人教版八年级数学下册典型错题集

合集下载

数学八年级下册经典易错题集附答案解析

数学八年级下册经典易错题集附答案解析

八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

人教版八年级数学下册第20章易错集训

人教版八年级数学下册第20章易错集训

第20章易错集训易错点1 对加权平均数理解不透1.由m 个x 1,n 个x 2和r 个x 3组成的一组数据的平均数是( )A.123x +x +x 3B.m+n+r 3C.123mx +nx +rx 3D.123mx +nx +rx m+n+r2.八年级期末考试情况如下:八年级(1)班55人,平均分81分;八年级(2)班40人,平均分90分;八年级(3)班45人,平均分85分;八年级(4)班60人,平均分84分.求该年级的平均分.易错点2 求中位数时忘记排序3.[2017辽宁沈阳市河区二模]在某校举行的“汉字听写大会”大赛中,7名学生听写汉字正确的个数分别为35,31,32,25,31,34,36,则这组数据的中位数是( ) A.33 B.32 C.31 D.254.甲、乙、丙三人进行掷飞镖比赛,已知他们每人五次投得的成绩如图所示,那么甲成绩的中位数是______环;乙成绩的中位数是______环;丙成绩的中位数是______环.易错点3 对众数的概念理解不透6.某班一次数学测试的成绩如表所示,则这次数学测试成绩的众数是______.成绩/分 100 90 80 70 60 50 人数71291282下表是某文具店6~12月份某种铅笔销售情况的统计表:月份 6789101112铅笔/支300 250 400 500 300 200 200观察表中的数据可知,铅笔销售数量的众数是______.易错点4 忽视分类讨论7.若一组数据2,-1,0,2,-1,a的众数为a,则这组数据的平均数为______.8.某小学田径队25名队员的运动鞋码与相应的人数如下表:则这25名队员鞋码的众数是______.易错点5 误把方差作为评判优劣的唯一标准9.甲、乙两班各有8名学生参加数学竞赛,成绩(单位:分)如下:请比较两个班学生成绩的优劣.参考答案1.D名师点睛:(1)在求n个数据的平均数时,如果x1出现f1次,;x2出现f2次 (x)k出现fk次(这里f1+f2+…+fk=n),那么这n个数据的平均数x=1122k kx f+x f+x fn⋯也叫做x1,x 2, (x)k这k个数据的加权平均数,其中f1,f2,…fk分别叫做x1,x2…,xk的权;(2)一组数据中权的表现形式可以是百分数、比值或数据出现的次数.2.【解析】设该年级的平均分为x=5581+4090+4585+608455+40+45+60⨯⨯⨯⨯=84.6(分).所以该年级的平均分为84.6分.易错分析:本题的易错之处是在计算年级平均分时,只是简单地把四个班的平均成绩相加求平均数.应注意本题中各班的人数不同,也就是每个数据的“重要程度”不同,故应该求这组数据的加权平均数,切忌丢掉这个“权3.B【解析】将数据35,31,32,25,31,34,36由小到大排列为25,31,31,32,34,35,36,位于中间位置的数据是32,所以这组数据的中位数为32.故选B.易错分析:本题的易错之处是在求中位数时忘记排序,认为25是这组数据的中位数. 4.7 7 7易错分析:本题的易错之处是认为甲成绩的中位数为9环,丙成绩的中位数为4环,切记将对应折线统计图给出的数据由小到大(或由大到小)排列后,再去找中间隹置的数据.5.90分和70分【解析】由题中表格数据,可知70分和90分都有12人,所以这次数学测试成绩的众数是90分和70分.易错分析:本题易出现这样的错解:因为90分有12人,70分也有12人,所以众数是12.注意:众数是一组数据中出现次数最多的数据,而不是数据出现的次数.6.200支和300支【解析】由题中表格数据,可知出现次数最多的是200和300,所以众数是200支和300支.易错分析:本题的易错之处是认为一组数据的众数只有一个,因而得到本题的答案是200或300,错误的原因是对众数的概念理解不清,众数是一组数据中出现次数最多的数据,可以不止一个.7.16或23【解析】因为一组数据2,-1,0,2,-1,a的众数为a,所以a=-1或2.当a=-1时,这组数据的平均数为16[2+(-1)+0+2+(-1)+(-1)]=16;当a=2时,这组数据的平均数为16[2+(-1)+0+2+(-1)+2]=23.综上,这组数据的平均数为16或23. 易错分析:错解1:因为一组数据2,-1,0,2,-1,a 的众数为a ,所以a=2,所以这组数据的平均数为16[2+(-1)+0+2+(-1)+2]=23.错解2:因为一组数据2,-1,0,2,-1,a 的众数为a ,所以a=-1,所以这组数据的平均数为16[2+(-1)+0+2+(-1)+(-1)]=16.分析:因为这组数据中有两个2和-1,所以a 的取值有两种情况,解题时应分类讨论. 8.36或37或36和37【解析】因为共有25人,所以x +y=25-(5+4+2)=14.若y <7<x ,则众数为36;若x <7<y ,则众数为37;若x=y=7,则众数为36和37.综上,众数是36或37或36和37.易错分析:由于题中表格数据有两个未知数,所以众数不明确,因此需要分类讨论求解,否则会出现漏解.9.【解析】甲x =18×(65+74+70+80+65+66+69+71)=70(分),2甲s =18×[(65-70)2+(74-70)2+(70-70)2+(80-70)2+(65-70)2+(66-70)2+(69-70)2+(71-70)2]=23.乙x =18×(60+75+78+61+80+62+65+79)=70(分),2乙s =18×[(60-70)2+(75-70)2+(78-70)2+(61-70)2+(80-70)2+(62-70)2+(65-70)2+(79-70)2]=67.5.由此可知甲x =乙x ,2甲s <2乙s ,所以甲班的成绩比乙班的成绩稳定.比较高分情况或优秀率(不妨设75分及以上为优秀):髙分情况:得80分的都只有1人,持平;得75分以上(含75分)的甲班有1人,乙班有4人,乙班优于甲班.优秀率:甲班为12.5%,乙班为50%,乙班优于甲班.名师点睛:把方差大小作为评判成绩好坏的唯一标准,这是对方差概念的误解,方差只是反映一组数据的波动情况,至于方差大好还是方差小好,则要看这组数据所反映的实际问题.就这个实际问题而言,方差不应作为评判成绩优劣的唯一标准.从优秀率这个角度来评价两班成绩的优劣才是可观的、准确的,所以并不能说方差小好,而是要具体问题具体分析,主要是看从什么角度去比较.。

人教版八年级数学下册易错题.docx

人教版八年级数学下册易错题.docx

文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .八年级下册数学易错题一、选择题:1、如果把分式xyx+ y中的 x 和 y 都扩大 2 倍,则分式的值()A 、扩大 4 倍B 、扩大 2 倍C 、不变D 、缩小 2 倍x8-112、下面函数: ① y=- 3; y=- x ;③ y=4x-5;④ y=5x ;⑤ xy=8 。

其中②反比例函数的个数是( )A 、2B 、3C 、4D 、53、下列关系中的两个量成反比例关系的是()A 、三角形一边的长与这边上的高;B 、三角形的面积与一边上的高;C 、三角形的面积一定时,一边的长与这边上的高;D 、三角形一边的长不变时,它的面积与这边上的高。

k4、若反比例函数y=x的图象经过点( -1,2),则这个函数的图象一定经过点()A 、(-2,-1)B 、(- 1,2) C 、(2,-1) D 、2( 12 ,2)5、当 x=-2008 时,分式 x +12 的值为()1 - x11A 、2008B 、-2008C 、2008D 、20096、下列各式正确的是()a -b = a - bb - a = - a - b (-a + b )= - a +b D 、-a - b = a - bA 、 ccB 、 ccC 、 c- c- cc文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持 .、若分式方程 4mx +3= 3的解为 x=1,则 m 的值为()7m + 2xA 、1B 、2C 、3D 、4、若分式 x 2- 1 的值为 0,则 x 的值为( )8 x +1A 、1B 、-1C 、 ±1D 、0、如果分式 a(a +b)的值是零,那么 ab 满足的条件是( )9 3(a + b)A 、a=-bB 、a ≠-bC 、a=0D 、a=0 且 b ≠010、计算 x 2y 3÷(xy) -2 的结果为( )A 、xyB 、xC 、x 4y 5D 、y、已知关于的函数 和k(k ≠0),它们在同一坐标系11xy=k(x-1)y=- x中的图象大致是 ()4xy12、如果把分式 x 2 + y 2中的 x 和 y 都扩大 2 倍,则分式的值()A 、不变B 、扩大 2 倍C 、扩大 4 倍D 、缩小 2 倍13、美是一种感觉,当人体下半身与身高的比值越接近 0.618 时,越给人一种美感。

