数学建模与数学实验报告
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告
数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告
数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
数学模型与数学实验报告
数学模型与数学实验报告数学模型与数学实验报告数学模型是数学在实际问题中的应用,通过建立数学模型可以对问题进行定量分析和预测。
而数学实验报告则是对数学模型进行实验验证和结果分析的报告。
本文将探讨数学模型与数学实验报告的重要性以及其在现实生活中的应用。
一、数学模型的重要性数学模型是将实际问题抽象化、形式化的工具,通过建立数学模型可以对复杂的问题进行简化和分析。
数学模型可以帮助我们理解问题的本质,找到问题的规律和关键因素,并提供解决问题的方法和策略。
数学模型的建立需要考虑问题的背景、目标、约束条件等因素,选择适当的数学工具和方法进行建模。
通过数学模型的建立,我们可以对问题进行定量分析,得到数值结果或者数学关系,从而更好地理解问题。
数学模型在科学研究、工程设计、经济管理等领域都有广泛的应用。
例如,在物理学中,通过建立数学模型可以描述物体的运动规律;在经济学中,通过建立数学模型可以分析市场供需关系和经济增长趋势。
二、数学实验报告的重要性数学实验报告是对数学模型进行实验验证和结果分析的报告,通过数学实验报告可以检验数学模型的有效性和可靠性。
数学实验报告是数学模型应用的重要环节,对于提高模型的准确性和可行性具有重要意义。
数学实验报告的内容通常包括实验设计、实验数据的收集和处理、结果分析和结论等部分。
实验设计需要考虑实验条件、实验方法和实验过程等因素,确保实验的可重复性和可比性。
实验数据的收集和处理需要采用合适的统计方法和计算工具,对实验数据进行分析和整理。
结果分析需要对实验结果进行解释和评价,找出模型的优点和不足,并提出改进建议。
最后,结论部分需要总结实验结果和经验教训,为模型的进一步应用提供指导。
数学实验报告的编写需要严谨和准确,要求对实验过程和结果进行详细的描述和解释。
通过数学实验报告,我们可以对数学模型的有效性进行评估,发现模型的问题和不足,并提出改进和优化的方法。
三、数学模型与数学实验报告的应用数学模型与数学实验报告在现实生活中有广泛的应用。
数学建模优秀实验报告
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实验报告
数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
《数学建模与数学实验》上机实验报告
成都信息工程大学《数学建模与数学实验》上机实验报告专业信息与计算科学班级姓名学号实验日期成绩等级教师评阅日期[问题描述]下表给出了某一海域以码为单位的直角坐标Oxy 上一点(x,y)(水面一点)以英尺为单位的水深z,水深数据是在低潮时测得的,船的吃水深为5英尺,问在矩形区域(75,200)x (-50,150)里那些地方船要避免进入。
[模型]设水面一点的坐标为(x,y,z),用基点和插值函数在矩形区域(75,200)*(-50,150)内做二维插值、三次插值,然后在作出等高线图。
[求解方法]使用matlab求解:M文件:water.mx=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5];y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.584 -33.5];z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9];cx = 75:0.5:200;cy = -50:0.5:150;[cx,cy]=meshgrid(cx,cy);作出曲面图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> meshz(cx,cy,cz)>> xlabel('X'),ylabel('Y'),zlabel('Z')>>作出等高线图:代码如下:>> water>> cz=griddata(x,y,z,cx,cy,'cubic');>> figure(2)>> contour(cx,cy,cz,[-5,-5],'r')>> hold on>> plot(x,y,'*')>> xlabel('X'),ylabel('Y')[结果]插值结果等值图:[结果分析及结论]根据等值图可看出:红色区域为危险区域,所以船只要避免进入。
《数学建模与数学实验》实验报告实验五:线性规划模型实验
《数学建模与数学实验》实验报告实验五:线性规划模型实验专业、班级数学09B 学号094080144 姓名徐波课程编号实验类型验证性学时 2实验(上机)地点同析楼4栋404 完成时间2012-6-10任课教师李锋评分一、实验目的及要求掌握数学软件lingo的基本用法和一些常用的规则,能用该软件进行基本线性规划运算,并能进行的编程,掌握线性规划模型的。
二、借助数学软件,研究、解答以下问题某电力公司经营两座发电站,发电站分别位于两个水库上,已知发电站A可以将A的一万m^3 的水转换成400千度电能,发电站B能将水库B的一万立方米转化成200千度电能。
发电站A,B每个月最大发电能力分别是60000千度,35000千度,每个月最多有50000千度能够以200元/千度的价格出售,多余的电能只能够以140元/千度的价格出售,水库A,B的其他有关数据如下:水库A 书库B水库最大蓄水量2000 1500水源本月流入水量200 40水源下月流入水量130 15水库最小蓄水量1200 800水库目前蓄水量1900 850设计该电力公司本月和下月的生产计划。
