催化剂基础详解
催化剂知识点总结
催化剂知识点总结一、催化剂的定义催化剂的定义是指一种物质,在化学反应中能够降低反应的活化能,从而加速反应速率,同时在反应结束后能够保持不变。
催化剂通过提供一个特定的反应路径,使得反应能够以更低的能量代价进行,从而加速反应速率。
催化剂在反应结束后与反应物质和生成物质之间不存在化学变化,因此可以在反应结束后继续参与其他化学反应。
二、催化剂的分类根据催化剂的性质和作用机制,通常可以将催化剂分为以下几类:1. 催化剂的形态分类根据催化剂的形态,可以将催化剂分为固体催化剂、液体催化剂和气体催化剂。
固体催化剂是最常见的一种,其具有良好的稳定性和高效的重复使用率,在工业生产中得到广泛的应用。
液体催化剂一般应用在有机合成等领域,而气体催化剂则常用于气相反应。
2. 催化剂的化学成分分类根据催化剂的化学成分,可以将催化剂分为金属催化剂、非金属催化剂和生物催化剂。
金属催化剂是应用最为广泛的一类,其具有良好的活性和选择性,特别是在有机合成反应中得到了广泛应用。
非金属催化剂则包括了氧化物、硫化物、氮化物等多种化合物,这些化合物具有比金属催化剂更多的表面活性位点和更丰富的表面化学特性,因此在某些催化反应中具有更好的催化性能。
生物催化剂包括了酶、酶模拟剂等,在生物技术领域得到了广泛应用。
3. 催化剂的作用机制分类根据催化剂的作用机制,可以将催化剂分为酸催化剂、碱催化剂、氧化催化剂、还原催化剂等各种类型。
酸催化剂和碱催化剂是最常见的两类催化剂,它们通过提供H+或OH-离子来促进反应进行。
氧化催化剂和还原催化剂则包括了金属氧化物、过渡金属催化剂等,它们通过氧化还原反应来催化反应进行。
三、催化剂的作用机制催化剂加速反应速率的作用机制一般包括以下几种:1. 提供活化能的降低催化剂可以通过提供一个特定的反应路径,使得反应能够以更低的能量代价进行,从而降低反应的活化能。
这种降低活化能的机制是催化剂加速反应速率的主要原因。
2. 提供反应位点催化剂通常具有一些特定的表面活性位点,它们可以吸附反应物质,并且使得反应物质之间更容易发生反应。
有机化学基础知识点整理有机催化剂的种类与应用
有机化学基础知识点整理有机催化剂的种类与应用有机化学基础知识点整理有机催化剂的种类与应用有机催化剂是在有机化学反应中起到催化作用的一类化合物。
它们能够提高反应速率,降低反应活化能,且在反应结束时可通过简单分离和回收的方式得到。
有机催化剂的种类繁多,根据其化学结构和催化机理的不同,可以分为多种类型,如酸催化剂、碱催化剂、金属有机催化剂等。
本文将对有机催化剂的种类及其应用进行整理。
1. 酸催化剂酸催化剂是指带有正电荷或能够释放出H+离子的化合物,如强酸、弱酸、质子酸等。
酸催化剂常用于烯烃的加成、脱水、酯化、酯醇化和酮醇化等反应中。
其中,质子酸催化剂如硫酸、磷酸等在烯烃加成反应中起到重要作用,通过产生碳正离子中间体,促进加成反应的进行。
2. 碱催化剂碱催化剂是指带有负电荷或能够释放出OH-离子的化合物,包括强碱和弱碱。
碱催化剂常用于酯的水解、酯的缩合以及Michael加成等反应中。
例如,氢氧化钠(NaOH)常用于酯的水解反应中,通过提供OH-离子促使水解反应进行。
3. 类金属有机催化剂类金属有机催化剂是指由过渡金属与有机配体形成的化合物。
这类催化剂具有活泼的金属中心和配体的协同作用,能够促进氧化、还原、羰基化、氢化和羟基化等反应。
常见的类金属有机催化剂包括钯催化剂、铜催化剂和铁催化剂。
例如,钯催化剂通常用于碳-碳键形成的反应中,如Suzuki偶联反应和Heck偶联反应。
4. 其他有机催化剂除了上述几类常见的有机催化剂外,还存在着许多其他类型的催化剂。
例如,Lewis酸催化剂能够通过与反应物中的电子云形成配位键而参与化学反应。
还有氧化剂催化剂、还原剂催化剂和硅胺催化剂等。
有机催化剂的应用广泛,涵盖了有机合成中各个领域。
例如,酸催化剂常用于脱水反应、酯化反应和酮醇化反应等有机合成中。
碱催化剂常用于醇酸酯化反应、酯的水解反应和Michael加成等反应中。
类金属有机催化剂在碳-碳键形成的反应中扮演着重要角色,如钯催化的偶联反应和铜催化的氧化反应。
催化剂基础知识
工艺基础知识1.什么是催化剂?催化作用的特征是什么?答:在化学反应中能改变反应速度而本身的组成和重量在反应前后保持不变的物质叫催化剂。
加快反应速度的称正催化剂;减慢的称负催化剂。
通常所说的催化剂是指正催化剂。
催化作用改变了化学反应的途径。
在反应终了,相对于始态,催化剂虽然不发生变化,但却参与了反应,例如形成了活化吸附态,中间产物等,因而使反应所需的活化能降低。
催化作用不能改变化学平衡状态,但却能缩短了达到平衡的时间,在可逆反应中能以同样的倍率提高正逆反应的速度。
催化剂只能加速在热力学上可能发生的反应,而不能加速热力学上不可能发生的反应。
催化作用的选择性。
催化剂可使相同的反应物朝不同的方向反应生成不同的产物,但一种催化剂在一定条件下只能加速一种反应。
例如一氧化碳和氢气分别使用铜和镍两种催化剂,在相应的条件下分别生成甲醇和甲烷+水。
一种新的催化过程,新的催化剂的出现,往往从根本上改变了某种化学加工过程的状况,有力推动工业生产过程的发展,创造出大量财富,在现代的无机化工、有机化工、石油化工和新兴的海洋石油化工工业中这样的例子不胜枚举。
在与人类的生存息息相关的诸多方面如资源的充分利用,提高化学加工过程的效率,合成具有特定性能的产品,有效地利用能源,减少和治理环境污染以及在生命科学方面,催化作用具有越来越重大的作用。
2.什么是活化能?答:催化过程之所以能加快反应速度,一般来说,是由于催化剂降低了活化能。
为什么催化剂能降低活化能呢?关键是反应物分子与催化剂表面原子之间产生了化学吸附,形成了吸附化学键,组成表面络合物,它与原反应物分子相比,由于吸附键的强烈影响,某个键或某几个键被减弱,而使反应活化能降低很多。
催化反映中的活化能实质是实现上述化学吸附需要吸收的能量。
从一般意义上来说,反应物分子有了较高的能量,才能处于活化状态发生化学反应。
这个能量一般远较分子的平均能量为高,两者之间的差值就是活化能。
在一定温度下,活化能愈大,反应愈慢,活化能愈小,反应愈快。
催化剂基础及应用
催化剂基础及应用催化剂是一种能够加速化学反应速率的物质。
它可以在反应过程中提供一个新的反应路径,从而降低活化能,使反应更容易进行。
催化剂本身在反应中并不消耗,因此可以反复使用。
由于催化剂的重要性,它在各个领域都有广泛的应用。
催化剂的基础知识包括以下几个方面:1. 催化剂的种类:催化剂可以分为两类,即均相催化剂和异相催化剂。
均相催化剂与反应物处于相同的物理状态,如气体或液体。
而异相催化剂与反应物处于不同的物理状态,如固体催化剂与气体或液体反应。
常见的均相催化剂有氧化剂、还原剂和酸碱催化剂;常见的异相催化剂有金属催化剂和固体酸碱催化剂。
2. 催化剂的作用机制:催化剂通过提供新的反应路径,降低活化能,使反应更容易进行。
它可以提供活化位点,吸附反应物,促使反应物之间的键断裂和新键形成。
催化剂还可以改变反应物的电子结构,增强反应的选择性。
3. 催化剂的选择:选择合适的催化剂对于提高反应效率和选择性非常重要。
催化剂的选择要考虑反应类型、反应条件、催化剂的活性和稳定性等因素。
此外,还需要考虑催化剂的成本、毒性和环境友好性。
催化剂在许多领域都有广泛的应用,包括化学工业、能源生产和环境保护等。
在化学工业中,催化剂被广泛应用于合成反应中。
例如,合成氨的哈伯-博士过程就是通过使用铁催化剂将氮气和氢气转化为氨。
此外,催化剂还常用于合成有机化合物,如合成醇、酮和酯等。
