多目标规划matlab程序实现——【2019数学建模+思路】

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解

如何在Matlab中进行多目标优化问题求解如何在Matlab中进行多目标优化问题求解?多目标优化问题是指存在多个目标函数,且这些目标函数之间相互矛盾或者无法完全同时满足的问题。

在实际应用中,多目标优化问题非常常见,例如在工程设计中寻求最佳平衡点、在金融投资中追求高收益低风险等。

而Matlab作为一种强大的数值计算工具,提供了丰富的优化算法和工具箱,可以帮助我们解决多目标优化问题。

一、多目标优化问题数学建模在解决多目标优化问题之前,首先需要将实际问题转化为数学模型。

假设我们需要优化一个n维的向量x,使得目标函数f(x)同时最小化或最大化。

其中,n为自变量的个数,f(x)可以表示为多个目标函数f1(x)、f2(x)、...、fm(x)的向量形式:f(x) = [f1(x), f2(x), ..., fm(x)]其中,fi(x)(i=1,2,...,m)即为待优化的目标函数。

在多目标优化问题中,一般没有单一的最优解,而是存在一个解集,称为"帕累托前沿(Pareto Frontier)"。

该解集中的每个解被称为"非支配解(Non-Dominated Solution)",即不能被其他解所优化。

因此,多目标优化问题的目标就是找到帕累托前沿中的最佳解。

二、Matlab中的多目标优化算法Matlab提供了多种多目标优化算法和工具箱,包括paretosearch、gamultiobj、NSGA-II等等。

这些算法基于不同的思想和原理,可以根据问题的特点选择合适的算法进行求解。

1. paretosearch算法paretosearch算法采用遗传算法的思想,通过迭代更新种群来寻找非支配解。

该算法适用于求解中小规模的多目标优化问题。

使用paretosearch算法求解多目标优化问题可以按照以下步骤进行:(1)定义目标函数编写目标函数fi(x)(i=1,2,...,m)的代码。

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化

如何在MATLAB中进行多目标优化多目标优化问题是指在存在多个冲突目标的情况下,求解一个能够同时最小化或最大化多个目标函数的问题。

在实际应用中,多目标优化问题被广泛应用于工程优化、金融投资、交通规划等领域。

在MATLAB中,有多种方法可以用来解决多目标优化问题,本文将介绍其中的几种常用方法。

一、多目标优化问题的定义在开始使用MATLAB进行多目标优化之前,首先需要明确多目标优化问题的数学定义。

一般而言,多目标优化问题可以表示为:```minimize f(x) = [f1(x), f2(x), ..., fm(x)]subject to g(x) ≤ 0, h(x) = 0lb ≤ x ≤ ub```其中,f(x)为多个目标函数,g(x)和h(x)为约束条件,lb和ub分别为决策变量的下界和上界。

问题的目标是找到一组决策变量x,使得目标函数f(x)取得最小值。

二、多目标优化问题的解法在MATLAB中,有多种方法可以用来解决多目标优化问题。

下面将介绍其中的几种常见方法。

1. 非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)NSGA是一种经典的多目标优化算法,它将候选解集划分为多个等级或层次,从而使得每个解在候选解集内具备非劣势性。

在MATLAB中,可以使用多目标遗传算法工具箱(Multi-Objective Optimization Toolbox)中的`gamultiobj`函数来实现NSGA算法。

该函数可以通过指定目标函数、约束条件和决策变量范围等参数来求解多目标优化问题。

2. 多目标粒子群优化算法(Multi-objective Particle Swarm Optimization,MOPSO)MOPSO是一种基于群体智能的多目标优化算法,它模拟了粒子的行为,通过不断迭代寻找最优解。

在MATLAB中,可以使用多目标粒子群优化工具箱(Multi-Objective Particle Swarm Optimization Toolbox)中的`mopso`函数来实现MOPSO算法。

数学建模多目标规划函数fgoalattain

数学建模多目标规划函数fgoalattain

MATLAB 中文论坛讲义多目标规划优化问题Matlab 中常用于求解多目标达到问题的函数为fgoalattain.假设多目标函数问题的数学模型为:ubx lb beqx Aeq bx A x ceq x c goalweight x F t s yx ≤≤=≤=≤≤-**0)(0)(*)(..min ,γγ weight 为权值系数向量,用于控制对应的目标函数与用户定义的目标函数值的接近程度; goal 为用户设计的与目标函数相应的目标函数值向量;γ为一个松弛因子标量;F(x)为多目标规划中的目标函数向量。

综上,fgoalattain 的优化过程就是使得F 逼近goal;工程应用中fgoalattain 函数调用格式如下:[x,fval]=fgoalattain (fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)x0表示初值;fun 表示要优化的目标函数;goal 表示函数fun 要逼近的目标值,是一个向量,它的维数大小等于目标函数fun 返回向量F 的维数大小;weight 表示给定的权值向量,用于控制目标逼近过程的步长;例1. 程序(利用fgoalattain 函数求解)23222123222132min )3()2()1(min x x x x x x ++-+-+-0,,6..321321≥=++x x x x x x t s①建立M 文件.function f=myfun(x)f(1)= x(1)-1)^2+(x(2)-2)^2+(x(3)-3)^2;f(2)= x(1)^2+2*x(2)^2+3*x(3)^2;②在命令窗口中输入.goal=[1,1];weight=[1,1];Aeq=[1,1,1];beq=[6];x0=[1;1;1];lb=[0,0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun’,x0,goal,weight,[ ],[ ],Aeq,beq,lb,[ ])③得到结果.x =3.27271.63641.0909fval =8.9422 19.6364例2.某钢铁公司因生产需要欲采购一批钢材,市面上的钢材有两种规格,第1种规格的单价为3500元/t ,第2种规格的单价为4000元/t.要求购买钢材的总费用不超过1000万元,够得钢材总量不少于2000t.问如何确定最好的采购方案,使购买钢材的总费用最小且购买的总量最多.解:设采购第1、2种规格的钢材数量分别为1x 和2x .根据题意建立如下多目标优化问题的数学模型.0,200010000040003500max 40003500)(min212121211≥≥+≤++=x x x x x x x x x f ①建立M 文件. 在Matlab 编辑窗口中输入:function f=myfun(x)f(1)= 3500*x(1)+4000*x(2);f(2)=-x(1)-x(2);②在命令窗口中输入.goal=[10000000,-2000];weight=[10000000,-2000];x0=[1000,1000];A=[3500,4000;-1,-1];b=[10000000;-2000];lb=[0,0]; %也可以写lb=zero(3,1);[x,fval]=fgoalattain(‘myfun ’,x0,goal,weight,A,b,[ ],[ ],lb,[ ])③得到结果.x =1000 1000fval =7500000 -2000。

