2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (298)

合集下载

八年级上册数学单元测试卷-第4章 图形与坐标-浙教版(含答案)

八年级上册数学单元测试卷-第4章 图形与坐标-浙教版(含答案)

八年级上册数学单元测试卷-第4章图形与坐标-浙教版(含答案)一、单选题(共15题,共计45分)1、在平面直角坐标系中,点( ,)关于轴对称的点的坐标是()A.(,)B.(,)C.(,)D.(,)2、如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若线段上有一个点,则点在上的对应点的坐标为()A. B. C. D.3、在平面直角坐标系中,将点A 的横坐标不变,纵坐标乘以-1,得到点A´,则点A 与点A´的关系是( )A.关于轴对称B.关于轴对称C.关于原点对称D.将点A 向轴负方向平移一个单位得点A´4、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)5、点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)6、点M(1,4-m)关于直线y=-3对称的点的坐标为(1,7),则m=()A.16B.27C.17D.157、如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号8、课间操时,小华、小军、小明的位置如图,小华对小明说,如果我的位置用(0,0)表示,小军的位置用(3,2)表示,那么小明的位置可以表示成().A.(5,4)B.(1,2)C.(4,1)D.(1,4)9、点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)10、在平面直角坐标系中,若点P(x,y)在第二象限,且|x|﹣1=0,y2﹣4=0,则点P关于坐标原点对称的点P′的坐标是()A.P′(﹣1,﹣2)B.P′(1,﹣2)C.P′(﹣1,2) D.P′(1,2)11、在平面直角坐标系中,下列各点在第二象限的是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)12、点A到x轴的距离是3,到y轴的距离是6,且点A在第二象限,则点A的坐标是( )A.(-3,6)B.(-6,3)C.(3,-6)D.(8,-3)13、已知点P(3 ,+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(-6,0)D.(6,2)14、点M(﹣4,﹣1)关于y轴对称的点的坐标为()A.(﹣4,1)B.(4,1)C.(4,﹣1)D.(﹣4,﹣1)15、若点A(m,n)在第二象限,那么点B(-m,│n│)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知点A(3,﹣1)先向左平移3个单位长度,再向上平移2个单位长度后得到点B,则点B的坐标为________.17、已知点,现将点先向左平移个单位,之后又向下平移个单位,得到点,则________.18、在平面直角坐标系xOy中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;….请继续操作并探究:点A3的坐标是________,点B2014的坐标是________.19、将点P(-3,4)先向下平移3个单位长度,再向右平移2个单位长度后得到点Q,则点Q的坐标是________20、如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为________21、在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.22、如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.23、如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是________.24、已知△ABC的顶点坐标分別是A(0,1),B(5,1),C(5,﹣6),过A点的直线L:y=ax+b与BC相交于点E.若AE分△ABC的面积比为1:2,则点E的坐标为________.25、点到轴的距离是________。

