数学建模实验报告-第三章-线性规划

合集下载

数学建模作业实验线性规划实验模板

数学建模作业实验线性规划实验模板

数学建模作业(实验3线性规划实验)基本实验1.生产计划安排某公司使用三种操作装配三种玩具——玩具火车、玩具卡车和玩具汽车。

对于三种操作可用时间限制分别是每天430分钟、460分钟和420分钟, 玩具火车、玩具卡车和玩具汽车的单位收入分别是3美元、2美元和5美元。

每辆玩具火车在三种操作的装配时间分别是1分钟, 3分钟和1分钟。

每辆玩具卡车和每辆玩具汽车相应的时间是( 2, 0, 4) 和( 1, 2, 0) 分钟( 零时间表示不使用该项操作) 。

( 1) 将问题建立成一个线性规划模型, 确定最优的生产方案。

( 2) 对于操作1, 假定超过它当前每天430分钟能力的任何附加时间必须依靠每小时50美元的加班获得。

每小时成本包括劳动力和机器运行费两个方面。

对于操作1, 使用加班在经济上有利吗? 如果有利, 最多加多少时间?( 3) 假定操作2的操作员已同意每天加班工作两小时, 加班费是45美元一小时。

还有, 操作自身的成本是一小时10美元。

这项活动对于每天收入的实际结果是什么?( 4) 操作3需要加班时间吗?解答解:设生产玩具火车、玩具卡车和玩具汽车的数量分别为X1, X2, X3, 则目标函数为:3X1+2X2+5X3约束条件:X1+2X2+X3<=4303X1+2X3<=460X1+4X2<=420X1>=0; X2>=0; X3>=0最优值为目标函数取得最大。

LINGO程序max=3*x1+2*x2+5*x3;x1+2*x2+x3<=430;3*x1+2*x3<=460;x1+4*x2<=420;运行结果Globaloptimalsolutionfound.Objectivevalue:1350.000Infeasibilities:0.000000Totalsolveriterations:2ModelClass:LPTotalvariables:3Nonlinearvariables:0Integervariables:0Totalconstraints:4Nonlinearconstraints:0Totalnonzeros:10Nonlinearnonzeros:0VariableValueReducedCostX10.0000004.000000X2100.00000.000000X3230.00000.000000RowSlackorSurplusDualPrice11350.0001.00000020.0000001.00000030.0000002.000000420.000000.000000( 1) 由运行结果可得, 最优的生产方案为:玩具火车、玩具卡车和玩具汽车的生产数量分别为: 0、100、230; 收入为1350.( 2) 由DualPrice第二行可知, 当操作1每增加1分钟收入增加1美元, 因此50/60<1, 使用加班在经济上是有利的; Rangesinwhichthebasisisunchanged: ObjectiveCoefficientRanges:CurrentAllowableAllowable VariableCoefficientIncreaseDecreaseX13.0000004.000000INFINITYX22.0000008.0000002.000000X35.000000INFINITY2.666667RighthandSideRanges:CurrentAllowableAllowableRowRHSIncreaseDecrease2430.000010.00000200.00003460.0000400.000020.000004420.0000INFINITY20.00000分析可知, 最多增加10分钟。

数学建模实验报告线性规划.doc

数学建模实验报告线性规划.doc

数学建模实验报告线性规划数学建模实验报告姓名:霍妮娜班级:计算机95学号:09055093指导老师:戴永红提交日期:5月15日一.线性规划问题描述:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等,试建立模型给他提出决策建议。

问题分析首先经过对问题的具体情况了解后,建立层次结构模型,进而进行决策分析。

下面我建立这样一个层次结构模型:某岗位综合分数发展前景x1经济收入x2家庭因素x3地理位置x4这是一个比较简单的层次结构模型,经过如下步骤就可以将问题解决。

1.成对比较从x1,x2,x3,x4中任取xi和xj,对他们对于y贡献的大小,按照以下标度给xi/xj赋值:xi/xj=1,认为前者与后者贡献程度相同;xi/xj=3,前者比后者的贡献程度略大;xi/xj=5,前者比后者的贡献程度大;xi/xj=7,前者比后者的贡献大很多;xi/xj=9,前者的贡献非常大,以至于后者根本不能和它相提并论;xi/xj=2n,n=1,2,3,4,认为xi/xj介于2n-1和2n+1直接。

xj/xi=1/n,n=1,2,…,9,当且仅当xi/xj=n。

2.建立逆对称矩阵记已得所有xi/xj,i,j=1,2,3,4,建立n阶方阵1135A=11351/31/3131/51/51/313.迭代e0=(1/n,1/n,1/n,1/n)Tek=Aek-1一直迭代直达到极限e=(a1,a2,…,a4)T则权系数可取Wi=ai 解:首先通过迭代法计算得x1,x2,x3,x4的权数分别为:0.278,0.278,0.235,0.209.假设对所有的xi都采用十分制,现假设有三家招聘公司,它们的个指标如下所示:x1x2x3x4甲8579乙7966丙5798按公式分别求出甲、乙、丙三家公司的综合指数为7.144,7.112和7.123.由此可以看出,应该选择甲公司。