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南

Matlab中的多目标优化算法实现指南简介:多目标优化是在现实问题中常见的一种情况,例如在工程设计、金融投资和决策支持等领域。

Matlab作为一种强大的数值计算和工程仿真软件,提供了多种多目标优化算法的工具箱,如NSGA-II、MOGA等。

本文将介绍如何使用Matlab实现多目标优化算法,并给出一些应用示例。

一、多目标优化问题多目标优化问题是指在存在多个冲突的目标函数的情况下,找到一组最优解,使得这些目标函数能够达到最优。

在现实问题中,通常会涉及到多个目标,例如在工程设计中同时考虑成本和性能,或者在金融投资中同时考虑风险和收益等。

二、Matlab的多目标优化工具箱Matlab提供了多种多目标优化算法的工具箱,如Global Optimization Toolbox、Optimization Toolbox等。

这些工具箱可以帮助用户快速实现多目标优化算法,并且提供了丰富的优化函数和评价指标。

三、NSGA-II算法实现NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它通过遗传算法的方式来搜索最优解。

在Matlab中,我们可以使用NSGA-II工具箱来实现该算法。

1. 确定目标函数首先,我们需要确定待优化的问题中具体的目标函数,例如最小化成本和最大化性能等。

在Matlab中,我们可以使用函数句柄来定义这些目标函数。

2. 设定决策变量决策变量是影响目标函数的参数,我们需要确定这些变量的取值范围。

在Matlab中,可以使用函数句柄或者向量来定义这些变量。

3. 设定其他参数除了目标函数和决策变量,NSGA-II算法还需要其他一些参数,例如种群大小、迭代次数等。

在Matlab中,我们可以使用结构体来存储这些参数。

4. 运行算法将目标函数、决策变量和其他参数传递给NSGA-II工具箱,然后运行算法。

Matlab会自动进行优化计算,并给出一组最优解。

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

Matlab中的多目标优化与多约束问题求解

Matlab中的多目标优化与多约束问题求解

Matlab中的多目标优化与多约束问题求解在科学研究和工程领域,我们常常面临着需要在多个目标和多个约束下进行决策的问题。

如何在满足多个目标的前提下,找到最优的解决方案,是一个具有挑战性的问题。

幸运的是,在现代计算机技术的支持下,我们可以利用各种算法和工具来解决这类问题。

而Matlab作为一种功能强大的数学计算软件,提供了丰富的工具和函数,能够有效地解决多目标优化与多约束问题。

多目标优化是指在决策过程中需要同时优化多个目标函数的问题。

传统的单目标优化问题可以通过一个标量目标函数来描述,我们通过最小化或最大化目标函数来找到最优解。

然而,在现实问题中,我们可能需要考虑多个目标,而这些目标可能具有冲突的关系。

例如,在工程设计中,我们既希望降低成本,又要提高产品质量,这两个目标往往是相互制约的。

解决这类问题需要找到一组解,使得满足多个目标的条件,并且没有更好的解可以取代。

Matlab提供了多种解决多目标优化问题的算法和函数。

其中最常用的方法是基于遗传算法的多目标优化算法。

遗传算法是一种模拟生物进化的算法,通过自然选择、交叉和变异等操作,逐渐搜索到较优的解。

在Matlab中,我们可以利用`gamultiobj`函数进行多目标优化。

该函数基于遗传算法,通过迭代搜索来寻找一组“非劣解”,即没有更好解的解集。

使用这个函数,我们可以定义多个目标函数,并设置各个目标函数的优化目标(最小化或最大化),从而得到一组优秀的解。

在实际应用中,除了目标函数之外,我们还经常面临着各种约束条件。

例如,在工程设计中,我们可能有一些物理约束条件,如材料强度、尺寸限制等,还可能有一些性能约束条件,如稳定性、灵活性等。

这些约束条件不仅限制了解的空间,还对解的可行性和可行域进行限制。

如何在满足这些约束条件的前提下进行优化,是一个复杂而困难的问题。

在Matlab中,我们可以使用`fmincon`函数解决多约束优化问题。

该函数基于内点方法或SQP(Sequential Quadratic Programming)方法,通过迭代搜索来找到满足约束条件的最优解。

利用Matlab构建数学模型及求解方法详解

利用Matlab构建数学模型及求解方法详解

利用Matlab构建数学模型及求解方法详解引言数学模型在现代科学研究和实际应用中起着重要的作用。

利用数学模型,我们可以准确地描述问题,分析问题,并提供解决问题的方法。

而Matlab作为一种强大的数学软件,能够帮助我们构建数学模型并求解问题。

本文将详细介绍利用Matlab构建数学模型的方法和求解模型的技巧。

一、数学模型的基本概念数学模型是对真实世界问题的简化和抽象,以数学语言和符号进行表达。

一个好的数学模型应当能够准确地描述问题的本质,并能够提供解决问题的方法。

构建数学模型的基本步骤如下:1. 确定问题的目标和限制条件:首先,我们需要明确问题的目标是什么,以及有哪些限制条件需要考虑。

这些目标和限制条件将在后续的模型构建中起到重要的作用。

2. 建立假设:在构建数学模型时,我们通常需要做一些合理的假设。

这些假设可以简化问题,使得模型更易于建立和求解。

3. 确定数学表达式:根据问题的具体情况,我们需要选择适当的数学表达式来描述问题。

这些数学表达式可以是代数方程、微分方程、最优化问题等。

4. 参数估计:数学模型中通常会涉及到一些未知参数,我们需要通过实验数据或者其他手段来估计这些参数的值。

参数的准确估计对于模型的求解和结果的可靠性至关重要。

二、利用Matlab构建数学模型的方法在利用Matlab构建数学模型时,我们通常可以使用以下方法:1. 利用符号计算工具箱:Matlab中提供了丰富的符号计算工具箱,可以帮助我们处理复杂的代数方程和符号表达式。