【浙教版】秋八年级上《第4章图形与坐标》单元试卷含答案

【浙教版】秋八年级上《第4章图形与坐标》单元试卷含答案

第4章一、选择题(每小题2分,共20分)1.在平面直角坐标系中,点P(-2,3)关于x轴的对称点的坐标为(A)A. (-2,-3)B. (2,-3)C. (-3,-2)D. (3,-2)2.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于(B)A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称3.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为(C)A.(4,0) B.(0,4)C.(4,0)或(-4,0) D.(0,4)或(0,-4)【解】一个点在x轴上,其纵坐标为0;到y轴的距离就是点的横坐标的绝对值.4.若点A(x,1)与点B(2,y)关于x轴对称,则下列各点中,在直线AB上的是(A) A.(2,3) B.(1,2)C.(3,-1) D.(-1,2)【解】∵点A和点B关于x轴对称,∴AB与x轴垂直,即直线AB上的点的横坐标相同,为2.∴选A.5.如图,已知棋子“車”的位置表示为(-2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为(A)(第5题)A.(3,2) B.(3,1)C.(2,2) D.(-2,2)6.若点M(a-1,a-3)在y轴上,则a的值为(C)A.-1B.-3 C.1D.3【解】由题意,得a-1=0,∴a=1.7.在国外留学的叔叔送给聪聪一个新奇的玩具——智能兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为20 cm.如果兔位于原点处,第一次向正南跳(记y轴正半轴方向为正北,1个单位为1 cm),那么跳完第80次后,兔所在位置的坐标为(C)A. (800,0)B. (0,-80)C. (0,800)D. (0,80)【解】用“-”表示正南方向,用“+”表示正北方向.根据题意,得-20+20×2-20×3+20×4-…-20×79+20×80=20(-1+2)+20(-3+4)+…+20(-79+80)=20×40=800(cm),∴兔最后所在位置的坐标为(0,800).(第8题)8.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为(A)A. (a-2,b+3)B. (a-2,b-3)C. (a+2,b+3)D. (a+2,b-3)【解】由题意可得,将线段AB向左平移2个单位,向上平移3个单位得到线段A′B′,则点P(a,b)在线段A′B′上的对应点P′的坐标为(a-2,b+3).(第9题)9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(B)A. (3,1)B. (1,-3)C. (2 3,-2)D. (2,-2 3)(第9题解)【解】根据题意画出△AOB绕点O顺时针旋转120°得到的△COD,连结OP,OQ,过点Q作QM⊥y轴于点M,如解图.由旋转可知∠POQ=120°.易得AP=OP=12AB,∴∠BAO=∠POA=30°,∴∠MOQ=180°-30°-120°=30°.在Rt△OMQ中,∵OQ=OP=2,∴MQ=1,OM= 3.∴点P的对应点Q的坐标为(1,-3).10.已知P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x,y都是整数,则这样的点共有(C)A.4个B.8个C.12个D.16个【解】由题意知,点P(x,y)满足x2+y2=25,∴当x=0时,y=±5;当y=0时,x=±5;当x=3时,y=±4;当x=-3时,y=±4;当x=4时,y=±3;当x=-4时,y=±3,∴共有12个点.二、填空题(每小题3分,共30分)11.在平面直角坐标系中,点(1,5)所在的象限是第一象限. 12.若点B (7a +14,a -2)在第四象限,则a 的取值范围是-2<a <2.13.已知线段MN 平行于x 轴,且MN 的长度为5,若点M (2,-2),则点N 的坐标为(-3,-2)或(7,-2).【解】 ∵MN ∥x 轴,点M (2,-2), ∴点N 的纵坐标为-2. ∵MN =5,∴点N 的横坐标为2-5=-3或2+5=7, ∴点N (-3,-2)或(7,-2).14.已知点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,则ba=__2__.【解】 ∵点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,∴⎩⎪⎨⎪⎧y +a =y -3,2=-(b +4),解得⎩⎪⎨⎪⎧a =-3,b =-6. ∴b a =-6-3=2. 15.把以 (-1,3),(1,3)为端点的线段向下平移4个单位,此时线段两端点的坐标分别为(-1,-1),(1,-1),所得像上任意一点的坐标可表示为(x ,-1)(-1≤x ≤1).16.已知点A (0,-3),B (0,-4),点C 在x 轴上.若△ABC 的面积为15,则点C 的坐标为(30,0)或(-30,0).【解】 ∵点A (0,-3),B (0,-4),∴AB =1. ∵点C 在x 轴上,∴可设点C (x ,0). 又∵△ABC 的面积为15, ∴12·AB ·|x |=15,即12×1×|x |=15, 解得x =±30.∴点C 的坐标为(30,0)或(-30,0).17.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转次,点依次落在点P1,P2,P3,…,P的位置,则点P的横坐标为.(第17题)【解】观察图形并结合翻转的方法可以得出点P1,P2的横坐标是1,点P3的横坐标是2.5;点P4,P5的横坐标是4,点P6的横坐标是5.5……依此类推下去,点P的横坐标为.18.已知甲的运动方式为:先竖直向上运动1个单位,再水平向右运动2个单位;乙的运动方式为:先竖直向下运动2个单位,再水平向左运动3个单位.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……以此运动规律,经过11次运动后,动点P所在位置点P11的坐标是(-3,-4).【解】P(0,0)→P1(2,1)→P2(-1,-1)→P3(1,0)→P4(-2,-2)→……每两次运动后,横纵坐标均减少1,得点P2n(-n,-n)(n为正整数),∴点P10(-5,-5),∴点P11(-3,-4).(第19题)19.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内的点B′处,则点B′的坐标为(2,4-23).【解】提示:过点B′作y轴的垂线交y轴于点D,易得B′C=BC=4,∠B′CD=30°,求出B′D和CD的长,从而求出OD的长,即可得点B′的坐标.20.如图,正方形A1A2A3A4,正方形A5A6A7A8,正方形A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行.若它们的边长依次是2,4,6,…,则顶点A20的坐标为(5,-5).(第20题)【解】∵20÷4=5,∴点A20在第四象限.∵点A4所在正方形的边长为2,∴点A4的坐标为(1,-1).同理可得:点A8的坐标为(2,-2),点A12的坐标为(3,-3)……∴点A20的坐标为(5,-5).三、解答题(共50分)21.(6分)已知△ABC在直角坐标系中的位置如图所示,请在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(第21题)【解】画图如图中△A1B1C1所示,点A1(4,1),B1(1,3),C1(2,-2).22.(6分)如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,求其对应点Q的坐标.(第22题)【解】 如解图,过点P 作PM ⊥x 轴于点M ,过点Q 作QN ⊥x 轴于点N .(第22题解)∵∠MPO +∠POM =90°,∠QON +∠POM =90°,∴∠MPO =∠NOQ . 在△PMO 和△ONQ 中, ∵⎩⎪⎨⎪⎧∠PMO =∠ONQ =90°,∠MPO =∠NOQ ,PO =OQ , ∴△PMO ≌△ONQ (AAS ). ∴PM =ON ,OM =QN .∵点P 的坐标为(-4,2),∴点Q 的坐标为(2,4).23.(6分)如图,在平面直角坐标系中,点A (1,2),B (-4,-1),C (0,-3),求△ABC 的面积.(第23题)(第23题解)【解】 如解图,先构造长方形ADFE ,使其过点A ,B ,C ,且AE ∥x 轴,AD ∥y 轴. ∵点A (1,2),B (-4,-1),C (0,-3), ∴点E (-4,2),F (-4,-3),D (1,-3), ∴AE =1-(-4)=5,AD =2-(-3)=5. ∴S △ABC =S 长方形ADFE -S △AEB -S △BCF -S △ACD =5×5-12×5×3-12×4×2-12×5×1=11.24.(12分)在平面直角坐标系中,点P (a -4,2b +2),当a ,b 分别满足什么条件时: (1)点P 在第一象限? (2)点P 在第四象限? (3)点P 在x 轴上? (4)点P 在y 轴上? (5)点P 在x 轴下方? (6)点P 在y 轴左侧?【解】 (1)⎩⎪⎨⎪⎧a -4>0,2b +2>0,即⎩⎨⎧a >4,b >-1.(2)⎩⎪⎨⎪⎧a -4>0,2b +2<0,即⎩⎨⎧a >4,b <-1.(3)2b +2=0,即b =-1. (4)a -4=0,即a =4. (5)2b +2<0,即b <-1. (6)a -4<0,即a <4.25.(10分)如图①,在6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得到图形F 1,称为作1次P 变换;将图形F 沿y 轴翻折得到图形F 2,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得到图形F 3,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;R n 变换表示作n 次R 变换,解答下列问题:(第25题)(1)作R4变换相当于至少作__2__次Q变换.(2)请在图②中画出图形F作R变换后得到的图形F4.(3)PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6.【解】(1)根据操作,观察发现:每作4次R变换便与图形F重合.因此R4变换相当于作2n次Q变换(n为正整数).(2)由于=4×504+1,故R变换即为R1变换,其图象如解图①所示.(3)PQ变换与QP变换不是相同的变换.正确画出图形F5,F6如解图②③所示.(第25题解)26.(10分)在平面直角坐标系中,O为坐标原点,已知点A(4,0),B(0,3).若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个三角形未知顶点的坐标.【解】如解图.分三种情况:①若AO为公共边,易得未知顶点为B′(0,-3)或B″(4,3)或B(4,-3).②若BO为公共边,易得未知顶点为A′(-4,0)或A″(4,3)(与点B″重合)或A(-4,3).③若AB为公共边,易得此时有三个未知顶点O′,O″,O,其中点O′(4,3)(与点B″重合).过点O作OD⊥AB于点D,过点D作DE⊥y轴于点E,DF⊥x轴于点F.=2.4,易得AB=5,OD=OA·OBAB=1.44.∴BD=OB2-OD2=1.8,ED=BD·ODBO同理可得DF=1.92.连结O″D.易知点O和点O″关于点D(1.44,1.92)对称,∴点O″(2.88,3.84).设AB与OO′交于点M,则点M(2,1.5).易知点O″与点O关于点M对称,∴点O(1.12,-0.84).(第26题解)。

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (229)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (229)