本月的情况:解:设本月高价卖出的水量是u,低价卖出的数量是v,A,B书库用来发电的水量好似xa,xb,从水库里放走的水量是ya,yb,水库月末剩余的水量分别是za,zb;建立模型如下:目标函数:、Max=200u+140v约束条件:每个月发电量与卖电量相等:400*x1+200*x2=u+v;水库发电后剩余水量及消耗水量与发电前的水量守恒:X1+y1+z1=2100;X2+y2+z2=890+x1+y1;其他约束条件:400*x1a<=60000;200*x1a<=35000;1200<=z1a<=2000;800<=z2a<=1500;u1<=50000;现在进行两个月同时计算:设本月和下月高价卖出的水量是u1,u2,低价卖出的水量是v1,v2,A,B水库用来发电的水量是xa1,xa2,xb1,xb2,从水库直接放走的水量分别是ya1,ya2,yb1,yb2,水库月末剩余水量分别是za1,za2,zb1,zb2.建立模型如下:目标函数:Max=200*(u1+u2)+140*(v1+v2)约束条件:每个月发电量与卖电量相等:400*xa1+200*xb1=u1+v1;400*xa2+200*xb2=u2+v2;水库发电后剩余水量及消耗水量与发电前的水量守恒:xa1+ya1+za1=2100;xb1+yb1+zb1=890+xa1+ya1;xb2+yb2+zb2=zb2+15+xa2+ya2;xa2+ya2+za2=za1+130;其他约束条件:400*xa1<=60000;400*xa2<=60000;200*xb1<=35000;200*xb2<=35000;1200<=za1<=2000;1200<=za2<=2000;800<=zb1<=1500;800<=zb2<=1500;u1<=50000;u2<=50000;编程实现如下:model:max=200*u+140*v;400*x1+200*x2=u+v;X1+y1+z1=2100;X2+y2+z2=890+x1+y1;400*x1<=60000;200*x2<=35000;Z1>=1200;Z1<=2000;Z2>=800;Z2<=1500;u<=50000;end解得:Global optimal solution found.Objective value: 0.1630000E+08Total solver iterations: 5Variable Value Reduced Cost U 50000.00 0.000000V 45000.00 0.000000X1 150.0000 0.000000 X2 175.0000 0.000000 Y1 0.000000 0.000000 Z1 1950.000 0.000000 Y2 0.000000 0.000000 Z2 865.0000 0.000000Row Slack or Surplus Dual Price1 0.1630000E+08 1.0000002 0.000000 -140.00003 0.000000 0.0000004 0.000000 0.0000005 0.000000 140.00006 0.000000 140.00007 750.0000 0.0000008 50.00000 0.0000009 65.00000 0.00000010 635.0000 0.00000011 0.000000 60.000000编程实现如下:model:max=200*(u1+u2)+140*(v1+v2);400*x1a+200*x2a-u1+v1=0;400*x1b+200*x2b=u2+v2;X1a+y1a+z1a=2100;X2b+y2b+z2b=zb2+15+x1b+y1b;X2a+y2a+z2a=890+x1a+y1a;X1a+y1b+z1b=z1a+130;400*x1a<=60000;400*x1b<=60000;200*x2a<=35000;200*x2b<=35000;Z1a<=2000;Z1a>=1200;Z1b<=2000;Z1a>=1200;Z2a<=1500;Z2a>=800;Z2b>=800;Z2b<=1500;u1<=50000;u2<=50000;end解得:Global optimal solution found.Objective value: 0.3330000E+08Total solver iterations: 0Variable Value Reduced Cost U1 50000.00 0.000000 U2 50000.00 0.000000 V1 50000.00 0.000000 V2 45000.00 0.000000 X1A 0.000000 56000.00 X2A 0.000000 28000.00 X1B 150.0000 0.000000 X2B 175.0000 0.000000 Y1A 900.0000 0.000000 Z1A 1200.000 0.000000 Y2B 0.000000 0.000000 Z2B 800.0000 0.000000 ZB2 810.0000 0.000000 Y1B 0.000000 0.000000 Y2A 990.0000 0.000000 Z2A 800.0000 0.000000 Z1B 1330.000 0.000000Row Slack or Surplus Dual Price1 0.3330000E+08 1.0000002 0.000000 140.00003 0.000000 -140.00004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 60000.00 0.0000009 0.000000 140.000010 35000.00 0.00000011 0.000000 140.000012 800.0000 0.00000013 0.000000 0.00000014 670.0000 0.00000015 0.000000 0.00000016 700.0000 0.00000017 0.000000 0.00000018 0.000000 0.00000019 700.0000 0.00000020 0.000000 340.000021 0.000000 60.00000由上可知,最大值是0.3260000E+08,每月A,B厂发电用水量是150,175,150,175三、本次实验的难点分析实验过程中遇到了一些问题:对掌握lingo的基本用法有所欠缺,本实验中存在偏差。
建模实验报告结论
一、实验背景及目的本次实验旨在通过数学建模方法,对某一实际问题进行建模与分析,以期达到对该问题有更深入的理解,并寻求解决问题的有效途径。
实验过程中,我们运用了多种数学方法,如线性回归、层次分析法、面向对象建模等,结合实际数据,对问题进行了深入研究和分析。
二、实验过程及方法1. 确定问题及目标首先,我们根据实际问题,确定了实验的目标,即通过对问题的建模与分析,寻找解决问题的有效途径。
