高考数学二轮复习 第二部分 专题六 统计与概率 6.3.2 随机变量及其分布优质课件 理

合集下载

2012数学二轮复习课件 随机变量及其分布

2012数学二轮复习课件 随机变量及其分布

2.常见的离散型随机变量的分布
(1) ห้องสมุดไป่ตู้点分布
分布列为(其中0 < p < 1): ξ 0 1 P 1-p p
( 2 ) 二项分布在n次独立重复试验中,事件A发生的
次数ξ 是一个随机变量,其所有可能取的值为0,1, 2,
k 3, ,n,并且P (ξ = k ) = Cn p k q n − k (其中k = 0,1, 2, , … …
( 3) 记“甲同学在一次数学竞赛预赛中成绩高于80分
6 3 为事件A,则P( A) = = . 8 4 3 随机变量ξ的可能取值为0、 2 3,且ξ ~B(3, ), 1、、 4 k 3 k 1 3− k 所以P(ξ = k ) = C3 ( ) ( ) ,k = 0,1, 2,3. 4 4 所以随机变量ξ的分布列为:
甲 9 8 4 5 8 2 3 1 7 8 9 0 0 0 2 乙 5 3 5 5
( 2 ) 派甲参加比赛比较合适.理由如下:
1 x甲 = (70 × 2 + 80 × 4 + 90 × 2 + 8 + 9 + 1 + 2 + 4 + 8 + 3 + 8 5) = 85, 1 x乙 = (70 ×1 + 80 × 4 + 90 × 3 + 5 + 0 + 0 + 3 + 5 + 0 + 2 + 8 5) = 85, 1 2 2 2 2 s = [( 78 − 85 ) + ( 79 − 85 ) + ( 81 − 85 ) + ( 82 − 85 ) + 8
(1) 设甲、乙两人同时承担H 任务为事件A,

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文

高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
概率与统计
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√

古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系


二 重点、热点分析
重点、热点、规律方法(一)二项式定理

1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义

高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】

高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】
栏目 导引
专题六 概率与统计
强 化 训 练 2 (2013·成 都 市 诊 断 性 检 测 ) 已 知 集 合 {(x ,
2x+y-4≤0 y)|x+y≥0 }表示的平面区域为 Ω,若在区域 Ω 内任取一
x-y≥0
点 P(x,y),则点 P 的坐标满足不等式 x2+y2≤2 的概率为( A )
栏目 导引
专题六 概率与统计
【解】因玩具是均匀的,所以玩具各面朝下的可能性相等, 出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1), (2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5), (5,1),(5,2),(5,3),(5,5)共 16 种. (1)事件“m 不小于 6”包含其中(1,5),(2,5),(3,5),(3, 3),(5,1),(5,2),(5,3),(5,5)共 8 个基本事件,所以 P(m≥6)=186=12.
3π A. 32
3π B. 16
π
π
C.32
D.16
栏目 导引
专题六 概率与统计
【解析】 作出不等式组
2x+y-4≤0 x+y≥0 表示的平面区域,如图三角形 x-y≥0
ABO,且有
A(43,
43),B(4,-4),所以 S△ABO=12×4 3 2×4 2=136,点 P 的坐
标满足不等式 x2+y2≤2 的面积 S 扇形=14×π ( 2)2=π2 ,
3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道 乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.
栏目 导引
专题六 概率与统计
【解】(1)将 4 道甲类题依次编号为 1,2,3,4;2 道乙类 题依次编号为 5,6.任取 2 道题,基本事件为:{1,2},{1, 3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2, 6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共 15 个,而且这些基本事件的出现是等可能的.用 A 表示“都 是甲类题”这一事件,则 A 包含的基本事件有{1,2},{1, 3},{1,4},{2,3},{2,4},{3,4},共 6 个,所以 P(A) =165=25. (2)基本事件同(1),用 B 表示“不是同一类题”这一事件, 则 B 包含的基本事件有{1,5},{1,6},{2,5},{2,6}, {3,5},{3,6},{4,5},{4,6},共 8 个,所以 P(B)=185.