在能源生产中,催化剂的应用也非常重要。
例如,汽车尾气中的有害气体(如一氧化碳、氮氧化物等)可以通过催化剂转化为无害的氮气、二氧化碳和水。
此外,催化剂还可以用于石油加工、天然气转化和燃料电池等领域。
在环境保护中,催化剂的应用可以减少有害物质的排放。
例如,催化剂可用于净化废水中的有机物和重金属离子。
此外,催化剂还可以用于大气污染物的净化,如将二氧化硫转化为硫酸等。
催化剂的应用还延伸到生物领域。
生物催化剂,即酶,是生物体内的催化剂,能够加速生物反应,如酶解、氧化和还原等。
催化基础知识普及
催化基础知识普及氧物种为了认识催化氧化反应的规律性,了解作为反应物之一的氧和氧化物催化剂中的氧在表面上的存在形式和在反应中的作用,无疑是我们关注的问题之一。
(1)氧吸附态氧在催化剂表面上的吸附极其复杂,有分子形式吸附的缔合吸附和解离吸附,且氧原子可以进入金属晶格内部,生成表面氧化物。
一般在氧化物上主要存在的氧物种有:分子氧O2、分子吸附氧O2-、原子吸附氧O-、表面晶格氧O2-以及体相晶格氧O2-。
相互转化关系:分子氧O2<——>分子吸附氧O2-<——>原子吸附氧O-<——>表面晶格氧O2-更为具体:O2(g) <——>O2(s) <——>O2-(s) <——>O22-(s) <——>2O-(s) <——>2 O2-(s)活性O-(s) >O22-(s)> O2-(s)(2)氧物种表征现在普遍认为在催化剂表面上氧的吸附形式主要有:电中性的氧分子物种(O2)ad和代负电荷的氧离子物种(O2-<(2为下标>分子吸附氧、O-原子吸附氧、O2-<(2为上标>晶格氧<包括表面晶格氧和体相晶格氧>),这些氧物种可以采用电导、功函、ESR以及化学方法给与测定。
以分子氧形式进行化学吸附时,氧物种的电导不变,而以离子氧形式进行化学吸附时,常常伴以很明显的电导变化,并且由于在表面上形成一负电荷层和靠近晶体表面层形成正的空间电荷,使功函随之增加,所以可借助电导和功函的测量容易区别可逆吸附的分子氧和不可逆吸附的离子氧。
对于离子氧O-和O2-(2为下标,分子吸附氧),可以借助两者在ESR谱上的不同信号而加以区别。
更为准确的方法是:核自旋I=5/2的同位素17O,其在吸附时,ESR谱有精细结构。
如吸附态为O-物种,其精细结构由6条线组成(我在测CeO2表面氧时,发现奇怪现象:550度焙烧后的氧可以观测到典型的O-、O2-谱线;但是650度焙烧的氧出现6条谱线,我只是常规的ESR,没有采用同位素,为何也出现6条谱线,晕!!!),而吸附态为O2-物种时,由于未成对电子和两个17O核作用,精细结构为11条谱线。
《工业催化基础》课件(第2章 催化剂与催化作用的基础知识)2015-2
(1)按反应物相分:
多相催化: 指催化剂与反应物处于不同物相发生的催化反应。由气体反应物与固体催 化剂组成的反应体系称之为气固相催化反应,如乙炔和氢气在负载钯的固 体催化剂上加氢生成乙烯的反应。由气态反应物与液相催化剂组成的反应 体系称为气液相反应,如乙烯与氧气在PdCl2-CuCl2水溶液催化剂作用下氧 化生成乙醛的反应。由液态反应物与固体催化剂组成的反应体系称为液固 相催化反应,如由离子交换树脂等固体酸催化的醇醛缩合反应或醇的脱水 反应。由液态和气态两种反应物与固体催化剂组成的反应体系称为气液固 三相催化反应,如苯在雷尼镍催化剂上加氢生成环已烷的反应。 均相催化: 指催化剂与反应物处于相同物相发生的催化反应。如果催化剂和反应物均 为气相的催化反应称为气相均相催化反应,如SO2与O2在催化剂NO作用下 氧化为SO3的催化反应;如果反应物和催化剂均为液相的催化反应称为液相 均相催化反应,如乙酸和乙醇在硫酸水溶液催化作用下生成乙酸乙酯的反 应。 化工资源有效利用国家重点实验室 7
是催化剂与反应物分子间通过电子转移,形成活性中间物种进行的催化反 应。如在金属镍催化剂上的加氢反应,氢分子均裂与镍原子产生化学吸附, 在化学吸附过程中氢原子从镍原子中得到电子,以负氢金属键键合。负氢 金属键合物即为活性中间物种,它可进一步进行加氢反应,反应式如下:
H H H + M M M H M
这二种分类方法反映了催化剂与反应物分子作用的实质,但由于催化作用的复杂性 ,对有些反应难以将二者绝然分开,有些反应又同时兼备二种机理, 酸碱型及氧化 还原型催化反应比较如下表:
第一节 催化剂的特征
3、催化剂对反应具有选择性
催化剂具有选择性包合两个含义:其一是不同的反应,应该选择不同的催 化剂;其二是同样的反应选择不同的催化剂,可获得不同的产物。例如, 以合成气(CO+H2)为原料在热力学上可以沿着几个途径进行反应,但由 于使用不同催化剂进行反应,就得到下表给出的不同产物。
第二章 催化剂基础
学习目标
1 2 3
明确催化剂的 基本特征、化 学组成、宏观 物理性质和催 化作用的基本 原理。
重点掌握活性、 选择性、中毒 与失活等催化 剂的基本性能。
掌握多相固体 催化剂的基本 组成,以及比 表面积、比孔 容积、密度等 基本概念。
主要内容
1 催化剂若干术语和基本概念 催化剂的化学组成和物理结构 催化剂的宏观物理性质
(2)均相配合物催化剂
半导体TiO2和配 合物Ru(bpy)2+
第二节 催化剂的化学组 成和物理结构
三、生物催化剂(酶)
第三节 催化剂的宏观物 理性质
形状和大小
第三节 催化剂的宏观 物理性质
第五节 催化剂载体
e.与活性组分作用形成活性更高的化合物 f.增加催化剂的抗毒能力 g.节省活性组分用量,降低催化剂成本 三、几种常用的催化剂载体 1.氧化铝载体 2.分子筛载体 3.活性炭载体
Diagram
Title
Add your text
ThemeGallery
第三节 催化剂的宏观物 理性质
四、机械强度 (1)压碎强度 均匀施加压力到成型催化剂颗粒压裂为止 所承受的最大负荷,称为催化剂压碎强度。 (2)磨损性能 五、抗毒稳定性 评价催化剂抗毒稳定性的方法:1)2)3) 六、密度 堆密度、颗粒密度、真密度(骨架密度)
第一节 催化剂若干术语 和基本概念
(2)选择性 S=
100% 某一关键反应物A已转化的量(mol)
生成目的产物B的量生成产物不同。
举例: 环己烯 →C4H6 + C2H4 →C6H6 (苯) + 2H2 →C6H6 (苯) + 2C6H12 →C6H6 (苯) + 2H2O →裂解氧化物混合产物 800℃, 无催化剂 >300℃, Pd <<300℃, Pd <<300℃, O2, Pd 400℃, O2
第一章 催化剂基础知识
复杂命名法:
类别代号+(被引进号)+特性代号+序列代号 +形代号(Q、H、Y)+还原(-H)+基本名称 如:B(T)203Q-H型低温变换催化剂
1.4 催化剂的化学组成和结构
以多相固体催化剂为例 ,其一般由如下几部分组成
多相固体催化剂
主催化剂 共催化剂 助催化剂 载体
天然矿物 合成产物
1.3.2 催化剂的分类
氧化催化剂 按催化单元反应: 加/脱氢催化剂
聚合催化剂
石油炼制催化剂 无机化工(化肥工业)催化剂 按工业类型: 有机化工(石油化工)催化剂 环境保护催化剂 其他催化剂
中国工业 催化剂分类
*酸性催化剂种类
1.液体酸 均相反应:H2SO4、HF、HNO3、H3PO4、H3BO3… 用于:酯化反应,烷基化反应
按反应体系物相均一性:
多相催化剂(多为固体) 均相 酶催化剂
酸-碱性催化剂 按作用机理: 氧化-还原型催化剂
配合型催化剂 双功能催化剂
1.3.2 催化剂的分类
按元素及化合态:
金属催化剂:Fe、Co、Ni、Pt等 氧化物或硫化物催化剂: 酸、碱、盐催化剂 金属有机化合物