2. 收集数据在实验过程中,我们收集了与问题相关的数据,包括历史数据、现状数据等,为后续建模与分析提供了数据支持。
3. 建立模型根据问题的性质和特点,我们选取了合适的数学模型,如线性回归模型、层次分析模型等,对问题进行了建模。
4. 模型求解与分析运用数学软件,对建立的模型进行求解,分析模型结果,验证模型的有效性。
5. 结果解释与讨论根据模型结果,对问题进行解释与讨论,提出解决问题的建议。
三、实验结果与分析1. 线性回归模型通过线性回归模型,我们对某公司销售量与行业销售额之间的关系进行了分析。
结果显示,销售量与行业销售额之间存在显著的正相关关系,说明行业销售额的变化对公司的销售量有较大影响。
2. 层次分析法运用层次分析法,我们对治理雾霾的方案进行了重要性排序。
结果表明,提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等方案在治理雾霾方面具有较高的重要性。
3. 面向对象建模通过面向对象建模,我们对食堂售饭系统进行了分析。
结果表明,该系统主要包括学生、食堂管理部门和食堂工作人员三个角色,以及办理饭卡、充卡、补办、挂失饭卡、退换饭卡、扣除饭菜等用例。
四、结论与建议1. 结论(1)通过数学建模方法,我们对实际问题进行了深入研究和分析,找到了解决问题的有效途径。
(2)线性回归模型、层次分析法和面向对象建模等方法在解决实际问题中具有较好的效果。
(3)在实验过程中,我们积累了丰富的建模与分析经验,提高了自身的数学素养和实际应用能力。
2. 建议(1)在今后的建模实验中,我们要更加注重问题的实际背景和特点,选择合适的数学模型,提高建模的准确性。
数学建模实训报告
数学建模实训报告第一篇:数学建模实训报告目录实训项目一线性规划问题及lingo软件求解……………………………1 实训项目二lingo中集合的应用………………………………………….7 实训项目三lingo中派生集合的应用……………………………………9 实训项目四微分方程的数值解法一………………………………………13 实训项目五微分方程的数值解法二……………………………………..15 实训项目六数据点的插值与拟合………………………………………….17 综合实训作品…………………………………………………………….18 每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。
实验时必须遵守实验规则。
用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。
这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果。
请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新。
它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO 解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-02:00 20 6 02:00-06:00 30 每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。
内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1>=60;x1+x2>=70;x2+x3>=60; x3+x4>=50;x4+x5>=20;x5+x6>=30;编程结果:Global optimal solution found.Objective value:150.0000Infeasibilities:0.000000Total solver iterations:VariableValueReduced CostX160.000000.000000X210.000000.000000X350.000000.000000X40.0000001.000000X530.000000.000000X60.0000000.000000RowSlack or SurplusDual Price150.0000-1.0000000.000000-1.0000000.0000000.0000000.000000-1.0000000.0000000.00000010.000000.0000000.000000-1.000000 内容二:(1)max=6*x1+4*x2;2*x1+3*x2<100;4*x1+2*x2<120;x1,x2分别表示两种型号生产数量。
初中数学建模实验报告(3篇)
第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。
初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。
二、实验目的1. 理解数学建模的基本概念和步骤。
2. 学会运用数学知识分析实际问题。
3. 培养学生的创新思维和团队协作能力。
4. 提高学生运用数学知识解决实际问题的能力。
三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。
2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。
3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。
4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。
5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。
四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。
2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。
3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。
4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。
5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。
五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。