30.(7 分)如图,是一个楼梯的侧面示意图. (1)如果用(4,2)来表示点 D 的位置,那么点 A、C、H 又该如何表示呢? (2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.A 2.C 3.A 4.A 解析:答案:A
图形与原图形相比( )
A.向右平移了 3 个单位B.向左平移了 3 个单位
C.向上平移了 3 个单位D.向下平移了 3 个单位
6.(2 分)如果点 M(3a,-5)在第三象限,那么点 N(5-3a,-5)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.(2 分)若点 A(2,n)在 x 轴上,则点 B(n-2,n+1)在( )
15.(2 分)小红坐在第 2 排 21 号用(2,21)表示,则(9,l7)表示小红坐在 . 16.(2 分)在平面直角坐标系中,点 P(-l,2)到 y 轴的距离是 . 17.(2 分)如图,△ABC 的三个顶点坐标分别是 A(-5,0),B(4,5),c(3,0),则△ABC 的 面积是 .
18.(2 分)边长为 2 的正△ABC 的 A 点与原点重合,点 B 在 x 正半轴上,点 C 在第四象 限,则 C 点的坐标为 . 19.(2 分)若点 A 的坐标为(3,4),点 B 与点 A 关于原点对称,则点 B 的坐标是 . 20.(2 分)如图,从 2 街 4 巷到 4 街 2 巷,走最短的路线的走法共有 种.
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8.(2 分)如图,小手盖住的点的坐标可能为 ( )

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (102)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (102)
23.(2 分)已知点 P(-1,2),PQ 垂直于 x 轴,垂足为 Q,则点 Q 的坐标为 . 24.(2 分)在直角坐标系中,点 P(-3,4)到 x 轴的距离为 ,到 y 轴的距离为 . 25.(2 分)如图所示,是两位同学五子棋的对弈图,黑棋先下,现轮到白棋下.如你是白 棋,认为应该下在 .
C.(-2,3),(3,4),(1,7)
D.(2,-3),(3,3),(1,7)
5.(2 分)在平面直角坐标系中,将点 A(1,2)的横坐标乘以-1,纵坐标不变,得到点
A′,则点 A 与点 A′的关系是( )
A.关于 x 轴对称 B.关于 y 轴对称
C.关于原点对称 D.将点 A 向 x 轴负方向平移一个单位得点 A′
27.(7 分)下列各点的位置是在哪一个象限内或在哪一个坐标轴上?请将答案填入方格内.
( -3 , 10 )
(2.8,9)
(3, -1)
(-2,0)
(−1,−1)
(0,5)
22
28.(7 分)在 A 市北方 250 km 处有 B 市,在 A 市北偏东 30°方向 100 km 处有 C 市,在 A 市西北方向的 l00 km 处有 D 市,以 A 市为原点,东西方向的直线为 x 轴,南北方向为 y 轴,并取 50 km 为 1 个单位长度,画出直角坐标系和各城市,并求各城市的坐标.
根据气象台预报,今年 17 号台风中心位置处在(8,6),并以 20 km/h 的速度自东向西移 动,台风影响范围半径为 200 km,问经过 12 h 后,上述城市哪些已受到台风的影响?
29.(7 分)已知点 A(-2,0)、B(4,0)、C(x,y). (1)若点 C 在第二象限,且 x = 6 , y = 6 ,求点 C 的坐标,并求△ABC 的面积; (2)若点 C 在第四象限的角平分线上,且△ABC 的面积为 l2,求点 C 的坐标.

浙教版八年级数学上册单元测试卷附解析第4章 图形与坐标

浙教版八年级数学上册单元测试卷附解析第4章 图形与坐标

第4章图形与坐标一、选择题(共16小题;共48分)1. 根据下列表述,能确定位置的是A. 国际影城排B. A 市南京路口C. 北偏东D. 东经,北纬2. 在平面直角坐标系中,点关于轴的对称点的坐标是A. B. D.3. 根据下列表述,能确定位置的是A. 红星电影院排B. 北京市四环路C. 北偏东D. 东经,北纬4. 若点与点关于轴对称,则A. ,B. ,C. ,D. ,5. 如图,在平面直角坐标系中,点的坐标为A. C. D.6. 在平面直角坐标系中,点在第三象限,则的取值范围是A. B. C. D.7. 如图,点在观测点的北偏东方向,且与观测点的距离为千米,将点的位置记作,用同样的方法将点,点的位置分别记作,,则观测点的位置应在A. B. C. D.8. 如图,若在象棋盘上建立直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点D.9. 如图,小明从点出发,先向西走米,再向南走米到达点.如果点的位置用表示,那么表示的位置是A. 点B. 点C. 点D. 点10. 如图,在平面直角坐标系中,由绕点旋转得到,则点的坐标为A. B. C. D.11. 如图为,,三点在坐标平面上的位置图.若,,的横坐标的数字总和为,纵坐标的数字总和为,则的值为A. B.12. 如图,如果点的位置用表示,那么表示的位置是A. 点B. 点C. 点D. 点13. 如图,小明从点出发,先向西走米,再向南走米到达点,如果点的位置用表示,那么表示的位置是。

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (309)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (309)

