北师大版初中数学八年级上册教材分析
“北京师范大学出版社八年级上册一次函数”教材分析
数学课程标准与数学教材教法研究“北京师范大学出版社八年级上册一次函数”教材分析一、课程标准要求1.体验从具体情境中抽象出数学符号的过程,理解函数;探索具体问题中的数量关系和变化规律。
2.通过用函数表述数量关系的过程,体会模型的思想,建立符号意识;能独立思考,体会数学基本的思想和模式方式.3初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
4.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
5.探索简单实例中数量关系和变化规律,了解常量、变量的意义。
6.结合实例,了解函数的概念和三种表示法,能举出函数的事例。
7.能结合图象对简单问题中函数关系进行分析。
8.能确定简单实际问题中函数自变量的取值范围。
并会求出函数值。
9.能用适当的函数表示法刻画简单的实际问题中变量之间的关系。
10.结合对函数关系的分析。
能对变量的变化情况进行初步讨论。
11.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
12.能利用待定系数法确定一次函数的表达式。
13.能画出一次函数的图象,根据一次函数的图象和表达式探索并理解k>0和k<0时,图象的变化情况。
14.理解正比例函数。
15.理解一次函数和二元一次方程的关系。
16.能用一次函数解决简单的实际问题。
二、教材分析本章的内容是北师大版八年级上册第四章共4节8课时。
函数是研究现实世界变化规律的一个重要模型,它一直是初中阶段数学学习的一个重要内容。
本套教科书对函数的学习不是一蹴而就的,而是遵循循序渐进,螺旋上升的原则进行设计。
具体地,在七年级上册“整式及其加减”一章,让学生体会字母表示数的必要性,能结合具体情境列出相应的代数式,渗透了初步的函数思想,设计了多情境,通过列表,数值转换等多种形式让学生体会变量之间的变量关系。
七年级下册设计了“变量之间的关系”一章感受学习变量间关系的必要性,通过列表格,关系式,图像等几种方式呈现变量之间的关系,从多方面感知变量间关系,揭示其本质,同时也暗示函数的三种表示方式,正是有了七年级的铺垫,本章继续通过变量间关系的考查,让学生初步体会函数- 1 -的概念,明确变量之间的这种关系就是函数关系,初步形成利用函数的观点认识现实世界的意识和能力。
新北师大(版)数学教材分析八年级上册
本册北师大版教材优点:
1教材设立了“做一做”、“议一议”、“想一想” 等栏目,便于学生通过自主探索与合作交流形成新 的知识,建立符合个体认知特点的知识结构。教材 有利于师生交流和生生交流,符合课改精神。 2知识的呈现过程科学合理,由浅入深,重点突出。 3练习题安排层次分明。
三、第四章注意的几个重点:
1函数图像考察能结合图象对简单问题中的函数关系 进行分析。 2016年沈阳中考题第15.在一条笔直的公路上有A, B,C三地,C地位于A,B两地之间,甲,乙两车分 别从A,B两地出发,沿这条公路匀速行驶至C地停 止.从甲车出发至甲车到达C地的过程,甲、乙两车 各自与C地的距离y(km)与甲车行驶时间t(h)之 间的函数关系如图表示,当甲车出发( )小时, 两车相距350km.
轴的距离等于点的纵坐标的绝对值;点到y轴的距离等于
点的横坐标的绝对值.部分学生常搞反.
【例2】点A(-6,8)到x轴的距离为
,到y轴
的距离为
.