实验报告——线性规划建模与求解

实验报告——线性规划建模与求解
fval =150.0000
exitflag =1
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等)(接上页):
实验书中的实际问题求解:
解:设a 为0-1变量,表示第i根8M线材
设b 为0-1变量,表示第i根12M线材
X 表示第i根8M线材截得的第j种长度的线材数目
Y 表示第i根12M线材截得的第j种长度的线材数目
5.完成实验中的实际问题求解。
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等):
习题求解
1.2将下列线性规划转化为标准型,并用程序求解。
解:转化为标准型如下:
用matlab求解命令如下:
f=[-3,4,-2,5,0,0];
aeq=[4,-1,2,-4,0,0;1,1,2,-1,1,0;-2,3,-1,2,0,-1];
b=[-60,-70,-60,-50,-20,-30]’;
lb=zeros(6,1);
[x,fval,exitflag,output,lambda]=linprog(f,a,b,[],[],lb);
解得结果为:
x =[41.9176,28.0824,35.0494,14.9506,9.8606,20.1394]
Z为浪费的线材总长度
又由于150*(8+12)远大于所需线材总长度,故知所用两种线材每种不超过150根
解不出
实验结果报告与实验总结:
对于实验指导书中matlab使用的例题和方法已经基本掌握,《运筹学》书中例题与方法处于基本了解的程度,不能灵活运用,但书后习题全都能独立完成,已经有一定解题能力。且实验书中的实际运用题的简易版问题的解题方法也已经掌握,但此实验题仍很吃力。
fval = 3.6000

线性规划模型 实验报告

线性规划模型 实验报告
可设多个变量 x1~x16
M文件:
c=-[190,90,244,193,261,199,170,110,260,150,280,165,140,80,186,103]';
L=zeros(16,1);
H=[31,52,22,41,10,60,25,33,20,31,8,41,34,59,13,15];
烤制部有10座大烤炉,每座烤炉的容量是每天出140台,每台可容纳10个唐师面包或5个更大的宋赐面包。可以在一台上同时放两种面包,只需注意宋赐面包所占的空间是唐师面包的两倍。
调配部每天可以调配最多8000个唐师面包和5000个宋赐面包。有两个自动调配器分别用于两种面包的调配而不至于发生冲突。
田园公司决定找出这两种面包产品的最佳产量配比,即确定两种面包的日产量,使得在公司面包厂的现有生产条件下利润最高。
L=zeros(5,1);
[x,fmin]=linprog(c,[],[],Aeq,Beq,L,H);
Min=fmin+10400
X=[x(1) x(2) x(3) x(4) x(5)]
求解结果
Min =
7.5500e+003
X =
600.0000 270.0167 220.0167 350.0000 300.0000
所以
从Toronto和Detroit到Chicago运输的货物为 600 和 270
从从Toronto和Detroit到Buffalo运输的货物为 0 和 230
从Chicago运输到NewYork、Phila.和St.louis的货物为分别 220 、350 、300
剩余的将从Buffalo运往。
X =
Columns 1 through 12

线性规划实验报告

线性规划实验报告

一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。

二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。

设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。

公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。

设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。

目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。

线性规划问题求解----数学建模实验报告

线性规划问题求解----数学建模实验报告

084实验报告1、实验目的:(1)学会用matlab软件解决线性规划问题的最优值求解问题。

(2)学会将实际问题归结为线性规划问题用MATLAB软件建立恰当的数学模型来求解。

(3)学会用最小二乘法进行数据拟合。

(4)学会用MATLAB提供的拟合方法解决实际问题。

2、实验要求:(1)按照正确格式用MATLAB软件解决课本第9页1.1、1.3,第100页5.1、5.3这几个问题,完成实验内容。

(2)写出相应的MATLAB程序。

(3)给出实验结果。

(4)对实验结果进行分析讨论。

(5)写出相应的实验报告。

3、实验步骤:(1)、对于习题1.1:a.将该线性规划问题首先化成MATLAB标准型b.用MATLAB软件编写正确求解程序:程序如下:c=[3,-1,-1];a=[4,-1,-2;1,-2,1]; b=[-3;11]aeq=[-2,0,1]; beq=1;[x,y]=linprog(-c,a,b,aeq,beq,zeros(3,1))x,y=-y(2)、对于习题1.3:a.建立适当的线性规划模型:对产品I 来说,设以A1,A2完成A 工序的产品分别为x 1,x 2件,转入B 工序时,以B1,B2,B3完成B 工序的产品分别为x 3,x 4,x 5件;对产品II 来说,设以A1,A2完成A 工序的产品分别为x 6,x 7件,转入B 工序时,以B1完成B 工序的产品为x 8件;对产品III 来说,设以A2完成A 工序的产品为x 9件,则以B2完成B 工序的产品也为x 9件。

