平行线与相交线精选练习题(很经典哦)
平行与相交专项练习30题(有答案)ok
平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
平行线与相交线练习题
平行线与相交线练习题一、选择题1. 在同一平面内,两条不相交的直线叫做平行线。
以下哪组直线不满足平行线的定义?A. 直线a和直线b在平面内,且直线a与直线b不相交B. 直线c和直线d在平面内,但直线c与直线d相交C. 直线e和直线f在不同平面内D. 直线g和直线h在平面内,且直线g与直线h相交2. 根据平行线的性质,以下说法正确的是:A. 平行线之间的距离处处相等B. 平行线可以相交C. 平行线可以重合D. 平行线之间的夹角是锐角3. 如果直线a与直线b平行,直线b与直线c相交,那么直线a与直线c的关系是:A. 平行B. 相交C. 重合D. 无法确定4. 在同一平面内,两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种5. 两条平行线被第三条直线所截,同位角相等。
以下哪个选项不能说明两条直线平行?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 同旁内角相等二、填空题6. 如果直线m和直线n在同一平面内且不相交,那么直线m和直线n 是_________。
7. 两条直线相交成90度角,这两条直线叫做_________。
8. 根据平行线的性质,如果直线a和直线b平行,那么直线a和直线b之间的距离在任何位置都是_________。
9. 平行线的性质之一是,如果两条平行线被第三条直线所截,那么一组内错角的度数之和等于_________。
10. 如果直线a和直线b相交,且直线a和直线c平行,那么直线b 和直线c的关系是_________。
三、判断题11. 平行线永远不会相交。
()12. 两条平行线之间的距离处处相等。
()13. 如果两条直线相交,它们就不可能平行。
()14. 两条直线相交所形成的四个角中,如果有一个角是直角,那么其他三个角也是直角。
()15. 平行线的性质可以用于证明其他几何命题。
()四、解答题16. 已知直线AB和直线CD相交于点O,直线EF平行于直线AB,请说明直线EF与直线CD的位置关系。
平行线与相交线经典习题
平行线与相交线一、判断题1.两直线相交,有公共顶点的角是对顶角.〔〕2.同一平面内不相交的两条线段必平行.〔〕3.一个钝角的补角比它的余角大90º.〔〕4.平面内两条直线被第三条直线所截,如果内错角相等,则同位角也相等.〔〕5.如果一个角等于它的补角,那么这个角一定是直角.〔〕6.如果m∥l,n∥l,那么根据等量代换,有m∥n.〔〕7.如图1,∠1与∠2是同位角.〔〕8.如果两条直线平行,那么同旁内角的平分线互相垂直.〔〕9.如图2,直线a、b、c交于一点,则图中有三对对顶角.〔〕10.如图3,如果直线AB∥DE,则∠B+∠C+∠D=180º.〔〕二、填空题1.一个角的补角与这个角的余角的度数比是3∶1,则这个角是度.2.如图4,点O是直线AB上一点,∠AOD=120º,∠AOC=90º,OE平分∠BOD,则图中互为补角的角有对.3.如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD=度.4.如图6,与∠1成同位角的角有;与∠1成内错角的是;与∠1成同旁内角的角是.5.如图7,∠1=∠2,∠DAB =85º,则∠B = 度.6.如图8,已知∠1+∠2=180º,则图中与∠1相等的角共有 个.7.如图9,直线a 、b 都与直线c 相交,给出以下条件:①∠1=∠2;②∠3=∠6;③∠1=∠8; ∠5+∠8=180º,其中能判断a ∥b 的条件是: 〔把你认为正确的序号填在空格内〕8.假设要把一个平面恰好分成5个部分,需要 条直线,这些直线的位置关系是 .三、选择题1.以下说法中,正确的选项是〔 〕 〔A 〕锐角小于它的补角 〔B 〕锐角大于它的补角 〔C 〕钝角小于它的补角 〔D 〕锐角小于的余角2.如图10,假设∠AOB =180º,∠1是锐角,则∠1的余角是〔 〕〔A 〕21∠2-∠1 〔B 〕21∠2-23∠1 〔C 〕21〔∠2-∠1〕 〔D 〕31〔∠2+∠1〕3.如图11,是同位角位置关系的是〔 〕〔A 〕∠3和∠4 〔B 〕∠1和∠4 〔C 〕∠2和∠4 〔D 〕∠1和∠2 4.假设两个角的一边在同一直线上,另一边互相平行,则这两个角〔 〕 〔A 〕相等 〔B 〕互补 〔C 〕相等或互补 〔D 〕都是直角 5.假设一个角等于它余角的2倍,则该角是它补角的〔 〕 〔A 〕21 〔B 〕31 〔C 〕51 〔D 〕61 6.如图12,四条直线相交,∠1和∠2互余,∠3是∠1的余角的补角,且∠3=116º,则∠4等于〔 〕〔A 〕116º 〔B 〕126º 〔C 〕164º 〔D 〕154º7.同一平面内有三条直线a 、b 、c ,满足a ∥b ,b 与c 垂直,那么a 与c 的位置关系是〔 〕 〔A 〕垂直 〔B 〕平行 〔C 〕相交但不垂直 〔D 〕不能确定8.如图13,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角〔∠1除外〕有〔 〕 〔A 〕6个 〔B 〕5个 〔C 〕4个 〔D 〕3个9.如图14,一只小猴顺着一根斜放的竹竿往上爬,眼睛一直盯着挂在上端的帽子.在小猴爬行的过程中,视线与水平方向所成角〔 〕〔A 〕逐渐变大 〔B 〕逐渐变小 〔C 〕没有变化 〔D 〕无法确定 10.以下判断正确的选项是〔 〕〔A 〕相等的角是对顶角 〔B 〕互为补角的两个角一定是一个锐角和一个钝角 〔C 〕内错角相等 〔D 〕等角的补角相等 四、解答以下各题1.一个角的补角与它余角的2倍的差是平角的31,求这个角的度数.2.如图15,已知直线AB 和CD 相交于O ,∠AOE =∠EOC ,且∠AOE =28º.求∠BOD 、∠DOE 的度数.3.如图16,补全下面的思维过程,并说明这一步的理由. 〔1〕∠B =∠1 〔2〕BC ∥EF ↓ ↓∥ 理由: ∠2 = 理由:五、完成以下推理过程1.