第三章易错点
易错点3 混淆图形的变化与坐标轴之间的关系
在平面直角坐标系中,图形的变化与点的坐标的变化
关系为:图形关于x轴对称,则点的横坐标相同,纵坐标
互为相反数;图形关于y轴对称,则点的纵坐标相同,横
行;当两点纵坐标相同时,误认为两点连线与y轴平行. 【例1】过点A(-3,2)和点B(-3,5)作直线,则直线 AB( )
A. 平行于y轴 C. 与y轴相交
B. 平行于x轴 D. 与y轴垂直
第三章易错点
易错点2 点的坐标与点到坐标轴的距离之间的关系理不
清
点到坐标轴的距离与点的坐标之间的关系为:点到x
易错点4 利用方差来刻画数据的离散程度2017年中考
北师大版数学八年级上册《1 函数》教案1
北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。
本节课的内容包括函数的定义、函数的性质和函数图像的识别。
通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。
但函数概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。
三. 教学目标1.了解函数的定义,掌握函数的基本性质。
2.能够识别和绘制简单的函数图像。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的识别和绘制。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。
2.讲授法:讲解函数的定义、性质和图像,引导学生理解。
3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。
4.小组讨论法:分组讨论函数问题,培养学生的合作意识。
六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。
2.练习题:包括简单函数的识别和绘制。
3.教学用具:黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。
引导学生思考:如何表示这种变化关系?引出函数的定义。
2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。
用PPT展示函数图像,让学生观察、分析。
3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。
在绘制过程中,引导学生掌握函数图像的特点。
4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。
教师巡回指导,解答学生疑问。
北师大版八年级数学上册教材分析
北师大版八年级数学上册教材分析一、教材概述与特点北师大版八年级数学上册教材是初中数学教育的重要组成部分,具有系统性、科学性和实用性等特点。
该教材在内容编排上注重知识的连贯性和层次性,从基础知识出发,逐步引导学生深入理解和掌握数学概念和原理。
同时,教材还注重培养学生的数学思维和解决问题的能力,提高学生的数学素养。
二、章节内容与重点本册教材包含多个章节,每个章节都有明确的学习目标和重点内容。
例如,代数式与方程、函数与图像、数据的收集与整理等都是本册教材的重要章节。
在每个章节中,教材都通过生动的实例和清晰的讲解,帮助学生理解和掌握相关知识和技能。
三、教学方法与建议针对八年级学生的特点和教材内容,建议教师在教学过程中采用多种教学方法,如启发式教学、探究式教学等,激发学生的学习兴趣和积极性。
同时,教师还应注重培养学生的自主学习能力和合作学习能力,帮助学生形成有效的学习策略。
四、学习难点与策略在学习过程中,学生可能会遇到一些难点和挑战。
例如,代数式的化简、方程的求解等都需要学生具备一定的数学基础和思维能力。
针对这些难点,学生可以采取一些有效的学习策略,如多做练习题、寻求老师和同学的帮助等,以克服学习中的困难。
五、习题解析与拓展教材中的习题是巩固和拓展学生所学知识的重要途径。
通过对习题的解析和练习,学生可以加深对知识点的理解和记忆,同时也可以拓展自己的解题思路和方法。
在解题过程中,学生应注重分析题目的条件和要求,运用所学知识进行求解,并注重反思和总结。
六、与现实生活的联系数学是一门与实际生活紧密联系的学科。
在本册教材中,许多知识点都可以在现实生活中找到应用。
例如,函数与图像可以应用于描述物体的运动规律;数据的收集与整理可以应用于实际调查和研究等。
教师在教学过程中应注重引导学生发现数学与现实生活的联系,培养学生的应用意识和实践能力。
七、勾股定理及其意义勾股定理是数学史上著名的定理之一,也是本册教材的重点内容之一。
北师大版数学八年级上册教材分析
