最新沪科版九年级数学下册全册教案
2023-2024学年沪科版九年级数学下册教案:26.3 用频率估计概率
2023-2024学年沪科版九年级数学下册教案:26.3 用频率估计概率一. 教材分析《用频率估计概率》是沪科版九年级数学下册第26.3节的内容,主要介绍了利用频率来估计事件的概率。
本节课的内容是建立在学生已经掌握了概率的定义和计算方法的基础之上,通过实例让学生感受和理解频率与概率之间的关系,从而进一步掌握用频率来估计概率的方法。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的概念和计算方法已经有了一定的了解。
但是,对于利用频率来估计概率的方法,可能还存在一定的困惑。
因此,在教学过程中,需要通过实例让学生充分理解和掌握这一方法。
三. 教学目标1.知识与技能目标:让学生理解频率与概率之间的关系,学会利用频率来估计事件的概率。
2.过程与方法目标:通过实例分析,让学生掌握利用频率来估计概率的方法。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.重点:频率与概率之间的关系,利用频率来估计概率的方法。
2.难点:如何通过实例让学生理解和掌握利用频率来估计概率的方法。
五. 教学方法1.实例分析法:通过具体的实例,让学生理解和掌握利用频率来估计概率的方法。
2.小组讨论法:让学生在小组内进行讨论,培养学生的合作能力和解决问题的能力。
3.引导发现法:教师引导学生发现频率与概率之间的关系,激发学生的思维。
六. 教学准备1.教学课件:制作相关的教学课件,以便于学生更直观地理解和掌握知识。
2.实例材料:准备一些具体的实例,用于教学过程中的分析。
3.练习题:准备一些练习题,以便于学生在课后进行巩固。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾概率的定义和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示一些实例,让学生观察和分析频率与概率之间的关系。
3.操练(10分钟)教师引导学生进行小组讨论,让学生尝试利用频率来估计概率。
沪科版九年级数学下册24.6.1《正多边形与圆》教学设计
九年级学生在学习本章节之前,已经掌握了多边形的性质、三角形和四边形的分类、圆的基本概念等基础知识。在此基础上,学生对正多边形与圆的关系已有一定的了解,但可能对正多边形的性质和计算方法掌握不够深入。此外,学生在解决实际问题时,可能缺乏将理论知识与实际问题相结合的能力。因此,在教学过程中,应注重以下方面:
4.鼓励学生相互交流、讨论,共同解决练习中的问题,提高学生解决问题的能力。
(五)总结归纳,500字
1.教师引导学生对本节课的内容进行总结,分享学习收获。
2.教师强调本节课的重点知识,对难点进行梳理,帮助学生巩固记忆。
3.提问学生,检查他们对正多边形与圆的性质、计算方法的掌握情况。
4.布置课后作业,要求学生在课后独立完成,巩固所学知识。
设计意图:激发学生的自主学习兴趣,为下一节课的学习做好铺垫。
4.分层次作业设计:
-对于基础薄弱的学生,设计一些简单易懂的题目,帮助他们巩固基本概念;
-对于中等水平的学生,设计一些稍有难度的题目,提高他们的解题能力;
-对于优秀生,设计一些拓展题,鼓励他们深入探究正多边形与圆的性质。
设计意图:关注学生的个体差异,使每个学生都能在作业中找到适合自己的难度,提高作业的实效性。
设计意图:通过练习题,使学生巩固正多边形的性质、计算方法以及与圆的关系。
2.请学生选择一个生活中的正多边形实例,分析其性质,并运用所学知识解决相关问题。
设计意图:培养学生观察生活、发现数学问题的能力,提高学生将数学知识应用于实际问题的水平。
3.请学生预习下一节课的内容,提前了解正多边形的内切圆和外接圆的性质。
沪科版九年级数学下册24.6.1《正多边形与圆》教学设计
一、教学目标
(一)知识与技能
2023年九年级下册数学教学设计沪科版大全(6篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。
写作是培养人的观察、联想、想象、思维和记忆的重要手段。
相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
九年级下册数学教学设计沪科版篇一1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具ppt课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称. 同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4×40=96 两个内项的积是1.6×60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。
2023-2024学年沪科版九年级数学下册教案:24.3 圆周角 (2份打包)
2023-2024学年沪科版九年级数学下册教案:24.3 圆周角 (2份打包)一. 教材分析圆周角是圆的基本性质之一,也是初中数学中的重要内容。
沪科版九年级数学下册24.3节主要介绍了圆周角的定义、性质和运算。
通过本节内容的学习,学生能够理解圆周角的基本概念,掌握圆周角的性质,并能够运用圆周角定理解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的基本概念和性质有所了解。
但是,对于圆周角的定义和性质,以及如何运用圆周角定理解决实际问题,可能还存在一定的困惑。
因此,在教学过程中,需要注重引导学生理解和掌握圆周角的概念和性质,并通过例题和练习题的讲解,让学生能够灵活运用圆周角定理解决实际问题。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,能够运用圆周角定理解决实际问题。
2.过程与方法:通过观察、思考、讨论和练习,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和克服困难的意志。
四. 教学重难点1.圆周角的定义和性质。
2.圆周角定理的应用。
五. 教学方法采用问题驱动法、案例教学法和合作学习法。
通过提出问题,引导学生思考和探索;通过分析典型案例,让学生理解和掌握圆周角的性质;通过小组合作学习和讨论,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教案文档。
2.PPT课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过提出问题:“什么是圆周角?圆周角有哪些性质?”引导学生思考和回忆圆周角的基本概念和性质。
2.呈现(10分钟)利用PPT课件,展示圆周角的定义和性质,以及圆周角定理。
通过动画和图片的展示,让学生直观地理解和掌握圆周角的性质。
3.操练(10分钟)让学生分组合作,解决一些与圆周角有关的问题。
例如,根据圆周角定理,计算一个扇形的面积。
通过合作学习和解决问题,培养学生的团队合作意识和解决问题的能力。
沪科版九年级数学下册教案25.2三视图(第2课时)