2019-2020年八年级数学上册《图形与坐标》测试卷学校:__________一、选择题1.(2分)将三角形ABC的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形是由三角形ABC ()A.向左平移3个单位得到B.向右平移3个单位得到C.向上平移3个单位得到D.向下平移3个单位得到2.(2分)点P(5,-8)关于x轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为()A.(-1,B.(-1C-1)D.(-1)4.(2分)已知长方形ABCD对角线的交点在坐标原点,且AD∥x轴,若A点坐标为(-1,2),则D点坐标为()A.(2,-l)B.(2,1)C.(1,2)D.(-1,2)5.(2分)△DEF由△ABC平移得到的,点A(-1,-4)的对应点为D(1,-l),则点B (1,1)的对应点E,点C(-1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(-2,2),(1,7)D.(3,4),(2,-2)6.(2分)将点M(-3,-5)向上平移7个单位得到点N的坐标为()A.(-3,2)B.(-2,-l2) C(4,-5)D.(-10,-5)7.(2分)已知△ABC在直角坐标系中的位置如图所示,若△A′B′ C′与△ABC关于y 轴对称,则点A的对称点A′的坐标为()A.(-4,2)B.(-4,-2)C.(4,-2)D.(4,2)8.(2分)已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A .3B .5C .6D .79.(2分)若点A (2,n )在x 轴上,则点B (n-2,n+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限10.(2分)一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( )A .135°B .l05°C .75°D .45° 评卷人 得分 二、填空题11.(2分)若点(a ,b )在第二象限,则点(a b -,ab )在第 象限.12.(2分)小红坐在第2排21号用(2,21)表示,则(9,l7)表示小红坐在 .13.(2分)在平面直角坐标系中,点P(26x -,5x -)在第四象限,则x 的取值范围是 .14.(2分)若点A 的坐标为(3,4),点B 与点A 关于原点对称,则点B 的坐标是 .15.(2分)已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:. 16.(2分)如图,如果所在位置的坐标为(-1,-2),所在位置的坐标为(2,-2),那么所在位置的坐标为 .17.(2分)点P 1(5,-2)关于y 轴对称点是P 2,则P 1P 2的长为 .18.(2分)若33320x x y +++-=,则点P(x ,y)在第 象限,点Q(x+1,y-2)在 .19.(2分)如果点A 、B 都在x 轴的负半轴上,且点A 到原点的距离4,点B 到原点的距离为6,则A 、B 两点之间的距离为 ,线段AB 的中点的坐标 .20.(2分)如图所示,是两位同学五子棋的对弈图,黑棋先下,现轮到白棋下.如你是白棋,认为应该下在 .评卷人得分 三、解答题21.(7分)如图,已知△ABC .(1)求AC 的长;(2)若将△ABC 向右平移2个单位.得到A B C '''∆,求点A 的对应点A '的坐标;(3)若将△ABC 绕点C 按顺时针方向旋转90°后,得到△11A B C ∆,求点A 的对应点1A 的坐标.22.(7分)如图,△ABC 的顶点坐标分别为 A(3,6)、 B(1,3)、C(4,2). 若将 △ABC 绕点 C 顺时针旋转90°,得到A B C ''∆,在图中画出A B C ''∆,并分别求出A B C ''∆的顶点A '、B '的坐标.23.(7分)如图,△AB0的三个顶点的坐标分别为0(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若0,A两点的位置不变,P点在什么位置时,△0AP的面积是AOAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.24.(7分)如图,在长方形ABCD中,已知AB=6,AD=4,等腰△ABE的腰长为5,建立适当的平面直角坐标系,写出各个顶点的坐标.25.(7分)如图是某市的一部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.26.(7分)将图中的点(-3,1)、(-1,3)、(-1,5)、 (1,5)、(1,3)、(3,1)、,(3,-3)、(-3,-3)作如下变化:(1)纵坐标不变,横坐标减2;(2)横坐标不变,纵坐标乘以-l.画出变化后的图案,并说明变化后的图案与原图案的关系.27.(7分)在A市北方250 km处有B市,在A市北偏东30°方向100 km处有C市,在A 市西北方向的l00 km处有D市,以A市为原点,东西方向的直线为x轴,南北方向为y 轴,并取50 km为1个单位长度,画出直角坐标系和各城市,并求各城市的坐标.根据气象台预报,今年17号台风中心位置处在(8,6),并以20 km/h的速度自东向西移动,台风影响范围半径为200 km,问经过12 h后,上述城市哪些已受到台风的影响?28.(7分)已知点A(-2,0)、B(4,0)、C(x,y).(1)若点C在第二象限,且6y=,求点C的坐标,并求△ABC的面积;x=,6(2)若点C在第四象限的角平分线上,且△ABC的面积为l2,求点C的坐标.29.(7分)如图所示为一辆公交车的行驶路线示意图,“○”表示该公交车的中途停车点,现在请你帮助小王完成对该公交车行驶路线的描述:30.(7分)如图,是一个楼梯的侧面示意图.(1)如果用(4,2)来表示点D的位置,那么点A、C、H又该如何表示呢?(2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D2.A3.D4.C5.B6.A7.D8.A9.B10.D二、填空题11.三12.第9排17号13.35x <<14.(-3,-4)15.(13)-,,(12)-,,(11)-,,(21)-,,(22)-,,(31)-,六个中任意写出一个即可.16.(-3,1)17.10,18.二,y 轴上19.2,(-5,0)20.(2,F)或(6,B)三、解答题21.(1)AC =(2)A ′(1,2):(3)A 1(3,0)22.图略,A ′(8,3)、B ′(5,5)23.(1)10 (2)P 点的纵坐标为8或-8,横坐标为任意实数 (3)M(10,0)或M(-10,0)24.略25.以火车站为坐标原点,正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系火车站(0,0)、宾馆(2,2)、市场(4,3)、超市(2,-3)、体育场(-4,3)、文化富(-3,1)、医院(-2,-2) 26.画图略27.图略 A(0,0),B(0,5),C(1,D(,B 市会受到影响,A 、C 、D 三市不会受影响28.(1)C(-6,6),18;(2)(4,-4)或(-4,4)29.起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(4,4)→(2,4)→(2,5)→(3,5)→终点站30.(1)A(0,0),C(2,2),H(8,6);(2)B,F,I。

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.根据下列表述,不能确定具体位置的是( )A. 某电影院1号厅的3排4座B. 荆大路269号C. 某灯落南偏西30∘方向D. 东经108∘,北纬53∘2.点P(m+2,m+4)在y轴上,则m的值为( )A. −2B. −4C. 0D. 23.雷达屏幕在一次探测中发现的多个目标如下,其中对目标A的位置表述最准确的是( )A. 在南偏东75∘方向处B. 在5km处C. 在南偏东15∘方向5km处D. 在南偏东75∘方向5km处4.如图,利用直角坐标系画出的正方形网格中,若A(0,2),B(1,1),则点C的坐标为( )A. (1,−2)B. (2,1)C. (1,−1)D. (2,−1)5.已知点A(−2,1)与点B关于直线x=1成轴对称,则点B的坐标是( )A. (4,1)B. (4,−2)C. (−4,1)D. (−4,−1)6.已知点P(2a−3,a+1)关于y轴的对称点在第一象限,则a的取值范围是( )A. a<−1B. −1<a<32C. −32<a<1 D. a>327.将图中各点的纵坐标不变,横坐标分别乘−1,所得图形是( )A. B.C. D.8.在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A. x轴B. y轴C. 直线x=1D. 直线y=19.在平面直角坐标系中,已知点A(2,−2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A. 1个B. 2个C. 3个D. 4个10.如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)⋯,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为( )A. 2021B. 2022C. 1011D. 1012二、填空题:本题共6小题,每小题3分,共18分。

