∴|BM |212cos θ)2+(31+22sin θ)2=374+3sin(θ+3π)≤494. ∴|BM |2的最大值是494.答案:B10.设直线l 1,l 2分别是函数f(x)=ln 01ln 1x x x x -⎧⎨⎩,<<,,>,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)解析:设P 1(x 1,y 1),P 2(x 2,y 2)(0<x 1<1<x 2), 当0<x <1时,f ′(x)=-1x ,当x >1时,f ′(x)=1x, ∴l 1的斜率k 1=-11x ,l 2的斜率k 2=21x , ∵l 1与l 2垂直,且x 2>x 1>0,∴k 1·k 2=-11x ·21x =-1,即x 1x 2=1. 直线l 1:y=-11x (x-x 1)-lnx 1,l 2:y=21x (x-x 2)+lnx 2.取x=0分别得到A(0,1-lnx 1),B(0,-1+lnx 2),|AB|=|1-lnx 1-(-1+lnx 2)|=|2-(lnx 1+lnx 2)|=|2-lnx 1x 2|=2. 联立两直线方程可得交点P 的横坐标为x=12122x x x x +,∴S △PAB =12|AB|·|x P |=12×2×12122x x x x +=122x x +=1121x x +.∵函数y=x+1x在(0,1)上为减函数,且0<x 1<1, ∴111x x +>1+1=2,则0<1111x x +<12,∴0<1121x x +<1.∴△PAB 的面积的取值范围是(0,1).答案:A.二、填空题:本大题共5小题,每小题3分,共25分.11.sin750°= .解析:sin750°=sin(2×360°+30°)=sin30°=12. 答案:12.12.已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .解析:由三视图可知几何体为三棱锥,底面为俯视图三角形,底面积S=13×棱锥的高为h=1,∴棱锥的体积V=13Sh=1313.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是 .解析:从2,3,8,9中任取两个不同的数字,分别记为a ,b , 基本事件总数n=24A =12,log a b 为整数满足的基本事件个数为(2,8),(3,9),共2个,∴log a b 为整数的概率p=21126=. 答案:16.14.若函数f(x)是定义R 上的周期为2的奇函数,当0<x <1时,f(x)=4x ,则f(-52)+f(2)= . 解析:∵函数f(x)是定义R 上的周期为2的奇函数,当0<x <1时,f(x)=4x , ∴f(2)=f(0)=0,f(-52)=f(-52+2)=f(-12)=-f(12)=-124=-2,则f(-52)+f(2)=-2+0=-2. 答案:-2.15.在平面直角坐标系中,当P(x ,y)不是原点时,定义P 的“伴随点”为P ′(22yx y +,22xx y-+),当P 是原点时,定义“伴随点”为它自身,现有下列命题: -①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A. -②单元圆上的“伴随点”还在单位圆上.-③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 .解析:①设A(0,1),则A 的“伴随点”为A ′(1,0), 而A ′(1,0)的“伴随点”为(0,-1),不是A ,故①错误,②若点在单位圆上,则x 2+y 2=1,即P(x ,y)不是原点时,定义P 的“伴随点”为P(y ,-x),满足y 2+(-x)2=1,即P ′也在单位圆上,故②正确,③若两点关于x 轴对称,设P(x ,y),对称点为Q(x ,-y), 则Q(x ,-y)的“伴随点”为Q ′(22y x y -+,22xx y-+),则Q ′(22y x y -+,22x x y -+)与P ′(22y x y +,22xx y-+)关于y 轴对称,故③正确, ④∵(-1,1),(0,1),(1,1)三点在直线y=1上,∴(-1,1)的“伴随点”为(111+,111+),即(12,12),(0,1)的“伴随点”为(1,0),(1,1的“伴随点”为(111+,-111+),即(12,-12),则(12,12),(1,0),(12,-12)三点不在同一直线上,故④错误.答案:②③三、解答题(共6小题,满分75分)16.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a 值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (Ⅲ)估计居民月均用水量的中位数. 解析:(I)先根据频率分布直方图中的频率等于纵坐标乘以组距求出9个矩形的面积即频率,再根据直方图的总频率为1求出a 的值;(II)根据已知中的频率分布直方图先求出月均用水量不低于3吨的频率,结合样本容量为30万,进而得解.