25.2 三视图第2课时教学目标【知识与技能】1.认识棱柱及其侧面展开图,并会进行相关的计算;2.能够根据三视图描述几何体或实物原型.【过程与方法】通过观察、探究活动等使学生掌握棱柱及其侧面展开图的相互关系,通过探索简单的几何体的三视图的还原,能根据三视图描述几何体或实物原型.【情感态度】培养学生的观察、计算能力,发展学生的空间想象能力.教学重难点【教学重点】能识别棱柱的侧面展开图并能进行相关的计算【教学难点】能根据三视图描述几何体或实物原型.课前准备课件等教学过程一、情境导入1.如图是一个长方体,大家数一下它有几个面,几条棱,上、下面与侧面有什么位置关系,竖着的棱与上、下面有何位置关系?2.如图所示,分别是由若干个完全相同的小正方形组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是多少?二、合作探究探究点一:直棱柱及其侧面展开图例1 如图是一个四棱柱的表面展开图,根据图中的尺寸(单位:cm)求这个四棱柱的体积.解析:从展开图中分析出原图形中的各种数据,不要弄混原图形中的数据.解:底面长方形的长为18cm,宽为7cm,直棱柱的高为30cm,∴V=Sh=18×7×30=3780(cm3).方法总结:弄清几何体展开图的各种数据,再进行有关计算探究点二:由三视图描述几何体【类型一】根据三视图描述几何体例2 一个几何体的三视图如图所示,则这个几何体是( )解析:熟记常见几何体的三视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三视图,看与已知的三视图是否一致.【类型二】由三视图判断实物图的形状例3 下列三视图所对应的实物图是( )解析:从俯视图可以看出实物图的下面部分为长方体,上面部分为圆柱,圆柱与下面的长方体的顶面的两边相切且与长方体高度相同.只有C满足这两点,故选C方法总结:主视图、左视图和俯视图是分别从物体正面、左面和上面看所得到的图形.对于本题要注意圆柱的高与长方体的高的大小关系.【类型三】根据两种视图讨论构成几何体的小正方体的个数例4 用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小正方体的个数,请解答下列问题:(1)a,b,c各表示多少?(2)这个几何体最少由几个小立方体组成,最多又是多少?(3)当d=e=1,f=2时,画出这个几何体的左视图.解:(1)由俯视图知道这个几何体共有三排三列,第三列只有一排,第二列有两排;而从主视图知道第三列的层数为3层,第二列的层数为1层,所以a为3,b,c应为1;(2)d,e,f既可以为1,也可以为2,但至少有一个为2,另外两个为1时,共有9个小立方体;另外两个都为2时,共有11个小正方体;故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数探究点三:三视图与计算例5 如图所示是一个工件的三视图,图中标有尺寸,则这个工件的体积是( )A.13πcm3 B.17πcm3 C.66πcm3 D.68πcm3解析:由三视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.方法点拨:解决此类问题的关键是想象几何体的形状,根据物体对应的相关数据找准其对应关系,再正确地进行计算.三、板书设计1.由棱柱的侧面展开图求棱柱的体积.2.由三视图判断几何体的形状.3.由三视图判断几何体的组成.【教学反思】经历由直棱柱到其三视图的转化过程,进一步发展空间观念,培养学生自主学习与合作学习相结合的学习方式.在应用数学知识解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情.。
沪科版数学九年级下册24.2.4圆的确定优秀教学案例
5.作业小结:设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。同时,引导学生对作业进行自我检查和修改,培养学生的自主学习和自我纠错的能力。教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
3.引导学生通过观察、操作、思考等途径,自主探索圆的确定方法,提高学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨圆的确定方法,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生在合作中共同解决问题,提高学生的综合运用知识的能力。
3.鼓励学生相互倾听、交流、反馈,培养学生的沟通能力和批判性思维。
在教学过程中,我以生活实例导入,让学生思考在实际生活中如何确定一个圆的位置和大小。接着,我引导学生通过观察和动手操作,发现圆的确定方法。在学生理解圆的确定方法后,我设计了一系列练习题,让学生在实际问题中运用所学知识,巩固和提高对圆的确定的理解。
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。同时,我关注学生的个体差异,根据学生的实际情况给予有针对性的指导,使他们在原有基础上得到提高。通过本节课的学习,学生不仅掌握了圆的确定方法,而且培养了学生的空间想象能力和逻辑思维能力,为后续学习打下了坚实的基础。
5.注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.引导学生感受数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的意识。
沪科版数学九年级下册《26.1 随机事件》教学设计3
沪科版数学九年级下册《26.1 随机事件》教学设计3一. 教材分析沪科版数学九年级下册第26.1节“随机事件”是本册教材中的重要内容,主要让学生理解随机事件的定义、性质及随机事件的发生可能性。
本节内容是在学生已经掌握了概率的基本概念和事件的发生可能性基础上进行学习的,对于培养学生的逻辑思维能力、分析问题能力以及解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于概率的基本概念和事件的发生可能性有一定的了解。
但是,对于随机事件的定义和性质,以及如何判断一个事件是随机事件还是必然事件或不可能事件,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实例来理解和掌握随机事件的定义和性质,提高学生的数学思维能力。
三. 教学目标1.了解随机事件的定义、性质和判断方法。
2.能够运用随机事件的性质和判断方法解决实际问题。
3.培养学生的逻辑思维能力、分析问题能力和解决问题的能力。
四. 教学重难点1.随机事件的定义和性质。
2.如何判断一个事件是随机事件、必然事件或不可能事件。
五. 教学方法1.实例教学法:通过具体的实例,引导学生理解和掌握随机事件的定义和性质。
2.问题驱动法:通过提出问题,激发学生的思考,引导学生运用随机事件的性质和判断方法解决实际问题。
3.小组合作学习:学生进行小组讨论,培养学生的团队合作意识和交流沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和问题。
2.实例材料:准备一些与生活相关的实例,用于教学演示和练习。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的随机事件,如抛硬币、抽奖等,引导学生思考什么是随机事件,随机事件的特点是什么。
2.呈现(10分钟)利用PPT呈现随机事件的定义和性质,让学生初步了解随机事件的判断方法。
3.操练(10分钟)让学生分组讨论,每组找一个实例,判断这个实例是随机事件、必然事件还是不可能事件,并说明判断的理由。
【最新沪科版精选】沪科初中数学九下《25.2 三视图》word教案 (7).doc
27.2三视图一、教学目标1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;3、了解将三视图转换成立体图开在生产中的作用,使学生体会到所学的知识有重要的实用价值。