高三数学二轮复习-第2讲概率、随机变量及其分布列专题攻略课件-理-新人教版

高三数学二轮复习-第2讲概率、随机变量及其分布列专题攻略课件-理-新人教版
ξ=50 表示所取 4 球为 3 白 1 红(3×10+1×20=50), ∴P(ξ=50)=CC33·C47 14=345, ξ=60 表示所取 4 球为 2 白 2 红(2×10+2×20=60), ∴P(ξ=60)=CC23·C47 24=1385, ξ=70 表示所取 4 球为 3 红 1 白(3×20+1×10=70), ∴P(ξ=70)=CC34·C47 13=1325, ξ=80 表示所取 4 球全为红球(4×20=80), ∴P(ξ=80)=CC4447=315.
热点突破探究
典例精析
题型一 几何概型
例1 如图,正方形 OABC 的边长为 2. (1)在其四边或内部取点 P(x,y),且 x,y∈Z,则事 件“|OP|>1”的概率是__________; (2)在其内部取点 P(x,y),且 x,y∈R,则事件“△ POA, △ PAB,△ PBC,△ PCO 的面积均大于23”的概率是 __________.
1≤x≤-23.
设事件
A

π cos2x
的值介于
0
到12之间,则事件
A
发生
2
的区域长度为23. ∴P(A)=32=13.
题型二 古典概型
例2 一个袋中装有大小相同的10个球,其 中红球8个,黑球2个,现从袋中有放回地取球, 每次随机取1个. (1)求连续取两次都是红球的概率; (2)如果取出黑球,则取球终止,否则继续取球, 直到取出黑球,求取球次数不超过3次的概率.
法二:(间接法):从 6 个点中任取三个点有 C36种方 法.其中在一条直线上的三点有(C34+1)个. 构成三角形个数为 C36-C43-1, 故所求概率为 P=C36-CC3634-1=34.
答案:34

高考理科数学二轮专题提分教程全国课件概率随机变量及其分布列

高考理科数学二轮专题提分教程全国课件概率随机变量及其分布列

方差
描述随机变量取值的离散程度,即各数值与其 均值之差的平方的平均值。
标准差
方差的算术平方根,用于衡量数据的波动大小。
协方差与相关系数
协方差
衡量两个随机变量的总体误差,反映两 个变量变化趋势是否一致。
VS
相关系数
将协方差标准化后的结果,消除了量纲影 响,更客观地反映两个变量间的线性相关 程度。
矩、峰度和偏度
自助法
02
03
贝叶斯区间估计
通过对样本进行重复抽样来模拟 总体分布,进而得到参数的区间 估计。
在贝叶斯统计框架下,利用先验 信息和样本信息计算后验分布, 进而得到参数的区间估计。
假设检验基本原理和步骤
01
基本原理:在总体分布未知的情况下,通过构造检验统计 量并根据其分布进行决策,判断原假设是否成立。
概率的定义
概率是描述随机事件发生的可能性的 数值,其值介于0和1之间。
概率的性质
概率具有非负性、规范性(所有可能 事件的概率之和为1)、可加性(互 斥事件的概率之和等于它们各自概率 的和)。
条件概率与独立性
条件概率
在已知某个事件发生的条件下,另一个事件发生的概率。条件概率的计算公式为P(A|B) = P(AB) / P(B),其中 P(AB)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
性质
边缘分布律/密度函数也具有非负 性和归一性,且可以由联合分布 律/密度函数求得。
条件分布律/密度函数
条件分布律
对于离散型二维随机变量,其条 件分布律是指在已知其中一个随 机变量取某个值的条件下,另一 个随机变量取某个值的概率。
条件密度函数
对于连续型二维随机变量,其条 件密度函数是指在已知其中一个 随机变量在某个区间内取值的条 件下,另一个随机变量在某个点 取值的概率。

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

高中数学高考二轮复习随机变量及其分布列教案(全国专用)

1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。

高考数学大二轮复习专题六统计与概率6.3.2随机变量及其分布课件理

高考数学大二轮复习专题六统计与概率6.3.2随机变量及其分布课件理
出,A地区用户满意度评分的平均值高于B地区用户满意度评分的
平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比
较分散.
-4-
考向一
考向二
考向三
考向四
(2)记CA1表示事件:“A地区用户的满意度等级为满意或非常满意”;
CA2表示事件:“A地区用户的满意度等级为非常满意”;
CB1表示事件:“B地区用户的满意度等级为不满意”;
6.3.2 随机变量及其散布
考向一
考向二
考向三
考向四
根据频率求概率的综合问题
例1某公司为了解用户对其产品的满意度,从A,B两地区分别随机
调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
所以
P(A)=C32
1 22
3 3
=
2
.
9
(2)X 的可能取值为 2 000,2 200,2 400,2 600,2 800,3 000,3
1
6
1
6
200,P(X=2 000)= × =
1
1
1
1
2
1
,P(X=2
36
1
6
1
3
1
9
200)= × ×2= ,P(X=2
1
1
1
400)=6 × 3 ×2+3 × 3 = 9,P(X=2 600)=3 × 3 ×2+6 ×
-20-
考向一
考向二
考向三
考向四
类型2 超几何散布
例3(202X北京东城一模,理16)改革开放40年来,体育产业蓬勃发