(Ⅲ)根据频率分布直方图,求出使直方图中左右两边频率相等对应的横坐标的值.答案:(I)∵1=(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5,整理可得:2=1.4+2a , ∴解得:a=0.3.(II)估计全市居民中月均用水量不低于3吨的人数为3.6万,理由如下:由已知中的频率分布直方图可得月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12,又样本容量=30万,则样本中月均用水量不低于3吨的户数为30×0.12=3.6万. (Ⅲ)根据频率分布直方图,得;0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5=0.48<0.5,0.48+0.5×0.52=0.74>0.5,∴中位数应在(2,2.5]组内,设出未知数x,令0.08×0.5+0.16×0.5+0.30×0.5+0.42×0.5+0.52×x=0.5,解得x=0.038;∴中位数是2+0.06=2.038.17.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12 AD.(I)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(II)证明:平面PAB⊥平面PBD.解析:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,证明平面CME∥平面PAB,即可证明直线CM∥平面PAB;(II)证明:BD⊥平面PAB,即可证明平面PAB⊥平面PBD.答案:(I)M为PD的中点,直线CM∥平面PAB.取AD的中点E,连接CM,ME,CE,则ME∥PA,∵ME⊄平面PAB,PA⊂平面PAB,∴ME∥平面PAB.∵AD∥BC,BC=AE,∴ABCE是平行四边形,∴CE∥AB.∵CE⊄平面PAB,AB⊂平面PAB,∴CE∥平面PAB.∵ME∩CE=E,∴平面CME∥平面PAB,∵CM⊂平面CME,∴CM∥平面PAB;(II)∵PA⊥CD,∠PAB=90°,AB与CD相交,∴PA⊥平面ABCD,∵BD⊂平面ABCD,∴PA⊥BD,由(I)及BC=CD=12AD,可得∠BAD=∠BDA=45°,∴∠ABD=90°,∴BD⊥AB,∵PA∩AB=A,∴BD⊥平面PAB,∵BD⊂平面PBD,∴平面PAB⊥平面PBD.18.在△ABC中,角A,B,C所对的边分别是a,b,c,且cos cos sinA B Ca b c+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2-a2=65bc,求tanB.解析:(Ⅰ)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理,即可证明. (Ⅱ)由余弦定理求出A的余弦函数值,利用(Ⅰ)的条件,求解B的正切函数值即可.答案:(Ⅰ)在△ABC中,∵cos cos sinA B Ca b c+=,∴由正弦定理得:cos cos sin sin sin sin A B CA B C+=, ∴()sin cos sin cos sin 1sin sin sin sin A B A B B A A B A B++==, ∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC ,(Ⅱ)b 2+c 2-a 2=65bc ,由余弦定理可得cosA=35. sinA= 45,cos si 4n 3A A =,cos cos sin sin sin sin A B C A B C +==1,cos si 4n 1B B =,tanB=4.19.已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q >0,n ∈N+ (Ⅰ)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线x 2-22ny a =1的离心率为e n ,且e 2=2,求e 12+e 22+…+e n 2.解析:(Ⅰ)根据题意,由数列的递推公式可得a 2与a 3的值,又由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+(a 2+a 3),代入a 2与a 3的值可得q 2=2q ,解可得q 的值,进而可得S n+1=2S n+1,进而可得S n =2S n-1+1,将两式相减可得a n =2a n-1,即可得数列{a n }是以1为首项,公比为2的等比数列,由等比数列的通项公式计算可得答案;(Ⅱ)根据题意S n+1=qS n+1,同理有S n =qS n-1+1,将两式相减可得a n =qa n-1,分析可得a n =q n-1;又由双曲线x 2-22ny a =1的离心率为e n ,且e 2=2,分析可得e 2=2,解可得a 2的值,由a n =q n-1可得q 的值,进而可得数列{a n }的通项公式,再次由双曲线的几何性质可得e n 2=1+a n 2=1+3n-1,运用分组求和法计算可得答案. 