二、教学重点、难点重点:根据三视图描述基本几何体和实物原型及三视图在生产中的作用难点:根据三视图想象基本几何体和实物原型的形状三、教学过程(一)复习引入1、完成下列练习(1)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(3)、某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球2、让学生欣赏事先准备好的机械制图中三视图与对应立体图形的图片,借助图片信息让学生体会到本章知识的价值。
并借此可以讲述一下现在一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,激发学生的学习兴趣,导入本课。
(二)讲授新课例6某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际的生产中.三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图.从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱(如图(左)).密封罐的高为50mm,底面正六边形的直径为100mm.边长为50mm,图(右)是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为练习巩固课后练习补充例题:根据下面三视图请说出建筑物是什么样子的?共有几层?一共需要多少个小正方体?分析:由俯视图确定该建筑物在平面上的形状,由主视图、左视图确定空间的形状如图所示.解:该建筑物的形状如图所示:有3层,共9个小正方体.思考:一个物体的主视图如上右图所示, 请画出它的俯视图,耐心想一想有几种不同的情形?四、小结:根据物体的三视图想像物体的形状一般是由俯视图确定物体在平面上的形状.然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.五、作业8、9。
2023-2024学年沪科版九年级数学下册教案:25.2三视图 (2份打包)
2023-2024学年沪科版九年级数学下册教案:25.2三视图 (2份打包)一. 教材分析《2023-2024学年沪科版九年级数学下册》的25.2节是关于三视图的学习。
这部分内容是学生在学习了主视图、左视图和俯视图的基础上,进一步掌握三视图的画法和应用。
通过这部分的学习,学生能够更好地理解三维空间物体的形状,提高空间想象能力,为后续学习立体几何打下基础。
二. 学情分析九年级的学生已经掌握了主视图、左视图和俯视图的基本知识,对于如何从不同角度观察物体已经有了初步的理解。
但是,学生在实际操作中,可能对于复杂物体的三视图绘制还存在一定的困难,空间想象能力有待提高。
此外,学生对于三视图在实际问题中的应用还不够熟练,需要通过本节课的学习进一步巩固。
三. 教学目标1.让学生掌握三视图的画法,能够从不同角度观察物体,提高空间想象能力。
2.培养学生运用三视图解决实际问题的能力,增强数学应用意识。
3.通过对三视图的学习,培养学生的观察能力、动手能力和合作能力。
四. 教学重难点1.重点:三视图的画法及其应用。
2.难点:对于复杂物体三视图的绘制和空间想象能力的培养。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,让学生直观地理解三视图;通过小组合作,培养学生的合作能力和观察能力。
六. 教学准备1.准备一些常见物体的模型,如长方体、正方体等。
2.准备一些复杂物体的三视图图片,以便学生在课堂上进行观察和分析。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)教师通过展示一些常见物体的模型,如长方体、正方体等,引导学生思考:如何从不同角度观察这些物体?让学生认识到三视图的重要性,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT或板书,呈现一些复杂物体的三视图,让学生观察和分析。
同时,教师讲解三视图的画法,如如何确定物体的长、宽、高;如何正确地绘制主视图、左视图和俯视图等。
沪教版九年级数学下教案3篇
沪教版九年级数学下教案3篇沪教版九年级数学下教案篇1配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1用配方法解下列关于x的方程:(1)x2-8x+1=0(2)x2-2x-21=0三、巩固练习教材第9页练习1,2.(1)(2).四、课堂小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业教材第17页复习巩固2,3.(1)(2).沪教版九年级数学下教案篇2二次根式的乘除法教学目标1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
最新沪科版初中数学九年级下册精品【教案】 随机事件
随机事件
(一)教学目标
(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(二)重点、难点分析
重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
(四)教学过程
(五)教学设计说明
本节是“概率初步”一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受必然事件,不可能事件,随机事件的意义。
然后,通过演示试验,小组讨论,逐步形成对随机事件的特点及定义的理性认识,这样从易到难,从简单到复杂,逐渐深入地引入随机事件的概念的安排,显得自然而又流畅。
本节课,没有纠缠在概念的具体文字上,而是通过经典的随机事件的例子,使学生准确的理解和把握随机事件的有关概念。
沪科版九年级下数学24.3圆周角教学设计
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括基础题、提高题和应用题,以满足不同层次学生的需求。
3.教师对学生的解答进行点评,指出解题过程中的亮点和不足,引导学生总结解题方法。
(五)总结归纳
1.教师带领学生回顾本节课所学内容,让学生用自己的话总结圆周角的性质、定理及其应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际例子,让学生感受到圆周角知识在生活中的运用,提高学生的学习兴趣。
2.利用多媒体教学手段,如动画、图片等,形ቤተ መጻሕፍቲ ባይዱ直观地展示几何图形,帮助学生理解圆周角定理及其推论。
3.采用启发式教学法,引导学生主动发现问题、提出问题、解决问题。通过师生互动、生生互动,激发学生的思考,培养学生的逻辑思维能力。
2.教师强调本节课的重点和难点,提醒学生注意圆周角定理在解决实际问题时的运用。
3.学生分享自己在学习过程中的收获和感悟,教师给予鼓励和肯定,激发学生的学习积极性。
五、作业布置
为了巩固学生对圆周角知识的掌握,培养学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:完成课本第24.3节后的练习题,包括填空题、选择题和解答题。重点关注圆周角定理及其推论的基础应用。
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆周角定理及其推论的理解和应用。
难点:将圆周角定理应用于复杂几何图形中,解决弦、弧长度等相关问题。
2.重点:观察和分析几何图形,培养学生的空间想象力。
难点:准确描述几何图形,构建解题思路。
3.重点:提高学生的逻辑思维能力,解决与圆相关的实际问题。
难点:运用已知定理和推论,进行严密的逻辑推理。
(完整版)沪科版九年级(下)数学:24.2《圆的基本性质》教案