乘法_数学建模实验报告(3篇)
第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。
乘法作为基础的数学运算之一,广泛应用于各个领域。
本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。
二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对乘法运算的理解和应用水平。
三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。
公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。
2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。
(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。
因此,公司销售x件产品的总利润为10x元。
(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。
3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。
(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。
(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。
4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。
四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。
实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。
五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。
2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。
3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。
《数学建模与实验》实验报告
1、输入数据: >> x=[20 25 30 35 40 45 50 55 60 65]'; 实 X=[ones(10,1) x]; Y=[13.2 15.1 16.4 17.1 17.9 18.7 19.6 21.2 22.5 24.3]'; [b,bint,r,rint,stats]=regress(Y,X) 验 b,bint,stats 得出结果: >> b = 步 9.1212 0.2230 bint = 骤 8.0211 0.1985 Stats = 0.9821 439.8311 0.0000 10.2214 0.2476
2 ˆ t 得回归模型: s 9.1329 65.8896 489.2946t
《数学建模与实验》实验报告
实验名称 班级 实验目的 数学 09-1 实验六 MATLAB 回归分析 姓名 学号 25 号
1.熟悉 MATLAB 基本命令; 2.掌握回归分析的方法。 1、考察温度 x 对产量 y 的影响,测得下列 10 组数据:
温度(℃) 20 产量(kg) 13.2 25 15.1 30 16.4 35 17.1 40 17.9 45 18.7 50 19.6 55 21.2 60 22.5 65 24.3
从残差图可以看出,所有数据的残差离零点均较近,且残差 的置信区间均包含零点,这说明回归模型 y=9.1212+0.2230x 能较好的符合原始数据. 预测及作图: >> z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r') 当 x=42℃时,产量估值 z=18.4885 . 预测区间:[16.3581,20.6206](置信度 95%) 2、作二次多项式回归: >>xi =0:2:20; yi =[0.6 2.0 4.4 7.5 11.8 17.1 23.3 31.2 39.6 49.7 61.7]; [p,S]=polyfit(xi, yi,2) 得到结果: p= 0.1403 S= R: [3x3 double] df: 8 normr: 1.1097
数学建模实习报告[定稿]
数学建模实习报告[定稿]第一篇:数学建模实习报告[定稿]数学建模实习报告一、实习目的数学建模主要是将显示对象的信息加以翻译、归纳的产物。
通过对数学模型的假设、求解、验证,得到数学上的解答,在经过翻译回到现实对象,给出分析、决策的结果。
数学建模对我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。
例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案......这些问题和建模都有着很大的联系。
通过数学建模培训,就会知道解决问题的原理。
学习更多的数学方面的知识及其应用,数学建模的过程可以培养我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高,它还可以让我了解多种数学软件以及如何运用数学软件对模型求解。
二、实习内容(一)实习单位简介西安财经学院统计学院数学建模组是以信息与计算科学系主任王培勋教授为组长的指导教师组,每年都组队参加高教社杯全国大学生数学建模竞赛,并取得了优异的成绩。
今年我院数学建模参赛队员的选拔是经过学生自愿报名、考试选拔、集中培训等环节来进行的。
30 名最后入选的学生,组建了10个队,经过一个暑假的培训,基本全部掌握了数学软件的计算机程序设计方法,掌握了常用的数学建模方法。
在三天三夜的竞赛过程中,各参赛小组学员勇于拼搏,力争创新,在规定的七十二小时内顺利完成了答卷。
(二)实习内容数学建模是运用数学思想、方法和知识解决实际问题的过程,它为我们学生提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发我们学习数学的兴趣,发展我们的创新意识和实践能力。
数学建模与数学实验开创了大学生把数学理论和专业知识有机结合的新途径,是培养学生分析问题、解决问题和使用计算机进行科学计算的有效方法,是培养学生创新能力和实践能力的有效手段。