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word 版含答案)一、选择题1.下列二次根式有意义的范围为x ≥﹣4的是( )A .4x -B .14x -C .14x +D .4x + 2.△ABC 的三边为a ,b ,c 且(a +b )(a ﹣b )=c 2,则该三角形是( ) A .锐角三角形B .以c 为斜边的直角三角形C .以b 为斜边的直角三角形D .以a 为斜边的直角三角形 3.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .44.为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)4 5 8 12 学生人数(人) 3 4 2 1A .中位数是6.5B .众数是12C .平均数是3.9D .方差是6 5.图,在四边形ABCD 中,1AB BC ==,2CD =,6AD =,且90ABC ∠=︒,则四边形ABCD 的面积为( )A 61B .122C .12D 162 6.如图,点D 在ABC 的BC 边上,把ADC 沿AD 折叠,点C 恰好落在直线AB 上,则线段AD 是ABC 的( )A .中线B .角平分线C .高线D .垂直平分线 7.如图,在正方形ABCD 的外侧作等边CDE △,对角线AC 与BD 相交于点O ,连接AE 交BD 于点F ,若1OF =,则AB 的长度为( )A .2B .6C .22D .38.如图,直线1:1l y x =+与直线21:22x l y =+相交于点P ,直线1l 与y 轴交于点A ,一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动……照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,32020A B , 2020A 则20202020AB 的长度为( )A .20202B .20192C .2020D .4040二、填空题9.23a a+-a 的取值范围是________________ 10.已知菱形ABCD 的面积为24,AC =6,则AB =___.11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________. 12.如图,四边形ABDE 是长方形,AC ⊥DC 于点C ,交BD 于点F ,AE =AC ,∠ADE =62°,则∠BAF 的度数为___.13.已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.14.如图,已知四边形ABCD 是平行四边形,请你添加一个条件使它成为菱形.这个条件为_____.15.如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为 ________.16.如图所示,四边形ABCD 是长方形,把ACD △沿AC 折叠到ACD ',AD 与BC 交于点E ,若4,3AD DC ==,则BE 的长为________.三、解答题17.(123317(2)21148--- (2)1(615)3252(3)148312242÷-⨯+ (4)205112(31)(31)35+-⨯++- 18.小王与小林进行遥控赛车游戏,终点为点A ,小王的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时小林的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC =40米,AB =30米.出发3秒钟时,遥控信号是否会产生相互干扰?19.如图是一个44⨯的正方形网格,已知每个小正方形的边长均为1,每个小正方形的顶点称为格点,请按要求解答下列问题:(1)如图,满足线段10AB 的格点B 共有______个;(2)试在图中画出一个格点ABC ,使其为等腰三角形,10AB,且ABC 的内部只包含4个格点(不包含在ABC 边上的格点).20.如图所示,ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F .求证:四边形AFCE 是菱形.21.先观察下列等式,再回答问题:2211+2+()1=1+1=2;②2212+2+()2=2+ 12=2 12; ③2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明). (2)将正方形BEFG 绕点B 顺时针旋转角(),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分. (3)在(2)的条件下,过点A 作交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.24.如图,平面直角坐标系中,O 为原点,直线y =x +1分别交x 轴、y 轴于点A 、B ,直线y =﹣x +5分别交x 轴、y 轴于点C 、D ,直线AB 、CD 相交于点E .(1)请直接写出A 、D 的坐标;(2)P 为直线CD 上方直线AE 上一点,横坐标为m ,线段PE 长度为d ,请求出d 与m 的关系式;(3)在(2)的条件下,连接PC 、PD ,若∠CPD =135°,求点P 的坐标.25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.26.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

数学八年级下册经典易错题集附答案解析

数学八年级下册经典易错题集附答案解析

八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

人教版八年级数学下册典型错题集

人教版八年级数学下册典型错题集
典型错同学C: 同学D:
正确解法:
(1) (2)
(3)
错因分析:同学A、同学B的化简错误都是漏乘以根号外的系数,这种错误在刚学时容易发生。同学C的错误是计算不够严谨,没有考虑根号内的因数4的化简。同学D的错误在学生中普遍存在,学生对公式:
缺乏本质上的理解,思维缺乏严谨性,有较大的思维随意性。
然后才化简,在熟练掌握的基础上,才引导学生如何简写步骤。
2、设计题组,进行针对性练习,强化理解,突破难点。
典型错误二: 错因分析:
学生对加减消元法解方程组理解不够深刻,只是关注了方程两边进行相加或相减后,会消去一个未知数,得到另一个未知数的一元一次方程。但没有从相加还是相减才能消元方面进行分析,认为无所谓。因为没有写出方程两边相加或相减的步骤,所以问题体会不深。
解决策略:
在平常的教学中,应强调做题前分析题目结构,选择解题方法的重要性;同时设计相应的练习进行专门训练。
二次根式的加减运算错题
典型错误一:运算顺序不当
例:
正解:
错误分析:
该学生出错的原因是二次根式的加减运算顺序出错,进行加减运算首先要把各根式化最简,然后遵循同级运算应该从左到右的顺序进行。
典型错误二:加减运算没有进行到底
同学A:
同学B:
正解:
错误分析:
两位同学的共同错误都是解题过程中途而废,没有把运算进行到底。
所以在运算结束前一定要观察结果中是否还有同类二次根式没有化简,合并完毕。
典型错误二:受到有理数运算的负迁移,具有思维的随意性
例1:错解: 正确解法:
例2: 错解: 正确解法:
错解:
例3: 错解: 正确解法:
错误分析:上述三位同学的错误都是把二次根式的运算混同于有理数的运算,运算过程中没有严格遵循二次根式的运算公式进行加减运算而出错。

八年级下册数学错题集

八年级下册数学错题集

八年级下册数学错题集一、二次根式部分(5题)1. 化简:√(18)- 错解:√(18)=√(9 + 9)=3 + 3 = 6- 正解:√(18)=√(9×2)=3√(2)。

解析:二次根式化简时,要将被开方数分解成完全平方数与其他数相乘的形式,而不是简单的数字相加分解。

2. 计算:√(8)+√(18)- 错解:√(8)+√(18)=2√(2)+3√(2)=5√(2)√(2)=5×2 = 10- 正解:√(8)+√(18)=2√(2)+3√(2)=5√(2)。

解析:在计算二次根式加法时,最后结果应保留最简二次根式形式,不能再对√(2)进行错误的乘法运算。

3. 若√(x - 1)+√(1 - x)=y + 4,求x,y的值。

- 错解:由√(x - 1)+√(1 - x)=y + 4,得x-1≥0且1 - x≥0,解得x≥1且x≤1,所以x = 1或x = 0,当x = 0时,y=-4;当x = 1时,y=-4。

- 正解:由√(x - 1)+√(1 - x)=y + 4,因为二次根式有意义的条件是被开方数非负,所以x - 1≥0且1 - x≥0,解得x = 1。

把x = 1代入原式得y+4 = 0,解得y=-4。

解析:在确定x的值时,根据二次根式有意义的条件,x只能取1,不能取0。

4. 比较大小:2√(3)和3√(2)- 错解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)>3√(2)。

- 正解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)<3√(2)。

解析:比较二次根式大小时,先将它们化为最简二次根式对应的被开方数,再比较被开方数大小。

5. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2的值。

- 错解:- 先求ab=(√(5)+2)(√(5)-2)=5 - 4 = 1。

- 然后a + b=√(5)+2+√(5)-2 = 2√(5)。

人教版数学八年级下册数学期末试卷易错题(Word版含答案)

人教版数学八年级下册数学期末试卷易错题(Word版含答案)