由上述条件可得x 1+x 2=x 3+x 4+x 5, x 6+x 7=x 8.由题目所给的数据可建立如下的线性规划模型:Min z =(1.25-0.25)( x 1+x 2)+(2-0.35) x 8+(2.8-0.5) x 9-3006000(5x 1+10x 6)-32110000(7x 2+9x 7+12x 9)- 2504000(6x 3+8x 8)-7837000 (4x 4+11x 9)-2004000⨯7x 5s.t.{ 5x 1+10x 6≤60007x 2+9x 7+12x 9≤100006x 3+8x 8≤40004x 4+11x 9≤70007x 5≤4000x 1+x 2=x 3+x 4+x 5 x 6+x 7=x 8x i ≥0,i =1,2,3,…9 b.运用MATLAB 软件编写程序求解:程序如下:c=[0.75,1-(321*7*0.0001),-16*6,(-783*4)/7000,-7/20,-0.5,-321*9*0.0001,1.15,2.3-(321*12*0.0001-(783*11)/7000)]; a=[-5,0,0,0,0,-10,0,0,0;0,-7,0,0,0,0,-9,0,-12;0,0,-6,0,0,0,0,-8,0;0,0,0,-4,0,0,0,0,-11;0,0,0,0,-7,0,0,0,0]; b=[-6000;-10000;-4000;-7000;-4000];aeq=[1,1,-1,-1,-1,0,0,0,0;0,0,0,0,0,1,1,-1,0];beq=[0;0];[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1))(3)、对于习题5.1:用MATLAB中的三次函数,二次函数,四次函数进行数据拟合,然后与原来结果进行比较。

数学建模实验报告-第三章-线性规划

数学建模实验报告-第三章-线性规划

实验名称: 第三章线性规划一、实验内容与要求用linprog语句求解各种线性规划问题,对生产实际中的问题,进行预测.二、实验软件MATLAB7.0三、实验内容:1、某鸡场有1000只鸡,用动物饲料和谷物混合喂养.每天每只鸡平均食混合饲料0.5KG,其中动物饲料所占比例不能少于20%。

动物饲料每千克0。

30元,谷物饲料每千克0.18元,饲料公司每周仅保证供应谷物饲料6000KG,问饲料怎样混合,才能使成本最低?程序:C=[150 90];A=[1 1];B=[12/7];Aeq=[0 1];beq=[0,8];vlb=[0。

2 0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:2、某工厂用A1、A2两台机床加工B1、B2、B3三种不同零件。

已知在一个生产周期内A1只能工作80机时;A2只能工作100机时。

一个生产周期内计划加工B1为70件、B2为50件、把为20件。

两台机床加工每个零件的时间和加工每个零件的成本,分别如下列各表所示:加工每个零件时间表(单位:机时/个)加工每个零件成本表(单位:元/个)问怎样安排两台机床一个周期的加工任务,才能使加工成本最低?程序:C=[2;3;5;3;3;6];A=[1 2 3 0 0 00 0 0 1 1 3—1 0 0 —1 0 00 -2 0 0 —1 00 0 -2 0 0 —3];B=[80;100;—70;—50;-20];Aeq=[];beq=[];vlb=[0;0;0;0;0;7];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)实验结果:四、实验体会。

线性规划实验报告

线性规划实验报告

2012——2013学年第二学期实验报告课程名称:数学建模实验项目:求解线性规划问题实验类别:综合性□设计性□√验证性□专业班级:姓名: xxx 学号:xxxxxxxxxxxxxxxx 实验地点:实验时间:指导教师:成绩:一.实验目的(1)用MATLAB 求解线性规划问题,并对结果进行分析 (2)对实际问题建立数学模型 (3)熟悉相关软件的操作二.实验内容已知某工厂计划生产I ,II ,III 三种产品,各产品需要在A 、B 、C 设备上加工,有关数据如下:问:如何发挥生产能力,使生产盈利最大?三. 模型建立解 设计划生产I ,II ,III 三种产品产量为x1,x2,x3最大盈利为z 建立如下线性模型:123123123123123max 32 2.982103001058400..21310420,,0z x x x x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩四. 模型求解(含经调试后正确的源程序)编写M 文件如下:c = [-3,-2,-2.9];A = [8,2,10;10,5,8;2,13,10]; b = [300;400;420]; vlb = [0;0;0]; vub=[];[x,fval] = linprog(c,A,b,[],[],vlb,vub)五.结果分析x =22.5333 23.2000 7.3333fval =-135.2667由结果可知,I,II,III三种产品分别生产22,23,7时,有最大盈利135.六.实验总结本次实验主要是熟悉用MATLAB软件解决线性规划问题,对实际问题进行分析并建立数学模型,然后编程继而模型求解。

线性规划在实际生活中有重要应用,所以此类方法应该掌握。

数学建模线性规划

数学建模线性规划

线性规划1.简介:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。

一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。

在优化模型中,如果目标函数f(x)和约束条件中的gi(x)都是线性函数,则该模型称为线性规划。

2.线性规划的3个基本要素(1)决策变量(2)目标函数f(x)(3)约束条件(gi(x)≤0称为约束条件)3.建立线性规划的模型(1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。

(2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。

以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。

生产计划问题某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表试拟订生产计划,使该厂获得利润最大解答:根据解题的三个基本步骤(1)找出未知变量,用符号表示:设甲乙两种产品的生产量分别为x1与x2吨,利润为z万元。