浙教版八年级数学上册第4章 图形与坐标单元测试卷含答案

浙教版八年级数学上册第4章 图形与坐标单元测试卷含答案

浙教版八年级数学上册第4章图形与坐标单元测试卷一、填空题(本大题有6小题,每小题3分,共18分)1.如果电影票上的“10排7号”简记为(10,7),那么(5,3)表示________.2.写出一个在x轴正半轴上的点坐标________3.已知点A(2,4)与点B(b–1,2a)关于原点对称,则a=________,b=________.4.已知线段MN=4,MN∥y轴,若点M坐标为(﹣1,2),则N点坐标为________.5.若第二象限内的点P(x ,y)满足|x|=3,y2=25,则点P的坐标是________.6.已知点P(2-a,3a-2)到两坐标轴的距离相等,则P点的坐标是________.二、选择题(本大题有12小题,每小题3分,共36分)7.若点A(x,y)在坐标轴上,则( )A. x=0B. y=OC. xy=0D. x+y=08.在平面直角坐标系中,点P(-2,-3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A. (1,2)B. (﹣1,2)C. (2,﹣1)D. (2,1)10.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为()A. (3,-1)B. (-3,1)C. (1,-3)D. (-1,3)11.点P(﹣1,3)向上平移1个单位长度后,再向左平移2个单位长度得到对应点Q,则Q点坐标是()A. (0,1)B. (﹣3,4)C. (2,1)D. (1,2)12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标是()A. (1,4)B. (4,1)C. (4,-1)D. (2,3)(第12题)(第16题)(第17题)13.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 以上各项都不对14.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A. (5,3)B. (﹣1,﹣2)C. (﹣1,﹣1)D. (0,﹣1)15.点P(a,b)在第四象限,则点P到x轴的距离是( )A. aB. bC. -aD. -b16.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)17.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C.设点A′的坐标为(a,b),则点A的坐标为()A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)18.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是( )A. B. C. D.三、解答题(本大题有7小题,共66分)19.(6分)如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.(8分)已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.21.(10分)在直角坐标平面内,已知点A (3,y1),点B(x2,5),根据下列条件,求出x2,y1的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称;(4)AB平行于x轴;(5)AB平行于y轴.22.(10分)如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.23.(10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.24.(10分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(-2,-1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.25.(12分)在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足.(1)a为不等式2x+6<0的最大整数解,求a的值并判断点A在第几象限;(2)在(1)的条件下,求△AOB的面积;(3)在(2)的条件下,若两个动点M(k-1,k),N(-2h+10,h),请你探索是否存在以两个动点M、N为端点的线段MN//AB,且MN=AB,若存在,求M、N两点的坐标;若不存在,请说明理由.参考答案一、填空题1.【答案】5排3号2.【答案】答案不唯一,例如(3,0)3.【答案】-2;-14.【答案】(﹣1,﹣2),(﹣1,6)5.【答案】(-3,5)6.【答案】(1,1)或(2,-2)二、单选题7.【答案】C 8.【答案】C 9.【答案】B 10.【答案】A 11.【答案】B 12.【答案】C13.【答案】A 14.【答案】C 15.【答案】D 16.【答案】C 17.【答案】D 18.【答案】D三、解答题19.【答案】解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2)20.【答案】解:∵S△ABC= BC•OA=24,OA=OB,BC=12,∴OA=OB= = =4,∴OC=8,∵点O为原点,∴A(0,4),B(-4,0),C(8,0).21.【答案】(1)解:x2=3,y1=-5(2)解:x2=-3,y1=5(3)解:x2=-3,y1=-5(4)解:x2≠2,y1=5(5)解:x2=3,y1≠522.【答案】(1)解:A、B、C向左平移5个单位后的坐标分别为(-4,1),(-1,2),(-2,4),连接这三个点,得△A1B1C1;如图所示,(2)解:如图所示,A、B、C关于原点的对称点的坐标分别为(-1,-1),(-4,-2),(-3,-4),连接这三个点,得△A2B2C2(3)解:如图所示,P(2,0).作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求作的点。

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (249)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (249)

19.(2, 2 3 ),[ 5 2 ,l35°]
20.(1,2)
21.4
22.(1,3)
23.4,3
评卷人 得分
三、解答题
24.图略 25.(1)略;(2)略. 26.(1)横坐标相同,纵坐标之和为 6;(2)(x,6-y) 27.如图:
28.(1)关于 x 轴对称;(2)横坐标相等,纵坐标互为相反数 29.起点站 → (1,1) → (2,2) → (4,2) → (5,1) → (6,2) → (6,4) → (4,4) → (2, 4) → (2,5) → (3,5) → 终点站 30.(1)A(0,0),C(2,2),H(8,6);(2)B,F,I
2
22.(2 分)已知点 P(m,n),满足 3x2m−1 + yn−2 = 0 是二元一次方程,则点 P 的坐标为 .
23.(2 分)在直角坐标系中,点 P(-3,4)到 x 轴的距离为 ,到 y 轴的距离为 .
评卷人 得分
三、解答题
24.(7 分)下图是一机器人的部分示意图. (1)在同一坐标系中画出将此图形先向右平移 7 个单位,再向下平移 1 个单位的图形; (2)你能画出平移后的图形关于 x 轴对称的图形吗?
29.(7 分)如图所示为一辆公交车的行驶路线示意图,“○”表示该公交车的中途停车点,现 在请你帮助小王完成对该公交车行驶路线的描述:
30.(7 分)如图,是一个楼梯的侧面示意图. (1)如果用(4,2)来表示点 D 的位置,那么点 A、C、H 又该如何表示呢? (2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?
2019-2020 年八年级数学上册《图形与坐标》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________

第四章 图形与坐标单元测试卷(标准难度)(含答案)

第四章 图形与坐标单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第四章《图形与坐标》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.在平面直角坐标系中,点A(m,2)是由点B(3,n)向上平移2个单位得到,则( )A. m=3,n=0B. m=3,n=4C. m=1,n=2D. m=5,n=22.如图,平面直角坐标系中,已知点A(−3,0),B(0,5),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则C点的横坐标位于( )A. 4和5之间B. 3和4之间C. 5和6之间D. 2和3之间3.如图,将线段AB向右平移2个单位长度,再向下平移3个单位长度,得到线段A′B′,则点B的对应点B′的坐标是( )A. (−1,−2)B. (1,2)C. (0,−2)D. (−1,4)4.点P(2,−3)向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. (−1,−1)B. (−1,−5)C. (5,−1)D. (5,−5)5.在平面直角坐标系中,将点P向上平移3个单位得到点P′(1,2),则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是( )A. m<0,n>0B. m<3,n>−4C. m<0,n<−2D. m<−3,n<−47.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )A. (4,2√3)B. (3,3)C. (4,3)D. (3,2)8.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为A. (a−2,b+3)B. (a−2,b−3)C. (a+2,b+3)D. (a+2,b−3)9.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A. (-1,0)B. (1,-2)C. (1,1)D. (0,-2)10.已知点P(2a,1−3a)在第二象限,且点P到x轴的距离与到y轴的距离之和为6,则a的值为( )A. −1B. 1C. −5D. 511.如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为( )A. (1,2)B. (2,1)C. (1,4)D. (4,1)12.如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上.现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是( )A. (1,0)B. (√3,√3)C. (1,√3)D. (−1,√3)第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图:在直角坐标系中,设一动点自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+x3+⋯+x2021+x2021+x2022=______.14.已知△ABC三个顶点的坐标分别是A(0,3)、B(2,−2)、C(−5,1),将△ABC平移后顶点A的对应点A1的坐标是(2,4),则顶点B的对应点B1的坐标是______.15.如图,直角坐标系中,点A(1,4),点B(1,0),点C(0,3),点M(m,0)是x轴上一动点,点N是线段AB上一动点,若∠MNC=90°,则m的取值范围是______.16.点C在第三象限,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为______.三、解答题(本大题共9小题,共72分。