已知:如图17,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2.求证:BE ∥CF .证明:∵ AB ⊥BC ,CD ⊥BC 〔已知〕∴ ∠1+∠3=90º,∠2+∠4=90º〔 〕 ∴ ∠1与∠3互余,∠2与∠4互余又∵ ∠1=∠2〔 〕 ∵ ∠3=∠4〔 〕 ∴ BE ∥CF 〔 〕2.已知:如图18,AB ∥CD ,∠1=∠2,求证:∠B =∠D .证明:∵ ∠1=∠2〔已知〕 ∴ ∥ 〔 〕∴ ∠BAD +∠B = 〔 〕又∵ AB ∥CD 〔已知〕 ∴ + =180º〔 〕 ∴ ∠B =∠D 〔 〕六、作图题如图19,已知∠BAC 及BA 上一点P ,求作直线MN ,使MN 经过点P ,且MN ∥AC . 〔要求:使用尺规正确作图,保留作图痕迹〕七、计算与说理1.已知:如图20,∠ABC =50º,∠ACB =60º,∠ABC 、∠ACB 的平分线交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F .求∠BOC 的度数.2.如图21,AB ∥DE ,∠1=∠ACB ,∠CAB =21∠BAD ,试说明AD ∥BC .6.假设两个角的两边分别平行,而一个角30°,则另一角的度数是____________________. 7、命题“同角的补角相等”改写成“如果……, 那么……”的形式可写成 ______________________________. 二、选择题(6×3)8、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等。
相交线与平行线练习题
相交线与平行线练习题一、选择题1. 两条直线相交成直角,这两条直线叫做互相()。
A. 垂直B. 平行C. 相交D. 重合2. 同一平面内,不相交的两条直线叫做()。
A. 垂直线B. 平行线C. 相交线D. 重合线3. 直线a和直线b相交,如果a与b的交点是A,那么a和b的交点A叫做()。
A. 交点B. 垂足C. 端点D. 焦点4. 如果直线a和直线b平行,那么a与b之间的距离()。
A. 相等B. 不相等C. 无法确定D. 为零5. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线()。
A. 平行B. 垂直C. 相交D. 重合二、填空题6. 如果两条直线相交所构成的同位角不相等,那么这两条直线_________。
7. 两条平行线之间的距离是指这两条平行线中任意一点到另一条平行线的_________。
8. 两条直线相交,如果它们的交角是锐角,那么这两条直线_________。
9. 在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也_________。
10. 当两条直线相交,如果它们的对顶角相等,那么这两条直线_________。
三、判断题11. 如果两条直线相交成直角,那么这两条直线一定平行。
()12. 两条直线相交,它们的交点只有一个。
()13. 两条直线相交所成的同旁内角互补,那么这两条直线一定垂直。
()14. 两条直线平行,同位角相等,内错角相等,同旁内角互补。
()15. 如果两条直线被第三条直线所截,同位角不相等,那么这两条直线不平行。
()四、简答题16. 解释什么是平行线,并给出两条直线平行的判定条件。
17. 描述什么是垂线,并说明垂线的性质。
18. 给出两条直线相交时,同位角、内错角和对顶角的定义。
19. 解释什么是相交线,并描述相交线的性质。
20. 举例说明如何判断两条直线是否平行。
五、解答题21. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+1。
相交线与平行线测试题及答案doc
相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。
答案:平行2. 在同一平面内,两条直线不相交,则它们是____。
答案:平行3. 垂直于同一直线的两条直线一定是____。
答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。
答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。
证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。
根据垂直于同一条直线的两条直线平行,所以AB∥CD。
2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。
证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。
根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。
又因为l1与l2相交,所以l3与l4相交。
四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。
已知∠1=45°,求∠2的度数。
答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。
相交线与平行线常考题目及答案(绝对经典)