答案:(Ⅰ)根据题意,数列{a n }的首项为1,即a 1=1, 又由S n+1=qS n+1,则S 2=qa 1+1,则a2=q ,又有S 3=qS 2+1,则有a 3=q 2,若a 2,a 3,a 2+a 3成等差数列,即2a 3=a 2+(a 2+a 3),则可得q 2=2q ,(q >0),解可得q=2,则有S n+1=2S n+1①, 进而有S n =2S n-1+1②, ①-②可得a n =2a n-1,则数列{a n }是以1为首项,公比为2的等比数列,则a n =1×2n-1=2n-1; (Ⅱ)根据题意,有S n+1=qS n+1,③ 同理可得S n =qS n-1+1,④ ③-④可得:a n =qa n-1,又由q >0,则数列{a n }是以1为首项,公比为q 的等比数列,则a n =1×q n-1=q n-1; 若e 2=2,则e 2,解可得a 2则a 2,即a n =1×q n-1=q n-1n-1,则e n 2=1+a n 2=1+3n-1,故e 12+e 22+…+e n 2=n+(1+3+32+…+3n-1)=312n n -+.20.已知椭圆E :2222x y a b+=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点12)在椭圆E 上. (Ⅰ)求椭圆E 的方程; (Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA|·|MB|=|MC|·|MD|.解析:(Ⅰ)由题意可得a=2b ,再把已知点的坐标代入椭圆方程,结合隐含条件求得a ,b 得答案;(Ⅱ)设出直线方程,与椭圆方程联立,求出弦长及AB 中点坐标,得到OM 所在直线方程,再与椭圆方程联立,求出C ,D 的坐标,把|MA|·|MB|化为12|AB|2,再由两点间的距离公式求得|MC|·|MD|的值得答案. 答案:(Ⅰ)如图,由题意可得2222223141a b a b c a b =⎧⎪=+⎨⎪+=⎩,,,解得2241a b ⎧=⎪⎨=⎪⎩,,∴椭圆E 的方程为24x +y 2=1;(Ⅱ)证明:设AB 所在直线方程为y=12x+m , 联立221214y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,,得x 2+2mx+2m 2-2=0.∴△=4m 2-4(2m 2-2)=8-4m 2>0,即<m.设A(x 1,y 1),B(x 2,y 2),M(x 0,y 0),则x 1+x 2=-2m ,x 1x 2=2m 2-2,12x -===. ∴x 0=-m ,y 0=12x 0+m=2m ,即M(-m ,2m ), 则OM 所在直线方程为y=-12x , 联立221214y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,,得22x y =-⎧⎪⎨=⎪⎩,或22x y =-⎧⎪⎨=-⎪⎩,∴,2),,-2). 则|MC|·=25524m ==-. 而|MA|·|MB|=(12|AB|)2=14(10-5m 2)=5524m -. ∴|MA|·|MB|=|MC|·|MD|.21.设函数f(x)=ax 2-a-lnx ,g(x)=1xe x e -,其中a ∈R ,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.解析:(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x >1),即1x e x e ->0,即证1x e x e>,也就是证x e e x >; (Ⅲ)由f(x)>g(x),得ax 2-a-lnx-1x +e 1-x >0,设t(x)=ax 2-a-lnx-1x+e 1-x ,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a 的取值范围.答案:(Ⅰ)由f(x)=ax 2-a-lnx ,得f ′(x)=2ax-2121ax x x -=(x >0), 当a ≤0时,f ′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a >0时,由f ′(x)=0,得x=2a=±,∴当x ∈(0,2a )时,f ′(x)<0,当x ∈(2a,+∞)时,f ′(x)>0,则f(x)在(0,2a )上为减函数,在(2a,+∞)上为增函数;综上,当a ≤0时,f(x)为(0,+∞)上的减函数,当a >0时,f(x)在(0)上为减函数,在,+∞)上为增函数; (Ⅱ)证明:要证g(x)>0(x >1),即1x e x e->0, 即证1x e x e>,也就是证x e e x >, 令h(x)=xe x,则h ′(x)=()21x e x x -, ∴h(x)在(1,+∞)上单调递增,则h(x)min =h(1)=e ,即当x >1时,h(x)>e ,∴当x >1时,g(x)>0;(Ⅲ)由f(x)>g(x),得ax 2-a-lnx-1x +e 1-x >0, 设t(x)=ax 2-a-lnx-1x+e 1-x , 由题意知,t(x)>0在(1,+∞)内恒成立,∵t(1)=0,∴有t ′(x)=2ax-1x +21x -e 1-x =2ax+21x x--e 1-x ≥0在(1,+∞)内恒成立, 令φ(x)=2ax+21x x --e 1-x ,则φ′(x)=2a+21x -32x +e 1-x =2a+32x x -+e1-x , 当x ≥2时,φ′(x)>0,令h(x)=32x x-,h ′(x)=426x x -+,函数在[1,2)上单调递增,∴h(x)min =h(1)=-1. 