24.2.3圆的确定教材分析:“圆的确定”是沪科版初中数学教材九年级下册第24章《圆》的内容之一,它是在学生学习了圆的基本性质等相关知识之后的延续学习,也为后面深入学习圆周角定理等相关内容奠定基础。
其重点内容是“过不在同一直线上三个点作圆”和反证法,本节课的学习,对于培养学生规范地操作技能、探索问题能力及条理地思维能力具有重要作用。
从解决问题的思想方法来看,渗透了分类讨论、类比、化归等数学思想方法。
所以本课时无论从知识性还是思想性来讲,在教学中都占有重要的地位,起着承上启下的作用。
学情分析:学生已经学习了确定圆的条件是圆心和半径,还学习了线段的垂直平分线的性质、判定和画法,这些知识的学习会为本节课的学习打下良好的基础。
而作一个符合要求的圆,发现圆心的分布规律是学生不易发现的,因此会产生一定的思维障碍,另外在圆心的找取上,由于学生不能建立圆与垂直平分线两者之间的关联而产生知识生成的困难;用反证法证明命题时,学生在运用反证法证明命题的过程中,可能会存在很大的困难。
大多数的学生在遇到困难懒于思索,在课堂活动中习惯性充当旁观者,而不是积极主动的探究者。
教学目标:知识技能目标:1、理解不在同一条直线上的三个点确定一个圆。
2、了解三角形的外接圆和三角形外心的概念及相关知识。
3、理解和掌握反证法的证明方法。
数学思考与问题解决目标:1、经历不在同一条直线上的三个点确定一个圆的探索过程和三角形的外心的性质、培养学生的探索能力。
2、通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。
3、经历用反证法证明命题成立的方法,体会辩证的数学方法。
情感态度价值观1、形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。
2、感知数学来源于生活并服务于生活,树立探究数学问题的意识,通过问题解决过程中的相互合作和独立思考能力,体验成功的喜悦。
教学重点:1、过不在同一条直线上的三个点作圆的方法及其运用。
最新沪科版九年级数学下册教案
沪科版九年级数学下教学设计一、单元要点分析教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系, 圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、 弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念, 探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用; 理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动. 了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中, 让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系, 使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、 圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.二、教学重点1.平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等, 都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90 °的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8. 经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等, 这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n Rπ,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算.13.圆锥的侧面积和全面积的计算.三、教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导, 并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n Rπ及S 扇形=2360n R π的公式的应用.12.圆锥侧面展开图的理解.四、教学关键1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、 性质、“三个”位置关系并推理证明等活动.2.关注学生思考方式的多样化,注重学生计算能力的培养与提高.3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法, 发展学生有条理的思考能力及语言表达能力.24.1旋转第一课时教学目标:1、了解图形旋转的有关概念,并理解它们的基本性质。
沪科版九年级下册数学教案25.1投影(第2课时)说课稿
4.最后,结合实际应用,如建筑图纸、摄影等,让学生了解投影在现实生活中的应用,提高学生的兴趣。
(三)巩固练习
我计划设计以下巩固练习或1.课堂练习:针对投影的计算方法,设计一些典型题目,让学生当堂完成,及时巩固所学知识。
本节课主要知识点包括:投影的定义、分类(中心投影、平行投影)、性质、应用等。通过本节课的学习,使学生能够理解投影的概念,掌握不同类型投影的特点及计算方法,并能在实际问题中运用投影知识。
(二)教学目标
知识与技能目标:掌握投影的定义及分类,理解中心投影与平行投影的区别和联系;掌握投影的计算方法,能够运用投影知识解决实际问题。
沪科版九年级下册数学教案25.1投影(第2课时)说课稿
一、教材分析
(一)内容概述
本节课选自沪科版九年级下册数学教材第25章“投影”部分,是学生在学习了平面几何、立体几何的基础上,进一步探讨几何知识在实际生活中的应用。投影作为本章的核心概念,在整个课程体系中具有承上启下的作用,既巩固了先前所学几何知识,又为后续学习解析几何打下基础。
1.师生互动:在课堂提问环节,针对学生的回答进行引导、追问,帮助学生深入思考,提高课堂参与度。
2.生生互动:分组讨论、合作探究,让学生在小组内分享观点、互相学习,培养学生的合作精神。
3.小组竞赛:设置一些有关投影的竞赛题目,鼓励各小组积极竞争,提高学生的学习积极性。
4.课堂小结:邀请学生上台总结所学知识,表扬优秀学生,激发学生的学习热情。
1.左侧:列出本节课的主要知识点,如投影的定义、分类、性质等,以提纲形式展示,便于学生梳理知识结构。
2.中间:展示投影的计算方法和实际应用案例,采用图示和步骤描述,直观易懂。
【最新沪科版精选】沪科初中数学九下《25.2 三视图》word教案 (3).doc
25.2 三视图一、教学目标1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;3、了解将三视图转换成立体图开在生产中的作用,使学生体会到所学的知识有重要的实用价值。
二、教学重点、难点重点:根据三视图描述基本几何体和实物原型及三视图在生产中的作用难点:根据三视图想象基本几何体和实物原型的形状三、教学过程(一)复习引入1、完成下列练习(1)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(3)、某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球2、让学生欣赏事先准备好的机械制图中三视图与对应立体图形的图片,借助图片信息让学生体会到本章知识的价值。