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个3.如图所示,同位角共有()A.6对 B.8对 C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=.7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+ =180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF 的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3=.∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC=.(2)如图②,若∠A=100°,∠C=120°,则∠AEC=.(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?参考答案及解析一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个【分析】由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都与∠EOF互余,可知∠1=∠AOF,因而可以转化为求∠1和∠AOF的余角共有多少个.【解答】解:∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,即∠AOF+∠EOF=∠EOF+∠1,∴∠1=∠AOF,∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.∴与∠1互为余角的有∠COA、∠EOF、∠BOD三个.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
相交线与平行线练习题(经典)
相交线与平行线能力提高训练题注:本试卷难度偏高,题目经典,考试出现频率很高,是我从九套试卷中选出的一些具有代表性的试题,花了很大精力才整理出来的,希望珍惜本套试卷,珍惜好题,认真完成.如果你能把这些题理解透彻,你将会对几何问题有进一步的认识,数学能力将会大大提.一.选择题(每题3分):1.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°2. 如图,12//l l ,∠1=120°,∠2=100°,则∠3= ( ) A .20° B .40° C .50°D .60°3.如图,已知∠1=∠2,∠3=80O ,则∠4=( ) A.80O B. 70O C. 60O D. 50O4,如图,Rt ABC △中, 90ACB ∠=°,DE过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( )A .35°B .45°C .55°D .65°第3题图 第4题图5.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=( ) A .110° B .115° C .120° D .130°6. 如图,已知AB CD ∥若20A ∠=°,35E ∠=°,则∠C 等于( ) A .20°B .35°C .45°D .55°1 23l 1 l 212 3 第1题第2题A B CDE1 AED C BF第5题A B C D E F第6题30°45°α第8题7.平行直线被第三条直线所截,同位角的平分线 ( )A.互相重合B.互相平行C.互相垂直D.相交8.将一副三角板按图中方式叠放,则角α等于( )A .30°B .45°C .60°D .759.已知一个学生从点A 向北偏东60º方向走40米,到达点B ,再从B 沿北偏西30º方向走30米,到达点C ,此时,恰好在点A 的正北方向,则下列说法正确的是( )A. 点A 到BC 的距离为30米B.点B 在点C 的南偏东30º方向40米处C.点A 在点B 的南偏西60º方向30米处D.以上都不对 10.如图,下列判断正确的是( )A.∠2与∠5是对顶角B.∠2与∠4是同位角C.∠3与∠6是同位角D.∠5与∠3是内错角 二.填空题(每题3分):11.如图,1502110AB CD ∠=∠=∥,°,°,则3∠= . 12.如图,已知//AE BD ,∠1=130o ,∠2=30o ,则∠C = .13.在直线AB 上任取一点O ,过点O 作射线OC .OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD 的度数是 .14. 如图,已知DE ∥AB ,DF ∥AC ,∠EDF=85°,∠BDF=63°, ∠A 的度数=____ . 15. 如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是______ .16.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为 . 17.如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°,∠AGD .18. 如图,在六个角中,其中内错角有_______对,同位角有________对.同旁内角有______对. 19.如图,若OP ∥QR ∥ST ,则下列等式中正确的是_____________ ○1,∠1+∠2-∠3=90º ○2,∠1-∠2+∠3=90º ○3,∠1+∠2+∠3=180º ○4,∠2+∠3-∠1=180º第18题图 第19题图ABC 1 2 3第11题图FEDCBAD B A 第16题图EAB45°125°第17题图TO第12题图第14题图第15题图20.四条直线相交于同一点的图形中有 对对顶角. 三.解答题(60分):21.(5分)已知:如图,AB ∥CD ,EF 分别交于AB 、CD 于点E 、F ,EG 平分∠AEF ,FH 平分∠EFD.求证:EG ∥FH.22.(6分)证明:已知,如图,AB ∥CD ,EG 平分∠BEF ,FG 平分∠EFD.求证:∠EGF=90°23.(7分)如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
相交线与平行线经典测试题含答案
【点睛】
本题综合考查了平行线的判定及性质.
5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()
A.65°B.115°C.125°D.130°
【答案】B
【解析】
试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.
∴∠1=60°,
故选:B.
【点睛】
此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.
8.如图, , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.
【详解】