(2)确定约束条件:在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制钢材:9x 1+5 x 2≤360,电力:4x 1+5 x 2≤200,工作日:3x 1+10 x 2≤300,x 1 ≥0 ,x 2 ≥0,(3)确定目标函数:Z=7x 1+12 x 2所以综合上面这三步可知,这个生产组合问题的线性规划的数学模型为:max Z=7x 1+12 x 2s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+00300103200543605921212121x x x x x x x x4.使用MATLAB 解决线性规划问题依旧是以上题为例,将其用MATLAB 来表示出来1.将目标函数用矩阵的乘法来表示max Z=(7 12)⎪⎪⎭⎫ ⎝⎛21x x 2.将约束条件也用矩阵的乘法表示s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2121003002003601035459x x x x 编写MATLAB 的程序如下:c=[-7 -12]; (由于是max 函数,因此将目标函数的系数全部变为负数)A=[9,5;4,5;3,10];b=[360;200;300];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)其运行结果显示如下:x =20.000024.0000fval =-428.00005.MATLAB 求解线性规划的语句(1)c=[ ] 表示目标函数的各个决策变量的系数(2)A=[ ] 表示约束条件中≥或≤的式子中的各个决策变量的系数。

数学建模实验报告3 线性规划与整数规划

数学建模实验报告3 线性规划与整数规划

数学建模实验报告3 线性规划与整数规划数学建模实验报告3线性规划与整数规划、数学建模与实验课程实验报告实验名称三、线性规划与整数规划实验地点日期2021-10-28姓名班级学号成绩[实验的目的和意义][1]学习最优化技术和基本原理,了解最优化问题的分类;[2]掌握规划的建模技巧和求解方法;[3]学习灵敏度分析问题的思维方法;[4] 熟悉MATLAB软件求解规划模型的基本命令;[5]通过范例学习,熟悉建立规划模型的基本要素和求解方法。

通过本实验的学习,学生可以掌握优化技术,了解自己面临的实际问题,提出假设并建立优化模型,学会使用MATLAB和lingo软件解决规划模型的基本命令并进行灵敏度分析。

解决现实生活中的优化问题是本科学习阶段的一门重要课程。

因此,这个实验对学生的学习尤为重要。

[实验和要求]根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明―模型的建立―模型的求解(程序)―结论)A组高校资金投资问题学校有资金100万元,有4个投资项目可供投资。

项目a:从第一年到底四年年初需要投资,并于次年年末回收本利115%。

B项:从第三年开始投资,第五年年底收回135%的本金和利息,但规定了最高总投资额不超过40万元。

项目C:从第二年开始投资,第五年年底收回本金和利息m%,但最高总投资不超过30万元。

(其中m是学号+10的最后三位数字)项目d:五年内每年年初可以买公债,并于当年年末归还,并可获得6%的利息。

试为该校确定投资方案,使得第5年末他拥有的资金本利总额最大。

学校在第三年举行校庆。

学校将花费8万元为它做准备。

我们应该如何安排投资计划第5年末他拥有的资金本利总额最大。

B组问题1)最短路问题,图1中弧上的数字为相邻2点之间的路程,求从1到7的最短路。

图1图2其中r1为你的学号后2位+102)最大交通流量,图1中弧上的数字是两个相邻点之间每小时的最大交通流量。

每小时最多1到7次第-1-页共2页交通流量。

线性规划

线性规划

数学建模试验报告(一)姓名 学号 班级 问题:(线性规划)某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.问题的分析和假设:此问题为用线性规划求解最佳分配方案,合理安排原料与工人使工厂利润达到最大化。

由题意:假设: 1x 为生产甲产品的百箱数2x 为生产乙产品的百箱数z (万元)为生产甲产品1x 百箱,乙产品2x 百箱所获的利润值原料(Kg ) 工人 利润(万元) 甲(/百箱) 6 10 10 乙(/百箱) 5 20 9 总计 60 150建模:目标函数:max 12109z x x =+原料分配:126560x x +=工人分配:121020150x x +=甲产量约束:108x ≤≤乙产量约束:20x ≥模型为:max 12109z x x =+S.t. 126560x x +=121020150x x +=108x ≤≤20x ≥求解的Matlab程序代码:新建.M文件,代码:c=[-10,-9];A=[6,5;10,20;1,0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)计算结果与问题分析讨论:计算结果:Optimization terminated.x =6.42864.2857fval =-102.8571结果分析:由计算结果可知:当甲饮料生产642箱,乙饮料生产428箱时利润达到最大值,最大利润为102.8万元。

问题讨论:(1)若增加1Kg原料,用上述模型运算得到的最大利润为104.4万元,即投资0.8万元增加1Kg原料可提高1.6万元的利润,可做这项投资。

数学建模课堂三个实验报告

数学建模课堂三个实验报告

数学建模实验报告班级:_____计算机科学与技术1班___学号:______11403070137___________姓名:_____ _鄢良康 ___________教师:_______黄正刚 __________计算机科学与工程学院实验一线性规划模型一、实验学时:2H二、实验类型:计算三、实验目的1、掌握建立线性规划数学模型的方法;2、用LINDO求解线性规划问题并进行灵敏度分析;3、对计算结果进行分析。