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (333)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (333)

27.图略
28.(1)A(-2,-l),B(4,4),C(2,O),D(4,1),E(4,O);(2)图略,A′(-2,1),B′(4,-
4),C′(2,0),D′(4,-l),E′(4,0)
29.(1)3;(2)D;(3)CE∥y 轴;(4)3,4
30.(1)关于 x 轴对称;(2)横坐标相等,纵坐标互为相反数
,∴1

x
=
0
,
2
y
=
4
,
∴顶点 A 的坐标为(0,4) .
23.(1) AC = 10 ; (2)A′(1,2):
(3)A1(3,0) 24.图略,A′(8,3)、B′(5,5)
25.(1)10 (2)P 点的纵坐标为 8 或-8,横坐标为任意实数 (3)M(10,0)或 M(-10,0)
26.略
21.(2 分)已知点 P 的坐标为(x-1,x+3),则 P 不可能在第
评卷人 得分
三、解答题
象限.
22.(7 分)如图,等腰三角形 ABC 的高所在的直线与直角坐标系的 y 轴重合,已知其顶点 坐标分别为:A(1− x , 2y )、B( −2x , y −1 )、C( 3y − 4 , x ),求顶点 A 的坐标.
2019-2020 年八年级数学上册《图形与坐标》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一

三 总分
得分
评卷人 得分
一、选择题
1.(2 分)将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系
评卷人 得分
二、填空题

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (247)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (247)

三、解答题
24.(7 分)如图.正方形 ABCD 边长为 2 ,A 为坐标原点,点 C 在 y 轴正半轴上.求各顶 点的坐标.
25.(7 分)如图,在长方形 ABCD 中,已知 AB=6,AD=4,等腰△ABE 的腰长为 5,建立 适当的平面直角坐标系,写出各个顶点的坐标.
26.(7 分)在直角坐标中,画出以 A(0,0),B(3,4),C(3,-4)为顶点的△ABC,并判断△ ABC 的形状.
2019-2020 年八年级数学上册《图形与坐标》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一

三 总分
得分
评卷人 得分
一、选择题
1.(2 分)王京从点 O 出发.先向西走 40 米,再向南走 30 米,到达点 M.如果点 M 的位置
点,那么 C 点的位置可表示为( )
A.(0,3)
B.(2,3)
C.(3,2)
D.(3,0)
评卷人 得分
二、填空题
11.(2 分)已知 (a −5)2 + (b + 3)2 = 0 ,则点 P( a , b )在第 象限. 12.(2 分)如图,在△AOM 中,∠AMO=90°,0A=5,AM=4.则点 A 的坐标为 .
19.(1)2,1;(2)-2,-l;(3)≠-2,=1
20.4
21.(1,3)
22.4,3
23.5,-3
评卷人 得分
三、解答题
24.A(0,0)、B(1,1)、C(0,2)、D(-1,1) 25.略 26.作图略,△ABC 为等腰三角形 27.B(0,1),C(1,1),D(1,-l),E(4,1),F(3,-2),G(1,-2),BC∥x 轴,GF∥x 轴, CD∥y 轴 28.略 29.(1)关于 x 轴对称;(2)横坐标相等,纵坐标互为相反数 30.(1)略;(2)10

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点的坐标分别为,.将线段平移后A点的对应点是,则点B的对应点的坐标为()A. B. C. D.2、已知,点与点关于轴对称,则的值为()A. B.1 C.-1 D.3、如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A. B. C. D.4、已知在第三象限,且,,则点的坐标是()A. B. C. D.5、若点的坐标是(2,﹣1),则点在()A.第一象限B.第二象限C.第三象限D.第四象限6、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.-aD.-b7、点M(a+1,a﹣3)在y轴上,则点M的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)8、坐标平面内下列各点中,在坐标轴上的是()A.(3,3)B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)9、如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)10、已知点为第四象限内一点,且满足,,则P点的坐标为()A. B. C. D.11、在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12、如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0)B.(﹣2,3)C.(﹣3,2)D.(﹣3,﹣2)13、在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14、在长方形中,三点的坐标分别是则点的坐标为()A. B. C. D.15、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A.(2020,1)B.(2020,0)C.(1010,1)D.(1010,0)二、填空题(共10题,共计30分)16、已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.17、如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B 4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线Bn Bn+1都在y轴上,且BnBn+1的长度依次增加1个单位,顶点An 都在第一象限内(n≥1,且n为整数). 那么A1的坐标为________;An的坐标为________(用含n的代数式表示).18、平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为________.19、点向左平移两个单位后恰好位于双曲线上,则________.20、已知点关于x轴的对称点为点B,关于原点的对称点为点C,关于y轴的对称点为点D,则四边形ABCD的面积为________.21、若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.22、点P(1,a)在反比例函数的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,则此反比例函数的解析式为________.23、在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第________象限.24、已知抛物线y=x2+(m+1)x﹣m﹣2(m>0)与x轴交于A、B两点,与y轴交于点C,不论m取何正数,经过A、B、C三点的⊙P恒过y轴上的一个定点,则该定点的坐标是________.25、如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、有序数对(2,3)和(3,2)相同吗?如果有序数对(a,b)表示某栋楼房中a层楼b号房,那么有序数对(2,3)和(3,2)分别代表什么?28、如图,这是某市部分简图,已知医院的坐标为(﹣2,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.29、六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(Ⅰ)求S1和S3的值;(Ⅱ)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(Ⅲ)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?30、在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求a的值及点的坐标?参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、D6、D7、A8、B9、B10、C11、A12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (375)

2019年秋浙教版初中数学八年级上册《图形与坐标》单元测试(含答案) (375)