解:∵∠1+∠5=180°,∠1+∠2=180°,
B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;
C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;
D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,
故选A.
【点睛】
本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.
【详解】
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=36°,
∴∠BDC=180°﹣36°﹣72°=72°,
相交线与平行线测试题及答案
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
相交线与平行线典型考题(附答案及解析)
A BDC第5题图 平行线相交线常见题型过关练习一、选择题一、如图,l 1∥l 2,∠1=120°,那么∠2= . (第1题图)二、如图,AB ∥CD ,∠DCE=80°,那么∠BEF=3、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E 的大小为 (第2题图) (第3题图) (第4题图)4、如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.那么∠C 等于 五、如图,AB ∥CD ,∠C =80°,∠CAD =60°,那么∠BAD 等于 六、如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,那么∠BCE 等于(第6题图) (第7题图) (第8题图) (第9题图)7、如图,AB∥CD,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.那么∠D 的大小是 八、如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于九、如图,己知AB∥CD,BE 平分∠ABC,∠CDE=150°,那么∠C 的度数是 10、如图,已知AB ∥CD ,那么图中与∠1互补的角有 个。
1一、如图,CD ∥AB ,∠1=120°,∠2=80°,那么∠E 的度数是(第10题图)(第11题图) (第12题图) (第13题图)1二、如图,已知直线a ∥b ,∠1=40°,∠2=60°.那么∠3等于13、如图,已知AB∥CD,∠E=︒28,∠C=︒52,那么∠EAB 的度数是 14、如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,那么∠BCE 等于 1五、如下图,AB ∥CD ,∠E =37°,∠C =20°,那么∠EAB 的度数为1六、如图,已知AB ∥CD ,∠A =60°,∠C =25°,那么∠E 等于 (第15题图)B AD CEF 15446 (第14题图)(第16题图)(第17题图)(第18题图)17、如下图,直线a∥b.直线c与直线a,b别离相交于点A、点B,AM b⊥,垂足为点M,假设158∠=︒,那么2∠=_________1八、如图:CD平分∠ACB,DE∥AC且∠1=30°,那么∠2=度.1九、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.(辅助线已画)(第19题图)答案及解析一、分析:由邻补角的概念,即可求得∠3的度数,又由l1∥l2,依照两直线平行,同位角相等,即可求得∠2的度数.解答:∵∠1=120°,∴∠3=180°﹣∠1=60°,∵l1∥l2,∴∠2=∠3=60°.点评:此题考查了平行线的性质与邻补角的概念.注意两直线平行,同位角相等.二、分析:依照平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.解答:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.点评:此题要紧考查对平行线的性质,邻补角的概念等知识点的明白得和把握,依照平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.3、分析:依照两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.4、分析:由∠A=40°,∠AOB=75°,依照三角形内角和定理,即可求得∠B的度数,又由AB∥CD,依照两直线平行,内错角相等,即可求得∠C的值.解答:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.五、分析:依照三角形的内角和为180°,即可求出∠D的度数,再依照两直线平行,内错角相等即可明白∠BAD的度数.解答:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°。
相交线与平行线常考题目及答案(绝对经典)
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个B.2个C.1个D.0个3.如图所示,同位角共有()A.6对B.8对C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3= .7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB 和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?112.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED 的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.试卷第2页,总6页20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF= .