人教版数学八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式2x -中x 的值不能是( )A .0B .1C .2D .32.三条线段首尾相连,不能围成直角三角形的是( )A .1,2,3B .1,2,1C .3,4,5D .3,2,5 3.四边形BCDE 中,对角线BD 、CE 相交于点F ,下列条件不能判定四边形BCDE 是平行四边形的是( )A .BC ∥ED ,BE =CDB .BF =DF ,CF =EFC .BC ∥ED ,BE ∥CD D .BC =ED .BE =CD4.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )A .92分B .92.4分C .90分D .94分 5.如图,在四边形ABCD 中,1AB BC ==, 22CD =,10AD =,AB BC ⊥,则四边形ABCD 的面积是( )A .2.5B .3C .3.5D .4 6.如图,在菱形ABCD 中,EF 、分别为边BC CD 、的中点,且AE BC ⊥于,E AF CD ⊥于,F 则EAF ∠的度数为( )A .30B .45C .60D .757.如图,在等腰Rt △ACD 中,∠ACD =90°,AC =DC ,且AD 2AD 、AC 、CD 为直径画半圆,其中所得两个月形图案AGCE 和DHCF (图中阴影部分)的面积之和等于( )A.8B.42C.4D.28.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C.23D.32二、填空题9.若232(2)x x-+--有意义,则x的取值范围是_______________.10.在菱形ABCD中,AB=m,AC+BD=n,则菱形ABCD的面积为_________.(用含m、n的代数式表示)11.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E、F,连接PB、PD,若AE=2,PF=9,则图中阴影面积为______;13.直线y=kx+3经过点(1,2),则k=_____________.14.如图,在正方形ABCD中,点E、F分别在对角线BD上,请你添加一个条件____________,使四边形AECF是菱形.15.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,90,ACB AC BC∠=︒=,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,正方形OABC 的顶点A 、C 分别在坐标轴的正半轴上,点B 是第一象限内直线132y x =+上的一点,则点B 的坐标为______.三、解答题17.计算:(1)13823282+- (2)101()|33|(1)272π--+----. 18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,问船向岸边移动了多少米.(假设绳子是直的)19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A 固定在格点上.(1)若a 是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则a = ,b = ;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD ,你画出的菱形面积为 ; 20.如图,在正方形ABCD 中,点E ,F 在AC 上,且AF CE =.求证:(1)BE DE =.(2)四边形BEDF 是菱形.21.先观察下列等式,再回答问题:2211+2+()1=1+1=2; 2212+2+()212=2 12; 2213+2+()3=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .其函数图象如图所示.(1)求k 1和b 的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.已知如图1,四边形ABCD是正方形,.如图1,若点分别在边上,延长线段CB至G,使得,若求EF的长;如图2,若点分别在边延长线上时,求证:如图3,如果四边形ABCD不是正方形,但满足且,请你直接写出BE 的长.24.请你根据学习函数的经验,完成对函数y =|x |﹣1的图象与性质的探究.下表给出了y 与x 的几组对应值. x … ﹣3 ﹣2 ﹣1 01 2 3 … y … m 1 0 ﹣1 0 1 2 …【探究】(1)m = ;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y 随x 的增大而增大时,x 的取值范围是 ;【拓展】(4)函数y 1=﹣|x |+1的图象与函数y =|x |﹣1的图象交于两点,当y 1≥y 时,x 的取值范围是 ;(5)函数y 2=﹣|x |+b (b >0)的图象与函数y =|x |﹣1的图象围成的四边形的形状是 ,该四边形的面积为18时,则b 的值是 .25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.26.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若DF=3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式有意义的条件即可得出答案.【详解】∴20x -≥,解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3,故选:D .【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.D解析:D【分析】根据勾股定理逆定理,验证两条较短边的平方和是否等于最长边的平方即可求解.【详解】解:A 、因为222142+== ,所以1,2意;B 、因为222112+== ,所以1,1能围成直角三角形,故本选项不符合题意;C 、因为22234255+== ,所以3,4,5能围成直角三角形,故本选项不符合题意;D 、因为222+2=7≠ 2意;故选:D .【点睛】本题主要考查了勾股定理逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形是解题的关键. 3.A解析:A【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A 、不能判定四边形ABCD 是平行四边形,故此选项符合题意;B 、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;C 、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;D 、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD 为平行四边形,故此选项不合题意;故选;A .【点睛】本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键. 4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B .【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.A解析:A【分析】如下图,连接AC ,在Rt △ABC 中先求得AC 的长,从而可判断△ACD 是直角三角形,从而求得△ABC 和△ACD 的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB ⊥BC∴在Rt △ABC 中,2,111122ABC S=⨯⨯= ∵10,2又∵((2222210+= ∴三角形ADC 是直角三角形∴122ADC S == ∴四边形ABCD 的面积=12+2=52故选:A .【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC 是直角三角形,然后用勾股定理逆定理验证即可.6.C解析:C【解析】【分析】根据菱形的性质求出180C EAF ∠+∠=︒,又因为180B C ∠+∠=︒,得出EAF B ∠=∠,再由1122BE BC AB ==,可得60B ∠=︒最后可推出60EAF ∠=︒. 【详解】解:AE BC ⊥,AF CD ⊥,180AFC AEC ∴∠+=︒,180C EAF ∴∠+∠=︒.又180B C ∠+∠=︒,EAF B ∴∠=∠. 又12BE BC =,AB BC =,1BE AB 2∴=, 30BAE =∴∠︒,60B ∴∠=︒,60EAF ∴∠=︒.故选:C .【点睛】此题主要考查的知识点:(1)直角三角形中,30锐角所对的直角边等于斜边的一半的逆定理;(2)菱形的两个邻角互补;(3)同角的补角相等;(4)菱形的四边相等. 7.D解析:D【解析】【分析】由等腰三角形的性质及勾股定理可求解AC =CD =2,进而可求得S △ACD =2,再利用阴影部分的面积=以AC 为直径的圆的面积+△ACD 的面积-以AD 为直径的半圆的面积计算可求解.【详解】解:在等腰Rt △ACD 中,∠ACD =90°,AC =DC ,AD ,∴AC 2+DC 2=AD 2=8,∴AC =CD =2,∴S △ACD =12AC •DC =2, ∴221()()222ACD AC AD S S ππ∆=+-阴影 =π+2-π=2,故选:D .【点睛】 本题主要考查了等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACD 的面积-以AD 为直径的半圆的面积是解题的关键.8.D解析:D【分析】设点C 的横坐标为m ,则点C 的坐标为(m ,﹣3m ),点B 的坐标为(﹣3m k,﹣3m ),根据正方形的性质,即可得出关于k 的分式方程,解之经检验后即可得出结论.【详解】解:设点C 的横坐标为m ,∵点C 在直线y=-3x 上,∴点C 的坐标为(m ,﹣3m ),∵四边形ABCD 为正方形,∴BC ∥x 轴,BC=AB ,又点B 在直线y =kx 上,且点B 的纵坐标与点C 的纵坐标相等,∴点B 的坐标为(﹣3m k ,﹣3m ), ∴﹣3m k﹣m =﹣3m , 解得:k =32, 经检验,k =32是原方程的解,且符合题意. 故选:D .【点睛】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.二、填空题9.3x ≥-且2x ≠【解析】有意义可得30,x +≥ 由222x 有意义可得20,x -≠ 再解不等式组,从而可得答案.【详解】解: 22(2)x --有意义, 3020x x ①②由①得:3,x ≥-由②得:2,x ≠所以x 的取值范围是:3x ≥-且2,x ≠故答案为:3x ≥-且2x ≠【点睛】本题考查的是二次根式有意义的条件,负整数指数幂的含义,由二次根式有意义的条件,结合负整数指数幂的含义列出不等式组是解本题的关键.10.A 解析:2214n m - 【解析】【分析】根据菱形的性质及勾股定理计算即可;【详解】解:在菱形ABCD 中,AB =m ,AC +BD =n , ∴22221122AC BD AB m ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭, ∴AC 2+BD 2=4m 2,∴菱形ABCD 的面积=()()22211222AC BD AC BD AC BD +-+=⨯, =221422n m -⨯, =2214n m -, 故答案为:2214n m -. 【点睛】本题主要考查了菱形的性质,勾股定理,准确计算是解题的关键.11.12【解析】【分析】根据勾股定理求解即可.由勾股定理得:222213512BC AB AC -=-==.故答案为:12.【点睛】本题主要考查了勾股定理的运用,熟练掌握相关概念是解题的关键.12.A解析:18【分析】作PM ⊥AD 于M ,交BC 于N ,根据矩形的性质可得S △PEB =S △PFD 即可求解.【详解】解:作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,,,,,ADC ABC AMP AEP PBE PBN PFD PDM PFC PCN S S S S S S S S S S ∴=====,∴DFPM BEPN S S 矩矩=,12442DFP PBE S S ∴==⨯⨯=, ∴S 阴=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明DFP PBE SS =.13.-1.【详解】试题分析:把(1,2)代入直线y=kx+3,即可得方程k+3=2,解得k=-1.考点:一次函数图象上点的坐标特征. 14.B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS ,可得△ABF 与△CBF 与△CDE 与△ADE 的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果.【详解】添加的条件为:BE=DF ,理由:正方形ABCD 中,对角线BD ,∴AB=BC=CD=DA ,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF ,∴△ABE ≌△CBE ≌△DCF ≌△DAF (SAS ).∴AE=CE=CF=AF ,∴四边形AECF 是菱形;故答案为:BE=DF .【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =5, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =552, 若点O ,E ,B 在一条直线上,则OB =OE +BE =552, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为55+, 故答案为:55+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.【分析】根据正方形的性质可得点B 的横纵坐标相等计算即可;【详解】由题可知:点B 在直线上且点B 是正方形ABCD 的一个顶点,设,∴,解得: ,∴,∴;故答案是.【点睛】本题主要考解析:()6,6【分析】根据正方形的性质可得点B 的横纵坐标相等计算即可;【详解】由题可知:点B 在直线132y x =+上且点B 是正方形ABCD 的一个顶点, 设1,32B x x ⎛⎫+ ⎪⎝⎭, ∴132x x =+,解得:6x = , ∴1362x +=, ∴()6,6B ;故答案是()6,6B .【点睛】本题主要考查了一次函数的性质、正方形的性质,准确计算是解题的关键.三、解答题17.(1);(2).【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解.【详解】解析:(1)2)-【分析】(1)先进行二次根式的化简,再进行二次根式的加减即可求解;(2)根据负整数指数幂,绝对值,0指数幂,二次根式化简等知识进行整理,再进行二次根式加减即可求解.【详解】解:(1)==(2)101()3|(1)2π--+--231=-+-=- 【点睛】本题考查了二次根式的混合运算,负整数指数幂,0指数幂,绝对值等知识,熟知相关知识并正确进行化简是解题关键.18.船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中解析:船向岸边移动了9米.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17-1×7=10(米),∴AD(米),∴BD=AB-AD=15-6=9(米),答:船向岸边移动了9米.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图解析:(12)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22112a=+=,∵b是图中能用网格线段表示的最大无理数,224225b=+=;(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC1D1的面积为12442⨯⨯=;菱形ABC2D2223110+=,故菱形ABC2D2的面积为1101052;5ABCD的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键.20.(1)见解析;(2)见解析【分析】(1)根据边角边证明全等即可得出结论;(2)同理可得,然后证明,即可得出,结论可得.【详解】解:(1)∵四边形是正方形,∴,,在和中,,∴,∴解析:(1)见解析;(2)见解析【分析】(1)根据边角边证明ABE ADE ≅△△全等即可得出结论;(2)同理可得BFC DFC ≅△△,然后证明()ABE CBF SAS ≅△△,即可得出BE BF DE DF ===,结论可得.【详解】解:(1)∵四边形ABCD 是正方形,∴AB AD CD BC ===,45DAE BAE BCF DCF ∠=∠=∠=∠=︒,在ABE △和ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADE SAS ≅△△,∴BE DE =.(2)同理可得BFC DFC ≅△△,可得BF DF =,∵AF CE =,∴AF EF CE EF -=-,即AE CF =,在ABE △和CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴()ABE CBF SAS ≅△△,∴BE BF =,∴BE BF DE DF ===,∴四边形BEDF 是菱形.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,菱形的判定等知识点,熟练掌握全等三角形的判定定理是解本题的关键.21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1);(2)见解析;(3)【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求; (解析:(1);(2)见解析;(3) 【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求;(2)在DF 上取一点G,使得DG=BE, 连接AG ,先用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,且DG=BE ,故EF=DF-DG=DF-BE ; (3)在线段DF 上取BE=DG ,连接AG ,求证∠ABE=∠ADC ,即可用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF,设BE=x,则CE= 7+x,EF=18-x,根据勾股定理:,即可求得BE的长度.【详解】解:(1)证明:如图1所示,在正方形ABCD中,AB=AD,∠BAD=90°,在ABG和ADF中,∴ABG≌ADF(SAS),∴AG=AF,∠BAG=∠DAF,又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,∴∠EAG=∠FAG-∠EAF=45°=∠EAF,在GAE和FAE中,∴GAE≌FAE(SAS),∴EF=GE=GB+BE=2+3=5;(2)如下图所示,在DF上取一点G,使得DG=BE, 连接AG,∵四边形ABCD是正方形,故AB=AD,∠ABE=∠ADG=90°,在ABE和ADG中,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,在AEF和AGF中,∴AEF≌AGF(SAS),∴EF=GF,且DG=BE,∴EF=DF-DG=DF-BE;(3)BE=5,如下图所示,在线段DF上取BE=DG,连接AG,∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,∴∠ABE=∠ADC,在ABE和ADG中,∴ABE≌ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°,在AEF和AGF中,∴AEF≌AGF(SAS),∴EF=GF,设BE=x,则CE=BC+BE =7+x,EF=GF=DC+CF-DG= DC+CF-BE=18-x,在直角三角形ECF中,根据勾股定理:,即:,解得x=5,∴BE=x=5.【点睛】本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y 1=﹣|x |+1的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,y 2=﹣|x |+3的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,∴函数y 2=﹣|x |+b (b >0)的图象与函数y =|x |﹣1的图象围成的四边形的形状是正方形,∵y =|x |﹣1,y 2=﹣|x |+b (b >0),∴y 与y 2的图象围成的正方形的对角线长为b +1,∵该四边形的面积为18, ∴12(b +1)2=18,解得:b =5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(1)15,8;(2),见解析;(3);(4)4【分析】解决问题(1)只需运用面积法:,即可解决问题;(2)解法同(1);(3)连接、、,作于,由等边三角形的性质得出,由勾股定理得出,得出的 解析:(1)15,8;(2)PE PF CG +=,见解析;(3)534)4【分析】解决问题(1)只需运用面积法:ABC ABP ACP S S S ∆∆∆=+,即可解决问题;(2)解法同(1);(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,由等边三角形的性质得出152BM BC ==,由勾股定理得出2253AM AB BM =-ABC ∆的面积12532BC AM =⨯=ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积1111()2532222BC PE AC PF AB PG AB PE PF PG =⨯+⨯+⨯=++= (4)过点E 作EQ BC ⊥,垂足为Q ,易证BE BF =,过点E 作EQ BF ⊥,垂足为Q ,由解决问题(1)可得PG PH EQ +=,易证EQ DC =,BF DF =,只需求出BF 即可.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =,∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =,∴358CG PE PF =+=+=.故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥,且ABC ABP ACP S S S ∆∆∆=+,∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =, ∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===,∴ABC ∆是等边三角形,∵AM BC ⊥,∴152BM BC ==, ∴222210553AM AB BM =--=∴ABC ∆的面积11105325322BC AM =⨯=⨯⨯= ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++ 253=∴22533PE PF PG ⨯++== (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒,∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠,∵90C ∠=︒, ∴2222534DC DF FC =--,∵EQ BC ⊥,90C ADC ∠=∠=︒,∴90EQC C ADC ∠=︒=∠=∠,∴四边形EQCD 是矩形,∴4EQ DC ==,∵//AD BC ,∴DEF EFB ∠=∠,∵BEF DEF ∠=∠,∴BEF EFB ∠=∠,∴BE BF =,由解决问题(1)可得:PG PH EQ +=,∴4PG PH +=,即PG PH +的值为4.【点睛】本题是四边形综合题目,考查了矩形的性质与判定、等腰三角形的性质与判定、平行线的性质与判定、等边三角形的性质、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.26.(1)见解析;(2)AE =;(3)(3),理由见解析.【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(解析:(1)见解析;(2)AE =233)(3)12AG AF =. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x GE=3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 3x易得△GBE 是等腰直角三角形∴BG=EG 3x∴AB=BC=(31)x易得∠DHF=30°∴HD=2DF=23,HF=3∴BF=BH+HF=233∵Rt △AMC ≌Rt △AND(HL)∴易得3∴BC=BF-CF=233333∴(31)33x +=+∴3x =∴AE =223x =(3)12AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF =∴12AF AG =∴12AG AF =【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.。