北师大版初中数学八年级上册教材分析与问题研讨一、教材总体思路分析(一)本学期学习的主要内容及课时安排(二)各章整体设计与内容的组织1.本册各章之间的关系本册前五章之间存在内在的逻辑关系。
在古希腊时期先有了平面几何的重要定理---勾股定理,其后对于一些特殊量度的研究得出不可公度的量,形成了不可比的数(无理数)的概念、实数的概念。
实数可以和数轴上的点形成一一对应,这个时候,数轴也变成了“实”的、连续的,因此,可以用以刻画连续变化的量。
在“实”的数轴的基础上拓展出的平面直角坐标系,就可以将平面上的点一网打尽了。
只有建立了平面直角坐标系,才可以从“形”的角度认识函数、一次函数。
本套教科书特别注重揭示函数与方程的联系,力图从“形”的角度认识方程,因此,在一次函数的基础上才能认识二元一次方程的图像。
2.为什么先研究勾股定理再研究实数利用勾股定理解决问题的过程中,一般都涉及到开方运算,而具体情境中多数是开不尽的,因此需要学习开方的一般表示。
为此,多数教科书都是先研究实数(平方根、无理数、根式甚至根式运算),再研究勾股定理。
可北师大版教材却反过来,先研究勾股定理再研究实数,原因何在?为此,我们需要分析两种做法各自的特点。
先学习实数再学习勾股定理的好处是:先准备好了根式的有关知识,然后利用勾股定理解决问题时,数据可以更加真实,运算更为便捷。
但也存在与生俱来的不足:违背了数学历史发展的规律;而难能揭示无理数研究的必要性;只能设计有关面积的问题背景,十分单调。
作为平面几何有关度量的最基本定理,勾股定理有着悠久的历史,人类文明的早期基本都自主地得到了勾股定理;而历史上,古希腊人从几何图形研究中,发现一些量是不可公度的(这些量不能同时是某个基本度量单位的整数倍),也就是说这两个量的比不是整数,因而得出不可比的数(由于翻译的偏差,误译为无理数);至于无理数的小数表示和小数定义(无限不循环小数),那是以后的事(古希腊当时还没有十进位值呢)。
北师大版数学八年级上册教材分析
范文样本年度:仅供参考,内容可修改北师大版八年级上册数学整理总结第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即22c2a=+b2、勾股定理的逆定理如果三角形的三边长a,b,c有关系22c2+,那么这个三角形是直角三角形。
a=b3、勾股数:满足22c2+的三个正整数,称为勾股数。
a=b第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
北师大版八年级上册的数学教学计划(4篇)
北师大版八年级上册的数学教学计划一、指导思想二、学情分析本期我继续授八(二)班数学,本班学生数学成绩两极分化比较严重,不少同学基础很差,问题较严重。
在上学期镇组织的期末统考中,本班数学只是位列中上游,要在本期获得理想成绩,师生需加倍努力,补缺补差,注重方法,夯实基础。
三、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章二次根式本章是在数的开方的基础上展开的,是算术平方根概念的抽象与扩展。
本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
第十七章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,____度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章平行四边形本章的主要内容是认识平行四边形及几种特殊的四边形,通过对图形的操作或度量,让学生直观认识图形的性质,通过逆命题的猜想、操作验证和逻辑推理的证明等过程,让学生理解并掌握几种图形的判定方法,提高数学思维能力。
第十九章一次函数教研专区全新登场教学设计教学方法课题研究教育论文日常工作本章的主要内容是函数的基本知识,以及一次函数的图象、性质和简单应用。
函数是数学中重要的基本概念之一,它揭示了现实世界中数量相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
本章是学习函数的入门,也是进一步学习函数的基础。
第二十章数据的分析本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
四、教学目标和要求注重基础知识的教学和基本能力的培养,面向全体学生,缩小两极分化,尽力使后进生能迎头赶上,大面积提高教学质量。
北师大版八年级数学上册教材分析
北师大版八年级数学上册教材分析一、教材概述北师大版八年级数学上册教材是在学生已经掌握了一定的数学基础知识和基本技能的基础上,进一步拓展和提高数学知识和应用能力的教材。
本册教材注重数学知识之间的内在联系,注重数学思想方法的渗透,旨在培养学生的数学思维能力、创新精神和实践能力。