又2a ≥1,e 1-x >0,∴1<x <2,φ′(x)>0,综上所述,x >1,φ′(x)>0,φ(x)在区间(1,+∞)单调递增, ∴t ′(x)>t ′(1)≥0,即t(x)在区间(1,+∞)单调递增,∴a ≥12.。
2016年普通高等学校招生全国统一考试 四川理科数学(附答案)

2016年普通高等学校招生全国统一考试四川理科数学(附答案)1.(2016四川,理1)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6答案C由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.2.(2016四川,理2)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.-15x4B.15x4C.-20i x4D.20i x4答案A二项式(x+i)6展开的通项T=x6-r i r,则其展开式中含x4是当6-r=4,即r=2,则展开式中含x4的项为x4i2=-15x4,故选A.3.(2016四川,理3)为了得到函数y=sin的图象,只需把函数y=sin 2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度答案D由题意,为得到函数y=sin=sin,只需把函数y=sin2x的图象上所有点向右平行移动个单位长度,故选D.4.(2016四川,理4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72答案D由题意,要组成没有重复的五位奇数,则个位数应该为1,3,5,其他位置共有种排法,所以其中奇数的个数为3=72,故选D.5.(2016四川,理5)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年答案B设从2015年后第n年该公司全年投入的研发资金开始超过200万元, 由已知得130×(1+12%)n>200,∴1.12n>,两边取常用对数得n lg1.12>lg,∴n>=3.8.∴n≥4,故选B.6.(2016四川,理6)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20D.35答案B程序运行如下n=3,x=2→v=1,i=2≥0→v=1×2+2=4,i=1≥0→v=4×2+1=9,i=0≥0→v=9×2+0=18,i=-1<0,结束循环,输出v=18,故选B.7.(2016四川,理7)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案A画出可行域(如图所示),可知命题q中不等式组表示的平面区域△ABC在命题p 中不等式表示的圆盘内,即p q,q⇒p,所以p是q的必要不充分条件.故选A.。
2016年普通高等学校招生全国统一考试(四川卷)答案

2 x1 1 x12 2 x1 1 x12 1 P , ln x . ∵ x 1 ,∴ S y y x 1,∴0 S△PAB 1 . 1 1 △PAB A B P 2 1 x12 2 1 x12 1 x12 1 x1
2
5 f 2
1 f 2 2
1 f f 2
1 2 4 2 ,所以 2
1
5 f f (2) 2 . 2
【提示】利用周期性 f ( x) f ( x T ) ,化函数值的自变量到已知区间或相邻区间,如果是相邻区间,再利 用奇偶性转化到已知区间上,由函数式求值即可. 【考点】函数的奇偶性,函数的周期性. 15.【答案】②③
2
49 4
2/9
【提示】首先对条件进行化简变形,得出 ADC ADB BDC 120 ,且 DA DB DC 2 ,因此
采用解析法,即建立直角坐标系,写出点 A,B,C,D 的坐标,同时动点 P 的轨迹是圆,则 2 ( x 1) 2 ( y 3 3) 2 ,因此可用圆的性质得出最值. BM 4 【考点】向量的夹角,解析几何中与圆有关的最值问题. 10.【答案】A
【提示】先设出切点坐标,利用切线垂直求出这两点横坐标的关系,同时得出切线方程,从而得点 A, B 的 坐标,由两直线相交得出 P 点坐标,从而求得面积,把面积用 x1 表示后,可得面积的取值范围. 【考点】导数的几何意义,两直线的垂直关系,直线方程的应用,三角形面积的取值范围.