按来源:
非生物催化剂 生物催化剂
1催化剂制备与表征催化剂制备与表征催化剂基础知识催化剂基础知识催化剂的开发催化剂的开发催化剂制备方法催化剂制备方法催化剂表征技术催化剂表征技术一催化剂基础知识一催化剂基础知识工业催化剂的发展简史工业催化剂的发展简史催化剂在经济上的地位和作用催化剂在经济上的地位和作用催化剂的定义分类和命名催化剂的定义分类和命名催化剂的相关术语催化剂的相关术语催化剂的化学组成和物理结构催化剂的化学组成和物理结构催化剂的宏观物理性质催化剂的宏观物理性质11工业催化剂的发展简史工业催化剂的发展简史萌芽时期萌芽时期20世纪以前世纪以前奠基时期奠基时期20世纪初世纪初大发展时期大发展时期20
催化剂基础必学知识点
催化剂基础必学知识点
以下是催化剂基础知识点的一些必学内容:
1. 催化剂的定义:催化剂是通过降低化学反应活化能,促进反应速率
的物质。
催化剂通常不会在反应中被消耗,可循环使用。
2. 催化剂的分类:催化剂可分为均相催化剂和异相催化剂。
均相催化
剂与反应物处于相同的物理状态,而异相催化剂与反应物处于不同的
物理状态,如固体催化剂与气体或液体反应物。
3. 催化剂作用原理:催化剂通过提供反应所需的活化能路径,降低反
应的活化能,从而加速反应速率。
催化作用可以通过等温吸附、表面
反应、脱附等步骤进行。
4. 活性位点和选择性:催化剂表面上的活性位点是反应发生的关键位置,能够吸附反应物并促使反应发生。
催化剂可以具有选择性,使特
定的反应路径成为优势途径。
5. 催化剂的性质:催化剂的性质包括化学成分、晶体结构、表面吸附
性能、酸碱性、比表面积等。
这些性质会影响催化剂的活性和选择性。
6. 催化剂的毒性和失活:某些物质(称为毒物)能够降低催化剂的活性,甚至使其失活。
这可能是由于毒物的吸附阻塞了活性位点,或者
破坏了催化剂的晶体结构。
7. 催化剂的应用:催化剂广泛应用于化学工业、能源领域、环境保护
等方面,例如在催化裂化和加氢裂化中用于石油加工,以及在汽车尾
气净化系统中用于减少有害物质的排放。
以上是催化剂基础知识的一些必学内容,掌握这些知识将有助于理解催化剂的原理及应用。
催化剂与催化动力学基础
2
(5-28)
B. 如为可逆反应
A B
R S
假设机理同前,但控制步骤为:
A B
k1 R S
k2
(rA ) k1AB k2RS
k1K APAV KB PBV k2 KR PRV KS PSV
k1KAKB PAPB k2KR PR KS PS V2
k1K A KB PA PB k2 K R PR KS PS 1 K A PA KB PB K R PR KS PS
5.2 催化剂(固体)的物理特性
5.2.1 物理吸附和化学吸附
固体催化剂之所以能起催化作用,乃是由于它与各个 反应组份的气体分子或者是其中的一类分于能发生一 定的作用,而吸附就是最基本的现象。实验研究表明, 气体在固体表面上的吸附有两种不同的类型,即物理 吸附与化学吸附。它们两者之间的不同主要反映在吸 附作用力、吸附剂、吸附的选择性、吸附温度、吸附 速率及活化能、吸附热、吸附的可逆性等方面。
A2 2
ka
kd
2 A
ra ka PAV2 ka PA (1 A )2
rd
kd
2 A
ka PA (1 A )2
kd
2 A
A
1
K A PA K A PA
V Vm
(5-6) (5-7)
两种或两种以上吸附质被吸附的过程
A
kaA
A
kdA
B
kaB
B
kdB
raA rdA kaAPAV kdAA
ra
rd
ka
PA
A
kd
A
A
ka PA
A
1
bPA n
V Vm
两边取对数可得:
催化剂基础知识
催化剂基础知识催化剂是一种能够改变化学反应速率的物质,常被用于促进化学反应以提高生产效率和降低能源消耗。
理解催化剂的基础知识是学习化学工程、材料科学和许多其他相关领域的关键。
本文将介绍催化剂的定义、分类、工作原理和应用领域。
一、催化剂的定义和分类催化剂是指物质在参与化学反应过程中,通过提供反应路径上更低的能量过渡态而增加反应速率的物质。
催化剂本身在反应结束后可以回收并循环使用。
催化剂可以根据其物理和化学性质分类。
按照物理性质,催化剂可以分为固体、液体和气体催化剂。
固体催化剂是最常见的一类,包括金属、氧化物、硅胶等。
液体催化剂主要应用于液相反应,而气体催化剂则主要用于气相反应。
按照化学性质,催化剂可以分为酸性、碱性、氧化性和还原性催化剂。
酸性催化剂通常是固体酸或酸性离子液体,用于酸催化反应。
碱性催化剂可以是氧化物或碱性离子液体,用于碱催化反应。
氧化性催化剂可以将其他物质氧化为更高价态,而还原性催化剂则具有还原其他物质的能力。
二、催化剂的工作原理催化剂可以通过两种方式提高化学反应速率:一是提供一个更低的反应路径,使反应物之间的相互作用更容易发生;二是降低反应的活化能,使反应更容易发生。
催化剂的工作原理可以通过表面活性位的概念来解释。
活性位是指催化剂表面上具有化学反应活性的位置。
催化剂通过活性位与反应物之间形成键合,从而使反应物分子结构发生改变,形成中间物质并最终得到产物。
活性位的数量和表面吸附性能是决定催化剂活性的重要因素。
催化剂还可以通过提供一个更有利的反应环境来促进化学反应。
例如,一些酸性催化剂可以通过提供质子来增强酸催化反应。
其他催化剂可以通过吸附气体分子来降低反应物的浓度,从而增加反应速率。
三、催化剂的应用领域催化剂在许多工业领域都扮演着重要的角色。
以下是一些常见的应用领域:1. 石油炼制:催化剂被广泛用于石油加工中,如裂化、重整和脱硫等过程。
2. 化学合成:许多重要的化学合成反应都需要催化剂来实现高选择性和高产率。
化学有关催化剂知识点总结
化学有关催化剂知识点总结一、催化剂的基本概念催化剂是指在化学反应中能够改变反应速率,但自身在反应中不被消耗的物质。
催化剂可以降低化学反应的活化能,提高反应速率,促进产物构成,提高产物选择性,同时不改变反应的平衡常数。
催化剂广泛应用于化工生产、环境保护、能源转化等方面,对于提高生产效率、降低生产成本、减少环境污染等方面都具有重要的意义。
二、催化剂的作用原理催化剂能够改变反应的活化能,从而加速化学反应的速率。
催化剂降低了反应物的能量,使得反应物更容易转化为产物。
催化剂与反应物之间通过化学键的形式相互作用,从而促进反应的进行。
催化剂在反应结束后可以从反应体系中重新得到,因此只需一小部分的催化剂就能够参与大量的反应,具有很高的经济性。
三、催化剂的分类根据催化剂与反应物分子之间的相互作用形式可以将催化剂分为两大类:均相催化剂和异相催化剂。
均相催化剂与反应物分子在同一相中,常见的有氢气在液态或气态的条件下催化饱和脂肪烃生成脂肪烃。
异相催化剂与反应物分子处于不同的相中,催化剂常常以固体形式存在,反应物是气体或液体,例如催化裂化接触剂。
四、催化剂的性质催化剂具有以下基本性质:1. 反应选择性:催化剂能够选择性地促进某种反应发生而不影响其他反应。
2. 反应活性:催化剂对于某种反应有较高的活性,能够加速反应的进行。
3. 饱和容量:催化剂能够在一定条件下最大限度地使反应产物得以生成。
4. 催化剂稳定性:催化剂对于反应条件变化的适应性。
五、催化剂的合成方法催化剂的合成方法多种多样,常见的有物理方法、化学方法和生物方法。
物理方法包括热解、氧化、还原、沉淀、共沉淀等方法;化学方法包括还原、氧化、置换、溶剂萃取等方法;生物方法主要是利用微生物、酶等生物催化剂进行合成。
六、催化剂的应用1. 催化剂在化工生产中的应用:催化剂广泛应用于合成氨、合成甲醇、合成乙烯等化工生产中,大大提高了生产效率和产物质量,降低了生产成本。