二、章节设置本册教材共分为六章,分别是:第一章数的开方与二次根式、第二章代数式、第三章分式、第四章平行四边形、第五章一次函数、第六章数据描述。
各章均设有知识点讲解、例题解析、练习题等内容,同时穿插图像与图表等可视化元素,帮助学生更好地理解和掌握数学知识。
三、知识点分布本册教材的知识点主要包括:1.数的开方与二次根式:学生将学习平方根和立方根的概念和性质,掌握二次根式的化简和运算。
2.代数式:学生将学习代数式的概念和性质,掌握代数式的化简和变形,理解代数式的实际意义。
3.分式:学生将学习分式的概念和性质,掌握分式的化简和运算,理解分式的实际意义。
4.平行四边形:学生将学习平行四边形的性质和判定方法,掌握平行四边形的对角线性质和平行四边形的面积计算。
5.一次函数:学生将学习一次函数的概念和性质,理解一次函数的图像和性质,掌握一次函数的实际应用。
6.数据描述:学生将学习数据的收集、整理和描述方法,理解平均数、中位数、众数等统计量的概念和计算方法,了解数据的离散程度和分布情况。
四、例题解析本册教材的例题解析注重典型性和代表性,通过例题的解析帮助学生深入理解数学知识的应用方法和解题思路。
同时,例题的难度逐渐递增,引导学生逐步提高解题能力和数学思维能力。
五、练习题安排本册教材的练习题安排注重基础性和拓展性,既有对知识点的巩固练习,也有对综合运用能力的提高练习。
练习题的设置旨在帮助学生加深对数学知识的理解和掌握,提高解题能力和数学应用能力。
六、图像与图表本册教材穿插了大量的图像与图表,通过可视化元素帮助学生更好地理解和掌握数学知识。
图像与图表的使用可以帮助学生更好地理解数学概念和性质,提高对数学知识的感性认识和理性思考能力。
新北师大版八年级数学上册全册教案
新北师大版八年级数学上册全册教案一、内容概述数与代数:包括有理数的概念与运算、代数式的初步认识与化简、一元一次方程的解法与应用等,旨在培养学生的数感和代数思维能力。
几何图形:主要学习图形的性质与分类、图形的变换(平移、旋转、对称等)、三角形和全等图形的概念与性质等,旨在提高学生的空间观念和几何证明能力。
函数与图象:通过实例引入函数的概念,学习函数的图象与性质,为后续的数学学习打下基础。
统计与概率:学习数据的收集与整理、概率的初步认识与应用等,培养学生的数据分析能力和概率思维。
教材中还融入了数学文化、数学史话等内容,旨在拓宽学生的视野,增强对数学的兴趣和热爱。
每个章节都设计了丰富的例题、习题和探究活动,以帮助学生巩固知识、提高能力。
教案在设计和实施过程中,注重知识的连贯性和系统性,同时也注重培养学生的创新思维和实践能力。
1. 介绍教材版本及适用年级本教案将针对《新北师大版八年级数学上册》展开详细解读与教学设计。
此教材版本属于北京师范大学出版社,是八年级数学上册全册的新修订版本。
本教材旨在满足八年级学生的认知水平和学习需求,涵盖了初中数学的核心知识点,包括代数、几何、概率与统计等多个领域。
其设计思路清晰,内容深入浅出,适合八年级学生使用。
通过学习本册教材,学生将掌握初中数学的基础知识,为将来的数学学习奠定坚实的基础。
2. 简述八年级数学在基础教育阶段的重要性八年级数学在基础教育阶段占有极其重要的地位。
学生所接触的数学知识深度和广度都在逐渐提升,涉及到的数学概念和原理更为复杂,为后续的数学学习和实际应用打下坚实的基础。
八年级数学是连接初中数学与高中数学的重要桥梁。
学生在这个阶段开始接触到更为高级的数学知识,如代数、几何、概率等,这些知识的掌握程度将直接影响其后续的高中数学学习。
数学作为一门基础学科,其教育价值不仅仅在于知识的灌输,更在于培养学生的逻辑思维能力和问题解决能力。
八年级的数学课程通过一系列的问题解决和推理训练,有助于培养学生的抽象思维、逻辑推理和创新能力。
北师大版初中数学八年级上册教材分析
北师大版初中数学八年级上册教材分一、教材总体思路分析1.本册书的主要内容有:实数、一次函数、二元一次方程组;勾股定理、图形的平移与旋转、四边形、位置的确定;数据的代表。
其中无理数的发现、实数系统的建立和函数概念是本学段知识的重点也是和难点,实数是进一步学习的基础;而函数以及函数思想与其他知识的广泛联系也是重心之一。
勾股定理及其逆定理是初等几何中最基本、最重要的定理之一。
通过拼、摆或图形的割、补,使得这个重要几何事实得以确认。
因为发现及证实它成立的方式非常多且富于变化,所以对学生有很大的吸引力。
《图形的平移与旋转》是新增加的内容,通过学习,能够把静止的图形看成是基本图形经过位移而得到,提供了对复杂图形实行分析的新视角,还能够对“几何变换”有直观的感受。
《位置的确定》从源头上突出了坐标法产生的思想,直角坐标系是实现坐标法的一种选择,建立坐标系把数轴拓展到平面,是数形结合与转化的桥梁。
“变化的鱼”以直观生动的形式增强了几何变换与坐标表示及坐标变化联系起来,从数与形两个方面感受图形变化的数学内涵。