并借此可以讲述一下现在一些中专、中技甚至大学里开设的模具和机械制图专业和课程就需要这方面的知识,激发学生的学习兴趣,导入本课。
(二)讲授新课例6某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如下图),请你按照三视图确定制作每个密封罐所需钢板的面积.分析:对于某些立体图形,若沿其中一些线(例如棱柱的棱)剪开,可以把立体图形的表面展开成一个平面图形——展开图.在实际的生产中.三视图和展开图往往结合在一起使用.解决本题的思路是,由视图想象出密封罐的立体形状,再进一步画出展开图.从而计算面积.解:由三视图可知,密封罐的形状是正六棱柱(如图(左)).密封罐的高为50mm,底面正六边形的直径为100mm.边长为50mm,图(右)是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为练习巩固P122 练习补充例题:根据下面三视图请说出建筑物是什么样子的?共有几层?一共需要多少个小正方体?分析:由俯视图确定该建筑物在平面上的形状,由主视图、左视图确定空间的形状如图所示. 解:该建筑物的形状如图所示:有3层,共9个小正方体.思考:一个物体的主视图如上右图所示, 请画出它的俯视图,耐心想一想有几种不同的情形?四、小结:根据物体的三视图想像物体的形状一般是由俯视图确定物体在平面上的形状.然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.五、作业P124~125 8、9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新沪科版九年级数学下册全册教案24.1 旋转第1课时旋转的概念和性质1 .了解图形旋转的有关概念并理解它的基本性质 ( 重点 ) ;2 .了解旋转对称图形的有关概念及特点 ( 难点 ) .一、情境导入飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?二、合作探究探究点一:旋转的概念和性质【类型一】旋转的概念下列事件中,属于旋转运动的是 ( )A .小明向北走了 4 米B .小朋友们在荡秋千时做的运动C .电梯从 1 楼上升到 12 楼D .一物体从高空坠下解析: A. 是平移运动; B. 是旋转运动; C. 是平移运动; D. 是平移运动.故选 B .方法总结:本题考查了旋转的概念,图形的旋转即是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变 .变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 1 题【类型二】旋转的性质如图,△ ABC 绕点 A 顺时针旋转 80 °得到△ AEF ,若∠ B = 100 °,∠ F =50 °,则∠ α 的度数是 ( )A . 40 °B . 50 °C . 60 °D . 70 °解析:∵△ ABC 绕点 A 顺时针旋转 80 °得到△ AEF ,∴△ ABC ≌△ AEF ,∠ C =∠ F = 50 °,∠ BAE = 80 ° . 又∵∠ B = 100 °,∴∠ BAC = 30 °,∴∠ α =∠ BAE -∠ BAC = 50 ° . 故选 B.方法总结:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:① 定点——旋转中心;② 旋转方向;③ 旋转角度.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 4 题【类型三】与旋转有关的作图在图中,将大写字母 A 绕它上侧的顶点按逆时针方向旋转 90 °,作出旋转后的图案,同时作出字母 A 向左平移 5 个单位的图案.解:方法总结:此题主要考查了旋转变换以及平移变换,得出对应点的位置是解题关键.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 7 题探究点二:旋转对称图形【类型一】认识旋转对称图形下图中不是旋转对称图形的是 ( )解析: A.360 °÷ 5 = 72°,图形旋转 72 °的整数倍即可与原图形重合,是旋转对称图形,故本选项错误; B. 不是旋转对称图形,故本选项正确; C.360 °÷ 8 =45°,图形旋转 45°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误; D.360 °÷ 4 = 90°,图形旋转 90 °的整数倍即可与原图形重合,是旋转对称图形,故本选项错误.故选 B.方法总结:本题考查了旋转对称图形的概念及性质,把一个旋转对称图形绕着一个定点旋转一个角度后与初始图形重合,可据此判定一个图形是否为旋转对称图形.【类型二】旋转对称图形的特点如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心按逆时针方向旋转的度数为 ( )A . 30 °B . 60 °C . 120 °D . 180 °解析:图形可看作是正六边形被平分成六部分,故每部分被分成的角是 60 °,故旋转 60 °的整数倍就可以与自身重合.故选 B.方法总结:解题关键在于对旋转对称图形的旋转角的概念的理解,通过计算旋转角可得出答案.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 6 题三、板书设计1 .旋转的概念(1) 旋转中心; (2) 旋转角; (3) 对应点.2 .旋转的性质在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中线的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.3 .旋转对称图形本课时所学习的内容概念性较强,在教学时可借助多媒体软件,形象生动的展示旋转的性质,使学生能够深刻理解,为接下来的学习打下基础.在教学设计中,应突出学生在课堂学习中的主体地位,强调学生自主探索和合作交流,增强动手能力,培养探究精神 .24.1 旋转第2课时中心对称和中心对称图形1 .理解中心对称和中心对称图形的定义,掌握中心对称图形的性质 ( 重点 ) ;2 .能够依据中心对称图形的定义判断某图形是否为中心对称图形 ( 难点 ) .一、情境导入剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6 世纪.如图剪纸中两个金鱼之间有什么关系呢?二、合作探究探究点一:中心对称的性质如图,已知△ AOB 与△ DOC 成中心对称,△ AOB 的面积是 12 , AB = 3 ,则△ DOC 中 CD 边上的高是 ( )A . 3B . 6C . 8D . 12解析:设 AB 边上的高为 h ,因为△ AOB 的面积是 12 , AB = 3 ,所以 × 3× h = 12 ,所以 h = 8. 又因为△ AOB 与△ DOC 成中心对称,△ COD ≌△ AOB ,所以△ DOC 中 CD 边上的高是 8. 故选 C.方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 3 题探究点二:中心对称图形的性质与识别【类型一】中心对称图形的识别下列标志图中,既是轴对称图形,又是中心对称图形的是 ( )解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项 A 是中心对称图形,不是轴对称图形;选项 B 既是中心对称图形,又是轴对称图形;选项 C 是轴对称图形,不是中心对称图形;选项 D 既不是中心对称图形,也不是轴对称图形.故选 B.