四、实验所需仪器与设备微机和LINDO软件。

五、实验内容,方法和步骤1、建立数学模型;2、用LINDO软件计算;3、输出计算结果;4、结果分析。

实验一问题内容:某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见表,要求(1)确定获得最大的产品生产计划;(2)产品A的利润在什么范围内变动时,上述计划不变;(3)如果原材料数量不增加,劳动力不足时可从市场购买,为1.8元/h。

问:该厂要不要招收劳动力扩大生产,以购多少为宜?建立数学模型:如截图所示用LINDO软件计算;输出结果:(1)确定获利最大的产品生产计划从数据中可以得出:追求的最大利润为2700元。

其中生产X1数量的50,X2数量的0,X3数量的30。

(2)产品A的利润在什么范围内变动时,上述最优计划不变?30+18=4830-6=24故波动范围在24-48之间。

(4)如果原材料的数量不增,劳动力不足时可从市场购买,伟1.8/h。

问:该厂要不要招收劳动力扩大生产,以购买多少为宜?答:选择购买150个单位。

根据影子价格分析,对于劳动力的购买,每增加1小时,总利润增长为2元大于购买力1.8元,所以选择购买,最大为150个劳动力。

实验二非线性规划模型一、实验学时:1H二、实验类型:计算三、实验目的掌握LINGO求解非线性规划的方法。

四、实验所需仪器与设备微机、LINGO软件。

五、实验内容,方法和步骤1、把非线性规划模型输入LINGO软件计算;2、输出计算结果。

数学建模-线性规划实验

数学建模-线性规划实验

3 线性规划实验3.1实验目的与要求●学会建立线性规划模型●学会LINGO软件的基本使用方法,求解线性规划问题●学会对线性规划问题进行灵敏度分析,以及影子价格的意义3.2基本实验1.生产计划安排与灵敏度分析解:(1)假设最后总生产得到的Ⅰ型产品为x1kg,Ⅱ型产品为x2kg,那么它们必须同时满足以下条件:Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤902x1+3(x2)/0.33≤200x2≤40LINGO程序:Max =130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=90;2*x1+3*x2/0.33<=200;x2<=40;结果:Global optimalsolutionfound.Objective value:2740.000Infeasibilities: 0.000000Total solver iterations:3ModelClass:LPTotal variables: 2Nonlinear variables: 0Integer variables: 0Total constraints: 4Nonlinear constraints: 0Total nonzeros:7Nonlinear nonzeros:0VariableValue Reduced CostX170.000000.000000X2 6.6000000.000000Row Slack orSurplus Dual Price1 2740.0001.00000020.00000026.000003 0.0000002.000000433.40000 0.000000即:最优的方案是Ⅰ型产品为70kg,Ⅱ型产品为6.6kg。

(2)Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤872x1+3(x2)/0.33≤200x2≤40LINGO程序:Max=130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=87;2*x1+3*x2/0.33<=200;x2<=40;结果:Variable Value Reduced CostX1 61.00000 0.000000X28.580000 0.000000Row Slack or Surplus Dual Price1 2662.000 1.00000020.000000 26.000003 0.000000 2.000000431.420000.000000那么公司得到的利润为:2662元(3)如果产品Ⅱ的销售价格变为395元/千克,最优解没有变化。

《数学建模与数学实验》实验报告实验五:线性规划模型实验

《数学建模与数学实验》实验报告实验五:线性规划模型实验

《数学建模与数学实验》实验报告实验五:线性规划模型实验专业、班级数学09B 学号094080144 姓名徐波课程编号实验类型验证性学时 2实验(上机)地点同析楼4栋404 完成时间2012-6-10任课教师李锋评分一、实验目的及要求掌握数学软件lingo的基本用法和一些常用的规则,能用该软件进行基本线性规划运算,并能进行的编程,掌握线性规划模型的。

二、借助数学软件,研究、解答以下问题某电力公司经营两座发电站,发电站分别位于两个水库上,已知发电站A可以将A的一万m^3 的水转换成400千度电能,发电站B能将水库B的一万立方米转化成200千度电能。

发电站A,B每个月最大发电能力分别是60000千度,35000千度,每个月最多有50000千度能够以200元/千度的价格出售,多余的电能只能够以140元/千度的价格出售,水库A,B的其他有关数据如下:水库A 书库B水库最大蓄水量2000 1500水源本月流入水量200 40水源下月流入水量130 15水库最小蓄水量1200 800水库目前蓄水量1900 850设计该电力公司本月和下月的生产计划。