2. 催化剂在环境保护中的应用:催化剂广泛应用于汽车尾气治理、废水处理、废气处理等环境保护领域,能够有效降低污染物排放,保护环境。
FCC催化剂理论和制作基础
F C C催化剂理论和制作基础Work hard in everything, everything follows fate!F C C 催化剂基础知识催化剂制作1、分子筛生产工艺流程导向剂:玻璃溶液、高偏溶液;成胶后的胶体在一定的温度25~30℃条件下静置老化一定的时间18~22小时;生成..2、催化剂生产工艺流程3、催化剂成胶反应工艺高岭土:埃洛石:铝溶胶:拟薄水铝石:分子筛=19:25:6:20:30基质载体粘结剂活性组分1、什么叫催化剂的寿命答:催化剂的全部工作时间叫催化剂的寿命..2、催化剂制备的技术要求包括哪几个方面 ..3、催化裂化催化剂的化学组成包括哪几个答:化学组成包括:灼减、氧化铝含量、氧化钠含量、硫酸根含量、氧化铁含量、氯根含量、氧化稀土含量和其它特定元素含量..45答:包括活性和活性水热稳定性..6、催化剂的机械强度怎样表示 合成 洗涤过滤 晶化 100℃/24-二次交换过滤 一次交换过滤二次焙烧 分子筛成品 一次焙烧 500~600℃成胶 高温焙烧裂化剂成品 喷雾干燥 气流干燥 洗涤过滤答:催化剂的机械强是用磨损指数来表示的..磨损指数是使催化剂强化磨损后产生产小于15微米的颗粒重量占催化剂总重量的百分比..磨损指数越小;意味着催化剂的机械强度越好..7、催化剂的粒度分布有什么要求答:催化剂的粒度分布主要是表示催化剂在使用时流化性能好坏的一项指标..通常催化剂的粒度分布用激光粒度仪测量;根据微球催化剂的粒子直径不同一般分为几个粒径范围;0-20μm;0-4μm;0-80μm;0-149μm;平均粒径..8、催化剂的灼减是什么含意答:灼减即灼烧减少量;就是催化剂在800℃灼烧一小时后减少的重量;它代表着催化剂中水分及挥发性物质的含量..9、催化裂化催化剂灼减的指标是多少灼减为什么要控制在指标以下答:通常催化裂化催化剂灼减的指标是不大于15%..部分用户有要求指标不大于13%..灼减代表催化剂中的水分及可挥发性物质的含量..催化剂中含有一定量的水分是很有必要的;这些水分在催化裂化过程中起到助催化剂的作用;它会使催化剂的活性大大提高;但含有过多的水分;催化剂在使用过程中高温下会产生“热崩”现象;使催化剂的粒子变细;造成催化剂的跑损;影响催化裂化的正常操作和催化剂的活性..10、催化剂的比表面是如何表示的答:比表面就是单位重量的催化剂内、外表面各之和;以平方米/克m2/g为单位..11、催化剂的孔体积是如何表示的答:孔体积是单位重量的催化剂的所有空隙的总体积;以毫升/克ml/g为单位..12、为什么催化剂中氧化钠、硫酸根、氧化铁、氯根等化学物质的含量要控制在指标范围以下答:氧化钠、硫酸根、氧化铁对催化裂化催化剂来说都是有害物质;氧化钠的存在会降低催化剂的热稳定性;即使催化剂在高温下活性大大降低;氯根和硫酸根在高温下分解会引起炼油设备腐蚀;氧化铁的存在会使催化剂的选择性变坏;降低汽油产率而增加气体产率..13、为什么催化剂成品要控制一定的比表面、孔体积和堆比答:催化剂具有较大的比表面积才能具有较高的催化活性;因为催化裂化反应是在催化剂的表面上进行的..催化剂应有一定的孔体积;既要使原料油分子容易进入催化剂微孔内;又要使反应产物分子易于逸出;同时不影响催化剂的强度;所以催化剂应有一定的孔体积..控制催化剂的堆比;是为了保证在催化裂化过程中催化剂能够正常流化..14为什么要控制催化剂的粒度分布答:裂化催化剂是微球形;在催化裂化装置中使用时是流化的状态;使用过程中;催化剂的粒度分布要满足三个条件的要求:即容易流化;气流夹带损失小和反应与传热面积大..筛分越细;即小颗粒所占比例大;越容易流化;但颗粒过于细小;会在使用过程中被气流带到大气中;既污染了环境又增加了催化剂的损耗..筛分偏粗时;流化性能变差;对设备的磨损程度也加大..因此;催化剂制备过程必须控制合适的筛分分布;即对细粒子和粗粒的含量都要有所限制FCC技术的发展与催化剂的开发密不可分;两者相辅相成;互相促进..催化剂不仅为催化反应提供了活性中心;使催化反应得以实现;而且作为载体将热量从再生器输送到反应器;为原料油的裂化提供热能..流化催化裂化的开发最初是从螺旋输送机械送粉剂这一重大开发项目开始的..粉剂的应用是发明流化催化裂化和各种流化床的关键..催化裂化催化剂在发展中形成了无定性硅酸铝催化剂和沸石分子筛微球催化剂两大类..其中沸石分子筛微球催化剂按原料和制造过程可分为:白土基质部分结晶成沸石即原位晶化的全白土催化剂;以及沸石和基质分别制备的全合成沸石催化剂和半合成沸石催化剂..5.1催化剂的组成催化裂化催化剂主要由基质和活性部分分子筛组成;有时还要借助粘结剂的作用;目前催化裂化所用的催化剂是由分子筛、基质也称担体以及黏结剂组成.催化剂的作用是改变化学反应速度.活性组分一般由各种形态和类型的沸石组成;可以是单一沸石;也可以是复合沸石;活性组分的主要作用是:提供催化剂的裂化活性、选择性、水热稳定性和抗中毒能力..早期的催化剂含沸石8~10%;后来增加到14~16%;有的催化剂如USY沸石含量高达30~50%;沸石含量的增加;提高了催化剂的活性和选择性;从而满足了提升管催化裂化工艺的需要;并使产品分布更合理;轻油收率更高..常见的沸石有Y型、X型和择性沸石ZSM-5等类型;属于Y型的有REY、HY、REHY和USY等;它们均由NaY改性制成..REY沸石具有活性高和稳定性好的特点..在处理碱氮含量高的原料时;以REY沸石为活性组分的催化剂具有良好的产品分布和较高的轻油收率..REHY是介于REY和USY之间的一种沸石;较适于重质原料油的加工..USY是一种改性的Y型沸石;通过脱铝补硅;提高沸石骨架上的Si/AL比;使结构稳定化;它适合于掺炼渣油的催化裂化装置;并能提高汽油的辛烷值..沸石的传统概念是一种多孔的晶体硅铝酸盐;具有一定的空腔和孔道;在脱水之后;可以使不同分子大小的物质通过或不通过;起到筛选不同分子物质的作用;故又称“分子筛”.Smith在1963年对沸石作了一个广义的表述:沸石是一种硅铝酸盐;其骨架结构含有被离子和水分子占据的空腔;这些离子和水分子能够自由的移动;“能够进行离子交换和可逆脱水”.80年代以来;不同元素的化学合成沸石出现;从而使沸石不再局限于硅铝酸盐.构成沸石的原始单元是SiO4、ALO4四面体;这些四面体单元以氧原子连接构成二级单元;由二级单元互相连接构成三级单元或多面体;;最后由多面体单元组成各种特定的沸石晶体结构;;是一种无机单元的聚合体.早期硅酸铝催化剂的微孔结构是无定型的;即其中的空穴和孔径是很不均匀的;而分子筛则是具有规则的晶格结构;它的孔穴直径大小均匀;好象是具有一定规格的筛子一样;只能让直径比它小的分子进入.目前催化裂化使用的主要是Y型分子筛.它的每个单元晶胞由八个削角八面体组成;削角八面体的每个顶端.是Si或AL原子;其间由氧原子相连接.晶胞常数是沸石结构中重复晶胞之间的距离;也称晶胞尺寸.在典型的新鲜Y沸石晶体中;一个单元晶胞包含192个骨架原子位子;55个铝原子和137个硅原子.初期的发现表明;有适当的金属离子交换钠离子的泡沸石;如REHX;其活性经水蒸气处理后比硅铝催化剂高200倍以上..提高汽油辛烷值催化剂的活性组分是超稳Y型沸石USY;而非REY型沸石;原因是使用超稳Y型沸石USY后;由于抽铝补硅的作用;硅铝比较大;活性偏抵;抑制了氢转移反应;汽油烯烃含量较高..Thomas对硅铝催化剂的酸性作了比较清楚的解释..他提出当四价硅和三价铝与氧以四面体配位;其结构需要一个正电离子才能完整..