数学建模教学实践报告(3篇)
第1篇一、前言数学建模是现代科学技术领域的一种重要方法,它将数学理论与实际问题相结合,为解决实际问题提供了一种新的思路。
近年来,随着我国高等教育的快速发展,数学建模教学逐渐成为各高校教学的重要组成部分。
本文以某高校数学建模课程为例,对数学建模教学实践进行总结和分析。
二、教学目标与内容1. 教学目标(1)使学生掌握数学建模的基本理论和方法;(2)提高学生运用数学知识解决实际问题的能力;(3)培养学生的创新意识和团队协作精神。
2. 教学内容(1)数学建模的基本理论:数学建模的概念、数学建模的方法、数学建模的步骤等;(2)数学建模的常用工具:MATLAB、Mathematica、Excel等;(3)实际问题案例分析:从实际问题中提取数学模型,运用数学方法求解;(4)团队协作与论文撰写:培养学生团队合作精神和论文撰写能力。
三、教学方法与手段1. 教学方法(1)启发式教学:引导学生主动思考,激发学生的学习兴趣;(2)案例教学:通过实际案例,让学生了解数学建模的应用;(3)小组讨论:培养学生的团队协作精神,提高学生解决问题的能力;(4)实践操作:通过实际操作,让学生掌握数学建模的方法和工具。
2. 教学手段(1)多媒体课件:利用多媒体课件展示数学建模的理论和方法;(2)网络资源:利用网络资源,拓展学生的知识面;(3)实践平台:搭建实践平台,让学生在实际操作中提高数学建模能力。
四、教学过程1. 理论教学在理论教学中,教师重点讲解数学建模的基本理论和方法,引导学生掌握数学建模的步骤和常用工具。
同时,结合实际案例,让学生了解数学建模的应用。
2. 实践教学在实践教学环节,教师布置实际问题,要求学生运用所学知识进行建模和求解。
学生通过小组讨论、实践操作,提高数学建模能力。
教师对学生的作品进行点评和指导,帮助学生改进和完善。
3. 论文撰写在论文撰写环节,教师指导学生整理和总结建模过程,撰写论文。
通过论文撰写,培养学生的团队协作精神和论文撰写能力。
专业数学建模实验报告一
Solve[4*x^3+a*b*x^2+2*a*b*x+a*b0,x]
{{x-((a b)/12)-(24 ab-a2b2)/(12 (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3)+1/12 (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3},{x-((a b)/12)+((1+ ) (24 ab-a2b2))/(24 (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3)-1/24 (1- ) (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3},{x-((a b)/12)+((1- ) (24 ab-a2b2))/(24 (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3)-1/24 (1+ ) (-216 ab+36 a^2 b^2-a^3 b^3+24 )1/3}}
(一)利用中心差分公式,即 ,借助数学软件,从P10表1中的数据出发,重新计算教材P11中的表2和P12表3。
[主要使用的Mathematica语句:Table,Fit及循环控制语句]
【解】:给出你的计算或分析步骤、结ห้องสมุดไป่ตู้,列出必要的程序清单等
P11表2
程序代码如下:
%人口数据处理拟合
data1=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4];
暑假数学建模实践报告
竭诚为您提供优质文档/双击可除暑假数学建模实践报告篇一:20XX年暑期社会实践报告(数学建模)暑假社会实践论文题目期数学建模培训心得体会姓名所在学院专业班级学号20XX年9月1日日摘要本文通过描写大学生参加数学建模培训的亲身经历,讲诉大学生社会实践酸甜苦辣,表达了大学生参加社会实践的重要性、必要性和重大意义。
通过这学期的数学建模训练,使我感触良多,它所教给我的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。
它培养了我全面、多角度考虑问题的能力,使我的逻辑推理能力和量化分析能力得到很好的锻炼和提高。
它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
数学建模竞赛是本科生接触实际科学问题的第一步,是利用所学书本知识、广泛涉猎课外知识、利用数学和计算机工具、为某一具体问题建立抽象模型、给出求解方法并解决问题、最后撰写论文并给出客观评价的一个系统工程。
数学建模就是利用数学知识对一些实际问题建立模型,但又不是纯数学的。
它不仅要数学思维,还要计算机编程能力,论文写作能力,其实更重要的是团队协作能力,这是对以后工作有非常大的帮助的,更甚是人生。
总之,通过这次数学建模培训,我学了很多的知识,我也用了很多我们平时没有学到和听说过的知识,真是让我的眼界大开。
关键词:大学生数学建模心得体会社会实践这是大学的第一个暑假,众所周知,大学是从学生过渡到社会的大门,通过几次人才市场的调查,知道工作经验的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模与数学实验报告
指导教师__郑克龙___ 成绩____________
组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________
实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。
>> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y)
-4
-3
-2
-1
1
2
3
4
-1-0.8-0.6-0.4-0.200.20.40.60.8
1
(2)用surf,mesh 命令绘制曲面2
2
2z x y =+,将其程序及图形粘贴在此。
(注:图形注意拖放,不要太大)(20分)
>> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)
-2
2
>> mesh(x,y,z)
-2
2
实验2.