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A=.(22=C+=2=-【答案】B【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【详解】解:A A选项错误;B、(22=,所以B选项正确;C C选项错误;=-D选项错误.D、原式22故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列二次根式能与)A.B C D【答案】A【分析】能与【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =,被开方数与C 错误;D =,被开方数与D 错误. 故选择:A .【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.3.若|2013|a a -=,则22013a -的值是( )A .2012B .2013C .2014D .无法确定【答案】C【分析】根据二次根式的被开方数是非负数、将其代入求值即可.【详解】解:∵a -2014≥0,∵a≥2014,-=a ,=2013,∵a -2014=20132,∵a -20132=2014.故选:C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.已知||5a =7=b a =-,则a b +=( )A .2B .12C .2或12D .2-或12-【答案】C【分析】先根据绝对值性质和二次根式的性质得出a 、b 的值,再分别代入计算可得.【详解】解:∵|a|=57=,∵a=±5,b=±7,又b a =-,∵a -b≤0,即a≤b ,则a=-5,b=7或a=5,b=7,当a=-5,b=7时,a+b=-5+7=2;当a=5,b=7时,a+b=5+7=12;综上,a+b 的值为2或12,故选C .【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握绝对值性质和二次根式的性质.5.下列计算中正确的是( )A .1=B =C .5=±D 761=-= 【答案】B【分析】根据二次根式的性质和减法运算分别判断.【详解】解:A 、=,故错误,不符合;B 223)2332,故正确,符合;C 5=,故错误,不符合;D 13,故错误,不符合;故选B .【点睛】 本题考查了二次根式的性质,二次根式的减法运算,解题的关键是掌握运算法则. 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 【答案】A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间【答案】D【分析】先根据二次根式的乘法计算得到原式为4+的范围,即可得出答案.【详解】===+,解:原式4∵34<<,∵748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.1B1C.D.1【答案】C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.已知m、n是正整数,则满足条件的有序数对(m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是【答案】C【分析】根据二次根式的性质分析即可得出答案.【详解】解:m 、n 是正整数, ∵m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.当x =()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-【答案】B【解析】【分析】 由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=,()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-. ∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.二、填空题(本大题共7小题,每小题3分,共21分) 114132-⎛⎫-+-= ⎪⎝⎭__________________. 【答案】-13【分析】根据二次根式的运算、负指数幂及绝对值可直接进行求解.【详解】解:原式=16313+-=-;故答案为13-.【点睛】本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的加减运算及负指数幂是解题的关键.12.已知1,1a b ==,则ab =_____,a b b a+=_____. 【答案】1 6【分析】(1)运用平方差公式计算;(2)先通分,然后a 、b 的值代入计算.【详解】解:1,1a b ==,221)11ab ∴==-=,a b b a+ 22a b ab+= 2()2a b ab ab-+== 6=.故答案为1,6.【点睛】本题考查了二次根式、分式的化简求值,熟练掌握求解的方法是解题的关键.13.如果点A (x ,y 80y -=,则点A 在第_____象限.【答案】二【分析】根据非负性求出x 、y 的值,即可判断A 所在的象限.【详解】80y -=根据二次根式和绝对值的非负性可知x =﹣2,y=8.则A(﹣2,8),应在第二象限.故答案为:二.【点睛】本题考查非负性的应用,坐标点与象限的关系,关键在于利用非负性解出x ,y .14.下列各式:=;==a >0,b≥0);①=-,其中一定成立的是________(填序号). 【答案】∵∵∵【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】∵00,a b ≥>≠,故不一定;=00,a b ≥>; ∵当00,a b >≥时,22231633333b b b a ab a a a aa ===,故一定成立; ∵3a 成立时,0a ≤3a a a a a ,故一定成立;故答案为:∵∵∵.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.【答案】1--或12或2【分析】分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得12x =; (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =;综上,点C 表示的数是1--或2故答案为:1--12或2+. 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键.17.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.【答案】21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而【详解】∵10a b c ++=∵100a b c ---=∵2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∵2221)2)3)0++=∵123===∵111429a b c -=⎧⎪-=⎨⎪-=⎩∵2511a b c =⎧⎪=⎨⎪=⎩∵2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.三、解答题(本大题共6小题,共49分)18.计算:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭ (22【答案】(1)3;(2(1)根据负指数幂、零指数幂和绝对值的概念直接计算即可;(2)根据二次根式的运算进行计算即可.【详解】解:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭2123=-+=(2222=-【点睛】 本题考查了负指数幂、零指数幂的计算,二次根式的计算,熟练掌握运算法则是解题的关键.19.计算题:(1;(2;(3))()2331⨯-【答案】(1)(2)8;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-8=(3)23)(31)+---2(31)=+--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.20.先化简,再求值:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =-+【答案】22x -+, 【分析】首先计算括号里面分式的减法,然后再计算括号外分式的除法,化简后,再代入x 的值可得答案.【详解】 解:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭22(2)22(2)(2)x x x x x x x --⎛⎫=-⨯ ⎪--+-⎝⎭ 2222x x x --=⨯-+ 22x =-+,当2x =-+== 【点睛】本题考查了分式的化简求值,二次根式的混合运算.分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2; (3)设a =,b =c =,比较a ,b ,c 的大小关系.【答案】(1==(2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (2+1=1=1=.(3)a ==2b ==+2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.22.已知x =y = (1)求222x xy y ++的值. (2【答案】(1)40;(2)6-【分析】(1)先将x 、y 进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x 、y 进行计算即可.【详解】 (1)310x ==,3y ==, x y ∴+=6-=x y ,22222()40x xy y x y ∴++=+==.(2)103x =,3y =,20x ∴->,10y+>,21(2)(1)x y x x y y -+=--+ 11x y=-=-=33=-.6【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质及分母有理化的方法、完全平方公式的变形等知识点.23.阅读下列材料,然后回答问题.①一样的式子,其实我们====还可以将其进一步化简:1以上这种化简的步骤叫做分母有理化.①学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab =-3 ,求a2 + b2.我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则 a 2+ b2= (a + b)2- 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果....+(1b 2a2+ 1823ab + 2b2=(2)已知m 是正整数,a2019 .求m.(31=【答案】(1(2)2;(3)9【分析】(1)先将式子的每一项进行分母有理化,再计算即可; (2)先求出,a b ab +的值,再用换元法计算求解即可;(31=【详解】解:(1)原式12019+2222=+++12019122+++==(2)∵a,b∵2(21),1a b m ab +==+= ∵2a 2+ 1823ab + 2b 2 = 2019∵222()18232019a b ++=∵2298a b +=∵24(21)100m +=∵251m =±- ∵m 是正整数∵m=2.(31=得出21==20∵2281=+=≥≥=.9【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.试卷第21页,总21页。

八年级下册人教版数学精选大数据易错题集(附解析)

八年级下册人教版数学精选大数据易错题集(附解析)