在一定条件下;这一正电离子可以是氢离子;从而使此硅铝催化剂具有裂化活性..裂化催化剂已发展50多年了;可以看出其发展历程是从白土到合成硅铝;再到沸石催化剂;其各占历史舞台的时间大约是白土十年;硅铝二十年;而沸石至今已近三十年;催化剂的费用通常只占催化裂化成本的一小部分通常小于3%主要成分仍是含Y型沸石催化剂本身;它起着主要裂化作用..其他作为助剂的主要有①助燃剂;②辛烷值添加剂提高汽油辛烷值及烯烃产率;③硫转移剂;④捕矾机等..大孔新沸石YPI-5可能用来进行重油裂化;YPI-5体积很大;空口直径为1.0nm.因此当前重油裂化催化剂的策略是:①采用最低晶胞常数的USY沸石;②采用高沸石含量;③采用低稀土加入量;④控制基质对沸石的活性比值;⑤控制基质孔径分布;⑥考虑金属容留量和使用金属捕集剂及钝化剂..目前优质催化剂约含40%的沸石;由于助剂的使用量要增加;因而稀释了催化剂系统藏量中Y型沸石的浓度..择形分子筛的硅铝比比Y型分子筛高;故更耐磨;稳定性好;针对活性来说;Y型分子筛是择形分子筛的2倍左右;对相同的分子筛来说;铝硅比大;酸密度大;铝原子的尺寸也比硅原子大;所以晶胞常数较大;活性较高;干气、生焦较高;但铝不稳定;在使用的过程中;在高温和水蒸气条件下铝原子逐渐脱落;晶胞尺寸也逐渐变小;活性也逐渐下降..一个Y型分子筛的晶粒尺寸约1μm1000nm;新鲜择形分子筛晶粒的尺寸约7~8μm;经过磨损以后约在1~2μm;可以理解为一个Y型分子筛晶粒1μm约包括500个晶胞晶格;2.43nm大小..分子筛及基质的直径约为1~3μm;如果催化剂颗粒的平均直径是60μm;可以理解为分子筛1.5μm×20个+基质1.5μm×20个组成..原料油经喷嘴雾化后;油滴的平均直径大约在60μm左右;与催化剂颗粒的平均直径相当;比较大的渣油分子直径大约在1~3nm左右;很多个类似的分子聚集起来雾化后形成在60μm左右的油滴颗粒..催化剂粒径基本上成正态分布;一般Y型分子筛的孔径约为0.74nm;分子筛的最基本单位由晶胞组成;其直径约为2.45nm新剂;脱水后孔直径缩小;收缩后直径降为2.425nm..基质的孔径分布比较广;通常在0~50nm之间;适宜大直径渣油分子的预裂化;基质孔径可以根据重油分子大小及催化剂配方灵活调整..晶胞常数大通常硅铝比小或是新剂;催化剂活性高;转化率高;干气及焦碳产率高;但不稳定;水热稳定性差;晶胞常数小通常硅铝比大或是平衡剂;催化剂活性低;部分收缩和烧结;水热稳定好..基质有全部是惰性的;也有在惰性基质中添加活性基质的;孔体积其实应包括大孔、中孔和小孔这三种孔的孔体积..二级孔是分子筛表面采用特定方法使其塌陷而形成的孔;有利于小分子的裂解..Orbit-3000JM:铝基型;总分子筛含量约为38~40%;其中择型分子筛占3%左右;磨损指数2.0%;耐水热稳定性稍差一些..RSC-2006:硅基型;总分子筛含量约为40%;其中择型分子筛占4.5左右;磨损指数2.1%;耐水热稳定性较好;因为总分子筛含量高;所以磨损指数也较高..CIP-2:铝基型;总分子筛含量33%;其中择型占18%;磨损指数0.8%;总分子筛含量并不高;但择型所占比例偏大;所以磨损指数并不高..择形沸石是一类具有特殊孔道结构和孔径尺寸的沸石;表现出特殊的择形催化性能;开始用于汽油辛烷值助剂的制造;随着新配方汽油规格的逐渐实施;这种沸石的应用范围也逐步扩大..nm.ZSM-5的孔是由十元氧环所构成;介于A型和八面沸石;但是它没有空腔;而只在两种空的交叉点有0.9Na20在催化裂化过程中;特别是在掺炼V含量高的渣油情况下;V与Na会形成低熔点化合物;这种共熔物具有极强的流动性;覆盖在催化剂的表面并渗入内部;使沸石晶体受到破坏;钠和钒对催化剂的破坏具有加和性;因此降低催化剂中的钠含量是极为重要的..③Fe2O3Fe2O3在高温下会分解并沉积在催化剂上;积累到一定程度就会引起催化剂中毒;降低催化剂活性;影响产品分布;增加氢气和干气产率..④SO42-SO42-可与具有捕钒作用的金属氧化物如氧化铝等生成稳定的硫酸盐;从而使其失去捕钒能力;所以在掺炼渣油的情况下;SO42-的危害性较大;应尽量降低..⑤灼烧减量灼烧减量是指催化剂中所含水分、铵盐和碳粒等挥发性性组分的含量;通常是800℃灼烧损失量;生产中控制其减量≤15%;少量结构水的存在对催化剂形成质子酸中心很重要..⑥RE2O3RE2O3是表示催化剂性能的指标之一;稀土通常来源于催化剂中的沸石;有时在催化剂制造工艺中也引入稀土离子以达到改善性能的目的;在REY催化剂中;RE2O3含量可以代表催化剂中含有REY的多少;对同类催化剂而言;通常RE2O3含量越高;催化剂活性越高;但焦碳产率也偏高..平衡催化剂中的金属含量;如Ni、Na、V等;可以反映催化剂的污染程度;对裂化反应的影响很大..二物理性质物理性质通常包括:比表面积、孔体积、密度、磨损指数、筛分组成五个主要项目.①比表面积m2催化剂的比表面积是内外表面积的总和.单位质量的催化剂具有的表面积叫比表面积.通常内表面积远大于外表面积.因基质和制造工艺的不同;不同产品的比表面积与活性没有直接的对应关系.一般说来;全合成催化剂的比表面积大于半合成的.②孔体积和孔径ml/g孔体积是多孔性催化剂颗粒内微孔体积的总和;单位是ml/g.孔的大小主要与催化剂中的基质密切相关.对同一类催化剂而言;在使用过程中孔体积会减少;孔直径会变大.孔体积不仅影响催化剂的活性、选择性;而且还能影响催化剂的机械强度、寿命及耐热性能.孔径是微孔的平均直径;对气体的扩散有影响;孔径大;分子容易进出;再生性能好;孔径太小;不易扩散出来的产物分子容易缩合生焦并产生气体;而且比粗孔容易受热而崩坏.近年来;为适应大分子烃类的裂化;催化剂正向大孔、小表面积的方向发展.③磨损指数催化裂化催化剂除了要求具有活性高、选择性好等特点外;还要具有一定的耐磨机械强度.机械强度不好的催化剂;不但操作过程中跑损多;会增大催化剂用量;污染环境;严重时会破坏催化剂在再生器稀、密相中的合理分布;甚至使装置无法运转.磨损指数越小;表明该催化剂的抗磨性能越好.④筛分组成催化剂是由大小不同的颗粒组成.不同粒径范围所占的百分数;称为筛分组成或粒度分布.催化剂的筛分组成应满足三个条件;即容易流化、气流夹带损失小和反应与传质表面积大.颗粒越小;越易流化;表面积也越大;但气流夹带损失也大.流化催化剂的颗粒大小主要在20~100μm之间.小于40μm的叫“细粉”;大于80μm的叫粗粒.粗粒与细粉含量的比值叫做“粗度系数”;该值大时;流化性能差;通常不大于3.再生系统中平衡剂的细粉含量在15~20%时;流化性能好;气流夹带损失也不大.小于20μm的细粉在流化状态下很容易从旋分器中跑掉;耐磨性越差;跑损越严重.越细的催化剂颗粒;在装置中停留的时间越短;而粗粒停留时间较长;活性衰减也大;为了维持装置的平衡活性水平;适当卸剂并补充新剂是必要的.粗粒多时;流化性能差;对设备磨损程度大.平衡剂的粒度组成取决于三个因素:⑴补充的新鲜剂的粒度组成;⑵催化剂再设备中的操作状况如流化和它的耐磨性;⑶旋分器的工作效率.一般工业装置中平衡剂所含细粉不多约为5~10%;原因是床层线速较高;旋分器回收效率差等.⑤密度催化剂密度的大小;对流化性能、流化床的测量、设备的大小和催化剂的计量都有影响.通常;催化剂的密度用表观松密度表示.骨架密度>颗粒密度>堆积密度>表观松密度三催化剂的使用性能催化剂的活性、选择性、稳定性、抗金属污染性和再生性能是裂化催化剂的基本使用性能.① 活性催化剂的活性是反映其加快催化裂化反应速率的性能.沸石催化剂的活性用微反活性表示.