数学建模实验报告
数学建模实验报告

数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
数学建模实验报告4

数学建模实验报告班级:姓名:学号:元件可靠性问题一、实验问题:给出3种不同情况的元件连接方式,分别求解他们的正常运行概率。
其中每个元件的正常运行概率均为p。
元件数为N,方式2与方式3用到了与A元件相同的N个B元件。
连接方式如图:方式1:方式2:方式3:二、问题分析:N个元件的连接方式,相当于电阻的串并联,所以可以用电阻串并联的关系去分析各无件之间的关系:对于方式一来说,相当于电阻的串联。
所以,他的正常运行的概率为p^n.对于方式二来说,相当于电阻先串联再并联。
所以,他的正常运行的概率为:1-(1-P^n)(1-P^n)=2P^n-P^2n.对于方式三来说,相当于电阻先并联再串联。
所以,他的正常运行的概率为:(1-(1-P^n)^2)^n=(2p-p^2)^n现在再比较三个系统正常工作概率大小P1- P2= p^n–(2p^n-p^2n )= p^2n–p^n 由于0<p<1,所以易知P^2n-P^n<0。
所以有P1< P2P2- P3=(2p^n- p^2n)- (2p-p^2)^n= p^n[(2- p^n)-(2-p)^n]因为p^n>0,所以只要比较[(2- p^n)-(2-p)^n]大小即可。
对此式求导有-n[p^(n-1)-(2-p)^n-1]可见此式恒大于零,所以函数单调递增。
当p=1时,[(2- p^n)-(2-p)^n]=0.所以P2- P3 <0,再由上求导可知所以P2<P3所以P3最大。
即其的可靠性最高。
理发店问题一、实验题目:某单人理发店有4反椅子接待顾客排队理发,当4把椅子都坐满人时,后来的顾客就不进店而离去。
顾客平均到达速率为4人/H,理发时间平均10min/人。
设到达过程为泊松流,服务时间服从负指数颁布。
求:(1)顾客一到达就能理发的概率;(2)系统中顾客数的期望值和排队等待顾客数的期望值;(3)顾客在理发店内逗留的全部时间的期望值;(4)在可能到达的顾客中因客满离开的概率。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告