(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE ∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+=180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.3(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2= °.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()试卷第4页,总6页34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF 的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3= .5∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC= .(2)如图②,若∠A=100°,∠C=120°,则∠AEC= .(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
【必刷题】2024八年级数学下册平行线与相交线专项专题训练(含答案)
【必刷题】2024八年级数学下册平行线与相交线专项专题训练(含答案)试题部分一、选择题:1. 在同一平面内,下列说法正确的是()A. 两条平行线可以相交B. 两条相交线一定不平行C. 两条平行线的斜率相等D. 两条相交线的斜率一定相等2. 若两条直线平行,则它们的倾斜角()A. 相等B. 互补C. 互余D. 无法确定3. 下列图形中,不是由平行线与相交线构成的是()A. 矩形B. 正方形C. 梯形D. 圆4. 在平行四边形ABCD中,若AB=4cm,AD=6cm,则对角线AC的长度可能是()A. 2cmB. 5cmC. 7cmD. 10cm5. 下列关于平行线的性质,错误的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 同旁内角相等6. 下列关于相交线的性质,正确的是()A. 对顶角相等B. 邻补角相等C. 内错角相等D. 同旁内角相等7. 若直线AB平行于直线CD,直线EF与直线AB、CD相交,则下列结论正确的是()A. ∠AEF + ∠CFD = 180°B. ∠BEF + ∠DEF = 180°C. ∠AEF = ∠CFDD. ∠BEF = ∠DEF8. 在三角形ABC中,若AB=AC,直线DE平行于BC,则下列结论正确的是()A. ∠BAC = ∠ABCB. ∠BAC = ∠ACBC. ∠BAC = ∠DCED. ∠ABC = ∠ACB9. 下列关于平行线的说法,错误的是()A. 平行线之间的距离处处相等B. 平行线上的任意一点到另一条平行线的距离相等C. 平行线的斜率相等D. 平行线一定在同一平面内10. 若两条直线垂直相交,则它们的斜率之积为()A. 0B. 1C. 1D. 无法确定二、判断题:1. 两条平行线的同旁内角互补。
()2. 两条相交线的对顶角相等。
()3. 平行四边形的对角线互相平分。
()4. 两条平行线的斜率相等。
()5. 在三角形中,若两边平行,则这两边所对的角相等。
平行线与相交线经典题
平行线与相交线经典题一、经典题示例1. 已知直线a,b被直线c所截,∠1与∠2是同位角,若∠1 = 50°,求∠2的度数。
这题很简单啦,因为两直线平行,同位角相等嘛。
可这里没说a和b平行哦,所以∠2的度数是不能确定的呢。
2. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。
首先我们知道AB∥CD,所以∠1+∠BEF = 180°(两直线平行,同旁内角互补)。
因为∠1 = 72°,所以∠BEF = 180° - 72° = 108°。
又因为EG平分∠BEF,所以∠BEG = 1/2∠BEF = 54°。
而∠2 = ∠BEG(两直线平行,内错角相等),所以∠2 = 54°。
二、较难题型1. 有两条直线l1和l2,l1上有A、B两点,l2上有C、D两点,连接AC、BD,若∠CAB和∠ABD的平分线相交于点E,∠CAB = 100°,∠ABD = 120°,求∠AEB的度数。
这题有点绕呢。
我们可以先根据三角形内角和定理来做。
因为AE平分∠CAB,所以∠EAB = 1/2∠CAB = 50°。
同理,∠EBA = 1/2∠ABD = 60°。
在△AEB中,根据三角形内角和为180°,可得∠AEB = 180° - 50° - 60° = 70°。
2. 已知直线a∥b,直线c与a、b相交,点A在直线a上,点B在直线b上,点M在直线c上,且AM⊥c,BM与c的夹角为30°,求∠AMB的度数。
这题要分情况讨论哦。
当点M在a、b之间时,∠AMB = 90°+30° = 120°;当点M不在a、b之间时,∠AMB = 90° - 30° = 60°。
相交线与平行线测试题及答案难
相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。
A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。
A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。
A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。
答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。
答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。
()答案:正确7. 垂直于同一直线的两条直线一定平行。
()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。
证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。
9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