方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180 °,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 5 题【类型二】与中心对称图形有关的作图如图,网格中有一个四边形和两个三角形.(1) 请你分别画出三个图形关于点 O 的中心对称图形;(2) 将 (1) 中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解: (1) 如图所示;(2) 这个整体图形的对称轴有 4 条;此图形最少旋转 90 °能与自身重合.方法总结:作中心对称图形的一般步骤: ( 1) 确定具有代表性的点 ( 如线段的端点 ) ; (2) 作出每个代表性点的对称点; (3) 按照原图形的形状顺次连接各个对称点.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 5 题【类型三】中心对称图形的性质及应用如图,矩形 ABCD 的对角线 AC 和 BD 相交于点 O ,过点 O 的直线分别交 AD 和 BC 于点 E 、 F , AB = 2 , BC = 3 ,试求图中阴影部分的面积.解析:观察图中阴影部分,可以利用中心对称图形的性质进行转化,将复杂问题简单化.解:因为矩形 ABCD 是中心对称图形,所以△ BOF 与△ DOE 关于点 O 成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ ADC 中.又因为 AB =2 , BC =3 ,所以 Rt △ ADC 的面积为 × 3 × 2 = 3 ,即图中阴影部分的面积为 3.方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 4 题【类型四】平面直角坐标系中的中心对称已知:如图, E ( - 4 , 2 ) , F ( - 1 ,- 1) ,以 O 为中心,作△ EFO 的中心对称图形,则点 E 的对应点E ′ 的坐标为 ________ .解析:由中心对称可得到新的点与原来的点关于原点对称.∵ E ( - 4 , 2 ) ,∴ 点 E 的对应点E ′ 的坐标为 (4 ,- 2) ,故答案为 (4 ,- 2) .方法总结:两点关于原点中心对称,横纵坐标均互为相反数.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 6 题三、板书设计1 .中心对称的定义与性质成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.2 .中心对称图形把一个图形绕某一个定点旋转 180 °,如果旋转后的图形能和原来图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.在教学过程中,应该鼓励学生进行自主探究,自己动手去探索中心对称和中心对称图形的特点,加深对新知识的认识和理解.教师在课堂上起辅助作用,引导学生自己解决问题,注重培养学生的独立意识 .24.1 旋转第3课时旋转的应用1 .理解并掌握旋转变化的特点,能够解决坐标平面内的旋转变换问题 ( 重点,难点 ) ;2 .能够运用旋转、轴对称或平移进行简单的图案设计 ( 难点 ) .一、情境导入2016 年里约热内卢奥运会会徽是由三人牵手相连的标志,以代表巴西的著名景点“ 面包山” 作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力,在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.二、合作探究探究点一:坐标平面内的旋转变换【类型一】坐标平面内图形的旋转变换如图,在方格纸上建立的平面直角坐标系中,将△ ABO 绕点 O 按顺时针方向旋转 90 °,得△ A ′ B ′ O ,则点A ′ 的坐标为 ( )A . (3 , 1 )B . (3 , 2 )C . (2 , 3 )D . (1 , 3 )解析:根据网格结构找出点 A 、 B 旋转后的对应点A ′ 、B ′ 的位置,然后与点 O 顺次连接即可,再根据平面直角坐标系写出点A ′ 的坐标.如图,点A ′ 的坐标为(1 , 3 ) ,故选 D.方法总结:本题考查了坐标与图形旋转,根据网格结构作出旋转后的三角形,利用数形结合的思想求解.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 2 题【类型二】坐标平面内线段的旋转变换如图,在平面直角坐标系中,点 B 的坐标是 (1 , 0 ) ,若点 A 的坐标为 ( a ,b ) ,将线段 BA 绕点 B 顺时针旋转 90 °得到线段BA ′ ,则点A ′ 的坐标是__________ .解析:过点 A 作 AC ⊥ x 轴,过点A ′ 作A ′ D ⊥ x 轴,垂足分别为 C 、 D ,显然Rt △ ABC ≌ Rt △ BA ′ D . ∵ 点 A 的坐标为 ( a , b ) ,点 B 的坐标是 (1 , 0 ) ,∴ OD = OB + BD = OB + AC = 1 + b ,A ′ D = BC = OC - OB = a -1. ∵ 点A ′在第四象限,∴ 点A ′ 的坐标是 ( b + 1 ,- a + 1) .故答案为 ( b + 1 ,- a +1) .方法总结:本题考查了坐标与线段的变化,作出全等三角形,利用全等三角形对应边相等求出点A ′ 到坐标轴的距离是解题的关键,书写坐标时要注意点所在的象限.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 5 题探究点二:动态图形的操作与图案设计【类型一】图形的变换用四块如图 (1) 所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图 (2) 、图 (3) 、图 (4) 中各画出一种拼法 ( 要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形 ) .解:解法不唯一.例如:方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.【类型二】图案设计如图,是一个 4 × 4 的正方形网格,每个小正方形的边长为 1. 请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:① 既是轴对称图形,又是以点 O 为对称中心的中心对称图形;② 所作图案用阴影标识,且阴影部分面积为 4.解析:所给左上角的三角形的面积为 × 1 × 1 =,故设计图案总共需要三角形 4÷ = 8( 个 ) ,以 O 为对称中心的中心对称图形,同时又是轴对称图形的设计方案有很多.答案:答案不唯一,以下各图供参考:方法总结:在读清要求后,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 8 题三、板书设计1 .坐标平面内的旋转变换2 .动态图形的操作与图案设计教学过程中,强调学生自主探索和合作交流,鼓励学生自己动手操作,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图形的欣赏与设计的奇妙 .24.2 圆的基本性质第 1 课时与圆有关的概念及点与圆的位置关系1 .认识圆及圆有关的概念,并了解它们之间的区别和联系 ( 重点 ) ;2 .理解并掌握点与圆的位置关系,并能够进行简单的证明和计算 ( 重点,难点 ) .一、情境导入在我们日常生活中常常可以看到有许多圆形物体,例如茶碗的碗口、锅盖、太阳、车轮、射击用的靶子等都是圆的,怎样画出一个圆呢?