在统计与概率领域,本册提供了刻画数据平均水平的三种量度,力图让学生掌握一定的数据分析的方法,更好地处理数据。
2.教材设计与内容的组织有如下考虑。
(1)无理数的发现能够从理论的角度引发,出现在勾股定理之前。
教科书遵循了人类理解数学的历史顺序,把勾股定理放在实数学习的前面,成为发现无理数的直观背景,自然地说明无理数存有的客观性,同时对无理数研究的必要性作出合理的解释。
实数集中的实数与数轴上的点一一对应并不像想像的那样容易被学生接受,说服的办法也是借助几何解释和理性思考。
这样处理须注意在学习勾股定理时,边长的数据应暂时在有理数范围内选择,在此两章学完之后,能够回过头来在实数范围内重新讨论勾股定理及其应用。
在我们讨论一个平方等于2的数时,发现它是一个无限不循环小数,进一步引出无理数的定义。
无理数概念的产生,同时也是对有理数概念的强调,应重视在现实背景中对实数运算意义的理解和应用,增强对估算的要求。
北师大版数学八年级上册1《函数》说课稿1
北师大版数学八年级上册1《函数》说课稿1一. 教材分析北师大版数学八年级上册1《函数》这一节的内容,主要介绍了函数的概念、性质以及一些基本的函数类型。
这部分内容是整个初中数学的重要基础,对于学生理解数学的本质,培养逻辑思维能力具有重要意义。
教材通过丰富的例题和练习题,帮助学生掌握函数的基本知识,并能运用函数解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。
但是,对于函数这一抽象的数学概念,学生可能一开始感到困惑,难以理解。
因此,在教学过程中,需要注重引导学生从具体的事物中抽象出函数的概念,并通过大量的实例让学生体会函数的性质。
三. 说教学目标1.知识与技能目标:学生能够理解函数的概念,掌握函数的性质,了解一些基本的函数类型,并能运用函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,学生能够自主探索函数的性质,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,培养对数学的兴趣和好奇心。
四. 说教学重难点1.教学重点:函数的概念、性质和基本类型的理解。
2.教学难点:函数的概念的抽象理解,函数性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的逻辑思维能力和解决问题的能力。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学的直观性和趣味性。
六. 说教学过程1.导入:通过生活中的实例,引导学生感受函数的存在,激发学生的兴趣。
2.新课导入:介绍函数的概念,引导学生从具体的事物中抽象出函数的概念。
3.知识讲解:讲解函数的性质,通过例题和练习题让学生体会函数的性质。
4.实例分析:分析一些实际的例子,让学生了解函数在生活中的应用。
5.小组讨论:学生分组讨论,探索函数的性质,并分享自己的发现。
北师大版初中数学八年级上册教材分析
补」的原理來证明「勾股定 理」。后人称该图为「青朱 出入图」。
青朱出入图
印度婆什迦羅的證明
c ab
b a
c2 = b2 + a2
著名画家达.芬奇对勾股定理的证明
A
a
B
F
cO
Cb E D
c2 = b2 + a2
第二节 能得到直角三角形吗
一个有趣的开头;
北师大版初中数学八年级上册教材分 析
第一章 勾股定理
勾股定理在数学的发展历史上起过重要的 作用,在现实世界中也有着广泛的应用。 它的发现、证明和应用都蕴涵着丰富的数 学的、文化的内涵。它是几何学中的重要 的定理之一。
1.设计思路
●为学生设计了自主探索勾股定理内容以及 验证它的素材和空间——经历观察、归纳、 猜想和验证的数学发现过程 利用方格纸探索勾股定理内容 利用拼图验证勾股定理 通过测量获得勾股定理的逆定理
“做一做”是用计算、画图再测量的方法归纳出勾股 定理的逆定理。归纳的基础理应尽可能的厚实一些, 但此处有一定的作图困难。教师可对其正确性予以说 明。
第三节 蚂蚁怎样走最近
让学生先自主探索,再引导其考虑侧面展开图来解决 问题,培养空间观念。
第二章 实数
1.内容定位与知识联系
●数系的第二次扩张 ●后继内容学习的基础 ●理解无理数的引入的意义 掌握开方运算 了解实数的概念 解决与实数有关的实际问题
边的关系;
方法一
b a
c
(a + b)2 = c2 + 4(½ab) a2 + 2ab + b2 = c2 + 2ab a2 + b2 = c2
北师大版八年级上册数学(全册)单元教材分析
北师大版八年级上册数学(全册)单元教材分析第一章勾股定理本章总共分三个模块的内容.模块一:勾股定理;模块二:勾股定理的逆定理;模块三:勾股定理的应用。