因此,直线m平行于直线p。
五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。
证明:首先,我们可以将两个方程联立求解。
\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。
11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线与相交线测试题及答案
平行线与相交线测试题及答案第一篇:平行线与相交线测试题及答案一、选择题1、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°C.第一次左拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°D.第一次右拐50°,第二次右拐50°2、如图3,AB∥CD,那么∠A,∠P,∠C的数量关系是()A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A3、一个人从点A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.135°ABABBACFEDCCD图3D图4 图54、如图5所示,已知∠3=∠4,若要使∠1=∠2,则需()A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5、下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个6、如图6,O是正六边形ABCDEF的中心,下列图形:△OCD,△ODE,△OEF,△OAF,•△OAB,其中可由△OBC平移得到的有()A.1个B.2个C.3个D.4个二、填空题7、命题“垂直于同一直线的两直线平行”的题设是是.8、三条直线两两相交,有个交点.EDBDAC43BADCACB图7图8图99、如图8,已知AB∥CD,∠1=70°则∠2=_______,∠3=______,∠4=_______.10、如图10所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠BOD=______,∠AOC=_______,∠BOC=________.11、如图11所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=_______.12、如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是_________,那么这两个角分别是度.三、作图题13、如图,(1)画AE⊥BC于E,AF⊥DC于F.(2)画DG∥AC交BC 的延长线于G.(3)经过平移,将△ABC的AC边移到DG,请作出平移后的△DGH.AD四、解答题BC14、已知:AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DEF的平分线相交于点P.求∠P的度数15、如图,E在直线DF上,B为直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.16、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系?试说明理由.参考答案:一、1.B2.C3.C4.D5.B6.B二、7.两条直线都和同一条直线垂直,这两条直线平行;8.1,3;9.70°,70°,110°;10.65°,65°,115°;11.108°;12.相等或互补;三、13.如下图:FADBE14.如图,过点P作AB的平行线交EF于点G。
平行线与相交线精选练习题(很经典哦)
平行线与相交线精选练习题1.如图,∠ABC =∠ADC,BF 、DE 分别是∠ABC 、∠ ADC 的角平分线,∠1=∠2,求征DC ∥AB 。
2.已知直线a 、b 、c 在同一平面内,a ∥b ,a 与c 相交于p ,那么b 与c 也一定相交,请说明理由3.如图,∠B =∠C ,B 、A 、D 三点在同一直线上,∠DAC =∠B +∠C ,AE 是∠DAC 的平分线,求征:AE ∥BC4.如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理5.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线12,l l 平行吗?为什么?321FE DCBA21ED CAPQMN 21FEDCB Al 4l 3l 2l 13217.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于A.2B.3C.4D.58.小明将较大的一个三角尺按如图12所示的情形放置在课本上(平面图),此时他量得∠1=120°,则你认为∠2应是A.100°B.120°C.150°D.160°9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC =_________.10.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高AE是∠BAC的平分线,求∠DAE的度数.AE是∠BAC的平分线,求∠DAE的度数.11.已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°。
试求∠EDC与∠BDC的度数。
12.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度.14.在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线与相交线精选练习题(很经典哦)
∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理
5.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线1
2
,l l 平行吗?为什么?