通过符号计算工具箱,我们可以方便地推导出数学模型的方程式。

2. 利用数值计算工具箱:Matlab中提供了强大的数值计算工具箱,可以帮助我们求解各种数学问题。

例如,求解微分方程的常用方法有欧拉法、龙格-库塔法等,都可以在Matlab中轻松实现。

3. 利用优化工具箱:在一些优化问题中,我们需要求解最优解。

Matlab的优化工具箱提供了多种求解最优化问题的算法,如线性规划、非线性规划等。

Matlab中的多目标决策与多目标规划方法

Matlab中的多目标决策与多目标规划方法

Matlab中的多目标决策与多目标规划方法在工程和科学领域中,我们经常需要做出多个决策来解决一个问题。

而在现实中,这些决策可能有不同的目标或要求。

为了解决这个问题,我们可以利用Matlab中的多目标决策和多目标规划方法。

首先,让我们了解一下什么是多目标决策。

在传统的决策模型中,我们通常只有一个目标,在决策过程中我们优化这个目标。

然而,在实际问题中,往往存在多个目标,这些目标之间可能是相互矛盾的。

例如,在设计一个产品时,我们可能要同时考虑成本、品质和交货时间等多个目标。

这时,我们就需要多目标决策方法来找到一个最优解。

在Matlab中,我们可以利用多种多目标决策方法来解决这个问题。

其中一种常用的方法是多目标遗传算法(MOGA)。

遗传算法是一种模拟自然选择和遗传机制的优化算法。

它从一个初始的种群开始,通过模拟自然进化的过程,逐渐优化目标函数。

而多目标遗传算法则是在遗传算法的基础上进行了改进,使其能够同时优化多个目标。

多目标遗传算法的基本思想是通过保留当前种群中的一些非支配个体,并利用交叉和变异操作产生新的个体。

通过不断迭代,逐渐逼近最优解的非支配解集。

这样,我们就可以得到一系列的解,这些解都是在多个目标下都是最优的。

除了遗传算法外,Matlab还支持其他多目标决策方法,如多目标粒子群算法(MOPSO)和多目标蚁群算法(MOACO)。

这些方法在原理上有所不同,但都能够有效地解决多目标决策问题。

与多目标决策密切相关的是多目标规划。

多目标规划是一种数学优化方法,用于解决存在多个目标的问题。

在多目标规划中,我们需要同时优化多个目标函数,而不是简单地将它们合并成一个目标函数。

这使得我们可以获得一系列的最优解,而不是一个单一的最优解。

在Matlab中,我们可以使用多种多目标规划方法来解决这个问题。

其中一种常用的方法是帕累托前沿方法(Pareto Front)。

帕累托前沿是指在多目标问题中,不能通过改变一个目标而改善其他目标的解。

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍Matlab是一种非常常用的科学计算和数学建模软件,它具有强大的数学运算能力和用户友好的界面。

在科学研究和工程技术领域,Matlab被广泛应用于数学建模和数据分析。

本文将介绍一些在Matlab中常用的数学建模方法,帮助读者更好地理解和应用这些方法。

一、线性回归模型线性回归模型是一种经典的数学建模方法,用于分析数据之间的关系。

在Matlab中,我们可以使用regress函数进行线性回归分析。

首先,我们需要将数据导入Matlab,并进行数据预处理,如去除异常值和缺失值。

然后,使用regress函数拟合线性回归模型,并计算相关系数和残差等统计量。

最后,我们可以使用plot 函数绘制回归线和散点图,以观察数据的拟合程度。

二、非线性回归模型非线性回归模型适用于数据呈现非线性关系的情况。

在Matlab中,我们可以使用lsqcurvefit函数进行非线性回归分析。

首先,我们需要定义一个非线性方程,并设定初始参数值。

然后,使用lsqcurvefit函数拟合非线性回归模型,并输出拟合参数和残差信息。

最后,我们可以使用plot函数绘制拟合曲线和散点图,以评估模型的拟合效果。

三、差分方程模型差分方程模型用于描述离散时间系统的动态行为。

在Matlab中,我们可以使用diffeq函数求解差分方程模型的解析解或数值解。

首先,我们需要定义差分方程的形式,并设置初值条件。

然后,使用diffeq函数求解差分方程,并输出解析解或数值解。

最后,我们可以使用plot函数绘制解析解或数值解的图形,以观察系统的动态行为。

四、优化模型优化模型用于求解最优化问题,如寻找函数的最大值或最小值。

在Matlab中,我们可以使用fmincon函数或fminunc函数进行优化求解。

首先,我们需要定义目标函数和约束条件。

然后,使用fmincon函数或fminunc函数求解最优化问题,并输出最优解和最优值。

最后,我们可以使用plot函数可视化最优解的效果。

MATLAB解决数学模型中规划问题

MATLAB解决数学模型中规划问题

数学模型数学规划1. 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.解:基本模型决策变量:设生产x1百箱甲饮料,x2百箱乙饮料目标函数:设获利为z=10x+9y万元约束条件:原料和工人的数量均有限,6x1+5x2≤60,10x1+20x2≤150,又有其他条件所限x1≤8非负约束:x1,x2均不能为负值,即x1≥0,x2≥0综上可得:Max z=10x1+9x2s.t. 6x1+5x2≤6010x1+20x2≤1500≤x1≤80≤x2编写Matlab程序如下:C=[-10 -9];A=[6 5;10 20;1 0];B=[60 150 8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(C,A,B,Aeq,beq,vlb,vub)运行结果如下:x =6.42864.2857fval =-102.8571结果分析:若取整数箱饮料,则应该生产6百箱甲饮料,4百箱乙饮料,可最大获利96万元。