催化裂化催化剂的活性主要来源于其活性组分;不同的沸石其活性水平相差很大.REY由于其酸性中心密度高;活性也较高.REHY与REY相比;降低了酸中心密度;其活性有所降低;但其选择性好、生焦少.REHY 型催化剂如RHZ-200与REY型催化剂共Y-15、偏Y-15相比;其初活性低;但动态活性二次转化率/焦碳较高.REUSY由于骨架铝被部分脱除;晶胞收缩;热稳定好.同时;脱铝后酸性中心密度下降;从而减少了氢转移反应;汽油烯烃含量增加;辛烷值提高.虽然USY催化剂活性有所降低;但选择性提高;为保持超稳催化剂的活性;催化剂中往往需要加入较多沸石组分;同时需要采用较高的剂油比;以保证装置的转化率.② 选择性选择性表示催化剂能增加所需要的产品轻质油品和减少副产品干气和焦碳等反应的选择能力.活性高的催化剂;选择性并不一定好.选择性的好坏与它的品种和制造质量有关;另外;重金属对平衡剂的污染;会大大降低催化剂的选择性.③ 稳定性催化剂在使用条件下保持其活性的能力定义为稳定性.催化剂在反应和再生过程中由于高温和水蒸气的反复作用;使催化剂表面结构的某些部分遭到破坏;物理性质发生变化;活性下降的现象称为老化.催化剂的稳定性就是指耐高温和水蒸气老化联合作用的能力;也叫水热稳定性.可以分为热稳定性和水热稳定性两种一般而言;硅铝比高的稳定好.沸石催化剂的稳定性与含钠量有关;含钠量越低;其稳定性越好.生产装置中在催化剂补充速度和中毒状况相同的情况下;平衡活性越高说明稳定性越好.超稳Y沸石催化剂的稳定性较好.④ 再生性能烃类催化裂化反应过程中生成了大量的焦碳;焦碳沉积在催化剂的表面上会使活性降低;选择性变差;因此催化剂必须经常再生.由于积碳量对沸石催化剂的活性和选择性影响非常大;因此要求再生后的沸石催化剂含碳量一般在0.2%以下USY最好在0.1%以下.对于一个催化裂化装置;处理能力的关键常常是再生系统的烧焦能力而不是反应器.一般来说;低比表面积大孔径的催化剂具有较好的再生性能.⑤抗重金属污染性能原料油中的重金属沉积吸附在催化剂表面上;降低了催化剂的活性和选择性;使产品分布变坏;轻收降低;气体和焦碳产率升高.已经证明;重金属污染会给生产带来严重威胁.现正采取各种措施;以减轻重金属污染.如采用金属钝化剂;或在工艺上采取金属钝化的措施如干气预提升;对催化剂来讲;增加催化剂中沸石含量;采用低比表面积大孔径的基质;或专门制备抗重金属污染的催化剂;都可以在不同程度上解决重金属污染问题.⑥ 催化剂的酸性催化裂化是固体酸性催化剂的催化过程;它的活性中心来源于催化剂表面的酸性部位.催化剂的酸性与其反应活性、选择性直接相关.沸石的酸性受三个因素的影响:即硅铝比、晶体的结构、沸石经阳离子交换和热处理等改性.5.3催化剂的品种和选用催化剂对催化裂化装置的产品收率、质量以及平稳操作和环境控制等方面都起者重要作用.正确选择催化剂会给企业带来巨大的经济效益..一按沸石分类若以沸石分类;催化裂化催化剂大致可分为稀土YREY、稀土氢YREHY、超稳YUSY和复合裂化催化剂四种.REY型催化剂REY型催化剂具有裂化活性高、水热稳定性好、汽油收率高的特点;但产品的选择性差;焦碳、气体产率高;汽油辛烷值低.REY平衡剂的晶胞常数在2.440~2.445nm.REY型催化剂一般适用于直馏馏分油原料;在装置上采用较为缓和的操作条件;如:低反应温度、低剂油比;以避免原料过裂化产出过多的焦碳和干气;以最大汽油或轻质油收率为主要生产方案;它是我国1970~1980年主要使用的催化剂品种.主要牌号有:偏Y-15、共Y-15、CRC-1、CRC-3、KBZ、LC-7、LB-1等.1980年末;由于原油紧张;部分FCC装置逐步转向加工渣油和其他二次加工油;REY型催化剂由于自身的结构特点;已不能适应催化原料重质化的要求;这样一种既有良好的产品选择性、又有较高的水热活性和稳定性的REHY型催化剂就应运而生了.①REHY型沸石催化剂我国REHY型沸石催化剂的开发与国外催化剂的发展不同;是出现在超稳Y之后.REHY 型催化剂的性能介于REY型和USY型之间;它兼顾了活性、选择性和稳定性.为了使其性能特点得到充分发挥;在使用中一般考虑以下几点:⑴⑷需要有良好的烧焦效率;一般再生剂含碳≤0.2%;以保护催化剂的活性中心数.⑵合适的再生温度;单段再生时≤700℃为宜;两段再生时;一段床温<700℃;二段<750℃⑶催化剂在系统内停留时间以<80天为宜;最佳为45~60天.尽量少用蒸汽;以保持活性⑷一定的剂油比;以满足反应苛刻度的要求.②超稳Y型催化剂超稳Y型催化剂在加工重质原料、改善产品分布、提高汽油辛烷值等方面的作用是十分显着的;其具有焦碳选择性好、汽油辛烷值高的特点.超稳Y由于提高了硅铝比SiO2/Al2O3;降低了酸中心密度;活性中心数目减少;使得其裂化活性也随之降低.超稳Y在制造过程中提高了沸石的加入量;但在使用过程中仍需采用较高的剂油比来弥补其活性的不足要求>6;最好在8以上;同时由于其酸中心密度较低;它对覆盖在催化剂上的焦碳十分敏感;一般要求平衡剂含碳<0.1%;这样对装置的再生要求也随之提高.这类催化剂热稳定性高;但水热稳定性相对差一些;所以要求催化装置有两段独立排烟气的再生器;以便一段在较低的温度下烧去全部的氢和部分碳;二段在较高的温度下烧去剩余的碳;以保证催化剂发挥最好的平衡活性和选择性.随着RFCC技术的发展;USY型催化剂从1980年起得到了广泛的运用.我国的USY产品主要有:ZCM-7、CHZSRNY、LCH、CC-15、CC-20、ORBIT-3000、COMET-400等.。
催化剂基本知识
催化作用的特征
• (1)在化学反应系统中存在催化剂时,由于 催化剂参加化学反应过程,而使反应速度改变 (常为加快),反应终了时,相对于它的始态 而言,催化剂不发生化学变化。
• (2)催化作用不能改变化学平衡,只是以同 样的倍率改变正、逆反应的速度。
• (3)催化剂对催化反应存在选择关系,特定 的催化剂只能催化特定的化学反应。
催化剂硫化
加氢催化剂的活性金属组分在使用前处于氧化态,并没有加氢活性,只有处于硫化态才 具有较高的活性,因此催化剂在使用前要进行硫化。加氢催化剂干法硫化时,应注意控制各 个硫化阶段的升温速度、注硫速度、裂化反应器出口循环氢露点、硫化氢含量和恒温硫化时 间等。
预硫化反应的原理: 在具有足够硫化氢分压的氢气流中,硫化氢与金属氧化物发生反应,生成活性比较高的
(2)新鲜催化剂的活性称为催化剂的初活性。
(3)催化剂在使用过程中,由于缓慢积碳、中毒、 高温烧结等多种因素的影响,其活性逐渐下降,经 过一个阶段的使用之后,催化剂的活性基本上维持 在一定的水平,此时催化剂的活性称为催化剂的平 衡活性。
催化剂活性的表示方法
• (1)催化剂的比活性:催化剂比活性常用表面比 活性或体积比活性,即所测定的反应速度常数与 催化剂表面积或催化剂体积之比来表示。
• 催化剂的寿命:即催化剂的有效使用时间,以在经 济效益允许的范围内,生产每单位产品所耗费催化 剂的重量来表示。
催化剂的失活及失活原因
催化剂经过一段时间的使用之后,活性逐渐下降或 消失,这种现象称为催化剂的失活。催化剂的失活主 要有以下几个原因:
• (1)催化剂中毒。某些物质与催化剂作用破坏了催化 剂的催化效能,这些物质通常是反应原料中带来的杂 质。
催化剂的表征
催化剂的催化性能不仅取决于它的化学组成,而且与其物理、化学的诸多性质密切相关, 所以催化剂的表征时任何一相催化研究不可缺少的部分。
第一章_(总)催化剂与催化作用基础知识
(活性组分)
基质 (载体)
•催化材料本身就是催化剂
粘结剂
催化剂 •新催化材料引导催化技术的突破性进展!