本月的情况:解:设本月高价卖出的水量是u,低价卖出的数量是v,A,B书库用来发电的水量好似xa,xb,从水库里放走的水量是ya,yb,水库月末剩余的水量分别是za,zb;建立模型如下:目标函数:、Max=200u+140v约束条件:每个月发电量与卖电量相等:400*x1+200*x2=u+v;水库发电后剩余水量及消耗水量与发电前的水量守恒:X1+y1+z1=2100;X2+y2+z2=890+x1+y1;其他约束条件:400*x1a<=60000;200*x1a<=35000;1200<=z1a<=2000;800<=z2a<=1500;u1<=50000;现在进行两个月同时计算:设本月和下月高价卖出的水量是u1,u2,低价卖出的水量是v1,v2,A,B水库用来发电的水量是xa1,xa2,xb1,xb2,从水库直接放走的水量分别是ya1,ya2,yb1,yb2,水库月末剩余水量分别是za1,za2,zb1,zb2.建立模型如下:目标函数:Max=200*(u1+u2)+140*(v1+v2)约束条件:每个月发电量与卖电量相等:400*xa1+200*xb1=u1+v1;400*xa2+200*xb2=u2+v2;水库发电后剩余水量及消耗水量与发电前的水量守恒:xa1+ya1+za1=2100;xb1+yb1+zb1=890+xa1+ya1;xb2+yb2+zb2=zb2+15+xa2+ya2;xa2+ya2+za2=za1+130;其他约束条件:400*xa1<=60000;400*xa2<=60000;200*xb1<=35000;200*xb2<=35000;1200<=za1<=2000;1200<=za2<=2000;800<=zb1<=1500;800<=zb2<=1500;u1<=50000;u2<=50000;编程实现如下:model:max=200*u+140*v;400*x1+200*x2=u+v;X1+y1+z1=2100;X2+y2+z2=890+x1+y1;400*x1<=60000;200*x2<=35000;Z1>=1200;Z1<=2000;Z2>=800;Z2<=1500;u<=50000;end解得:Global optimal solution found.Objective value: 0.1630000E+08Total solver iterations: 5Variable Value Reduced Cost U 50000.00 0.000000V 45000.00 0.000000X1 150.0000 0.000000 X2 175.0000 0.000000 Y1 0.000000 0.000000 Z1 1950.000 0.000000 Y2 0.000000 0.000000 Z2 865.0000 0.000000Row Slack or Surplus Dual Price1 0.1630000E+08 1.0000002 0.000000 -140.00003 0.000000 0.0000004 0.000000 0.0000005 0.000000 140.00006 0.000000 140.00007 750.0000 0.0000008 50.00000 0.0000009 65.00000 0.00000010 635.0000 0.00000011 0.000000 60.000000编程实现如下:model:max=200*(u1+u2)+140*(v1+v2);400*x1a+200*x2a-u1+v1=0;400*x1b+200*x2b=u2+v2;X1a+y1a+z1a=2100;X2b+y2b+z2b=zb2+15+x1b+y1b;X2a+y2a+z2a=890+x1a+y1a;X1a+y1b+z1b=z1a+130;400*x1a<=60000;400*x1b<=60000;200*x2a<=35000;200*x2b<=35000;Z1a<=2000;Z1a>=1200;Z1b<=2000;Z1a>=1200;Z2a<=1500;Z2a>=800;Z2b>=800;Z2b<=1500;u1<=50000;u2<=50000;end解得:Global optimal solution found.Objective value: 0.3330000E+08Total solver iterations: 0Variable Value Reduced Cost U1 50000.00 0.000000 U2 50000.00 0.000000 V1 50000.00 0.000000 V2 45000.00 0.000000 X1A 0.000000 56000.00 X2A 0.000000 28000.00 X1B 150.0000 0.000000 X2B 175.0000 0.000000 Y1A 900.0000 0.000000 Z1A 1200.000 0.000000 Y2B 0.000000 0.000000 Z2B 800.0000 0.000000 ZB2 810.0000 0.000000 Y1B 0.000000 0.000000 Y2A 990.0000 0.000000 Z2A 800.0000 0.000000 Z1B 1330.000 0.000000Row Slack or Surplus Dual Price1 0.3330000E+08 1.0000002 0.000000 140.00003 0.000000 -140.00004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 60000.00 0.0000009 0.000000 140.000010 35000.00 0.00000011 0.000000 140.000012 800.0000 0.00000013 0.000000 0.00000014 670.0000 0.00000015 0.000000 0.00000016 700.0000 0.00000017 0.000000 0.00000018 0.000000 0.00000019 700.0000 0.00000020 0.000000 340.000021 0.000000 60.00000由上可知,最大值是0.3260000E+08,每月A,B厂发电用水量是150,175,150,175三、本次实验的难点分析实验过程中遇到了一些问题:对掌握lingo的基本用法有所欠缺,本实验中存在偏差。

数学建模 matlab求解线性规划实验报告

数学建模 matlab求解线性规划实验报告

实验三 线性规划程序: linprogc=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)Exam5:function f=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2实验目的2、掌握用数学软件包求解线性规划问题。

1、了解线性规划的基本内容。

例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x jx0=[1;1];A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[];[x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB)书 求下列非线性规划2221232212322123212223123min 8020..2023,,0x x x x x x x x x s t x x x x x x x +++⎧-+≥⎪++≤⎪⎪--+=⎨⎪+=⎪⎪≥⎩在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数function f=fun1(x); f=sum(x.^2)+8;(ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下:options=optimset('largescale','off');[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options)就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。