进一步讨论:1)若投资0.8万元可增加原料1千克,设增加原料x3千克,则目标函数变为:z=10x1+9x2-0.8x3约束条件变为:s.t 6x1+5x2-x3≤6010x1+20x2≤1500≤x1≤80≤x20≤x3Matlab程序如下:C=[-10 -9 0.8];A=[6 5 -1;10 20 0;1 0 0];B=[60 150 8];Aeq=[];beq=[];vlb=[0;0;0];vub=[];[x,fval]=linprog(C,A,B,Aeq,beq,vlb,vub)运行结果如下:x =8.00003.50005.5000fval =-107.1000结果分析:因为107.1000 >102.8571,所以投资增加原料可以使得最大获利增加,商家应该考虑进行这项投资。

多目标非线性规划程序(Matlab)

多目标非线性规划程序(Matlab)

function [errmsg,Z,X,t,c,fail] =BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,ma xSQPit,varargin);%·ÇÏßÐÔÕûÊý¹æ»®Ä£ÐÍÇó½â·ÖÖ§¶¨½çµü´úËã·¨¡£ÔÚMATLAB5.3ÖÐʹÓã¬ÐèOptimizat ion toolbox 2.0Ö§³Ö?% Minimize F(x)%subject to: xlb <= x <=xub% A*x <= B% Aeq*x=Beq% C(x)<=0% Ceq(x)=0%% x(i)¿ÉΪÁ¬Ðø±äÁ¿£¬ÕûÊý£¬»ò¹Ì¶¨Öµ% ʹÓøñʽ%[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts)%fun£º MÎļþÃû£¬±íʾ×îС»¯Ä¿±êº¯Êýf=fun(x)%x0: ÁÐÏòÁ¿£¬±íʾ±äÁ¿³õÖµ%xstat£º ÁÐÏòÁ¿£¬xstat(i)=0±íʾx(i)ΪÁ¬Ðø±äÁ¿£¬1±íʾÕûÊý£¬2±íʾ¹Ì¶¨Öµ%xl£º ÁÐÏòÁ¿£¬±íʾ±äÁ¿Ï½ç%xu: ÁÐÏòÁ¿£¬±íʾ±äÁ¿ÉϽç%A: ¾ØÕó, ±íʾÏßÐÔ²»µÈʽԼÊøϵÊý%B: ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÉϽç%Aeq: ¾ØÕó, ±íʾÏßÐÔµÈʽԼÊøϵÊý%Beg: ÁÐÏòÁ¿, ±íʾÏßÐÔ²»µÈʽԼÊøÓÒ¶ËÖµ%nonlcon:MÎļþÃû£¬±íʾ·ÇÏßÐÔÔ¼Êøº¯Êý[C,Ceq]=nonlin(x),ÆäÖÐC(x)Ϊ²»µÈʽԼÊø,% Ceq(x)ΪµÈʽԼÊø%setts: Ëã·¨ÉèÖÃ%errmsq: ·µ»Ø´íÎóÌáʾ%Z: ·µ»ØÄ¿±êº¯Êý×îСֵ%X: ·µ»Ø×îÓŽâ%%ÀýÌâ% max x1*x2*x3% -x1+2*x2+2*x3>=0% x1+2*x2+2*x3<=72% 10<=x2<=20% x1-x2=10% ÏÈд Mº¯Êýdiscfun.m% function f=discfun(x)% f=-x(1)*x(2)*x(3);%Çó½â% clear;x0=[25,15,10]';xstat=[1 1 1]';% xl=[20 10 -10]';xu=[30 20 20]';% A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10;% [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq);% XMAX=X',ZMAX=-Z%% BNB18 Finds the constrained minimum of a function of several possibly integer variables.% Usage: [errmsg,Z,X,t,c,fail] =%BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,opti ons2,maxSQPiter,P1,P2,...)%% BNB solves problems of the form:% Minimize F(x) subject to: xlb <= x0 <=xub% A*x <= B Aeq*x=Beq% C(x)<=0 Ceq(x)=0% x(i) is continuous for xstatus(i)=0% x(i) integer for xstatus(i)= 1% x(i) fixed for xstatus(i)=2%% BNB uses:% Optimization Toolbox Version 2.0 (R11) 09-Oct-1998% From this toolbox fmincon.m is called. For more info type help fmincon. %% fun is the function to be minimized and should return a scalar.F(x)=feval(fun,x).% x0 is the starting point for x. x0 should be a column vector.% xstatus is a column vector describing the status of every variable x(i). % xlb and xub are column vectors with lower and upper bounds for x.% A and Aeq are matrices for the linear constrains.% B and Beq are column vectors for the linear constrains.% nonlcon is the function for the nonlinear constrains.% [C(x);Ceq(x)]=feval(nonlcon,x). Both C(x) and Ceq(x) should be column vectors.%% errmsg is a string containing an error message if BNB found an erro r in the input.% Z is the scalar result of the minimization, X the values of the accompanying variables.% t is the time elapsed while the algorithm BNB has run, c is the number of BNB cycles and% fail is the number of unsolved leaf sub-problems.%% settings is a row vector with settings for BNB:% settings(1) (standard 0) if 1: use phase 1 by relaxation. This sometimes makes the algorithm% faster, because phase 1 means the algorithm first checks if there is a feasible solution% for a sub-problem before trying to find a best solution. If there is no feasible solution BNB% will not try to find a best solution.% settings(2) (standard 0) if 1: if the sub-problem did not converge do not branch. If a sub-% problem did not converge this means BNB did not find a solution for it. Normally BNB will% branch the problem so it can try again to find a solution.% A sub-problem that is a leaf of the branch-and-bound-three can not be branched. If such% a problem does not converge it will be considered unfeasible and the parameter fail will be% raised by one.% settings(3) (standard 0) if 1: if 1 a sub-problem that did not converge but did return a feasible% point will be considered convergent. This might be useful if fmincon is having a hard time with% a certain problem but you do want some results.% options1 and options2 are options structures for phase 1 and phase 2.% For details about the options structure type help optimset.