第 Ⅱ卷
二、填空题 11.【答案】
y ln x1
1 1 1 ( x x1 ) ,切线 l2 的方程为 y ln x2 ( x x2 ) ,即 y ln x1 x1 x . 分别令 x 0 得 x1 x2 x1
2016年普通高等学校招生全国统一考试(四川卷)数学试题 (文科)解析版

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.设i为虚数单位,则复数2(1)i=( ) (A) 0 (B)2 (C)2i (D)2+2i 【答案】C 【解析】 试题分析:由题意,22(1)122iiii,故选C. 考点:复数的运算. 【名师点睛】本题考查复数的运算.数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.
2. 设集合{|15}Axx,Z为整数集,则集合A∩Z中元素的个数是( ) (A)6 (B) 5 (C)4 (D)3 【答案】B
考点:集合中交集的运算. 【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.
3. 抛物线24yx的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】 试题分析:由题意,24yx的焦点坐标为(1,0),故选D. 考点:抛物线的定义. 【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.
4. 为了得到函数sin()3yx的图象,只需把函数y=sinx的图象上所有的点( ) (A)向左平行移动3个单位长度 (B) 向右平行移动3个单位长度 (C) 向上平行移动3个单位长度 (D) 向下平行移动3个单位长度 【答案】A
考点:三角函数图像的平移. 【名师点睛】本题考查三角函数的图象平移,函数()yfx的图象向右平移a个单位得()yfxa的图象,而函数()yfx的图象向上平移a个单位得()yfxa的图象.左右平移涉及的是x的变化,上下平移涉及的是函数值()fx加减平移的单位.