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.在中考中,主要考查勾股定理及直角三角形判别条件的应用和勾股数,常与三角形的其他知识结合考查。
第二章实数本章总共分为三个模块的内容.模块一:实数的概念及分类;模块二:数的开方运算;模块三:二次根式的概念和运算。
通过前一章勾股定理的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,这为引入“新数”奠定了必要性.在中考中,本章主要考查数的开方,实数的有关概念及运算,二次根式的运算。
第三章位置与坐标本章的主要内容有:(1)灵活运用不同的方式确定物体的位置;(2)认识并掌握平面直角坐标系;(3)轴对称与坐标变化。
平面直角坐标系是在数轴的基础上得到的,学习本章时,可先复习数轴的有关内容。
本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点,求点关于坐标轴的对称点的坐标,求线段的长度和几何图形的面积等。
第四章一次函数本章的主要内容有:(1)函数、一次函数与正比例函数的概念;(2)函数的表示方法;(3)一次函数的图象、性质与表达式;(4)一次函数的应用。
函数是刻画各种运动变化的常用模型,其中最为简单的是一次函数,它可以解决现实生活中的许多问题,本章将主要向学生讲授一次函数的相关知识。
本章是中考中的必考内容,主要考查用待定系数法求一次函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样。
第五章二元一次方程组本章的主要内容包括:二元一次方程(组)及其有关概念,二元一次方程(组)的解法,二元一次方程与一次函数的关系,运用二元一次方程(组)分析和解决实际问题.其中解二元一次方程(组)的基本思路和具体方法是本章的重点内容.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和升华.联系一元一次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会方程是刻画现实世界的一个有效的数学模型。
北师大版八年级数学上册:4.1《函数》教学设计3
北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。
函数是数学中的一个重要概念,也是初中数学的核心内容之一。
通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。
二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。
但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。
三. 教学目标1.理解函数的概念,掌握函数的表示方法。
2.能够判断两个相关联的变量之间的关系是否为函数。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。
2.函数的表示方法。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。
2.实例教学法:通过具体的实例,使学生理解函数的表示方法。
3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。
2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考并回答问题,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。
通过具体的实例,让学生理解函数的表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初中数学八年级上册教材分析
摘自:《慈利县教师进修学校》
一、教材总体思路分析
1.本册书的主要内容有:实数、一次函数、二元一次方程组;勾股定理、图形的平移与旋转、四边形、位置的确定;数据的代表。
其中无理数的发现、实数系统的建立和函数概念是本学段知识的重点也是和难点,实数是进一步学习的基础;而函数以及函数思想与其他知识的广泛联系也是重心之一。
勾股定理及其逆定理是初等几何中最基本、最重要的定理之一。
通过拼、摆或图形的割、补,使得这一重要几何事实得以确认。
由于发现及证实它成立的方式非常多且富于变化,因此对学生有很大的吸引力。
《图形的平移与旋转》是新增加的内容,通过学习,可以把静止的图形看成是基本图形经过位移而得到,提供了对复杂图形进行分析的新视角,还可以对“几何变换”有直观的感受。
《位置的确定》从源头上突出了坐标法产生的思想,直角坐标系是实现坐标法的一种选择,建立坐标系把数轴拓展到平面,是数形结合与转化的桥梁。