⼋年级下册⼈教版数学精选⼤数据易错题集(附解析)⼆次根式的定义及性质⼀.选择题1.下列结论正确的是()A.2764的⽴⽅根是34±B.1125-没有⽴⽅根C.有理数⼀定有⽴⽅根D.6(1)-的⽴⽅根是1-2.下列各式计算正确的是()A.30.01250.5±=±B.3273644-=C.3313182=D.3421255-=-【解答】A 、0.53=0.125,故选项错误;BC 、∵112等于3338,∴3338的⽴⽅根等于112,故选项正确;D 、应取正号,故选项错误.故选C3.下列说法中正确的有()个.①负数没有平⽅根,但负数有⽴⽅根②49的平⽅根是23±③827的⽴⽅根是23±④8-的⽴⽅根是2-A .1B .2C .3D .44.下列各数中,⽴⽅根⼀定是负数的是()A .a-B .2a -C .21a --D .21a -+【解答】∵?a 2?1≤-1,∴?a 2?1的⽴⽅根⼀定是负数.故选C .5.下列结论正确的是()A.64的⽴⽅根是4±B.12-是16-的⽴⽅根C.⽴⽅根等于本⾝的数只有0和1D.332727-=-⼆.填空题6.正数的⽴⽅根是__________数;负数的⽴⽅根是________数;0的⽴⽅根是_________.⼀个正数的⽴⽅根是正数,⼀个负数的⽴⽅根是负数,0的⽴⽅根式0.故答案:正,负,0.7.⼀般地,3________a -=.8.64的⽴⽅根是________;364的平⽅根是__________.30.064______=;3216_______=;33(2)_______-=;331(1)______5-=;38_______-=;38_____-=;33()_______a -=.9.2(1)-的⽴⽅根是______________;⼀个数的⽴⽅根是110,则这个数是___________.的⽴⽅根是⼀个数⽴⽅根是,则这个数是故答案为:;10.平⽅根等于本⾝的数是________;⽴⽅根等于本⾝的数是_______.∵平⽅根等于它本⾝的数是0,⽴⽅根都等于它本⾝的数是0,1,-1.故填0;0,±1.11.若x 的⽴⽅根是4,则x 的平⽅根是___________.的⽴⽅根是的平⽅根是故应填:12.3311x x -+-中的x 的取值范围是_________,11x x -+-中的x 的取值范围是___________.13.27-的⽴⽅根与81的平⽅根的和是_____________.∵-27的⽴⽅根是-3,√81的平⽅根是±3,所以它们的和为0或-6.故答案:0或-6.14.若33 0x y +=,则x 与y 的关系是_________.∵3x +3y =0,∴3x =?3y ,∴x=-y ,即x 与y 的关系是互为相反数.故答案为:互为相反数.15.如果344a +=,那么3(67)a -的值是___________.则:答:值为.三.解答题16.出下列各式中的a :(1)若30.343a =,则_______a =;(2)若33213a -=,则_______a =;(3)若31250a +=,则_______a =;(4)若3(1)8a -=,则_______a =.17.已知519x +的⽴⽅根是4,求27x +的平⽅根.∵5x+19的⽴⽅根是4,∴5x+19=64,解得x=9则2x+7=2×9+7=25,∵25的平⽅根是±5故2x+7的平⽅根是±5.18.互为相反数,求ab 的值.【解答】∵32a ?1和31?3b 互为相反数,∴2a-1=-(1-3b),2a=3b ,32a ?1和31?3b 互为相反∴a b =32,故答案为:32.19.已知a 的整数部分,b 是它的⼩数部分,求2a b +的值.因为a 是的整数部分,b 是它的⼩数部分,所以:a=2,a+b=所以:2a+b=。

人教版-八年级数学下册易错题

人教版-八年级数学下册易错题

八年级下册数学易错题一、选择题: 1、如果把分式yx xy +中的x 和y 都扩大2倍,则分式的值( )A 、扩大4倍B 、扩大2倍C 、不变D 、缩小2倍2、下面函数:①y=-3x ;②y=-x8;③y=4x-5;④y=5x -1;⑤xy=81。

其中反比例函数的个数是( ) A 、2 B 、3 C 、4 D 、5 3、下列关系中的两个量成反比例关系的是( )A 、三角形一边的长与这边上的高;B 、三角形的面积与一边上的高;C 、三角形的面积一定时,一边的长与这边上的高;D 、三角形一边的长不变时,它的面积与这边上的高。

4、若反比例函数y=xk的图象经过点(-1,2),则这个函数的图象一定经过点( )A 、(-2,-1)B 、(-21,2)C 、(2,-1)D 、(21,2) 5、当x=-2008时,分式2-11x x +的值为( )A 、2008B 、-2008C 、20081D 、200916、下列各式正确的是( )A 、c b a c b a --=B 、cba c ab ---= C 、c b a c --b a -+=+)( D 、c b a c b a ----= 7、若分式方程3234=++xm mx 的解为x=1,则m 的值为( ) A 、1 B 、2 C 、3 D 、48、若分式11-2+x x 的值为0,则x 的值为( )A 、1B 、-1C 、±1D 、0 9、如果分式)(3)(b a b a a ++的值是零,那么ab 满足的条件是( )A 、a=-bB 、a≠-bC 、a=0D 、a=0且b≠0 10、计算x 2y 3÷(xy)-2的结果为( ) A 、xy B 、x C 、x 4y 5 D 、y11、已知关于x 的函数y=k(x-1)和y=-xk(k≠0),它们在同一坐标系中的图象大致是( )oxyA oxyBoxyC oxyD12、如果把分式224y x xy +中的x 和y 都扩大2倍,则分式的值( )A 、不变B 、扩大2倍C 、扩大4倍D 、缩小2倍13、美是一种感觉,当人体下半身与身高的比值越接近0.618时,越给人一种美感。

新人教版八年级下易错题集锦

新人教版八年级下易错题集锦

一、 判断二次根式、最简二次根式1. 有下列式子:①4;②110-;④x ;⑤21a +;⑥5-。

其中一定是二次根式的是:__________________(只填序号)。

2. 化简1)._______3=-a 2).)0(43<m n m =________.3. 计算aa 1-的结果是_________ 4. 当0,0<<b a 时,化简2)(b a ab+的值为_________________.5. 已知0<xy ,则化简y x 2 结果是_____________________. 二、 二次根式计算6. 1、)32(6+÷=__________________________.7. (1-2)-2的算术平方根是________________________.8. 当1-=aa时,化简a a 21)1(2--- 9. 已知61=+xx ,则_________1=-xx . 10. 已知:3=xy ,则yxyx y x+的值是______________________. 三、 四边形的判定及性质11.如图,在平行四边形ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A .2和3B .3和2C .4和1D .1和412. 如图,在平行四边形ABCD 中,过点C 的直线CE⊥AB,垂足为E ,若∠EAD=53°,则∠BCE 的度数为( )A .53°B .37°C .47°D .123°13. 如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( )A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cmO DAB C14. 依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是( )A .平行四边形B .矩形C .菱形D .梯形15. 如图所示,平行四边形ABCD 的周长是18 cm ,对角线AC 、BD 相交于点O,若△AOD与△AOB 的周长差是5 cm ,则边AB 的长是________ cm.四、 常见的勾股数17. 下列几组数中,不能作为直角三角形三边长度的是 ( )A. a=7, b=24, c=25B. a=1.5, b=2, c=2.5C. a=32, b=2, c=45D. a=15, b=8, c=1718. 下列几组数中,能构成三角形的是( ) A.2,3,6 B. 1, 2,5C .3,4,5 D. 7, 23, 25 五、勾股定理证明19. 如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 194 20. .如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word版含答案)

人教版八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.要使2100x 有意义,则x 的取值范围为( ) A .x ≠100 B .x >2 C .x ≥2 D .x ≤22.满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长分别为1、3、2C .三边长之比为3:4:5D .三内角之比为3:4:53.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF 4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( )A .中位数B .平均数C .众数D .方差5.如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .2B .322C .32D .256.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72° 7.如图,边长为22+的正方形,剪去四个角后成为一个正八边形,则这个正八边形的边长为( )A .0B .22C .1D .28.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线3333y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点n C 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+二、填空题9.使式子32x x -+有意义的x 的取值范围是______. 10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11.已知ABC 中,90C =∠,3AC =,5AB =,则BC =______.12.如图,DE 为ABC 的中位线,点F 在DE 上,且AFB ∠为直角.若3AB =,4BC =,则EF 的长为______.13.将直线23y x =-+平移后经过原点,则平移后的解析式为___________.14.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.15.直线y =22x +3与两坐标轴围成的三角形面积是 __________________. 16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).三、解答题17.计算(1)()()10202131351274π-⎛⎫---++-- ⎪⎝⎭ (2)148348542÷-⨯+ 18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C 处折断,顶部(B )着地,离旗杆底部(A )4米,工人在修复的过程中,发现在折断点C 的下方1.25米D 处,有一明显裂痕,若下次大风将旗杆从D 处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19.如图,每个小正方形的边长是1,①在图①5②在图②中画出一个面积是8的正方形.20.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF =DC ;(2)若AB ⊥AC ,AB =8,AC =6,求BF 的长.21.阅读材料:规定初中考试不能使用计算器后,小明是这样解决问题的:已知a 23+,求2281a a -+的值.他是这样分析与解的:∵a 23+2323(23)(23)-=+-, ∴23a -= ∴2(2)3,a -= 2443a a -+=∴241a a -=-, ∴2281a a -+=2(24)1a a -+=2(1)11⨯-+=-.请你根据小明的分析过程,解决如下问题:(1)若a 21-,直接写出2481a a -+的值是 . (21315375121119+++++ 22.某专用医疗仪器厂有两间仓库,其中A 仓库是传统人工仓库,B 仓库是进、出仓速度更大的智能无人值守仓库,且A 、B 仓库的最大库存量相同.某日,该厂要将仪器全部出仓,通过铁路货运送往外地.A 仓库上午7:00达到最大库存量,此时停止进仓、开始出仓,A 仓库库存量y (单位:件)随出仓时间t (单位:h )的变化情况如图所示;B 仓库上午7:00库存量为15000件,此时继续进仓,达到最大库存量后停止进仓、开始出仓,且进、出仓的速度相同,B 仓库的工作进度如表所示.仪器全部出仓后即关闭仓库. 时刻7:00 8:00 12:00 B 仓库工作进度 继续进仓 停止进仓开始出仓 出仓完毕(2)若上午7:48这两个仓库的库存量相同,则两个仓库在12:00前是否还会有库存量相同的时刻?若有,求出该时刻;若无,请说明理由;(3)在进、出仓的过程中,两个仓库库存量的差值也会发生变化,①你认为哪些时刻两个仓库库存量的差值可能达到最大?请直接写出这些时刻; ②根据①中你的结论,若在8:00到12:00这段时间,出现两个仓库库存量差值最大的情形,则A 仓库最迟能否在13:30完成出仓任务?请说明理由.23.(1)如图1,在平行四边形ABCD 中,对角线AC 、BD 相交于O 点,过点O 的直线l 与边AB 、CD 分别交于点E 、F ,绕点O 旋转直线l ,猜想直线l 旋转到什么位置时,四边形AECF 是菱形.证明你的猜想.(2)若将(1)中四边形ABCD 改成矩形ABCD ,使AB =4cm ,BC =3cm ,①如图2,绕点O 旋转直线l 与边AB 、CD 分别交于点E 、F ,将矩形ABCD 沿EF 折叠,使点A 与点C 重合,点D 的对应点为D′,连接DD′,求△DFD′的面积.②如图3,绕点O 继续旋转直线l ,直线l 与边BC 或BC 的延长线交于点E ,连接AE ,将矩形ABCD 沿AE 折叠,点B 的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.24.已知:在平面直角坐标系中,点O 为坐标原点,直线y x b =-+交x 轴于点()8,0A ,交y 轴于点B .(1)如图1,求点B 的坐标;(2)如图2,点P 为线段AB 上一点,点Q 为x 轴负半轴上一点,连接BQ ,PQ ,且PQ BQ =,设点P 的横坐标为t ,AQ 的长为d ,求d 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点P 作BQ 的垂线,分别交x 轴,BQ 于点C ,D ,过点O 作OE CD ⊥于点E ,连接QE ,若QE 平分PQD △的周长,求d 的值.25.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.(1)如图1,当点E与点D重合时,BF的长为;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.26.如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”。