2016四川单招考试试题册

201X 年单独招生考试试题册注意事项:1、本试题全部为笔答题,分为语文、数学、英语三部分,共 8 页,满分150分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,密封线内禁止答题。
3、用钢笔或圆珠笔直接答在答题纸上。
第一部分 语 文一、选择题(本题共5个小题,每题2分,共10分,每题只有一个正确答案)1.下列词语中,划横线的字读音全都正确的一组是( )A .整饬(chì) 着落(zháo) 紧箍咒(gū) 舐犊之情(shì)B .妊娠(chén) 狡黠(jié) 一沓纸(dá) 瞠目结舌(chēng)C .熨贴(yùn) 蹊跷(qiāo) 解剖图(pōu) 戛然而止(jiá)D .恪守(kè) 龃龉(yǔ) 刽子手(guì) 方枘圆凿(ruì)2.依次填入下列句中横线处的词语,最恰当的一组是( ) ①“铁肩担道义, 著文章”,这是学界精英应该具备的素质,说白了就是“道德文章”四个字。
②目前,有部分高中语文教师 字词的教学,以为是小儿科,将其交给学生自学,对学生缺乏必要的指导。
③一晃就是二十年,这中间只有一次见过《收获》,是我在东北劳动期间, 在一个干部的床头见到的。
A .棘手 忽略 偶尔B .棘手 忽视 偶然C .辣手 忽视 偶然D .辣手 忽略 偶尔报考专业______ __姓名________准考证号_______ __密 封 线3.下列各选项中,划横线的词语使用恰当的一项是()A.近年来,一些正值豆蔻年华的大学生沉迷在网吧里,忘却了曾经的理想,淡漠了肩负的责任,以致荒废了学业,浪费了青春,真让人痛惜不已。
B.小说家很像一个修行的人,虽然穿行在繁华世界里,但是内心会有那种在深山古刹的清寂感。
修习好了心性,不管世态如何变幻,他们都会安之若素。
C.以梅艳芳为原形的电视剧《梅艳芳菲》择其情感经历为主线,再现了她的一生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则M N =( )A .{}2 B .{}0,1 C .{}0,2 D .{}0,1,22. 不等式的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<33.已知函数()22xf x =+,则(1)f 的值为( ) A .2 B .3 C .4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数D. 既增又减函数5. 设1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( )A. 1B.2 C . 13 D.127. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A.4 B.5C.6D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( )A .6-B .6C .32D .32-点)5,0(到直线x y 2=的距离为() 21<-xA .25B .5C .23D .2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种D .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[﹣M ,M ].例如,当φ1(x )=x 3,φ2(x )=sinx 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②函数f (x )∈B 的充要条件是f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∉B . ④若函数f (x )=aln (x+2)+(x >﹣2,a ∈R )有最大值,则f (x )∈B .其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。
(1)求数列{}n a 的通项公式;(2)记数列1{}n a 的前n 项和n T ,求得使1|1|1000n T -<成立的n 的最小值。
17.(12分)(2014•四川)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N 。
(I )请将字母标记在正方体相应的顶点处(不需说明理由) (II )证明:直线//MN 平面BDH (III )求二面角A EG M --余弦值19.(12分)(2014•四川)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=﹣2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;GFHEC DA B(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2﹣,求数列{}的前n 项和T n .20.(本小题13分)如图,椭圆2222:1+=x y E ab的离心率是2,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点。
当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为。
(1) 球椭圆E 的方程;(2) 在平面直角坐标系xoy 中,是否存在与点P 不同的定点Q ,使得=QA PAQB PB恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由。