% maxSQPiter is a global variable used by fmincon (if modified as described in bnb18.m).% maxSQPiter is 1000 by default.% P1,P2,... are parameters to be passed to fun and nonlcon.% F(x)=feval(fun,x,P1,P2,...). [C(x);Ceq(x)]=feval(nonlcon,x,P1,P2,...). % Type edit BNB18 for more info.% E.C. Kuipers% e-mail E.C.Kuipers@cpedu.rug.nl% FI-Lab% Applied Physics% Rijksuniversiteit Groningen% To get rid of bugs and to stop fmincon from hanging make the following chances:%% In optim/private/nlconst.m ($Revision: 1.20 $ $Date: 1998/08/24 13:46:15 $):% Get EXITFLAG independent of verbosity.% After the lines: disp(' less than 2*options.TolFun but constraints are not satisfied.')% end% EXITFLAG = -1;% end% end% status=1;% add the line: if (strncmp(howqp, 'i',1) & mg > 0), EXITFLAG = -1; end; %% In optim/private/qpsub.m ($Revision: 1.21 $ $Date: 1998/09/01 21:37:56 $):% Stop qpsub from hanging.% After the line: % Andy Grace 7-9-90. Mary Ann Branch 9-30-96.% add the line: global maxSQPiter;% and changed the line: maxSQPiters = Inf;% to the line: if exist('maxSQPiter','var'), maxSQPiters = maxSQPiter; else maxSQPiters=inf; end;% I guess there was a reason to put maxSQPiters at infinity, but this works fine for me.global maxSQPiter;% STEP 0 CHECKING INPUTZ=[]; X=[]; t=0; c=0; fail=0;if nargin<2, errmsg='BNB needs at least 2 input arguments.'; return; end; if isempty(fun), errmsg='No fun found.'; return; end;if isempty(x0), errmsg='No x0 found.'; return;elseif size(x0,2)>1, errmsg='x0 must be a column vector.'; return; end; xstatus=zeros(size(x0));if nargin>2 & ~isempty(xstat)if all(size(xstat)<=size(x0))xstatus(1:size(xstat))=xstat;else errmsg='xstatus must be a column vector the same size as x0.'; return;end;if any(xstatus~=round(xstatus) | xstatus<0 | 2<xstatus)errmsg='xstatus must consist of the integers 0,1 en 2.'; return;end;end;xlb=zeros(size(x0));xlb(find(xstatus==0))=-inf;if nargin>3 & ~isempty(xl)if all(size(xl)<=size(x0))xlb(1:size(xl,1))=xl;else errmsg='xlb must be a column vector the same size as x0.'; return;end;end;if any(x0<xlb)errmsg='x0 must be in the range xlb <= x0.'; return;elseif any(xstatus==1 & (~isfinite(xlb) | xlb~=round(xlb)))errmsg='xlb(i) must be an integer if x(i) is an integer variabele.'; return;end;xlb(find(xstatus==2))=x0(find(xstatus==2));xub=ones(size(x0));xub(find(xstatus==0))=inf;if nargin>4 & ~isempty(xu)if all(size(xu)<=size(x0))xub(1:size(xu,1))=xu;else errmsg='xub must be a column vector the same size as x0.'; return;end;end;if any(x0>xub)errmsg='x0 must be in the range x0 <=xub.'; return;elseif any(xstatus==1 & (~isfinite(xub) | xub~=round(xub)))errmsg='xub(i) must be an integer if x(i) is an integer variabale.'; return;end;xub(find(xstatus==2))=x0(find(xstatus==2));if nargin>5if~isempty(A) & size(A,2)~=size(x0,1), errmsg='Matrix A not correct.'; return; end;else A=[]; end;if nargin>6if~isempty(B) & any(size(B)~=[size(A,1) 1]), errmsg='Column vector B not correct.'; return; end;else B=[]; end;if isempty(A) & ~isempty(B), errmsg='A and B should only be nonempty together.'; return; end;if isempty(B) & ~isempty(A), B=zeros(size(A,1),1); end;if nargin>7 & ~isempty(Aeq)if size(Aeq,2)~=size(x0,1), errmsg='Matrix Aeq not correct.'; return; end;else Aeq=[]; end;if nargin>8if ~isempty(Beq) & any(size(Beq)~=[size(Aeq,1) 1]), errmsg='Column vector Beq not correct.'; return; end;else Beq=[]; end;if isempty(Aeq) & ~isempty(Beq), errmsg='Aeq and Beq should only be nonempty together'; return; end;if isempty(Beq) & ~isempty(Aeq), Beq=zeros(size(Aeq,1),1); end;if nargin<10, nonlcon=''; end;settings = [0 0 0];if nargin>10 & ~isempty(setts)if all(size(setts)<=size(settings))settings(setts~=0)=setts(setts~=0);else errmsg='settings should be a row vector of length 3.'; return; end; end;if nargin<12, options1=[]; end;options1=optimset(optimset('fmincon'),options1);if nargin<13, options2=[]; end;options2=optimset(optimset('fmincon'),options2);if nargin<14, maxSQPiter=1000;elseif isnumeric(maxSQPit) & all(size(maxSQPit))==1 & maxSQPit>0 &round(maxSQPit)==maxSQPitmaxSQPiter=maxSQPit;else errmsg='maxSQPiter must be an integer >0'; return; end;eval(['z=',fun,'(x0,varargin{:});'],'errmsg=''fun caused error.''; return;');if ~isempty(nonlcon)eval(['[C, Ceq]=',nonlcon,'(x0,varargin{:});'],'errmsg=''nonlcon caused error.''; return;');if size(C,2)>1 | size(Ceq,2)>1, errmsg='C en Ceq must be column vectors.'; return; end;end;% STEP 1 INITIALISATIONcurrentwarningstate=warning;warning off;tic;lx = size(x0,1);z_incumbent=inf;x_incumbent=inf*ones(size(x0));I =ceil(sum(log2(xub(find(xstatus==1))-xlb(find(xstatus==1))+1))+size(find (xstatus==1),1)+1);stackx0=zeros(lx,I);stackx0(:,1)=x0;stackxlb=zeros(lx,I);stackxlb(:,1)=xlb;stackxub=zeros(lx,I);stackxub(:,1)=xub;stacksize=1;xchoice=zeros(size(x0));if ~isempty(Aeq)j=0;for i=1:size(Aeq,1)if Beq(i)==1 & all(Aeq(i,:)==0 | Aeq(i,:)==1)J=find(Aeq(i,:)==1);if all(xstatus(J)~=0 & xchoice(J)==0 & xlb(J)==0 & xub(J)==1) if all(xstatus(J)~=2) | all(x0(J(find(xstatus(J)==2)))==0)j=j+1;xchoice(J)=j;if sum(x0(J))==0, errmsg='x0 not correct.'; return; end;end;end;end;end;end;errx=optimget(options2,'TolX');errcon=optimget(options2,'TolCon');fail=0;c=0;% STEP 2 TERMINIATIONwhile stacksize>0c=c+1;% STEP 3 LOADING OF CSPx0=stackx0(:,stacksize);xlb=stackxlb(:,stacksize);xub=stackxub(:,stacksize);x0(find(x0<xlb))=xlb(find(x0<xlb));x0(find(x0>xub))=xub(find(x0>xub));stacksize=stacksize-1;% STEP 4 RELAXATION% PHASE 1con=BNBCON(x0,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if abs(con)>errcon & settings(1)~=0[x1 dummyfeasflag]=fmincon('0',x0,A,B,Aeq,Beq,xlb,xub,nonlcon,options1,varargin{ :});if settings(3) & feasflag==0con=BNBCON(x1,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, feasflag=1; end;end;else x1=x0; feasflag=1; end;% PHASE 2if feasflag>0[x zconvflag]=fmincon(fun,x1,A,B,Aeq,Beq,xlb,xub,nonlcon,options2,varargin{ :});if settings(3) & convflag==0con=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin{:});if con<errcon, convflag=1; end;end;else convflag=feasflag; end;% STEP 5 FATHOMINGK = find(xstatus==1 & xlb~=xub);separation=1;if convflag<0 | (convflag==0 & settings(2))% FC 1separation=0;elseif z>=z_incumbent & convflag>0% FC 2separation=0;elseif all(abs(round(x(K))-x(K))<errx) & convflag>0% FC 3z_incumbent = z;x_incumbent = x;separation = 0;end;% STEP 6 SELECTIONif separation == 1 & ~isempty(K)dzsep=-1;for i=1:size(K,1)dxsepc = abs(round(x(K(i)))-x(K(i)));if dxsepc>=errx | convflag==0xsepc = x; xsepc(K(i))=round(x(K(i)));dzsepc = abs(feval(fun,xsepc,varargin{:})-z);if dzsepc>dzsepdzsep=dzsepc;ixsep=K(i);end;end;end;% STEP 7 SEPARATIONif xchoice(ixsep)==0% XCHOICE==0branch=1;domain=[xlb(ixsep) xub(ixsep)];while branch==1xboundary=(domain(1)+domain(2))/2;if x(ixsep)<xboundarydomainA=[domain(1) floor(xboundary)];domainB=[floor(xboundary+1) domain(2)];elsedomainA=[floor(xboundary+1) domain(2)];domainB=[domain(1) floor(xboundary)];end;stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainB(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainB(2);if domainA(1)==domainA(2)stacksize=stacksize+1;stackx0(:,stacksize)=x;stackxlb(:,stacksize)=xlb;stackxlb(ixsep,stacksize)=domainA(1);stackxub(:,stacksize)=xub;stackxub(ixsep,stacksize)=domainA(2);branch=0;elsedomain=domainA;branch=1;end;end;else% XCHOICE~=0L=find(xchoice==xchoice(ixsep));M=intersect(K,L);[dummy,N]=sort(x(M));part1=M(N(1:floor(size(N)/2)));part2=M(N(floor(size(N)/2)+1:size(N)));stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part1,stacksize)))/size(part1,1);stackx0(part1,stacksize)=stackx0(part1,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part2,stacksize)=0;stacksize=stacksize+1;stackx0(:,stacksize)=x;O = (1-sum(stackx0(part2,stacksize)))/size(part2,1);stackx0(part2,stacksize)=stackx0(part2,stacksize)+O;stackxlb(:,stacksize)=xlb;stackxub(:,stacksize)=xub;stackxub(part1,stacksize)=0;if size(part2,1)==1, stackxlb(part2,stacksize)=1; end;end;elseif separation==1 & isempty(K)fail=fail+1;end;end;% STEP 8 OUTPUTt=toc;Z = z_incumbent;X = x_incumbent;errmsg='';eval(['warning ',currentwarningstate]);function CON=BNBCON(x,A,B,Aeq,Beq,xlb,xub,nonlcon,varargin); if isempty(A), CON1=[]; else CON1 = max(A*x-B,0); end;if isempty(Aeq), CON2=[]; else CON2 = abs(Aeq*x-Beq); end; CON3 = max(xlb-x,0);CON4 = max(x-xub,0);if isempty(nonlcon)CON5=[]; CON6=[];else[C Ceq]=feval(nonlcon,x,varargin{:});CON5 = max(C,0);CON6 = abs(Ceq);end;CON = max([CON1; CON2; CON3; CON4; CON5; CON6]);。