2019-2020年八年级数学上册《图形与坐标》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)如图,一个质点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第35秒时,质点所在位置的坐标是()A.(4.0)B.(5.0)C.(0.5)D.(5.5)2.(2分)已知平面内有一点P,它的横坐标与纵坐标互为相反数,且与原点的距离为8,则点P的坐标为()A.(-4,4)或(4,-4)B.(4,-4)C.(32-)-323232-)D32323.(2分)在平面直角坐标系中,点(-2,m-2)在第三象限,则m的取值范围是()A.m>2 B.m<2 C.m<-2 D.m≤24.(2分)若点A(m,n)在第三象限,则点B(m-,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)在x轴上的点的横坐标是()A.0 B.正数C.负数D.实数6.(2分)已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a. 若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为()A.(-1,3B.(-13C3-1)D.(3-1)7.(2分)如果点M(3a,-5)在第三象限,那么点N(5-3a,-5)在()A.第一象限B.第二象限C.第三象限D.第四象限8.(2分)点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是()A.(一5,3)B.(-5,-3)C.(5,3)或(-5,3)D.(-5,3)或(-5,-3)9.(2分)已知点A(0,-l),M(1,2),N(-3,0),则射线AM和射线AN组成的角度数()A.一定大于90° B.一定小于90°C.一定等于90° D.以上三种情况都有可能10.(2分)点P在第二象限内,P到x 轴的距离是4,到y 轴的距离是3,那么点P的坐标为()A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)11.(2分)若点P(x,y)的坐标满足x y=0,则点P的位置在()A.原点B.x轴上C.y轴上D.x 轴上或y 轴上评卷人得分二、填空题12.(2分)在坐标平面上点(x+4,2y-1)与点(y-2,8- x)表示同一点,则点(x,y)在坐标平面上的第象限内.13.(2分)小红坐在第2排21号用(2,21)表示,则(9,l7)表示小红坐在 .14.(2分)如图,一个机器人从0点出发,向正东方向走3 m到达A1点,再向正北方向走6 m到达A2点,再向正西方向走9 m到达A3点,再向正南方向走l2 m到达A4点,再向正东方向走15而到达A5点.按如此规律走下去,当机器人走到A6点时,离O点的距离是.15.(2分)如图,△ABC的三个顶点坐标分别是A(-5,0),B(4,5),c(3,0),则△ABC的面积是.16.(2分)在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形以中点A 的 坐标为(4,-2),那么图形b 中与点A 对应的点A ′的坐标为 .17.(2分)已知点P (x-1,x+3),那么点P 不可能在第 象限.18.(2分)已知点A (-1,2),将它先向左平移2个单位,再向上平移3个单位后得到点B ,则点B 的坐标是______.19.(2分)点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .20.(2分)已知点P(m ,n),满足21230m n x y --+=是二元一次方程,则点P 的坐标为 .21.(2分)严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题:(1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为cm ,实际距离为 m .评卷人得分 三、解答题22.(7分)如图,已知△ABC .(1)求AC 的长;(2)若将△ABC 向右平移2个单位.得到A B C '''∆,求点A 的对应点A '的坐标;(3)若将△ABC 绕点C 按顺时针方向旋转90°后,得到△11A B C ∆,求点A 的对应点1A 的坐标.23.(7分)如图,图中标出了星海中学的位置.图中每个小正方形的边长均代表50 m,晓婷家、林威家、慧儿家的位置是:晓婷家:出校门向东走l50m,再向北走200m.林威家:出校门向西走200m,再向北走350m,最后向东走50m.慧儿家:出校门向南走l00m.再向东走300m,最后向南走75m.(1)请在图中标出晓婷家、林威家、慧儿家的位置;(2)以晓婷家所在位置为原点,建立平面直角坐标系.并在图中标明星海中学、林威家、慧儿家的坐标.24.(7分)如图,在长方形ABCD中,已知AB=6,AD=4,等腰△ABE的腰长为5,建立适当的平面直角坐标系,写出各个顶点的坐标.25.(7分)如图是某市的一部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.26.(7分)(1)在图①,②,③中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),写出图①,②,③中的顶点C的坐标,它们分别是,,;(2)在图④中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);(3)通过对图①,②,③,④的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)(如图④)时,四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.(不必证明).27.(7分)如图,如果A点的坐标是(-1,O),请你分别写出点B 、C、D、E、F、G的坐标,并根据各点坐标的特点判断:图中有平行于坐标轴的线段吗?若有,请分别写出来.28.(7分)如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”29.(7分)某教室里有9排5列座位,请根据下面四个同学的描述,在图冲标出5号小明的位置.l号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”30.(7分)如图,是一个楼梯的侧面示意图.(1)如果用(4,2)来表示点D的位置,那么点A、C、H又该如何表示呢?(2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B2.C3.B4.D5.D6.D7.D8.D9.C10.C11.D评卷人得分二、填空题12.二13.第9排17号14.15 m15.2016.(4,-5)17.四18.(-3,5)19.-820.(1,3)21.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,130评卷人得分三、解答题22.(1)10AC ;(2)A′(1,2):(3)A1(3,0)23.如图:24.略25.以火车站为坐标原点,正东、正北方向为x轴、y轴正方向建立平面直角坐标系火车站(0,0)、宾馆(2,2)、市场(4,3)、超市(2,-3)、体育场(-4,3)、文化富(-3,1)、医院(-2,-2)26.(1)(5,2),(e+c,d),(c+e-a,d);(2)C(e+c-a,f+d-6);(3)m=c+e-a,n=d+f-27.B(0,1),C(1,1),D(1,-l),E(4,1),F(3,-2),G(1,-2),BC∥x轴,GF∥x轴,CD∥y轴28.如图:29.略30.(1)A(0,0),C(2,2),H(8,6);(2)B,F,I。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.(1)(5,3);(2)9 排 12 号,l2 排 9 号
评卷人 得分
三、解答题
23.(1)10 (2)P 点的纵坐标为 8 或-8,横坐标为任意实数 (3)M(10,0)或 M(-10,0) 24.作图略,△ABC 为等腰三角形 25.略 26.图略 27.以火车站为坐标原点,正东、正北方向为 x 轴、y 轴正方向建立平面直角坐标系火车 站(0,0)、宾馆(2,2)、市场(4,3)、超市(2,-3)、体育场(-4,3)、文化富(-3,1)、医院(2,-2) 28.(1)横坐标相同,纵坐标之和为 6;(2)(x,6-y) 29.图略 A(0,0),B(0,5),C(1, 3 ),D( − 2 , 2 ),B 市会受到影响,A、C、D 三 市不会受影响 30.(1)A(0,0),C(2,2),H(8,6);(2)B,F,I
(2)(9,12)表示 ,(12,9)表示 .
评卷人 得分
三、解答题
23.(7 分)如图,△AB0 的三个顶点的坐标分别为 0(0,0),A(5,0),B(2,4). (1)求△OAB 的面积; (2)若 0,A 两点的位置不变,P 点在什么位置时,△0AP 的面积是 AOAB 面积的 2 倍; (3)若 B(2,4),O(0,0)不变,M 点在 x 轴上,M 点在什么位置时,△OBM 的面积是 △OAB 面积的 2 倍.
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.C 3.D 4.B 5.A 6.C 7.D 8.A 9.D 10.A 11.C 12.D 1y 轴上 15.(-l,O)
16. a 1
2 17.4,3
18.略
19.四
20.23
21.(1,3)或(3,3)或(4,2),(1,8)或(5,8)
24.(7 分)在直角坐标中,画出以 A(0,0),B(3,4),C(3,-4)为顶点的△ABC,并判断△ ABC 的形状.
25.(7 分)如图,将图中的△ABC 作下列变换,画出相应的图形,指出三个顶点坐标发生 的变化:
(1)沿 x 轴向右平移 1 个单位;(2)关于 y 轴对称.
26.(7 分)下图是一机器人的部分示意图. (1)在同一坐标系中茴出将此图形先向右平移 7 个单位,再向下平移 1 个单位的图形; (2)你能画出平移后的图形关于 x 轴对称的图形吗?
21.(2 分)象棋中,有“马走日,象走田……”的规则(列数在前,排数在后)图中“马” 可移动到 上,“象”可移动到 上.
22.(2 分)学校组织学生去剧院看元旦文艺会演,小王的座位是 3 排 5 号,小林的座位是 5
排 3 号.
(1)如果 3 排 5 号记作(3,5),那么 5 排 3 号记作 .
29.(7 分)在 A 市北方 250 km 处有 B 市,在 A 市北偏东 30°方向 100 km 处有 C 市,在 A 市西北方向的 l00 km 处有 D 市,以 A 市为原点,东西方向的直线为 x 轴,南北方向为 y 轴,并取 50 km 为 1 个单位长度,画出直角坐标系和各城市,并求各城市的坐标.
8.(2 分)长方形的三个顶点分别是(1,-2)、(1,2)、(3,2),那么第四个顶点坐标
是( )
A.(3,-2)
B.(2,3)
C.(-2,3)
D.(2,-l)
9.(2 分)已知点 P(4,a+1)到两坐标轴的距离相等,则 a 的值为( )
A.3
B.4
C.-5
D.3 或-5
10.(2 分)已知点 P(x,y)在第二象限,且 x +1 = 2 , y − 2 = 3 ,则点 P 的坐标为( )
2019-2020 年八年级数学上册《图形与坐标》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一