“变化的鱼”以直观生动的形式加强了几何变换与坐标表示及坐标变化联系起来,从数与形两个方面感受图形变化的数学内涵。
在统计与概率领域,本册提供了刻画数据平均水平的三种量度,力图让学生掌握一定的数据分析的方法,更好地处理数据。
2.教材设计与内容的组织有如下考虑。
(1)无理数的发现可以从理论的角度引发,出现在勾股定理之前。
教科书遵循了人类认识数学的历史顺序,把勾股定理放在实数学习的前面,成为发现无理数的直观背景,自然地表明无理数存在的客观性,同时对无理数研究的必要性作出合理的解释。
实数集中的实数与数轴上的点一一对应并不像想像的那样容易被学生接受,说服的办法也是借助几何解释和理性思考。
这样处理须注意在学习勾股定理时,边长的数据应暂时在有理数范围内选取,在此两章学完之后,可以回过头来在实数范围内重新讨论勾股定理及其应用。
在我们讨论一个平方等于2的数时,发现它是一个无限不循环小数,进一步引出无理数的定义。
无理数概念的产生,同时也是对有理数概念的强调,应重视在现实背景中对实数运算意义的理解和应用,加强对估算的要求。
(2)先研究图形的平移和旋转,再进行四边形性质的探索,这样几何变换就不仅仅是一个具体的知识点,而且作为一个工具去研究几何图形(如平行四边形)的性质,增加了一个考察问题的视角。
在《图形的平移与旋转》一章中,通过观察和归纳,概括出变换的概念;通过操作和思考,探索出变换的相关性质;通过作图和图案设计体察复杂图形中部分与整体之间的关系;在下一章中通过探索四边形的性质加深对变换自身的理解,逐步形成结构性认识。
教学中突出其方法特性,充分发挥其数学教育价值。
(3)一次函数的学习放在二元一次方程组的前面,有两个好处:首先,可以使得学生有机会尝试借助图象研究函数特征的过程,以加深对函数意义的理解;其次,用函数的观点来认识和考察二元一次方程(方程组),给出方程的一种直观解释,而且从方法的角度更具有一般性和启发性,也体现了函数的运用。
教材中介绍了二元一次方
程组的图象解法,其主要价值不在于得到方程组的近似解,图象解法从整体上展示了方程组及其解的几何意义,揭示了图象方法的作用,这种思想方法对以后的高次方程、无理方程、超越方程及其解,求近似解以及求解不等式等方面有广泛应用。
教学中在学完这两章后应组织学生认真思考与总结。
(4)教科书还是从学生熟悉的平均数入手,通过变式引入加权平均的概念,再通过实际生活中的一个现象,揭示出不同的场合,可能需要不同的数据代表,因而引出了中位数和众数的概念,接着在实际运用中比较各个数据的代表数。
二、教学实施中应注意的几个问题
1.关注学生对数学知识的理解
本学期中实数系统的建立和函数概念的形成,对于八年级学生都具有挑战性。
对实数的理解是在学习了有理数的基础上进行的,首先应当清楚什么是有理数。
由勾股定理引发出一种新的数,这种新的“数”是客观存在的,如面积为2的正方形的边长a究竟是多少?这种新的数是什么,是怎样的?(提出明确的问题);通过计算列表探索a和面积的范围,a可能是有限小数吗?结合教材的“读一读”和“做一做”(思考做出判断的依据);通过开平方,开立方的学习感受到无理数(事实上是“非有理数”)有无穷多个;对实数的理解可以依托实数轴;反思总结(无理数的来源是直观的,而处理是理性的、数学化的)。
教学中应充分体现知识的发生过程,关注在知识发生过程中对知识的理解。
2.教学中要有准确的定位
教材重视情境设计、重视学生的数学活动,通过学生外在的行为表现关注他们在探索过程中思考什么,是怎样想的,关注在“做”中的内化。
只有了解和研究学生,才能切中要害进行有效的指导。
对教材作整体性分析,要抓准每一单元、每一课时的核心内容,作出准确的定位。
如学习《勾股定理》的目标,不仅是记住公式和结论,重点放在探索过程中对定理及其逆定理的理解,在数学活动中取得数学经验,积累探索问题的一般策略,在“拼图实验”中领悟方法的适用条件和方法的可靠性,还应感受方法的来源和原理。
学生获得的不仅是定理的内容,还获得了数学思考的经验。
知识是客观的、容易交流的,而经验是个人的,带有个性特征,后者也应纳入教学目标。
在《图形的平移与旋转》一章中,平移和旋转不仅仅是知识点,它们还是探索活动的工具和观察思考问题的视角。
把教学关注点引向觉察复杂图形、图案中部分(基本图形)与整体的结构关系上,提高视觉思维的能力和水平。
在《四边形性质探索》中再次提供这种活动的机会。
研究对象是直观的,但探索活动是对图形的分析和解释(以变换为工具),是理性的,蕴含着结论的正确性、合理性。
《数据的代表》的教学中,和其他统计内容的教学一样,应关注学生的统计活动,只是本册在统计活动中,最终的数学处理定位于“数据的代表数”上。
当然,这里的数,都是具体的数据,因此,教学中应关注现实情境的挖掘,呈现一些现实的、有一定教育价值的情境。
对于几个不同的代表数,要求学生领会其意义,了解各自的特点,并能根据具体情况选择使用即可。