高中 概率、随机变量及其概率分布教案 知识点+例题+练习

高中 概率、随机变量及其概率分布教案 知识点+例题+练习

教学过程(4)性质①E(aξ+b)=aE(ξ), V(aξ+b)=a2V(ξ);②X~B(n, p), 则E(X)=np, V(X)=np(1-p);③X~两点分布, 则E(X)=p, V(X)=p(1-p).考点一古典概型与几何概型例1已知关于x的一元二次函数f(x)=ax2-4bx+1.(1)设集合P={1,2,3}和Q={-1,1,2,3,4}, 分别从集合P和Q中随机取一个数作为a和b, 求函数y=f(x)在区间[1, +∞)上是增函数的概率;(2)设点(a, b)是区域内的随机点, 求函数y=f(x)在区间[1, +∞)上是增函数的概率.(1)解答有关古典概型的概率问题, 关键是正确求出基本事件总数和所求事件包含的基本事件数, 这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时, 要准确理解基本事件的构成, 这样教学效果分析教学过程(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时, 应考虑使用几何概型求解.(1)(2013·江苏)现有某类病毒记作XmYn, 其中正整数m, n(m≤7, n≤9)可以任意选取, 则m, n都取到奇数的概率为________.(2)(2013·四川)节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时刻相差不超过2秒的概率是________.考点二相互独立事件和独立重复试验例2 甲、乙、丙三个同学一起参加某高校组织的自主招生考试, 考试分笔试和面试两部分, 笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取), 两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析, 甲、乙、丙三个同学能通过笔试的概率分别是0.6.0.5.0.4, 能通过面试的概率分别是0.6.0.6.0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后, 至少有一人被该高校预录取的概率.教学效果分析概率模型的应用, 需熟练掌握以下常考的五种模型: (1)基本事件的发生具有等可能性, 一般可以抽象转化为古典概型问题, 解决古典概型问题的关键是分清基本事件个数n与事件A中包含的基本事件个数m;(2)与图形的长度、面积或体积有关的概率应用问题, 一般可以应用几何概型求解, 即随机事件A的概率可用“事件A包含的基本事件所占图形的度量(长度、面积或体积)”与“试验的基本事件所占图形的度量(长度、面积或体积)”之比表示;(3)两个事件或几个事件不能同时发生的应用问题, 可转化为互斥事件来解决, 解决这类问题的关键是分清事件是否互斥;(4)事件是否发生相互不影响的实际应用问题, 可转化为独立事件的概率问题, 其中在相同条件下独立重复多次的可转化为二项分布问题, 应用独立事件同时发生的概率和二项分布公式求解;(5)有关平均值和稳定性的实际应用问题, 一般可抽象为随机变量的期望与方差问题, 先求出事件在各种情况下发生的概率, 再应用公式求随机变量的期望和方差.课堂练习1. 如图, 用K、A1.A2三类不同的元件连结成一个系统. 当K正常工作且A1.A2至少有一个正常工作时, 系统正常工作. 已知K、A1.A2正常工作的概率依次为0.9、0.8、0.8, 则系统正常工作的概率为________.2. 某保险公司新开设了一项保险业务, 若在一年内事件E发生, 该公司要赔偿a元. 设在一年内E发生的概率为p, 为使公司收益的期望值等于a的百分之十, 公司应要求顾客交保险金为________元.3.甲乙两支球队进行总决赛, 比赛采用七场四胜制, 即若有。