21.(14分)(2014•四川)已知函数f (x )=e x ﹣ax 2﹣bx ﹣1,其中a ,b ∈R ,e=2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围.11.解答:解:复数===﹣2i ,故答案为:﹣2i .12.解答: 解:∵f (x )是定义在R 上的周期为2的函数, ∴=1.故答案为:1.13.解答: 解:过A 点作AD 垂直于CB 的延长线,垂足为D , 则Rt △ACD 中,∠C=30°,AD=46m∴CD==46≈79.58m .又∵Rt△ABD中,∠ABD=67°,可得BD==≈19.5m ∴BC=CD﹣BD=79.58﹣19.5=60.08≈60m故答案为:60m14.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:515.解答:解:(1)对于命题①“f(x)∈A”即函数f(x)值域为R,“∀b∈R,∃a∈D,f(a)=b”表示的是函数可以在R中任意取值,故有:设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f (a)=b”∴命题①是真命题;(2)对于命题②若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值.∴命题②“函数f(x)∈B的充要条件是f(x)有最大值和最小值.”是假命题;(3)对于命题③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.∴f(x)+g(x)∈R.则f(x)+g(x)∉B.∴命题③是真命题.(4)对于命题④∵函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,∴假设a>0,当x→+∞时,→0,ln(x+2)→+∞,∴aln(x+2)→+∞,则f (x)→+∞.与题意不符;假设a<0,当x→﹣2时,→,ln(x+2)→﹣∞,∴aln(x+2)→+∞,则f(x)→+∞.与题意不符.∴a=0.即函数f (x )=(x >﹣2) 当x >0时,,∴,即;当x=0时,f (x )=0; 当x <0时,,∴,即.∴.即f (x )∈B .故命题④是真命题. 故答案为①③④.三、解答题16. 解:(1)当2n ≥时有,11112(2)n n n n n a S S a a a a --=-=---则12n n a a -=(2)n ≥12nn a a (2n )则{}n a 是以1a为首项,2为公比的等比数列。
又由题意得21322a a a +=+1112224a a a ⇒⋅+=+12a ⇒= 则2n n a = *()n N ∈(2)由题意得112nn a =*()n N ∈ 由等比数列求和公式得11[1()]1221()1212n nn T -==--则2111-=()22n n T ()-=又当10n =时, 10911=1024=51222(),()111000n T ∴-<成立时,n 的最小值的10n =。
点评:此题放在简答题的第一题,考察前n项和n S与通项n a的关系和等比数列的求和公式,难度较易,考察常规。
可以说是知识点的直接运用。
所以也提醒我们在复习时要紧抓课本,着重基础。
17.解答:解:(1)X可能取值有﹣200,10,20,100.则P(X=﹣200)=,P(X=10)==P(X=20)==,P(X=100)==,故分布列为:X ﹣200 10 20 100P由(1)知,每盘游戏出现音乐的概率是p=+=,则至少有一盘出现音乐的概率p=1﹣.由(1)知,每盘游戏或得的分数为X的数学期望是E(X)=(﹣200)×+10×+20××100=﹣=.这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,入最初的分数相比,分数没有增加反而会减少.18.【答案】(I)直接将平面图形折叠同时注意顶点的对应方式即可如图(II )连接BD ,取BD 的中点Q ,连接MQ因为M 、Q 为线段BC 、BD 中点,所以////MQ CD GH 且1122MQ CD GH== 又因N 为GH 中点,所以12NH GH=得到NH MQ =且//NH MQ 所以四边形QMNH 为得到//QH MN 又因为QH ⊂平面BDH 所以//MN 平面BDH (得证) (III )连接AC ,EG ,过点M 作MK AC ⊥,垂足在AC 上,过点K 作平面ABCD 垂线,交EG 于点L ,连接ML ,则二面角A EG M MLK --=∠QLKMH N GE FD CA B因为MK ⊂平面ABCD ,且AE ABCD ⊥,所以MK AE ⊥ 又AE ,AC ⊂平面AEG ,所以MK ⊥平面AEG且KL AEG ⊂,所以MK ⊥KL ,所以三角形MKL 为RT ∆ 设正方体棱长为a ,则AB BC KL a ===,所以2a MC =,因为45MCK ∠=︒,三角形MCK 为RT ∆,所以cos 454MK MC =∠︒=所以4tan 4MK MLK KL a ∠===,所以cos 3MLK ∠=所以cos cos 3A EG M MLK <-->=∠=19.解答: 解:(1)∵点(a 8,4b 7)在函数f (x )=2x 的图象上, ∴,又等差数列{a n }的公差为d , ∴==2d ,∵点(a 8,4b 7)在函数f (x )的图象上, ∴=b 8,∴=4=2d ,解得d=2.又a 1=﹣2,∴S n ==﹣2n+=n 2﹣3n .(2)由f (x )=2x ,∴f ′(x )=2x ln2,∴函数f (x )的图象在点(a 2,b 2)处的切线方程为,又,令y=0可得x=,∴,解得a 2=2.∴d=a 2﹣a 1=2﹣1=1.∴a n =a 1+(n ﹣1)d=1+(n ﹣1)×1=n , ∴b n =2n . ∴.∴T n =+…++,∴2T n =1+++…+,两式相减得T n =1++…+﹣=﹣==.20:【答案】解:(1)由题知椭圆过点)。