数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
数学建模 -实验报告1

������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数字应用建模实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。
数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。
本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。
二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。
三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。
为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。
3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。
(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。
(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。
(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。
(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。
4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。
(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。
(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。
四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。
2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。
3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。
五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
(二)题目二1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.2、问题分析(1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。
(2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换成求其相反数最小时的生产分配。
(3) 扩展讨论部分只需将模型中部分参数修改即可。
3、模型建立(1)设定变量:x(1)表示甲饮料产量,x(2)表示甲饮料产量,z表示总获利。
(2)线性规划模型:z=10*x(1)+9*x(2)6*x(1)+5*x(2)<=6010*x(1)+20*x(2)<=150x(1)<=84、解决方法(MATLAB程序代码)c=[-10,-9];A=[6,5;10,20;1,0];b=[60,150,8];x=linprog(c,A,b);x=floor(x);xz=10*x(1)+9*x(2);z5、实验结果x =64z = 96扩展1)将参数b改为[61,150,8],得到结果为:x =64z = 96投资后,总利润并没有增加,而且花费了投资成本。
所以,不应该作这项投资。
扩展2)将参数c改为[-11,-9],得到结果为:x =72z = 88每百箱甲饮料获利增加1万元,若按模型改变生产计划,则总利润反而会减小。
所以,不应改变生产计划。
(三)题目三1、问题:27个立方形排成3*3*3的三维阵列。
如果三个盒子在同一水平线上,或同一条垂直线上,或同一条对角线上,则认为三盒一线,这样的线共有49条:水平线18条,垂直线9条,水平面对角线6条,垂直面对角线12条,对角面对角线4条。
现有白球13个,黑球14个,每个盒子中放入一球,如何投放,使有单一色球的线数最少?2、问题分析(1)题目属于排列组合问题,情况较多且规律性不强,因此难于使用理论推导,故考虑采用计算机模拟。
(2)根据题目信息,找出形成单一色球线的各种情况的一些规律,统计每种情况下单色球线数,并计录比较出最小情况。
3、模型建立(1)建立一个27个单元的一维向量数组,分别代表27格方格单元,列出49种出现单色线的情况。
(2)建立计数器,记录每种情况下的单色球线数并比较出最少情况4、解决方法(MATLAB程序)由于程序较长,此处只给出部分代码。
建立模拟向量及计数器:a=zeros(1,27);sum=49;insert=zeros(1,14);统计各种情况单色线数:for i=1:9temp=linecolor(a(3*i)+a(3*i+1)+a(3*i+2));if temp>0 templine=templine+1; endendfor i=1:9:26for j=1:3temp=linecolor(a(i)+a(i+3)+a(i+6));i=i+1;if temp>0 templine=templine+1; endendi=i-3;endfor i=1:9temp=linecolor(a(i)+a(i+9)+a(i+18));if temp>0templine=templine+1; endendfor i=1:26temp1=linecolor(a(i)+a(i+4)+a(i+8));temp2=linecolor(a(i+2)+a(i+4)+a(i+6));if temp1>0 templine=templine+1; endif temp2>0 templine=templine+1; endendfor i=1:3:7temp1=linecolor(a(i)+a(i+10)+a(i+20));temp2=linecolor(a(i+2)+a(i+10)+a(i+18));if temp1>0 templine=templine+1;endif temp2>0 templine=templine+1;endendfor i=1:3temp1=linecolor(a(i)+a(i+12)+a(i+24));temp2=linecolor(a(i+6)+a(i+12)+a(i+18));if temp1>0 templine=templine+1;endif temp2>0 templine=templine+1;endendtemp1=linecolor(a(0)+a(13)+a(26));temp2=linecolor(a(8)+a(13)+a(18));temp3=linecolor(a(2)+a(13)+a(24));temp4=linecolor(a(6)+a(13)+a(20));if temp1>0 templine=templine+1;endif temp2>0 templine=templine+1;endif temp3>0 templine=templine+1;endif temp4>0 templine=templine+1;end子函数:function r= linecolor(n)if n==3 || n==0r=1;elser=0;endreturn;5、实验结果sum = 4insert = 1 2 3 5 8 12 15 18 19 21 22 25 27即最少单色球线数为4条,其中放黑球单元为:1 2 3 5 8 12 15 1819 21 22 25 27。
(四)题目四1、问题:在某海域测得一些点(x,y)处的水深z由下表给出,穿的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。
2、问题分析分析该区域内各个地方的水深情况,比较各点的水深与船的吃水深度,深度小于或等于船的吃水深度的地方即为船要避免进入的危险区域。
3、模型建立(1)利用插值法,得到海底各处深度的分布情况,并画出海底地貌图像。
(2)通过与船吃水深度的条件比较,得到危险区域的平面图。
4、解决方法(MATLAB程序)画出此区域海底深度图像:x=[129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5];%x=sort(x);y=[7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5];%y=sort(y);z=[-4,-8,-6,-8,-6,-8,-8,-9,-9,-8,-8,-9,-4,-9];[X,Y,Z]=griddata(x,y,z,linspace(75,200)',linspace(-75,150),'v4');surf(X,Y,Z)画出深度为5英尺的等深线:contour(X,Y,Z,[-5,-5],'r.')5、实验结果下图中红色等深线内为危险区域。
(五)题目五1、问题:一位四年级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等。
试建立模型给他提出决策建议。
2、问题分析(1)这是一个决策问题,是半定性、半定量的。
因此,考虑使用层次分析法进行分析解决。
(2)将问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,得出不同方案的权重。
3、模型建立(1)假设设定:有3家公司,分别是百度、腾讯与阿里巴巴。
选择中考虑的主要因素为:发展前景、经济收入、单位信誉和地理位置。
分别用x1、x2、x3、x4代表这四个因素,y代表综合评价参数,w代表权值向量。
所以,综合评价方程模型可设为: y = w1x1 + w2x2 + w3x3 + w4x4公司\因素发展前景经济收入单位信誉地理位置百度93 4000元/月(80)90 北京(85)腾讯91 4400元/月(88)86 深圳(88)阿里巴巴94 3800元/月(76)89 杭州(90)3)层次分析图:4、解决方法赋值:x1/x2 = 3/4;x1/x3 = 3/2;x1/x4 = 3/2;x2/x3 = 2;x2/x4 = 2;x3/x4 = 1.则该问题的判断矩阵为:A=1 , 3/4 , 3/2 , 3/24/3 , 1 , 2 , 22/3 , 1/2 , 1 , 12/3 , 1/2 , 1 , 1经过一下MATLAB程序可求出各因数在综合评价中的权值:A=[1,3/4,3/2,3/2;4/3,1,2,2;2/3,1/2,1,1;2/3,1/2,1,1];[n,n]=size(A);p=ones(n,100);q=ones(n,100);m=zeros(1,100);m(1)=max(p(:,1));q(:,1)=p(:,1);p(:,2)=A*q(:,1);m(2)=max(p(:,2));q(:,2)=p(:,2)/m(2);l=0.0001;i=2;k=abs(m(2)-m(1));while k>pi=i+1;p(:,i)=A*q(:,i-1);m(i)=max(p(:,i));q(:,i)=p(:,i)/m(i);k=abs(m(i)-m(i-1));enda=sum(q(:,i));w=q(:,i)/a;t=m(i);w5、实验结果综合评价的权值向量为:w = 0.27270.36360.18180.1818所以综合评价方程为:y = 0.2727 x1 + 0.3636 x2 + 0.1818 x3 + 0.1818 x4 .那么三家公司的综合评价得分为:百度:y=0.2727 * 93 + 0.3636 * 80 + 0.1818 * 90 + 0.1818 * 85 .=86.2641腾讯:y=0.2727 * 91 + 0.3636 * 88 + 0.1818 * 86 + 0.1818 * 88 .=88.4457阿里巴巴:y=0.2727 * 94 + 0.3636 * 76 + 0.1818 * 89 + 0.1818 * 90 .=85.8096结果显示,腾讯的评价分数最高。