人教版部编版八年级下册数学期末试卷易错题(Word版含答案)

人教版部编版八年级下册数学期末试卷易错题(Word版含答案)

人教版部编版八年级下册数学期末试卷易错题(Word 版含答案)一、选择题1.函数1y x =-中自变量x 的取值范围是( )A .1x >B .1x <C .1≥xD .1x ≥- 2.下列各组数中,能构成直角三角形的是( )A .2,3,4B .4,5,6C .1,3,2D .5,11,133.在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件一定能判定四边形ABCD 为平行四边形的是( ) A .AD ∥BC ,AB =CD B .AO =OC ,BO =OD C .AD =CB ,AB ∥CD D .∠A =∠B ,∠C =∠D4.某次数学趣味竞赛共有10组题目,某班得分情况如下表.全班40名学生成绩的众数是( )人数 2 5 13107 3成绩(分)5060 70 8090 100A .75B .70C .80D .905.如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A .AB //DC B .AC =BD C .AC ⊥BD D .AB =DC6.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°7.如图,在正方形ABCD 的外侧作等边CDE △,对角线AC 与BD 相交于点O ,连接AE 交BD 于点F ,若1OF =,则AB 的长度为( )A .2B 6C .22D .38.一个容器内有进水管和出水管,开始4min 内只进水不出水,在随后的8min 内既进水又出水,第12min 后只出水不进水.进水管每分钟的进水量和出水量每分钟的出水量始终不变,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象有下列说法:①进水管每分钟的进水量为5L ;②412x ≤≤时,5154y x =+;③当12x =时,30y =;④当15y =时,3x =,或17x =.其中正确说法的个数是( ) A .1个B .2个C .3个D .4个二、填空题9.若y x a =+的取值范围是1≥x ,则a =__________.10.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若5AB =,6AC =,则菱形ABCD 的面积为______.11.直角三角形的直角边长分别为8,15,斜边长为x ,则2x =__________. 12.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是CD 中点,且∠COD =60°.如果AB =2,那么矩形ABCD 的面积是____.13.定义:对于一次函数y kx b =+,我们把点(),b k 称为这个一次函数的伴随点.已知一次函数4y x m =+-的伴随点在它的图象上,则=m __________.14.如图,在四边形ABCD 中AB ∥CD ,若加上AD ∥BC ,则四边形ABCD 为平行四边形.若E 、F 为BD 上两点,且BE=DF.现在请你给□ABCD 添加一个适当的条件________,使得四边形AECF 为菱形.15.直线y =22x +3与两坐标轴围成的三角形面积是 __________________. 16.如图是一次函数y kx b =+的图象,则关于x 的方程:0kx b +=的解是___________.三、解答题17.计算:(1)2(3)-+(﹣2)﹣2﹣116+(π﹣2)0; (2)(3﹣2)2×12+613. 18.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?19.如图,正方形网格的每个小方格都是边长为1的正方形,每个小正方形的顶点叫格点.某数学探究小组进行了如下探究活动:以格点为顶点分别按下列要求画图形.(1)画一个三角形、使三边长为3851中完成;(2)画一个平行四边形,使其有一锐角为45°,且面积为6,在网格2中完成; (3)线段AB 的端点都在格点上,将线段AB 平移得到线段CD ,并保证点C 和点D 也在格点上.①平移后使形成的四边形ABDC 为正方形,画出符合条件的所有图形,在网格3中完成; ②平移后使形成的四边形ABDC 为菱形(正方形除外),画出符合条件的所有图形,在网格4中完成.20.如图,在ABC 中,AB AC =,AH BC ⊥于点H ,E 是A 上一点,过点B 作//BF EC ,交EH 的延长线于点F ,连接BE ,CF .(1)求证:四边形BECF 是菱形; (2)若BAC ECF ∠=∠,求ACF ∠的度数. 21.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018.22.某种子站销售一种玉米种子,单价为5元千克,为惠民促销,推出以下销售方案:付款金额y (元)与购买种子数量x (千克)之间的函数关系如图所示. (1)当2x ≥时,求y 与x 之间的的函数关系式: (2)徐大爷付款20元能购买这种玉米种子多少千克?23.如图平行四边形ABCD,E,F分别是AD,BC上的点,且AE=CF,EF与AC交于点O.(1)如图①.求证:OE=OF;(2)如图②,将平行四边形ABCD(纸片沿直线EF折叠,点A落在A1处,点B落在点B1处,设FB交CD于点G.A1B分别交CD,DE于点H,P.请在折叠后的图形中找一条线段,使它与EP相等,并加以证明;(3)如图③,若△ABO是等边三角形,AB=4,点F在BC边上,且BF=4.则=(直接填结果).24.在平面直角坐标系中,点A坐标为(0,4),点B坐标为(﹣3,0),连接AB,过点A作AC⊥AB交x轴于点C,点E是线段AO上的一动点.(1)如图1,当AE=3OE时,①求直线BE的函数表达式;②设直线BE与直线AC交于点D,连接OD,点P是直线AC上的一动点(不与A,C,D 重合),当S△BOD=S△PDB时,求点P的坐标;(2)如图2,设直线BE与直线AC的交点F,在平面内是否存在点M使以点A,E,F,M为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请简述理由.25.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.26.已知正方形ABCD与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点E在上,点在的延长线上,求证:DM=ME,DM⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌ .由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .【参考答案】一、选择题 1.C 解析:C 【分析】根据二次根式的性质,被开方数大于等于零,列不等式即可求解. 【详解】 解:∵x −1≥0 ∴x≥1. 故选:C 【点睛】本题考查了函数自变量的取值范围的求法,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不为零;当函数表达式是二次根式时,被开方数为非负数.2.C解析:C 【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可. 【详解】解:A 、∵22 +32 ≠4 2 ,∴不能构成直角三角形; B 、∵42 +52 ≠62 ,∴不能构成直角三角形;C 、∵22212+= ,∴能构成直角三角形;D 、∵5 2 +11 2 ≠13 2 ,∴不能构成直角三角形. 故选C . 【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a 2 +b 2 =c2,则此三角形是直角三角形.3.B解析:B 【解析】 【分析】由平行四边形的判定方法分别对各个选项进行判断即可. 【详解】A 、由AD ∥BC ,AB =CD ,不能判定四边形ABCD 为平行四边形,故选项A 不符合题意; B 、∵AO =OC ,BO =OD , ∴四边形ABCD 为平行四边形, 故选项B 符合题意;C 、由AD =CB ,AB ∥CD ,不能判定四边形ABCD 为平行四边形,故选项C 不符合题意;D、由∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故选项D不符合题意;故选:B.【点睛】本题考查了平行四边形的判定,关键是掌握平行四边形的各种判定方法.4.B解析:B【解析】【分析】根据众数的定义进行解答即可.【详解】解:70出现了13次,出现的次数最多,则众数是70;故选:B.【点睛】此题考查了众数,掌握众数的定义:众数是一组数据中出现次数最多的数是解题的关键.5.C解析:C【分析】根据三角形的中位线定理和平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形的判定定理解答即可.【详解】解:∵E、F、G、H分别是四边形ABCD各边中点,∴EH=12BD,EH∥BD,FG=12BD,FG∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形,当AC⊥BD时,AC⊥EH,∴EH⊥EF,∴四边形EFGH为矩形,故选:C.【点睛】本题考查的是三角形的中位线定理和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.6.B解析:B【解析】【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】∵四边形ABCD 为菱形, ∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°, ∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.B解析:B 【解析】 【分析】先根据正方形和等边三角形的性质证明△ADE 是等腰三角形,求出∠DAE =∠DEA ,再求出∠OAF =30°,在直角三角形OAF 中即可得出结论. 【详解】解:∵四边形ABCD 是正方形,△CDE 是等边三角形,∴AD =CD ,∠ADC =90°,DC =DE ,∠CDE =∠DEC =60°,∠DAC =45°,AC ⊥BD , ∴AD =DE ,∠ADE =90°+60°=150°,∠AOD =90°,∴∠DAE =∠DEA =12(180°−150°)=15°,∠OAF =45°−15°=30°, ∴AF =2OF =2,∴OA∴AB故选:B . 【点睛】本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.8.C解析:C【分析】根据图象可知进水的速度为5(L/min),再根据第10分钟时容器内水量为27.5L可得出水的速度,从而求出第12min时容器内水量,利用待定系数法求出4≤x≤12时,y与x之间的函数关系式,再对各个选项逐一判断即可.【详解】解:由图象可知,进水的速度为:20÷4=5(L/min),故①说法正确;出水的速度为:5−(27.5−20)÷(10−4)=3.75(L/min),第12min时容器内水量为:20+(12−4)×(5−3.75)=30(L),故③说法正确;15÷3=3(min),12+(30−15)÷3.75=16(min),故当y=15时,x=3或x=16,故说法④错误;设4≤x≤12时,y与x之间的函数关系式为y=kx+b,根据题意,得420 1027.5k bk b+=⎧⎨+=⎩,解得5415kb⎧=⎪⎨⎪=⎩,所以4≤x≤12时,y=54x+15,故说法②正确.所以正确说法的个数是3个.故选:C.【点睛】此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.二、填空题9.-1【解析】【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【详解】解:由题意得:x+a≥0,解得:x≥−a,则−a=1,解得:a=−1,故答案为:−1.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.B解析:24【解析】【分析】首先求出对角线BD的长,根据菱形面积等于两条对角线乘积的一半计算即可.【详解】∵四边形ABCD为菱形,∴AC⊥BD,3,===,OA OC OB OD在Rt△ABO中,BO,4∴BD=8,∴菱形ABCD的面积为:116824AC BD=⨯⨯=,22故填:24.【点睛】此题主要考查菱形的对角线的性质和菱形的面积计算,熟练掌握菱形面积等于两条对角线乘积的一半是解题关键.11.289【解析】【分析】根据勾股定理计算即可.【详解】根据勾股定理得:斜边的平方=x2=82+152=289.故答案为:289.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答本题的关键.12.A解析:【分析】由矩形的性质得出OA=BO,证△AOB是等边三角形,得出AB=OB=2,由勾股定理求出AD,即可求出矩形的面积.【详解】解:∵四边形ABCD是矩形∴OA=BO,∠COD=∠AOB=60°∵∠AOB=60°,∴△AOB是等边三角形,∴AB =OB =2,∴∠BAD =90°,AO =CO 12=AC ,BO =DO 12=BD ,AC =BD =2OB =4, ∴AD ===∴矩形ABCD 的面积=AB ×AD ==故答案:【点睛】本题考查了矩形的性质,等边三角形的判定和性质,勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明△AOB 为等边三角形是解题的关键.13.43【分析】先写出4y x m =+-的伴随点,再根据伴随点在它的图象上代入一次函数解析式,计算即可求得m .【详解】解:4y x m =+-的伴随点为(),4m -,因为4y x m =+-伴随点在它的图象上,则有44m m -=+- 解得43m =. 故答案为:43. 【点睛】本题考查一次函数图象上点的坐标特征. 一次函数图象上任意一点的坐标都满足函数关系式y=kx+b .14.A解析:AB=AD【分析】由菱形的性质可得AE=AF ,∠AEF=∠AFE ,即可得到∠AEB=∠AFD ,利用SAS 即可证明△ABE ≌△ADF ,可得AB=AD ,即可得答案.【详解】∵四边形AECF 为菱形,∴AE=AF ,∠AEF=∠AFE ,∴∠AEB=∠AFD ,在△ABE 和△ADF 中,AE AF AEB AFD BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ADF ,∴AB=AD ,∴可添加AB=AD ,使得四边形AECF 为菱形.故答案为:AB=AD【点睛】本题考查了菱形的性质及全等三角形的判定与性质,利用菱形性质得出△ABE≌△ADF是解题关键.15.【分析】利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积.【详解】解:当x=0时,y=3,∴直线【分析】利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y+3与两坐标轴围成的三角形面积.【详解】解:当x=0时,y=3,∴直线y+3与y轴的交点坐标为(0,3);当y=0+3=0,解得:x=﹣∴直线y+3与x轴的交点坐标为(﹣0).∴直线y×|﹣+3与两坐标轴围成的三角形面积为12【点睛】本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.16.【分析】一次函数y=kx+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】解:∵一次函数y=ax+b的图象与x轴相交于点(-2,0),∴关于x的方程kx+b=0的解是x=-2解析:2x=-【分析】一次函数y =kx +b 的图象与x 轴交点横坐标的值即为方程ax +b =0的解.【详解】解:∵一次函数y =ax +b 的图象与x 轴相交于点(-2,0),∴关于x 的方程kx +b =0的解是x =-2.