随机变量及其分布复习课件.ppt

随机变量及其分布复习课件.ppt

F(x) x f(t)dt,
则称X为连续型随机变量,其中f(x)称为X的概率 密度函数,简称概率密度。
(II)概率密度的性质
( 1 ) 非 负 性 : f( x ) 0 , x R .
(2)规 范 性 :f(x)dx1. 4
( 3 )对 于 任 意 实 数 a b, 有
P{aXb}abf(x)dx . F(b)F(a)
求这个区间的端点,分二种情形讨论之:
17
(1)区间的一个端点是无穷大,即已知P(X < x) = p1 或P(X > x) = p2,求x .
利用 或
然后反查标准正态分布表,即可求出x (2)区间关于μ对称,不妨设为(μ−a,μ+a),而 P(μ−a<X<μ+a) = p,求a
18
四.随机变量的函数的分布 1.离散型随机变量函数的分布
几种重要的 离散型分布
均指 正 匀数 态 分分 分 布布 布
二项分布的 正态近似
二项分布的 泊松近似
二项 分布
泊几
松何
分分 布 布 21
例题选讲
例1 甲、乙、丙3人进行独立射击 每人的命中率依 次为03 04 06 设每人射击一次 试求3人命中总 数之概率分布律 分析 求离散型随机变量的概率分布的步骤为:(1) 写
23
例2 投掷一个均匀骰子n 次,求(1)恰好得到一个6点的概 率;(2)至少得到一个6点的概率;(3)为了以0.5的概率保 证至少得到一个6点,则至少要投掷几次?
所以至少要投掷4次.
24
例3 设 X 的分布律为 X 1012 1111 p 4444
求 Y X 2 的分布律 .
解 Y 的可能值为 (1)2, 02,12, 22; 即 0, 1, 4.

高考数学二轮复习 专题六 概率与统计 第2讲 随机变量及其分布课件 理

高考数学二轮复习 专题六 概率与统计 第2讲 随机变量及其分布课件 理

所以X的分布列为
X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04
(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19. (3)记Y表示2台机器在购买易损零件上所需的费用(单位:元). 当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200 +2×500)×0.08+(19×200+3×500)×0.04=4 040.
P(AiCj)=P(Ai)P(Cj)=15×18=410,i=1,2,…,5,j=1,2,…, 8.设事件 E 为“该周甲的锻炼时间比乙的锻炼时间长”,由 题意知,E=A1C1∪A1C2∪A2C1∪A2C2∪A2C3∪A3C1∪A3C2 ∪A3C3∪A4C1∪A4C2∪A4C3∪A5C1∪A5C2∪A5C3∪A5C4. 因此 P(E)=P(A1C1)+P(A1C2)+P(A2C1)+P(A2C2)+P(A2C3) +P(A3C1)+P(A3C2)+P(A3C3)+P(A4C1)+P(A4C2)+P(A4C3) +P(A5C1)+P(A5C2)+P(A5C3)+P(A5C4)=15×410=38. (3)μ1<μ0.
解 (1)由柱状图并以频率代替概率可得,一台机器在三年 内需更换的易损零件数为8,9,10,11的概率分别为0.2, 0.4,0.2,0.2,从而 P(X=16)=0.2×0.2=0.04; P(X=17)=2×0.2×0.4=0.16; P(X=18)=2×0.2×0.2+0.4×0.4=0.24; P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24; P(X=20)=2×0.2×0.4+0.2×0.2=0.2; P(X=21)=2×0.2×0.2=0.08; P(X=22)=0.2×0.2=0.04;

(统考版)2023高考数学二轮专题复习:概率、随机变量及其分布列课件

(统考版)2023高考数学二轮专题复习:概率、随机变量及其分布列课件

归纳总结
解决概率、统计与其他知识的综合
角度3 概率、统计与数列的交汇 例 6 第24届冬奥会于2022年在中国北京和张家口举行,届时,北京 将成为第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会以及
亚洲运动会三项国际赛事的城市.在某次滑雪表演比赛中,抽取部分 参赛队员的分数(得分取正整数,满分为100分)作为样本(样本容量为n) 进行统计,并按照[60,70),[70,80),[80,90),[90,100](已知分 数 在 [90 , 100] 内 的 人 数 为 3) 的 分 组 作 出 如 图 所 示 的 频 率 分 布 直 方 图.据此解答如下问题:
例 1 (1)[2022·全国甲卷]从分别写有1,2,3,4,5,6的6张卡片中
无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概
率为( )
A.15
B.13
C.25
D.23
答案:C
解析:从6张卡片中任取2张的取法有(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,
[100,150)
A试验田/份
3
B试验田/份
6
[150,200) 6 10
[200,250] 11 4
把千粒质量不低于200克的大豆视为籽粒饱满,否则视为籽粒不饱 满.
(1)判断是否有97.5%的把握认为大豆籽粒饱满与播种日期有关?
(2)从A,B两块实验田中各抽取一份大豆,求抽取的大豆中至少有
一份籽粒饱满的概率;
且所发信息都能收到. (1)求辩论队员甲收到正队长或副队长所发比赛通知信息的概率; (2)记辩论队收到正队长或副队长所发比赛通知信息的队员人数为随
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档