7.同一平面内三条直线最多有m 个交点,最少有n 个交点,则m +n 等于
A.2
B.3
C.4
D.5 8.小明将较大的一个三角尺按如图12所示的情形放置在课本上(平面图),此时他量得 ∠1=120°,则你认为∠2应是
A.100°
B.120°
C.150°
D.160°
P
Q
M
N 2
1
F
E
D
C
B A
l 4
l 3l 2
l 1
3
21
9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_________.
10.如图5—21,△ABC中,∠B=34°,∠ACB =104°,AD是BC边上的高AE是∠BAC的平分线,求∠DAE的度数.AE是∠BAC的平分线,求∠DAE的度数.
11.已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°。
试求∠EDC与∠BDC的度数。
12.在直角三角形、钝角三角形和锐角三角形这
三种三角形中,有两条高在三角形外部的是 三角形.
13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度.
14.在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高。
试求∠DBC 的度数。
15.如图11,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( )
A.60°
B.50°
C.30°
D.20°
(11)
(12)
F E
D
C
B A
F E
C
B
A
16..下列说法中,为平行线特征的是()
①两条直线平行, 同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.
A.①
B.②③
C.④
D.②和④
17.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()
A.相等
B.互补
C.相等或互补
D.相等且互补
18.如图12,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()
A.是同位角且相等;
B.不是同位角但相等;
C.是同位角但不等;
D.不是同位角也不等
19.已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC =120°,求∠EGB和∠HGQ的度数。
20.如图,∠CAB =100°,∠ABF =130°,AC ∥MD ,BF ∥ME ,求∠DME 的度数
21.如图,DE ∥CB ,试证明∠AED =∠A +∠B 。
22.如图,∠1=∠2,∠C =∠D ,那么∠A =∠F ,为什么?
23.如图,AB ∥CD ,∠1=∠2,∠BEF 与 ∠EFC 相等吗?为什么?(提示:连接BC )
Q
H G
M N
F
E
D
C B
A
M
F
E D C
B
A
E
D C
B
A
1
4
32F
E
D
C
B
A
24.如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠ AED 与∠C 的关系。
25.已知,直线AB 和AB 外一点P ,作一条经过点P 的直线CD ,使CD ∥A B 。
26.已知,如图,∠AOB 及其两边上的点C 、D ,
1
2
F E D
C
B A 1
5432
F E
D
C
A
P
B
A
过点C作CE∥OB,过点D作DF∥OA,CE、DF交于点P。
B
D
A
26.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,
则B∠=∠____()
又∵AB∥DE,AB∥CF,
∴____________()
∴∠E=∠____()
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
27. 如图2—67,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD。
说明:∠1+∠2=90°
28. 阅读理解并在括号内填注理由:如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.证明:∵AB∥CD,
∴∠MEB=∠MFD ()
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥_____.()
29. 已知DB∥FG∥EC,A是FG上一点,∠ABD
=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.
30. 如图,已知ABC
⊥于D,E为AB上一点,
∆,AD BC
DG BA交CA于G。
.求证12
⊥于F,//
EF BC
∠=∠.。