故答案为x =-2.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.三、解答题17.(1)4;(2)【分析】(1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可;(2)根据二次根式的乘法运算计算即可;【详解】(1)原式;(2)原式;【点睛】本题主要考查了二次根解析:(1)4;(2)24【分析】(1)根据二次根式的性质,零指数幂和负指数幂的性质计算即可;(2)根据二次根式的乘法运算计算即可;【详解】(1)原式1131444=+-+=;(2)原式()342424=-⨯+;【点睛】本题主要考查了二次根式的混合运算,结合负指数幂,零指数幂计算是解题的关键. 18.##【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在中,∴∴∵在中∴∴解析:0.8##【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC == ∴2.4BC =∴2CE BC BE =-=∵在Rt CDE 中 2.5DE = ∴1.5CD =∴0.8AD CD AC =-=.【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.19.(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;解析:(1)见解析;(2)见解析;(3)①见解析;②见解析【解析】【分析】(1)根据勾股定理画出图形即可;(2)根据平行四边形的性质和面积公式画出图形即可;(3)①根据正方形的性质画出图形即可;②根据菱形的性质画出图形即可.【详解】解:(1)根据勾股定理可得如图所示:(2)如图所示:(3)①如图所示:②如图所示:【点睛】本题主要考查勾股定理、正方形的性质、菱形的性质及平移,熟练掌握勾股定理、正方形的性质、菱形的性质及平移是解题的关键.20.(1)见解析;(2)90°【分析】(1)由题意利用全等三角形的判定证得,得出,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得,进而进行角的等量替换得出即的度数.【详解】解析:(1)见解析;(2)90°【分析】(1)由题意利用全等三角形的判定证得BHF CEE ASA △≌△(),得出EH FH ,进而利用菱形的判定定理进行证明即可;(2)由题意利用菱形的性质可得12ECB FCB ECF ∠=∠=∠,进而进行角的等量替换得出90FCB ACH ∠+∠=︒即ACF ∠的度数.【详解】解:(1)证明:∵AB AC =,AH BC ⊥,∴BH HC =,90BHF CHE ∠=∠=︒,∵//BF EC ,∴FBH ECH ∠=∠,∴BHF CEE ASA △≌△(), ∴EH FH =,∴四边形BECF 是平行四边形.又∵EF BC ⊥,∴四边形BECF 是菱形;(2)∵四边形BECF 是菱形, ∴12ECB FCB ECF ∠=∠=∠. ∵AB AC =,AH BC ⊥, ∴12CAH BAC ∠=∠. ∵BAC ECF ∠=∠,∴CAH FCB ∠=∠,∵90CAH ACH ∠+∠=︒,∴90FCB ACH ∠+∠=︒.即90ACF ∠=︒.【点睛】本题考查菱形的判定与性质,熟练掌握全等三角形的判定和性质以及菱形的判定与性质是解题的关键.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1);(2)4.5千克.【分析】(1)当x≥2时函数为一次函数,用待定系数法求函数解析式;(2)把y =20代入(1)中解析式求解即可.【详解】解:(1)当时,设与之间的的函数关系式为,解析:(1)42y x =+;(2)4.5千克.【分析】(1)当x ≥2时函数为一次函数,用待定系数法求函数解析式;(2)把y =20代入(1)中解析式求解即可.【详解】解:(1)当2x ≥时,设y 与x 之间的的函数关系式为y kx b =+,将点()2,10,()3,14带入解析式得210314k b k b +=⎧⎨+=⎩解得42k b =⎧⎨=⎩ ∴42y x =+.(2)将20y =时,带入42y x =+中解得 4.5x =千克.答:徐大爷付款20元能购买这种玉米种子4.5千克.【点睛】本题考查一次函数的应用,关键是用待定系数法求函数解析式.23.(1)见解析;(2)FG=EP ,理由见解析;(3)【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SA解析:(1)见解析;(2)FG=EP ,理由见解析;(3【分析】(1)证△ODE ≌△OFB (ASA ),即可得出OE=OF ;(2)连AC ,由(1)可知OE=OF ,OB=OD ,证△AOE ≌△COF (SAS ),得AE=CF ,由折叠性质得AE=A 1E=CF ,∠A 1=∠BAD=∠BCD ,∠B=∠B 1,则∠D=∠B 1,证△A 1PE ≌△CGF (AAS ),即可得出FG=EP ;(3)作OH ⊥BC 于H ,证四边形ABCD 是矩形,则∠ABC=90°,得∠OBC=30°,求出AC=8,BC=由勾股定理得BC=,则CF=-4,由等腰三角形的性质得BH=CH=12OB=2,由勾股定理得OF=,进而得出答案.HF=,OH=12【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ODE=∠OBF,∠OED=∠OFB,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,在△ODE和△OFB中,,∴△ODE≌△OFB(ASA),∴OE=OF;(2)FG=EP,理由如下:连AC,如图②所示:由(1)可知:OE=OF,OB=OD,∵四边形ABCD是平行四边形,∴AC过点O,OA=OC,∠BAD=∠BCD,∠D=∠B,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF,由折叠性质得:AE=A1E=CF,∠A1=∠BAD=∠BCD,∠B=∠B1,∴∠D=∠B1,∵∠A1PE=∠DPH,∠PHD=∠B1HG,∴∠DPH=∠B1GH,∵∠B1GH=∠CGF,∴∠A1PE=∠CGF,在△A1PE和△CGF中,,∴△A1PE≌△CGF(AAS),∴FG=EP;(3)作OH⊥BC于H,如图③所示:∵△AOB是等边三角形,∴∠ABO=∠AOB=∠BAO=60°,OA=OB=AB=4,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠ABC=90°,∴∠OBC=∠OCB=30°,∵AB=OB=BF=4,∴AC=BD=2OB=8,由勾股定理得:BC==,∴CF=-4,∵OB=OC,OH⊥BC,∴BH=CH=1BC=23,2∴HF=4-23,OH=1OB=2,2在Rt△OHF中,由勾股定理得:OF===,∴,故答案为:2.【点睛】本题是四边形综合题,考查了平行四边形的性质、矩形的判定与性质、翻折变换的性质、全等三角形的判定与性质、等腰三角形的性质、含30°角的直角三角形的性质、等边三角形的性质、勾股定理等知识;本题综合性强,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,属于中考压轴题.24.(1)①直线BE 的解析式为;②点P 坐标为(,)或(,);(2)存在,点M 坐标为(,)或(,)或(,).【解析】【分析】(1)①先求得点E 坐标为(0,1),利用待定系数法即可求解;②过点P 作P解析:(1)①直线BE 的解析式为113y x =+;②点P 坐标为(4813,1613)或(2413,3413);(2)存在,点M 坐标为(76-,258)或(3,398)或(2,0). 【解析】【分析】(1)①先求得点E 坐标为(0,1),利用待定系数法即可求解;②过点P 作PG ⊥x 轴交直线BD 于点G ,利用勾股定理及三角形面积公式求得点C 坐标为(163,0),利用待定系数法求得直线AC 的解析式以及点D 坐标,设点P 坐标为(m ,344m -+),则点G 坐标为(m ,113m +),利用三角形面积公式即可求解; (2)分AM 为对角线、EM 为对角线、FM 为对角线三种情况讨论,求解即可.【详解】解:(1)∵点A 坐标为(0,4),点B 坐标为(﹣3,0),∴OA =4,∵AE =3OE ,∴OE =1,∴点E 坐标为(0,1),①设直线BE 的解析式为1y kx =+,∴031k =-+,解得13k =, ∴直线BE 的解析式为113y x =+; ②过点P 作PG ⊥x 轴交直线BD 于点G ,∵点A 坐标为(0,4),点B 坐标为(﹣3,0),∴OA =4,OB =3,∴AB5,∵AC ⊥AB ,AO ⊥BC ,由勾股定理得:22222AC BC AB AO OC =-=+,∴()2222354OC OC +-=+, 解得:OC =163, ∴点C 坐标为(163,0), 设直线AC 的解析式为14y k x =+, ∴16043k =+, 解得34k =-, ∴直线AC 的解析式为344y x =-+, 解方程314143x x -+=+,得3613x =, 136********y =⨯+=, ∴点D 坐标为(3613,2513), 设点P 坐标为(m ,344m -+),则点G 坐标为(m ,113m +), ∴PG =31134134312m m m -+--=-, ∵S △BOD =S △PDB , ∴()1122D D B BO y PG x x ⨯=-, 即251336333131213m ⎛⎫⨯=-+ ⎪⎝⎭,整理得133112m -= 解得:4813m =或2413; 当4813m =时,3164413m -+=;当2413m =时,3344413m -+=; ∴点P 坐标为(4813,1613)或(2413,3413); (2)存在,当AM 为对角线时,∵四边形AEMF 是菱形,∴AE =AF = ME =MF ,则∠AEF =∠AFE ,∵∠ABF+∠AFE=90°,∠EBO+∠BEO=90°,∠AEF=∠BEO,∴∠ABF=∠EBO,过点F作FH⊥x轴于点H,则AF= FH,∴点H与点M重合,∴BM=BA=5,则OM=2,∴点M坐标为(2,0);当EM为对角线时,∵四边形AEFM是菱形,∴AE=EF= FM=AM,则∠EAF=∠AFE,∵∠ABF+∠AFE=90°,∠BAE+∠EAF=90°,∴∠ABF=∠BAE,∴BE=EA,设BE=EA=x,在Rt△BEO中,EO=4-x,BO=3,∴()22243x x-+=,解得:258x=,即BE=EA=EF=FM=258,延长MF交x轴于点I,则OE∥FI,即OE是△BFI的中位线,∴FI=2EO=2(4-258)=74,OI=OB=3,∴MI=25739848+=∴点M坐标为(3,398);当FM为对角线时,∵四边形AFEM是菱形,∴MF是线段AE的垂直平分线,AF=EF= EM=AM,MF∥BC,∴∠AFM=∠EFM,∠AFM=∠ACB,∠MFE=∠FBC,∴∠FBC=∠FCB,过点F作FJ⊥x轴于点J,∴BJ=JC,∵BC=1625333+=,∴OJ=76,即点F的横坐标为76,∴37254468y=-⨯+=,∴点F的坐标为(76,258),根据对称性,点M坐标为(76-,258);综上,点M坐标为(76-,258)或(3,398)或(2,0).【点睛】本题考查了一次函数的图象和性质,等腰三角形的判定和性质,菱形的判定和性质,三角形中位线定理,勾股定理等,解题的关键是灵活运用所学知识解决问题.25.(1)①详见解析;②45°-α;③,详见解析;(2),或,或【分析】(1)①由题意补全图形即可;②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;③在DF 上截取DM解析:(1)①详见解析;②45°-α;③2DF BF CF =+,详见解析;(2)2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可; ③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出MF=2CF 即可得出结论;(2)分三种情况:①当点E 在线段BC 上时,DF=BF+2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,BF=DF+2CF ,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论;③当点E 在线段CB 的延长线上时,BF+DF=2CF ,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵正方形ABCD,∴BC=CD,∠BDC=∠DBC=45°,∠BCD=90°∴∠CDM=∠CBF=45°-α,∴△CDM≌△CBF(SAS).∴DM=BF, CM=CF,∠DCM=∠BCF.∴∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD=90°,∴MF.∴.=+=DF DM MF BF(2)分三种情况:①当点E在线段BC上时,,理由同(1)③;②当点E在线段BC的延长线上时,,理由如下:在BF上截取BM=DF,连接CM,如图3所示,同(1) ③,得:△CBM≌△CDF (SAS),∴CM=CF,∠BCM=∠DCF.∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF是等腰直角三角形,∴,∴;③当点E在线段CB的延长线上时,;理由如下:在DF上截取DM=BF,连接CM,如图4所示,同(1)③得:△CDM≌△CBF,∴CM=CF,∠DCM=∠BCF,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF是等腰直角三角形,∴,即,∴;综上所述,当点E在直线BC上时,线段BF,CF,DF之间的数导关系为:+=.=,或BF DFDF BF=,或BF DF【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.26.(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【分析】(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90解析:(1)等腰直角;(2)结论仍成立,见解析;(32或4217.【分析】(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) △AMN ≌ △FME ,等腰直角.如图1中,延长EM 交AD 于H .∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM =; ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE DC CE 538=+=+= ,所以42DM = ; ③当E 点在BC 上是,如图三所示,同(1)、(2)理可得到三角形DME 为等腰直角三角形,证明如下:∵四边形ABCD 与四边形CEFG 都是正方形, 且点E 在BC 上∴AB//EF ,∴HAM EFM ∠=∠,∵M 为AF 中点,∴AM=MF∵在三角形AHM 与三角形EFM 中:HAM EFM AM MFAMH EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMH ≌△FME(ASA),∴MH ME =,AH FE=CE =,∴DH DE =.∵在三角形AHD 与三角形DCE 中:090AD DC DAH DCE AH EF =⎧⎪∠=∠=⎨⎪=⎩, ∴△AHD ≌△DCE(SAS),∴ADH CDE ∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时在直角三角形DCE 中2222DE DC CE 5334=+=+= ,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.。