三 总分
得分
评卷人 得分
一、选择题
1.(2 分)对于任意实数 a ,点 P( a , a(a + 6) )一定不在( )
A. 第一象限
A.原点
B.x 轴上
C.y 轴上
D.x 轴上或 y 轴上
13.(2 分)若 ab 0 , a + b 0 0,则点 P(a,b)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
评卷人 得分
二、填空题
14.(2 分)若 3x + 3 + x + 3y − 2 = 0 ,则点 P(x,y)在第 象限,点 Q(x+1,y-2)在 .
根据气象台预报,今年 17 号台风中心位置处在(8,6),并以 20 km/h 的速度自东向西移 动,台风影响范围半径为 200 km,问经过 12 h 后,上述城市哪些已受到台风的影响?
30.(7 分)如图,是一个楼梯的侧面示意图. (1)如果用(4,2)来表示点 D 的位置,那么点 A、C、H 又该如何表示呢? (2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?
A.(-3,5)
B.(1,-l)
C.(-3,-l)
D.(1,5)
11.(2 分)已知点 A(0,-l),M(1,2),N(-3,0),则射线 AM 和射线 AN 组成的角
度数( )
A.一定大于 90° B.一定小于 90°
C.一定等于 90° D.以上三种情况都有可能
12.(2 分)若点 P(x,y)的坐标满足 x y=0,则点 P 的位置在( )
D.(0,4) → (0,2) → (4,2) → (4,0)
3.(2 分)如图,表示 A 点的位置的准确说法是( ) A.距 0 点 3 km 的地方 B.在 O 点的东北方向上 C.在 O 点东偏北 40°的方向 D.在 0 点北偏东 50°方向,距 O 点 3 km 的地方
4.(2 分)在平面直角坐标系中,将点 A(1,2)的横坐标乘以-1,纵坐标不变,得到点 A′,则点 A 与点 A′的关系是( )
15.(2 分)已知点 P(-1,2),PQ 垂直于 x 轴,垂足为 Q,则点 Q 的坐标为 . 16.(2 分)若点 M(1,2n 一 1)在第四象限内,则 a 的取范围是 . 17.(2 分)在直角坐标系中,点 P(-3,4)到 x 轴的距离为 ,到 y 轴的距离为 . 18.(2 分)已知点 P 在第二象限,它的横坐标与纵坐标之和为 l,则点 P 坐标可以 是 .(写出符合条件的一个点即可). 19.(2 分)已知点 P 的坐标为(x-1,x+3),则 P 不可能在第 象限. 20.(2 分)将正整数按如图所示的规律排列下去.若用有序数对(n,m)表示第 n 排,从左到 右第 m 个数,如(4,3)表示数 9,则(7,2)表示的数是 .
B.第二象限
C.第三象限
D.第四象限
2.(2 分)如图所示的是小亮从家出发到医院要经过的街道,若用(0,4)表示家的位置,
下列路径中,不能到达医院的是( )
A.(0,4) → (0,3) → (0,0) → (4,0)
B.(0,4) → (0,1) → (4,1) → (4,0)
C.(0,4) → (2,1) → (3,1) → (4,1)
A.关于 x 轴对称 B.关于 y 轴对称
C.关于原点对称 D.将点 A 向 x 轴负方向平移一个单位得点 A′
5.(2 分)如图,下列各点在阴影区域内的是 ( )
A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)
6.(2 分)已知点 P(1,2)与点 Q(x,y)在同一条平行于 x 轴的直线上,且 Q 点到 y 轴
的距离等于 2,那么点 Q 的坐标是( )
A.(2,2)
B.(-2,2) C.(-2,2)和(2,2) D.(-2,-2)和(2,-
2)
7.(2 分)在平面直角坐标系中,将三角形各点的纵坐标都减去 3,横坐标保持不变,所得
图形与原图形相比( )
A.向右平移了 3 个单位B.向左平移了 3 个单位
C.向上平移了 3 个单位D.向下平移了 3 个单位
27.(7 分)如图是某市的一部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别 写出各地的坐标.
28.(7 分)如图所示,△ABC 和△A′BC 存在着某种对应关系(它们关于 BC 对称),其中 A 的对应点是 A′,A(3,6),A′(3,O),△ABC 内部的点(4,4)的对应点是 N(4,2). (1)你知道它们的对应点的坐标有什么关系吗? (2)如果△ABC 内有一点 P(x,y),那么在△A′BC 内 P 的对应点 P′的坐标是什么?
相关文档
最新文档