数学建模求解线性规划实验报告

数学建模求解线性规划实验报告
方法:列出线性规划模型,然后用Lindo求解,根据结果报告得出解决方案。
三参考书上4.1节。设投资证券A,B,C,D,E的金额分别为x1,x2,x3,x4,x5万元,则根据题目条件,有:
max=0.043*x1+0.027*x2+0.025*x3+0.022*x4+0.045*x5;
(3)得到如下结果报告:
根据此结果报告可回答题目问题:
(以下省略)。。。。。
文件名格式为:1603_05张三_12李四_求解线性规划.doc,电子邮件主题和文件名相同,发到
四、心得体会
要写一点体会。。。
二、实验环境、内容和方法
内容:
1、求解书本上P130的习题1:
某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如书中的表所示,并且有若干限制。回答如下问题:
(1)若该经理有1000万元资金,应如何投资?
(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?
x2+x3+x4>=400;
x1+x2+x3+x4+x5<=1000;
(2*x1+2*x2+x3+x4+5*x5)-1.48*(x1+x2+x3+x4+x5)<0;
(9*x1+15*x2+4*x3+3*x4+2*x5)-5*(x1+x2+x3+x4+x5)<0;
(2)转化成符合Lingo语法的代码进行求解,如下图:
数学学院
实验报告
课程名称:数学建模实验名称:求解线性规划实验地点:

数学建模-线性规划

数学建模-线性规划
T T
x2
P1
P2 P3 P4 P5
M
O点 Q点 R点 P点
B [P P 1 3 B [P 2 P 3
P ] x (0,1, 3, 0,16) 5 P ] x (4,1, 5, 0, 0) 3
T
T
R
P Q
B [P P 1 2
0
x1
最优解
数学建模之线性规划
单纯形算法举例
m in s .t z = -2 x 1 -3 x 2 -x 1 + x 2 2 x1 +2x 2 10 3x1 +x 2 15 x1, x 2 0
min z min( z ) max z C X
(2)约束条件为不等式:对于不等号“≤(≥)”的约束 条件,则可在“≤(≥)”的左端加上(或减去)一个非 负变量(称为松弛变量)使其变为等式; (3)对于无约束的决策变量:譬如 x (, ,则令 )
x x x,使得 x, x 0 ,代入模型即可。
n
,称之为决策变量, B j 产量为 x j ( j 1, 2, , n)
所得的利润为 z ,则要解决的问题的目标是使得总利润
函数
z c j x 有最大值。决策变量所受的约束条件为 j
j 1
数学建模之线性规划
aij x j bi (i 1,2, , m) j 1 x 0( j 1,2, , n) j
数学建模
线性规划问题
数信学院 任俊峰
2012-7-9
数学建模之线性规划
线性规划方法
最优化问题是求使问题的某一项指标“最优”的 方案,这里的“最优”包括“最好”、“最大”、 “最小”、“最高”、“最低”、“最多”等等。

线性规划模型实验报告

线性规划模型实验报告

线性规划
一、实验目的 熟悉 LINDO 软件,并通过 LINDO 软件对 LP 问题进行求解。结合实际分析结果,对资源利 用提出合理的建议。 二、实验内容 一个资源利用问题的数学模型如下: Max z=100x1+180x2+70x3 s.t. 40x1+50x2+60x3<=10000 3x1 +6x2 +2x3 <=600 X1 <=130 X2 <=80 X3 <=200 X1,x2,x3>=0 用 LINDO 软件包解之,并从 LINDO 的输出表中回答下列问题: (1) 在现有的资源约束条件下,企业管理者应如何组织生产,是利润最大? (2) 为改善现状,以获取更大利润,管理者应如何做? (3) 若希望增加某种资源的供应量,需支付额外的费用,这笔费用应控制在什么范围内,对企 业才是有利的?此时(即增加某些资源供应量,同时支付相应的额外费用) ,企业的总利 润增量是多少? 三、实验环境 LINDO 软件 四、实验过程(可包括错误提示,原因,如何解决等、源程序清单) (1)打开 LINDO 软件,输入命令
(1)在现有的资源约束条件下,X1,X2,X3 的供应量应分别为 130,11.54,70.38 才能使企 业利润达到最大为 20003.85. (2)因为对偶最优解为 w j = (0.23,28.08,6.54,0,0), j = 1,2,3,4,5 .企业要改善现状,需设法增加 前三种资源的供应量,其他资源的增加不会使润增加。 (3)当增加第 i 种单位资源时,需增加额外费用为 d i ,i=1,2,3,只有使 d j < w j 时,才对企业 有利,此时前三种资源每增加一个单位,总利润的增量为 ∑ ( w j − d j ) .

数学建模实验报告之线性规划

数学建模实验报告之线性规划

数学模型实验报告——线性规划专业:数学与应用数学L081姓名: XXX 学号: 08L1002106姓名: XXX 学号: 08L1002109姓名: XXX 学号: 08L1002112数学模型实验报告(线性规划)一、 实验目的:1、了解线性规划的基本内容。