木工师傅是用一根黑线来画圆的,给你一根细绳、一个图钉和一支铅笔,你能画出一个圆吗?二、合作探究探究点一:与圆相关的概念【类型一】圆的有关概念的理解有下列五个说法:① 半径确定了,圆就确定了;② 直径是弦;③ 弦是直径;④ 半圆是弧,但弧不一定是半圆;⑤ 任意一条直径都是圆的对称轴.其中错误的说法个数是 ( )A . 1B . 2C . 3D . 4解析:根据圆、直径、弦、半圆等概念来判断.半径确定了,只能说明圆的大小确定了,但是位置没有确定;直径是弦,但弦不一定是直径;圆的对称轴是一条直线,每一条直径所在的直线是圆的对称轴,所以①③⑤ 的说法是错误的.故选 C.方法总结:对称轴是直线,不能说成每条直径就是圆的对称轴;注意圆的对称轴有无数条.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 2 题【类型二】利用圆的相关概念进行线段的证明如图所示, OA 、 OB 是⊙ O 的半径,点 C 、 D 分别为 OA 、 OB 的中点,求证: AD = BC .解析:先挖掘隐含的“ 同圆的半径相等”“ 公共角” 两个条件,再探求证明△ AOD ≌△ BOC 的第三个条件,从而可证出△ AOD ≌△ BOC ,根据全等三角形对应边相等得出结论.证明:∵ OA 、 OB 是⊙ O 的半径,∴ OA =OB . ∵ 点 C 、 D 分别为 OA 、 OB 的中点,∴ OC = OA , OD = OB ,∴ OC = OD . 又∵∠ O =∠ O ,∴△ AOD≌△ BOC ( S AS) ,∴ BC = AD .方法总结:“ 同圆的半径相等”“ 公共角”“ 直径是半径的 2 倍” 等都是圆中隐含的条件.在解决问题时,要充分利用图形的直观性挖掘出这些隐含的条件,将复杂问题简单化,使问题迎刃而解.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 7 题【类型三】利用圆的相关概念进行角的计算如图所示, AB 是⊙ O 的直径, CD 是⊙ O 的弦, AB , CD 的延长线交于点 E . 已知 AB = 2 DE ,∠ E = 18 °,求∠ AOC 的度数.解析:要求∠ AOC 的度数,由图可知∠ AOC =∠ C +∠ E ,故只需求出∠ C 的度数,而由 AB = 2 DE 知 DE 与⊙ O 的半径相等,从而想到连接 OD 构造等腰△ODE 和等腰△ OCD .解:连接 OD ,∵ AB 是⊙ O 的直径, OC , OD 是⊙ O 的半径, AB = 2 DE ,∴ OD = DE ,∴∠ DOE =∠ E = 18 °,∴∠ ODC =∠ DOE +∠ E =36 ° . ∵ OC = OD ,∴∠ C =∠ ODC = 36 °,∠ AOC =∠ C +∠ E = 36 °+ 18°= 54° .方法总结:本题考查了圆的相关概念与等腰三角形的综合,解题时结合题设条件,运用半径构造出等腰三角形,根据等腰三角形的性质求解.探究点二:点与圆的位置关系【类型一】判断点和圆的位置关系如图,已知矩形 ABCD 的边 AB = 3 cm , AD = 4 cm.(1) 以点 A 为圆心, 4cm 为半径作⊙ A ,则点 B , C , D 与⊙ A 的位置关系如何?(2) 若以点 A 为圆心作⊙ A ,使 B , C , D 三点中至少有一点在圆内且至少有一点在圆外,则⊙ A 的半径 r 的取值范围是什么?解:(1) ∵ AB = 3 cm < 4cm ,∴ 点 B 在⊙ A 内.∵ AD = 4 cm ,∴ 点 D 在⊙ A 上.∵ AC == 5 cm > 4cm ,∴ 点 C 在⊙ A 外;(2) 由题意得,点 B 一定在圆内,点 C 一定在圆外,∴ 3cm < r < 5 cm.方法总结:平面上一点 P 与⊙ O ( 半径为 r ) 的关系有以下三种情况: (1) 点 P 在⊙ O 上, OP = r ; (2) 点 P 在⊙ O 内, OP < r ; (3) 点 P 在⊙ O 外, OP > r .变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 8 题【类型二】点和圆的位置关系的应用如图,点 O 处有一灯塔,警示⊙ O 内部为危险区,一渔船误入危险区点 P 处,该渔船应该按什么方向航行才能尽快离开危险区?试说明理由.解:渔船应沿着灯塔 O 过点 P 的射线 OP 方向航行才能尽快离开危险区.理由如下:设射线 OP 交⊙ O 与点 A ,过点 P 任意作一条弦 CD ,连接 OD ,在△ ODP 中,OD - OP < PD ,又∵ OD = OA ,∴ OA - OP < PD ,∴ PA < PD ,即渔船沿射线 OP 方向航行才能尽快离开危险区.方法总结:解决实际问题时,应选取合适的数学模型,结合所学知识求解.本题应用到的是点和圆及三角形三边关系的相关知识.三、板书设计1 .与圆有关的概念圆心、半径、弦、直径、圆弧、半圆、优弧、劣弧、等圆、等弧.2 .点和圆的位置(1) 点 P 在⊙ O 上, OP = r ;(2) 点 P 在⊙ O 内, OP < r ;(3) 点 P 在⊙ O 外, OP > r .教学过程中,应鼓励学生自己动手画圆,探究圆形成的过程,同时小组讨论、交流各自发现的圆的有关性质,使学生成为课堂的主人,进一步提升学生独立思考问题的能力及探究能力 .24.2 圆的基本性质第 2 课时垂径分弦1 .理解并掌握垂径定理及其推论,并能应用其解决一些简单的计算和证明问题( 重点,难点 ) ;2 .认识垂径定理及其推论在实际问题中的应用,会用添加辅助线的方法解决实际问题 ( 难点 ) .一、情境导入你知道赵州桥吗?它又名“ 安济桥” ,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有 1400 多年了,是隋代大业年间 ( 公元 605 ~ 618 年 ) 由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长 50.82 米,桥宽约 10 米,跨度 37.4 米,拱高 7.2 米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?二、合作探究探究点一:垂径定理及应用【类型一】利用垂径定理求线段长如图所示,⊙ O 的直径 AB 垂直弦 CD 于点 P ,且 P 是半径 OB 的中点, CD = 6 cm ,则直径 AB 的长是 ( )A . 2 cmB . 3 cmC . 4 cmD . 4 cm解析:∵ 直径 AB ⊥ DC , CD = 6 cm ,∴ DP = 3 cm. 连接 OD ,∵ P 是 OB 的中点,设 OP 为 x ,则 OD 为 2 x ,在 Rt △ DOP 中,根据勾股定理列方程 3 2 + x2 = (2 x ) 2 ,解得 x =. ∴ OD = 2 cm ,∴ AB = 4 cm. 故选 D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 2 题【类型二】垂径定理的实际应用如图,一条公路的转弯处是一段圆弧 ( 图中的 ) ,点 O 是这段弧的圆心, C 是上一点, OC ⊥ AB ,垂足为 D , AB = 300 m , CD = 50 m ,则这段弯路的半径是 ________ m.解析:本题考查垂径定理的应用,∵ OC ⊥ AB , AB = 300 m ,∴ AD = 150 m. 设半径为 R ,在 Rt △ ADO 中,根据勾股定理可列方程 R 2 = ( R - 50) 2 + 150 2 ,解得 R = 250. 