matlab常用算法大全(数学建模)

matlab常用算法大全(数学建模)

本文总结了matlab常用的几个算法,希望对数学建模有帮助。

利用matlab编程FFD算法完成装箱问题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

建立box_main.mfunction[box_count,b]=box_main(v) vmax=100;sort(v,'descend');n=length(v);b=zeros(1,n);for i=1:nb(i)=vmax;endbox_count=1;for i=1:nfor j=1:box_countif v(i)<=b(j) %可以放入 b(j)=b(j)-v(i);break;else%不可放入时continue;endendif j==box_countbox_count=box_count+1;endendbox_count=box_count-1;end主程序为:v=[60 45 35 20 20 20];[box_count,b]=box_main(v)结果:box_count =3 b =5 15 80 100 100 100所以,使用的箱子数为3, 使用的箱子的剩余空间为5,15 ,80。

“超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3 , 奖品i 占用的空间为wi dm3 ,价值为vi 元, 具体的数据如下:vi = { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}wi = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

matlab多目标拟合

matlab多目标拟合

matlab多目标拟合
在MATLAB中进行多目标拟合通常涉及使用最小二乘法或者其他
优化算法来拟合多个目标函数。

这种情况下,你需要考虑以下几个
方面:
1. 数据准备,首先,你需要准备好你的数据。

这包括输入数据
和对应的目标数据。

确保数据格式正确,并且没有缺失值。

2. 目标函数定义,接下来,你需要定义你要拟合的多个目标函数。

这些函数可以是线性的、非线性的,甚至可以是自定义的复杂
函数。

3. 拟合方法选择,MATLAB提供了许多优化工具箱,包括lsqcurvefit、fmincon等,你可以根据你的问题选择合适的优化算
法进行多目标拟合。

4. 初始参数估计,对于多目标拟合,初始参数的选择尤为重要。

一个好的初始参数估计可以大大加快拟合的收敛速度。

5. 拟合结果评估,拟合完成后,你需要对拟合结果进行评估。

这包括拟合误差的计算、拟合参数的置信区间等。

在MATLAB中,你可以使用内置的优化函数来实现多目标拟合。

例如,使用lsqcurvefit函数可以对多个目标函数进行最小二乘拟合。

此外,MATLAB还提供了许多示例和文档,可以帮助你更好地理
解和实现多目标拟合。

总之,进行多目标拟合需要充分考虑数据准备、目标函数定义、拟合方法选择、初始参数估计和拟合结果评估等方面。

在MATLAB中,你可以利用其丰富的工具箱和文档资源来实现多目标拟合,从而解
决各种实际问题。

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。

如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。

接下来,让我们一起开启 MATLAB 编程的实用教程之旅。

一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。

当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。

变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。

例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。

MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。

二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。

可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。

矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。

例如,两个矩阵相加可以直接使用`A + B` 。

三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。

比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。

我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。

MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。

以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。

五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。

第五讲 规划问题的matlab计算

第五讲  规划问题的matlab计算

但是,输入matlab计算时,应该输入成x1,x2,…,x25的 格式。本题有25个0-1变量且需要约束全部化为小于等 于形式。约束矩阵是20x25的矩阵(为什么?),应 该采用稀疏矩阵的输入方式。
>> clear >> c=[32 17 34 36 25 21 31 21 22 19 24 29 40 28 39 26 35 41 33 29 33 27 31 42 22]; >> A=zeor(20,25);
后者略优于前者bfgs是至今最好的拟牛顿法下面对两种算法作一个计算对比functionfgzuisu2xdfp拟牛顿法计算initialhesstypeidentity初始hesse矩阵用单位阵optionsoptimset?largescale??off??hessupdate??dfp??gradobj??on??maxfunevals?250?initialhesstype??identity??display??iter?
参数输入: Fun: x0: 目标函数,一般用M文件给出 优化的初始点
Options: 参数设置(后面说明)
函数输出:
X:最优点(或最后迭代值) Fval:最后迭代值的目标函数值 Exitflag:函数结束的信息 Oupput:函数基本信息,包括迭代次数,目标函数最 大计算次数,使用的算法名称,计算规模
x =
Ax b, s.t .Qx p , x 0
求解命令: x=linprog(c,A,b,Q,p)
若没有不等式,则令A=[ ],b=[ ]。
例2
例2 求解线性规划
min z 13 x1 9 x2 10 x3 11x4 12 x5 8 x6 ; x1 x4 400, x x 600, 5 2 x3 x6 500, s.t. 0.4 x1 1.1x2 x3 800, 0.5 x4 1.2 x5 1.3 x6 900, x16 0