2、掌握用数学软件包求解线性规划问题。

二、实验内容:1、用MATLAB 优化工具箱解线性规划 ;2、两个例题;3、实验作业。

三、内容分析:(一)用MATLAB 优化工具箱解线性规划1、模型: min z=cXb AX t s ≤..命令:x=linprog (c ,A ,b )2、模型: min z=cXb AX t s ≤..beq X Aeq =⋅命令:x=linprog (c ,A ,b ,Aeq, beq ) 注意:若没有不等式:b AX ≤ 存在,则令A=[ ],b=[ ].3、模型:min z=cX b AX t s ≤..beq X Aeq =⋅VLB ≤X ≤VUB命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X 0)注意:[1] 若没有等式约束: beq X Aeq =⋅, 则令Aeq=[ ], beq=[ ]. [2]其中X 0表示初始点4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++=85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10=≥j x j解 :编写M 文件程序如下:c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0; 0 0.02 0 0 0.05 0; 0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2321436m in x x x z ++= 120..321=++x x x t s301≥x 5002≤≤x 203≥x解:编写M 文件程序如下: c=[6 3 4]; A=[0 1 0]; b=[50];Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)运行结果如下:Optimization terminated. (最优解为) x =1.0e+004 * 3.5000 0.5000 3.0000 0.0000 0.0000 0.0000 fval =-2.5000e+004(二)例题例1:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。

数学建模实验线性规划模型实验实验报告

数学建模实验线性规划模型实验实验报告

线性规划模型实验一、实验目的:掌握线性规划模型的建立与Lingo求解方法。

二、实验题目:某工厂计划生产甲、乙两种产品,主要材料有钢材3600 kg、铜材2000 kg、专用设备能力3000台时。

材料与设备能力的消耗定额以及单位产品所获利润如下表所示,问如何安排生产,才能使该厂所获利润最大。

若用10元可以买到1kg铜材,问是否应该作这项投资?若投资,每天最多买多少kg铜材?三、实验内容及步骤(1)如何安排生产,才能使该厂所获利润最大。

假设利润设为z,甲生产x件,乙生产y件三者满足的线性方程组为:70x+120y=z9x+4y<=36004x+5y<=20003x+10y<=3000x≥0,y≥0lingo 程序:model:max =70*x+120*y ;9*x+4*y<3600;4*x+5*y<2000;3*x+10*y<3000;EndGlobal optimal solution found.Objective value: 42800.00Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX 200.0000 0.000000Y 240.0000 0.000000Row Slack or Surplus Dual Price1 42800.00 1.0000002 840.0000 0.0000003 0.000000 13.600004 0.000000 5.200000X=200,y=240,z=42800利用matlab求下面优化问题:>> c=[-70,-120];A=[9 4;4 5;3 10];b=[3600;2000;3000];Aeq=[]; beq=[];vlb=[0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)x =200.0000240.0000fval =-4.2800e+004所以应该甲生产200件,乙生产240件,才能使该厂所获利润最大,最大利润为42800元(2)若用10元可以买到1kg铜材,问是否应该作这项投资?若投资,每天最多买多少kg铜材?假设每天最多买t kg铜材线性方程组为:70x+120y-10t=z9x+4y<=36004x+5y<=2000+t3x+10y<=3000x≥0,y≥0lingo 程序:model:max =70*x+120*y-10*t ;9*x+4*y<3600;4*x+5*y<2000+t;3*x+10*y<3000;endGlobal optimal solution found.Objective value: 43769.23Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostX 307.6923 0.000000Y 207.6923 0.000000T 269.2308 0.000000Row Slack or Surplus Dual Price1 43769.23 1.0000002 0.000000 1.1538463 0.000000 10.000004 0.000000 6.538462x=307.6923,y=207.6923,t=269.2308,Max z=43769.23利用matlab求下面优化问题:>> c=[-70 -120 +10];A=[9 4 0;4 5 -1;3 10 0];b=[3600;2000;3000];Aeq=[]; beq=[];vlb=[0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)Optimization terminated.x =307.6923207.6923269.2308fval =-4.3769e+004所以应该做这项投资,t=269.2308,每天最多买269 kg铜材,利润为43769元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称:第三章线性规划
一、实验内容与要求
用linprog语句求解各种线性规划问题,对生产实际中的问题,进行预测。

二、实验软件
MATLAB7.0
三、实验内容:
1、某鸡场有1000只鸡,用动物饲料和谷物混合喂养。

每天每只
鸡平均食混合饲料0.5KG,其中动物饲料所占比例不能少于
20%。

动物饲料每千克0.30元,谷物饲料每千克0.18元,饲料
公司每周仅保证供应谷物饲料6000KG,问饲料怎样混合,才
能使成本最低?
程序:
C=[150 90];
A=[1 1];
B=[12/7];
Aeq=[0 1];
beq=[0,8];
vlb=[0.2 0];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
实验结果:
2、
3、某工厂用A1、A2两台机床加工B1、B2、B3三种不同零件。


知在一个生产周期内A1只能工作80机时;A2只能工作100机
时。

一个生产周期内计划加工B1为70件、B2为50件、把为
20件。

两台机床加工每个零件的时间和加工每个零件的成本,分别如下列各表所示:
加工每个零件时间表(单位:机时/个)
加工每个零件成本表(单位:元
/个)
程序:
C=[2;3;5;3;3;6];
A=[1 2 3 0 0 0
0 0 0 1 1 3
-1 0 0 -1 0 0
0 -2 0 0 -1 0
0 0 -2 0 0 -3];
B=[80;100;-70;-50;-20];
Aeq=[];
beq=[];
vlb=[0;0;0;0;0;7];
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 实验结果:
四、实验体会。

相关文档
最新文档