故答案为 250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 7 题【类型三】动点问题如图,⊙ O 的直径为 10 cm ,弦 AB = 8 cm , P 是弦 AB 上的一个动点,求 OP 的长度范围.解析:当点 P 处于弦 AB 的端点时, OP 最长,此时 OP 为半径的长;当 OP ⊥AB 时, OP 最短,利用垂径定理及勾股定理可求得此时 OP 的长.解:作直径 MN ⊥弦 AB ,交 AB 于点 D ,由垂径定理,得 AD = DB = AB = 4 cm. 又∵⊙ O 的直径为 10 cm ,连接 OA ,∴ OA = 5 cm. 在 Rt △ AOD 中,由勾股定理,得 OD ==3 cm. ∵ 垂线段最短,半径最长,∴ OP 的长度范围是3 cm ≤ OP ≤ 5 cm .方法总结:解题的关键是明确 OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 5 题探究点二:垂径定理的推论的应用【类型一】利用垂径定理的推论求角如图所示,⊙ O 的弦 AB 、 AC 的夹角为 50 °, M 、 N 分别是、的中点,则∠ MON 的度数是 ( )A . 100 °B . 110 °C . 120 °D . 130 °解析:已知 M 、 N 分别是、的中点,由“ 平分弧的直径垂直平分弧所对的弦” 得 OM ⊥ AB 、 ON ⊥ AC ,所以∠ AEO =∠ AFO = 90 °,而∠ BAC =50 °,由四边形内角和定理得∠ MON = 360 °-∠ AEO -∠ AFO -∠ BAC = 360 °- 90°- 90°- 50°= 130°. 故选 D .变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 4 题【类型二】利用垂径定理的推论求边如图,⊙ O 的直径 CD 过弦 AB 的中点 E ,且 CE = 2 , DE = 8 ,则 AB 的长为 ( )A . 9B . 8C . 6D . 4解析:∵ CE = 2 , DE = 8 ,∴ CD = 10 ,∴ OB = OC = 5 , OE = 5 - 2 = 3. ∵直径 CD 过弦 AB 的中点 E ,∴ CD ⊥ AB ,∴ AE = BE . 在 Rt △ OBE 中,∵ OE =3 , OB = 5 ,∴ BE ==4 ,∴ AB = 2 BE = 8. 故选 B.方法总结:垂径定理的推论虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 7 题三、板书设计1 .垂径定理垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.2 .垂径定理的推论平分弦 ( 不是直径 ) 的直径垂直于弦,并且平分弦所对的两条弧.教学过程中,引导学生探究垂径定理及其推论时,强调垂径定理的得出跟圆的轴对称密切相关.在练习过程中,引导学生结合实际运用垂径定理,使学生养成良好的思维习惯 .24.2 圆的基本性质第 3 课时圆心角、弧、弦、弦心距间关系1 .结合图形了解圆心角的概念,掌握圆心角的相关性质;2 .能够发现圆心角、弧、弦、弦心距间关系,并会初步运用这些关系解决有关问题 ( 重点,难点 ) .一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“ 生命在于运动” 的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“ 中国居民平衡膳食指南” ,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点:圆心角定理及其推论【类型一】圆心角与弧的关系如图,已知: AB 是⊙ O 的直径, C 、 D 是的三等分点,∠ AOE =60 °,则∠ COE 的大小是 ( )A . 40 °B . 60 °C . 80 °D . 120 °解析:∵ C 、 D 是的三等分点,∴ ==,∴∠ BOC =∠ COD =∠ DOE . ∵∠ AOE = 60 °,∴∠ BOC =∠ COD =∠ DOE = × (180 °-60 ° ) = 40 °,∴∠ COE = 80 ° . 故选 C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 6 题【类型二】圆心角与弦、弦心距间的关系如图所示,在⊙ O 中,=,∠ B = 70 °,则∠ A = ________ .解析:由=,得这两条弧所对的弦 AB = AC ,所以∠ B =∠ C . 因为∠ B = 70 °,所以∠ C = 70 ° . 由三角形的内角和定理可得∠ A 的度数为 40 ° . 故答案为 40 ° .方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.变式训练:见《学练优》本课时练习“ 课堂达标训练” 第 1 题【类型三】圆心角定理及其推论的应用如图所示,已知 AB 是⊙ O 的直径, M , N 分别是 OA , OB 的中点, CM ⊥ AB , DN ⊥ AB ,垂足分别为 M , N . 求证:= .解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法 1 :如图所示,连接 OC , OD ,则 OC =OD . ∵ OA = OB ,又 M , N 分别是 OA , OB 的中点,∴ OM = ON . 又∵ CM ⊥ AB , DN ⊥ AB ,∴∠ CMO =∠DNO =90 ° . ∴ Rt △ CMO ≌ Rt △ DNO ,∴∠ 1 =∠ 2 ,∴ = .证法 2 :如图① 所示,分别延长 CM , DN 交⊙ O 于点 E ,F . ∵ OA = OB ,OM = OA , ON = OB ,∴ OM = ON . 又∵ OM ⊥ CE , ON ⊥ DF ,∴ CE= DF ,∴ = . 又∵ =,=,∴ =.图①图②证法 3 :如图② 所示,连接 AC , BD . 由证法 1 ,知 CM = DN . 又∵ AM = BN ,∠ AMC =∠ BND = 90 °,∴ Rt △ AMC ≌ Rt △ BND . ∴ AC = BD ,∴ = .方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.变式训练:见《学练优》本课时练习“ 课后巩固提升” 第 9 题三、板书设计1 .圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.2 .圆心角定理推论在同圆或等圆中,如果两个圆心角以及这两个角所对的弧、所对的弦、所对的弦的弦心距中,有一组量相等,那么其余各组量都分别相等.教学过程中,向学生强调弧、弦、圆心角及弦心距之间的关系,引导学生探究时,要鼓励学生大胆猜想,使其体会数学中转化思想的魅力之处,进而培养学生的逻辑思维能力 .24.2 圆的基本性质第 4 课时圆的确定1 .理解并掌握确定圆的条件;2 .理解三角形的外接圆,三角形外心的概念,能够运用其性质进行计算 ( 重点,难点 ) ;3 .理解反证法的思想,能够运用反证法证明命题 ( 难点 ) .一、情境导入小明不慎把家中的一块圆形玻璃打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃应该是哪一块?二、合作探究探究点一:确定圆的条件已知:不在同一直线上的三个已知点 A , B , C ( 如图 ) ,求作:⊙ O ,使它经过点 A , B , C .。