1、某校60名学生的一次考试成绩如下:
93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70
94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55
1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)
1)
>> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55];
>> pjz=mean(a)
pjz =
80.1000
>> bzhc=std(a)
bzhc =
9.7106
>> jc=max(a)-min(a)
jc =
44
>> bar(a)
10
20
30
40
50
60
70
0102030405060708090
100
2)
实验 3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为
3
423125
3
211x x x x x y βββββ+++-
=
其中51,,ββ 是未知参数,321,,x x x 是三种反应物(氢,n 戊烷,异构戊烷)的含量,y 是反应速度.今测得一组数据如表4,试由此确定参数51,,ββ ,并给出置信区间.51,,ββ 的参考值为 (1,0.05, 0.02, 0.1, 2).(20分)
序号 反应速度y
氢x 1 n 戊烷x 2
异构戊烷x 3
1 8.55 470 300 10
2 3.79 285 80 10
3 4.82 470 300 120
4 0.02 470 80 120
5 2.75 470 80 10
6 14.39 100 190 10
7 2.54 100 80 65
8 4.35 470 190 65
9 13.00 100 300 54 10 8.50 100 300 120 11 0.05 100 80 120 12 11.32 285 300 10 13
3.13
285
190
120
实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。
当电子管损坏时有两种维修方案,一是每次更换损坏的那一只;二是当其中一只损坏时四只同时更换。
已知更换时间为换一只时需1小时,4只同时换为2小时。
更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法决定哪一个方案经济合理?(20分)
实验5.(1)利用matlab 的相关命令以及编写相应的函数文件求解非线性规划问题 2
2
12min
(3)(2)f x x =-+- (10分)
s.t. 122
12400
x x x x +-=⎧⎨-≥⎩(附上所有程序及运行结果)
(2)利用matlab 求解下列两个微分方程
''
2,(0)2,(1)1
y y x y y -=-==
''' x y y y y y
+=-=-= (1)24,(0)0,(1)2(1)0 (附上求解命令及运行结果)(10分)
(i)
>> dsolve('D2y-y=x-2','y(0)=2,y(1)=1','x')
ans =
-x+2
(ii)
>> dsolve('(1+x)*D2y=2*y-4','y(0)=0,y(1)-2*Dy(1)=0','x')
ans =
-(1+x)^(1/2)*besseli(1,2*2^(1/2)*(1+x)^(1/2))*(4*i*bessely(0,4*i)-2*bessely(1,4*i)+2^(1/2)*bessely(1,2*i
*2^(1/2)))/(2*i*bessely(0,4*i)*besseli(1,2*2^(1/2))-bessely(1,4*i)*besseli(1,2*2^(1/2))-2*besseli(0,4)*bes
sely(1,2*i*2^(1/2))+besseli(1,4)*bessely(1,2*i*2^(1/2)))+(1+x)^(1/2)*bessely(1,2*i*2^(1/2)*(1+x)^(1/2))
*(besseli(1,2*2^(1/2))*2^(1/2)+4*besseli(0,4)-2*besseli(1,4))/(2*i*bessely(0,4*i)*besseli(1,2*2^(1/2))-bes
sely(1,4*i)*besseli(1,2*2^(1/2))-2*besseli(0,4)*bessely(1,2*i*2^(1/2))+besseli(1,4)*bessely(1,2*i*2^(1/2))
)+2。