matlab建模思路

matlab建模思路

matlab建模思路
建模思路是指在使用MATLAB进行建模的过程中,应遵循的一些主要步骤和原则。

这些步骤和原则可以帮助研究人员准确地表示问题、选择适当的建模方法和算法,并分析和解释模型的结果。

下面是一些常见的MATLAB建模思路:
1. 确定问题:首先明确需要解决的问题是什么,这有助于明确建模的目标和范围。

2. 收集数据:如果问题需要基于数据来建模,那么需要从合适的来源收集相关数据,并进行数据处理和清洗。

3. 选择建模方法:根据问题的特点和数据的性质,选择合适的建模方法。

MATLAB提供了丰富的工具箱,包括统计建模、机器学习、优化等,可以根据具体需求选择合适的工具。

4. 构建模型:根据所选的建模方法,使用MATLAB编写代码来构建模型。

这可能涉及使用数学公式、算法、统计方法等来表示和解决问题。

5. 参数估计和模型验证:如果模型包含参数,需要对参数进行估计,并使用合适的验证方法来评估模型的准确性和可靠性。

MATLAB提供了许多用于参数估
计和模型验证的函数。

6. 模型分析和解释:使用MATLAB的可视化和数据分析工具来分析模型的结果,并解释模型对问题的影响和解决方案。

7. 模型优化和改进:根据模型的分析结果,可以进行模型的优化和改进,以得到更好的结果。

这可能涉及调整模型的参数、增加更复杂的特征、改变模型的结构等。

8. 结果报告:最后,使用MATLAB生成报告或图表,将建模结果和结论呈现给相关的利益相关者。

需要注意的是,建模思路可能因具体问题而异,上述步骤只是一种一般性的指导,具体建模过程中还需根据问题的特点和数据的性质进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化与决策
——多目标线性规划的若干解法及MATLAB 实现
摘要:求解多目标线性规划的基本思想大都是将多目标问题转化为单目标规划,本文介绍
了理想点法、线性加权和法、最大最小法、目标规划法,然后给出多目标线性规划的模糊数学解法,最后举例进行说明,并用Matlab 软件加以实现。

关键词:多目标线性规划 Matlab 模糊数学。

注:本文仅供参考,如有疑问,还望指正。

一.引言
多目标线性规划是多目标最优化理论的重要组成部分,由于多个目标之间的矛盾性和不可公度性,要求使所有目标均达到最优解是不可能的,因此多目标规划问题往往只是求其有效解(非劣解)。

目前求解多目标线性规划问题有效解的方法,有理想点法、线性加权和法、最大最小法、目标规划法。

本文也给出多目标线性规划的模糊数学解法。

二.多目标线性规划模型
多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函数,其数学模型表示为:
11111221221122221122max n n n n
r r r rn n
z c x c x c x z c x c x c x z c x c x c x =+++⎧⎪=+++⎪⎨ ⎪⎪=+++⎩ (1)
约束条件为:
1111221121122222112212,,,0
n n n n m m mn n m
n a x a x a x b a x a x a x b a x a x a x b
x x x +++≤⎧⎪+++≤⎪⎪ ⎨⎪+++≤⎪≥⎪⎩ (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。

我们记:()ij m n A a ⨯=,()ij r n C c ⨯=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = ,
12(,,,)T r Z Z Z Z = .
则上述多目标线性规划可用矩阵形式表示为:
max Z Cx =
约束条件:0Ax b
x ≤⎧⎨≥⎩
(3)
三.MATLAB 优化工具箱常用函数[3]
在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、
求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为:
①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub)
f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下
限和上限, fval 求解的x 所对应的值。

算法原理:单纯形法的改进方法投影法。

②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub )
fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束
系数, lb,ub 为x 的下限和上限, fval 求解的x 所对应的值。

算法原理:基于K-T (Kuhn-Tucker )方程解的方法。

③.[x,fval ]=fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束
系数, lb,ub 为x 的下限和上限, fval 求解的x 所对应的值。

算法原理:序列二次规划法。

④.[x,fval ]=fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
fun 为目标函数的M 函数, x0为初值,goal 变量为目标函数希望达到的向量值, wight
参数指定目标函数间的权重,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下限和上限, fval 求解的x 所对应的值。

算法原理:目标达到法。

四.多目标线性规划的求解方法及MATLAB 实现 4.1理想点法
在(3)中,先求解r 个单目标问题:min (),1,2,j x D
Z x j r ∈= ,设其最优值为*j Z ,称
***
*12(,,)r Z Z Z Z = 为值域中的一个理想点,
因为一般很难达到。

于是,在期望的某种度量之下,寻求距离*
Z 最近的Z 作为近似值。

一种最直接的方法是最短距离理想点法,构造评价函数
()Z ϕ=
然后极小化[()]Z x ϕ,即求解
min [()]x D
Z x ϕ∈=
并将它的最优解*
x 作为(3)在这种意义下的“最优解”。

例1:利用理想点法求解
112212121212max ()32max ()43.2318210,0
f x x x f x x x s t x x x x x x =-+=+ +≤ +≤ ≥
解:先分别对单目标求解:
①求解1()f x 最优解的MA TLAB 程序为 >> f=[3;-2]; A=[2,3;2,1]; b=[18;10]; lb=[0;0]; >> [x,fval]=linprog(f,A,b,[],[],lb) 结果输出为:x = 0.0000 6.0000
fval = -12.0000
即最优解为12.
②求解2()f x 最优解的MA TLAB 程序为 >> f=[-4;-3]; A=[2,3;2,1]; b=[18;10]; lb=[0;0]; >> [x,fval]=linprog(f,A,b,[],[],lb) 结果输出为:x =3.0000 4.0000
fval =-24.0000
即最优解为24.
于是得到理想点:(12,24). 然后求如下模型的最优解
121212min [()].2318210,0
x D
f x s t x x x x x x ϕ∈= +≤ +≤ ≥
MATLAB 程序如下:
>> A=[2,3;2,1]; b=[18;10]; x0=[1;1]; lb=[0;0];
>> x=fmincon('((-3*x(1)+2*x(2)-12)^2+(4*x(1)+3*x(2)-24)^2)^(1/2)',x0,A,b,[],[],lb,[]) 结果输出为:x = 0.5268 5.6488
则对应的目标值分别为1()9.7172f x =,2()19.0536f x =.
4.2线性加权和法
在具有多个指标的问题中,人们总希望对那些相对重要的指标给予较大的权系数,因而将多目标向量问题转化为所有目标的加权求和的标量问题,基于这个现实,构造如下评价函数,即
1
min ()()r
i i x D
i Z x Z x ω∈==∑
将它的最优解*
x 作为(3)在线性加权和意义下的“最优解”。

(i ω为加权因子,其选取的方法很多,有专家打分法、容限法和加权因子分解法等).
例2:对例1进行线性加权和法求解。

(权系数分别取10.5ω=,20.5ω=)。

相关文档
最新文档