催化剂实验室发现与商业化应用
固体催化剂的组成
–主催化剂 –共催化剂 –助催化剂 –载体
主催化剂
主催化剂又称为活性组分,它是多组元催化剂中的 主体,是必须具备的组分,没有它就缺乏所需要的 催化作用。 例如,加氢常用的Ni/Al2O3催化剂,其中Ni为主 催化剂,没有Ni就不能进行加氢反应。 有些主催化剂是由几种物质组成,但其功能有所不 同,缺少其中之一就不能完成所要进行的催化反应。 如重整反应所使用的Pt/Al2O3催化剂,Pt和 Al2O3均为主催化剂,缺少其中任一组分都不能进 行重整反应。这种多活性组分使催化剂具有多种催 化功能,所以又称之为双功能(多功能)催化剂。
催化剂分类
按元素周期律分类: 金属催化剂(Ni, Fe, Cu, Pt, Pd…等过渡金属 或贵金属) 金属氧化物催化剂和金属硫化物催化剂(多为 半导体) TiO2、 La2O3、CeO2、MoO3、 MoS 等 酸碱催化剂( SiO2-A12O3、WO3/ZrO2、各类 分子筛等 ) 金属配合物催化剂(MLn) 双功能催化剂(Pt/SiO2-A12O3; Pt(Pd)/分子 筛;MgO-SiO2 )
能否打破热力学平衡? 答案是肯定的!利用催化膜技术是未来的希望
催化剂不能改变平衡位置 -实例(2)
催化剂不能改变平衡位置 -实例(3)
催化作用通过改变反应历程 而改变反应速度
催化剂加速化学反应是通过改变化学反应历程, 降低反应活化能得以实现的。 有少数反应不是通过改变反应活化能加速化学 反应的,而是通过改变指前因子加速化学反应 (提高碰撞次数)。例如甲酸分解反应,用玻 璃和铑二种催化剂的反应活化能分别为 102.4kJ/mol和104.5kJ/mol,二者极其接 近,然而铑为催化剂的分解速率是玻璃的一万 倍。
催化工程--催化剂概述 ppt课件
ri
1
dni dt
ppt课件
3
• Ω,表示反应空间,对于均相催化反应表示反应体 系的体积V;在使用固体催化剂的气固多相催化反应 的情况下,可以是固体催化剂的体积V、表面积S或 催化剂的质量w.因而它可以表示单位体积上、单位 面积上或单位质量的催化剂上的反应速率.
很显然,催化反应的速率愈高,催化剂的催化活性
指催化剂使用至失活时每个活性中心所转化反应的次数, 它与TOF的关系是:
TON=TOF(时间-1)*催化剂寿命(时间) 工业生产中TON一般是106-107
ppt课件
6
• 优点:在相同的实验条件下,可以允许对 不同的研究者的实验数据进行对比,复查 和校核。
缺点:活性中心的数量不容易测定。 目前还仅限于理论方面的应用。
ppt课件
17
• (1)耐热稳定性 能在高温苛刻的反应条件下, 长时间具有一定水平的活性。
极限使用温度 :大多数催化剂都有极限使用
温度,超过一定的温度范围,活性就会降低甚 至完全丧失。
温度的影响:活性组分的挥发、流失,烧结 微晶粒的长大。
• Hutting温度:晶体开始发生晶格表面质点的迁移
Th=0.3Tm Tm为晶体的熔点 Tamman温度:晶体开始发生晶格体相迁移。
ppt课件
23
• 2 助催化剂(co-catalyst)
单独使用时没有活性或活性很小,但和主催化剂
组合使用时,却能显著提高催化剂的活性、选择 性、耐热性、抗毒性和寿命等的组分;在催化剂
中只要添加少量助催化剂,即可明显达到改进催 化剂性能的目的。根据其主要作用可分为两类。
(1)结构助催化剂 能起结构稳定作用的助催化
催化剂基础详解
常用的载体
低比表面积载体
载体
刚玉 碳化硅 硅藻土 石棉 耐火砖
比表面积 (m2/g) 0~1
<1 2~30 1~16
催化反应过程步骤示意图
催化反应过程的主要步骤
(1)反应物分子从气流中向催化剂表面和孔 内扩散;
(2)反应物分子在催化剂表面上吸附; (3)被吸附的反应物分子在催化剂表面上相
互作用或与气相分子作用进行化学反应; (4)反应产物自催化剂表面脱附; (5)反应产物离开催化剂表面向催化剂周围
稀土离子 Pd Re
Ni, Co P, B K
ZnO
功能
改进热稳定性 毒化结焦部位 增加酸性 阻滞活性组分烧结 增加CO氧化
增加酸性和热稳定性 增加加氢 减少氢解和烧结
增加C-S和C- N的氢解 增加MoO3分散度 加快炭的移除
减少Cu的烧结
催化剂构成与作用
载体 (: 分散活性组分,使其 保持大的表面积
空速越高活性越好。
空速
空速(Space velocity):单位时间内,单位质量 或体积催化剂所能处理的反应物量。
空速越大,表明催化剂的处理能力越强。 空速的倒数为接触时间
催化剂的选择性
选择性=转化成目的产物的原料量/总转化 掉的原料量×100%
选择性=目的产物的产率/原料的转化率×100% 产率:指消耗于生成目的产物的反应物量与反应
100% (2) 选择性
反选应择物性转化= 的(转总化质为量目) 的 1产00物%所消耗的某反应物质量) / (某 (3) 得率或产率
催化剂基本知识概要
A=Ze-E/RT
低的活化能E意味着提高反应速率。 正因为如此,催化剂不能改变化学平衡。一个化学反应进行到什么程度是由 热力学决定的:
△Z0=-RT lnK p
式中的KP是以压力表示的平衡常数。由此式可以看出:反应物、产物的种类、 状态一经确定,此反应的平衡也就确定了,与催化剂的存在与否无关,因此催化 剂不能改变化学平衡,只能改变平衡到达的速度。这样,热力学上不能发生的反 应,催化剂也不能使其发生。
催化剂的稳定性、选择性及寿命
• 催化剂的稳定性是指催化剂在工艺反应条件下能够 保持较高活性和选择性的时间。 • 对同一催化反应系统在相同条件下,相同的反应均 可能同时发生多个反应,即有生成目的产物的主反 应,又有非目的产物的副反应。每消耗一定量的反 应物生产目的产物占所消耗反应物的百分比,称为 该催化剂对该反应的选择性。选择性的高低可以通 过目的产品的产率(生成率)来表示。催化剂的选择 性是指催化剂加快目的反应和抑制副反应的性能。 • 催化剂的寿命:即催化剂的有效使用时间,以在经 济效益允许的范围内,生产每单位产品所耗费催化 剂的重量来表示。
多组分固体催化剂的组成及功能
活性组分、助催化剂和载体 • 活性组分又称主体,是多元催化剂中必须具备的单元,没有这类 单元,就缺乏催化作用。有的催化剂只有一种活性组分,有的催 化剂有两种以上的活性组分,缺乏其中之一,就不能完成规定的 催化反应。如重整反应中的Pt与Al2O3,Pt促进烃类原料化学吸附, 脱氢生成活性组分,再转移到Al2O3的酸性基上,完成异构化、环 化等过程,这类催化剂可称为混合催化剂。 • 助催化剂是指当它单独存在时,并没有所要求的催化活性,然而 当它与活性组分共存时,可以提高活性组分的活性,例如加氢脱 硫催化反应所用的CoO、MoO3催化剂中,CoO即为助催化剂。助 催化剂也可能是提高活性组分对反应的选择性或提高活性组分的 稳定性。 • 载体能提高活性组分分散度,使之有较大的比表面积;另外载体 对活性组分起支撑作用,使催化剂具有适宜的形状和粒度,以符 合工业反应器的操作要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论
1.1.1催化作用的意义
合成氨
• N2+3H2→3NH3 • 催化剂:Fe-Al2O3-K2O • 每吨催化剂可产2万吨氨
• N2来源:空气分离 • H2来源: 烃类水蒸气转化法。 • 工艺(涉及反应):加氢、脱硫、转化、
变换、甲烷化、氨合成。需用八种不同
催化剂
第一章 绪论
1.1.1催化作用的意义
氧化还原型反应:催化剂与反应物通过单个电 子转移,形成活性中间体物种进行的催化反应。
催化剂的分类
按催化剂的元素及化合态分类 金属、金属氧(硫)化物、金属有机化合物 按催化剂的导电性及化学形态 导体、半导体、绝缘体 按行业类别分类 石油炼制工业、化肥工业、环境保护等
催化剂的反应性能
物进料总量的百分比 产率=转化率×选择性
催化剂的稳定性
使用寿命:指催化剂在一定反应条件下 维持一定反应活性和选择 性的使用时间。
a
催
化b
稳定期
衰
剂
老
活成
期
性
熟 期
催化剂的稳定性
化学稳定性 耐热稳定性 抗毒稳定性 机械稳定性
对工业催化剂的要求
适宜的活性 高选择性
活性和选择性的取舍 长寿命
石油
第一章 绪论
煤
1.1.1催化作用的意义
第一章 绪论
天然气
1.1.1催化作用的意义
催化剂的定义与特征
催化剂的定义
能改变化学反应的速度 不改变化学反应的热力学平衡位置 本身在化学反应中不被明显地消耗
催化剂的特征 只能改变热力学上可进行的化学反应
只改变化学反应的速度,而不改变化学平衡的 位置。
石 油:提高原油利用率 天然气:合成液体燃料(合成油、甲醇、
二甲醚) 煤 :间接液化制液体燃料 生物质:燃料
对催化作用的诠释 :
(1) 只加速热力学可行的反应(G0 0)。 (2) 不影响平衡常数(G0 = RT lnKa) 。 (3) k正与k逆有相同倍数变化(k正/k逆不变)。 (4) 改变反应途径,降低反应活化能。
的介质扩散。
催化反应过程的主要步骤
物理过程
外扩散
内扩散
化学过程
反应物的吸附
表面反应
产物的脱附
催化反应的控制步骤
反应控制步骤:催化反应过程中阻力最 大或反应速度最慢的步骤。
扩散控制 化学反应(动力学)控制
空速越高活性越好。
空速
空速(Space velocity):单位时间内,单位质量 或体积催化剂所能处理的反应物量。
空速越大,表明催化剂的处理能力越强。 空速的倒数为接触时间
催化剂的选择性
选择性=转化成目的产物的原料量/总转化 掉的原料量×100%
选择性=目的产物的产率/原料的转化率×100% 产率:指消耗于生成目的产物的反应物量与反应
活化能
催化剂的作用
➢ 85%以上的化工产品是借助催化剂生产 的
无机化工:合成氨、硝酸、硫酸 有机化工:甲醇、醋酸、丙酮 高分子化工:三大合成材料 (合成树脂、合成橡胶、合成纤维) 石油炼制与化工:汽油、柴油(裂化、重整)
➢ 环境保护
挥发性有机组分(VOCs):催化燃烧 常温下,沸点50℃—260℃的各种有机化合物。最常见的
一种催化剂只对特定的化学反应起催化作用 如SiO2-Al2O3催化剂对酸碱反应具有催化作用,
但对合成氨反应却无效 利用不同的催化剂,可以使反应有选择性地朝
某一个需要的方向进行,生产所需的产品。
催化剂活性评价的几个重要参数
(1) 转化率或活性 转化率 = (反应物已转化的质量) / (反应物起始质量)
131
Pt
—
—
144
80
— I2 蒸汽
对催化作用的诠释 :
(5) 存在催化循环 (6) 催化剂用量少且不消耗。
(7)不影响化学计量方程式。
(8) 反应速度(mol/s)与催化剂用量成正比。
(9) 反应后催化剂有微小变化。
对催化作用的诠释 :
(10) 加速反应但不参与反应者不是催化剂。
(11) 引发剂不是催化剂。 (12) 催化剂是物体形式的物质。
催化剂活性评价的几个重要参数 (续) :
(5) 反应速率 反应速率 = 单位质量 (体积或比表面积) 的催化剂上在单
位时间内某反应物的摩尔改变量 (6) 寿命
从开始使用到活性下降至一定值所经历的时间。 (催化剂中毒,比表面积降低,催化剂变质,碳沉积, 流失,破碎等等)
催化剂构成与作用
活性组分或主催化剂 催化活性 包括:
有苯、甲苯、二甲苯、苯乙烯、三氯乙烯、三氯甲烷、 三氯乙烷、二异氰酸酯(TDI)、二异氰甲苯酯等。 工 业 排 放 NOx:催化还原→N2 机 动 车 尾 气:
三效催化剂(CO、NOx、CHx) CO2、N2、H2O+CO2 化工过程的绿色化: 催化剂的应用
无毒催化剂代替有毒催化剂
➢ 能源开发、利用
用于高温反应和强放热反应。如乙烯氧化制环 氧乙烷银催化剂中的α-Al2O3。 高比表面积载体 因具有酸性或碱性,会影响催化剂的性能。如 SiO2、Al2O3、活性炭、分子筛等。
常用的载体
低比表面积载体
载体
刚玉 碳化硅 硅藻土 石棉 耐火砖
比表面积 (m2/g) 0~1
<1 2~30 1~16
催化反应的分类
按反应类型
加氢 脱氢 氧化 聚合 裂解等 优点:便于比较同类型反应的特点 Ni催化剂:烯烃/苯 加氢 V2O5(五氧化二钒)催化剂:
苯/邻二甲苯 氧化
催化反应的分类
按反应机理
酸碱型反应:催化剂与反应物通过电子对的接 受而配位,或发生强烈极化,形成离子型活性 中间体物种进行的催化反应。
A+C→AC AC+B→AB+C
催化剂的定义
在化学反应里能改变(加快或减慢)其他物质的化学反应 速率,而本身的质量和化学性质在反应前后(反应过程中 会改变)都没有发生变化的物质叫做催化剂,又叫触媒。
其物理性质可能会发生改变,例如MnO2在催化氯酸钾生 成氯化钾和氧气的反应前后由块状变为粉末状。
(3) K(电子助催剂): 增加Fe表面电子密度
催化剂
Al2O3 (载体和催化剂)
SiO2-Al2O3 (催化裂化催化剂和基体) 沸石 (裂化催化剂) Pt/Al2O3 (催化重整) MoO3/Al2O3 (加氢处理) Ni/陶质载体 (水汽转换) Cu-ZnO-Al2O3 (低温变换)
助催剂
SiO2, ZrO2, P K2O HCl MgO Pt
100% (2) 选择性
反选应择物性转化= 的(转总化质为量目) 的 1产00物%所消耗的某反应物质量) / (某 (3) 得率或产率
得率 = (生成的目的产物质量) / (某反应物的起始质量) 100%
得率 = 转化率 选择性 100% (4) 空速和接触时间
空速 = (反应混合物流量) / (催化剂体积或质量) 接触时间 = 1 / 空速
颗
粒
晶态
物相
非晶态
组分分布
催化反应和催化剂的分类
催化反应的分类
按反应系统物相的均一性 均相:催化剂与反应物形成均一相 非均相(多相):催化剂与反应物处于不同相 酶:酶本身是液体均匀分散在水溶液中(均
相),但反应却从反应物在其表面上的积聚开 始(多相),因此同时具有均相和多相的性质。
催化作用与 催化剂简介
催化基本概念
对催化作用的定义 :
(1) 催化是靠用量较少且本身不消耗的一种叫催化剂 的外加物质来增大化学反应速度的现象。 (2) 催化剂提供了把反应物和产物连接起来的一系列 基元步骤。 (3) 没有催化剂时,是不发生这些过程的。 (4) 催化剂的存在使反应按新的途径进行从而增大反 应速度。 (5) 催化剂参与反应,经过一个化学循环后再生出来。
选择载体原则 比表面积 适宜的比表面积和孔隙结构
过大比表面积载体:活性组分非常活泼,反应产物易进一步转化。 过小比表面积载体:活性组分易聚集而导致失活或活性低。
机械强度:耐反应气流冲击
热稳定性:热膨胀系数较低
无毒和不引起副反应
常用的载体
低比表面积载体 对催化剂的活性影响很小,但热稳定性高,常
金属 金属氧化物 复合氧化物 金属硫(碳、氮、卤)化物
大部分活性组分为:过渡金属及其化合物
催化剂构成与作用
助催化剂
改善催化活性或催化剂稳定性
帮助活性组分: (结构或电子方面)
帮助载体:(结构或电子方面)
例如:合成NH3催化剂: (1)Fe3O4:活性组分 (2)Al2O3 (结构助催剂): 促进Fe (111) 晶面形成
活性:指催化剂对反应加速的程度 选择性:指所消耗的原料中转化成目
的产物的分率 稳定性:指催化剂在使用条件下具有
稳定活性的时间
催化剂活性的表示方法
转化率 CA=反应物A转化掉的量/流经催化剂床层反
应物A的总量×100% 可用完成一定转化率所需的反应温度的高低
来比较:反应温度越低,活性越高。 还可用完成一定转化率所需的空速来比较:
稀土离子 Pd Re
Ni, Co P, B K
ZnO
功能
改进热稳定性 毒化结焦部位 增加酸性 阻滞活性组分烧结 增加CO氧化
增加酸性和热稳定性 增加加氢 减少氢解和烧结
增加C-S和C- N的氢解 增加MoO3分散度 加快炭的移除
减少Cu的烧结
催化剂构成与作用
载体 (: 分散活性组分,使其 保持大的表面积