人教版八年级数学下册易错题集

人教版八年级数学下册易错题集

第十六章《二次根式》易错题一、选择题1 .当 a> 0 , b >0 时, n 是正整数,计算的值是()A.( b ﹣ a)B.( a n b 3﹣a n+1 b 2)C.( b 3﹣ ab 2) D .( a n b 3+a n+1 b 2)错答: D考点:二次根式的性质与化简。

分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式= ﹣=a n b 3﹣a n+1 b 2=( a n b 3﹣ a n+1 b 2).故选 B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.点评:解答此题,要弄清二次根式的性质:=|a| ,分类讨论的思想.2 .当 x<﹣ 1 时, |x ﹣﹣ 2| ﹣2|x ﹣ 1| 的值为()A. 2B. 4x ﹣ 6C. 4 ﹣ 4x D . 4x+4错答: C考点:二次根式的性质与化简。

分析:根据x<﹣ 1 ,可知 2﹣ x> 0 , x﹣ 1< 0,利用开平方和绝对值的性质计算.解答:解:∵ x<﹣ 1∴2 ﹣ x>0 , x﹣ 1 < 0∴|x ﹣﹣ 2| ﹣ 2|x ﹣ 1|=|x ﹣( 2 ﹣ x)﹣2| ﹣ 2 ( 1 ﹣ x)=|2 ( x﹣ 2 )|﹣ 2 (1 ﹣x)=﹣ 2 ( x﹣ 2 )﹣ 2 ( 1﹣ x)=2 .故选 A .点评:本题主要考查二次根式的化简方法与运用:a> 0 时,=a ; a< 0 时, = ﹣ a ;a=0时,=0 ;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.3 .化简 |2a+3|+(a<﹣4)的结果是()A.﹣ 3a B. 3a ﹣ C.a+ D .﹣ 3a错答: B考点:二次根式的性质与化简;绝对值。

分析:本题应先讨论绝对值内的数的正负性再去绝对值,而根号内的数可先化简、配方,最后再开根号,将两式相加即可得出结论.解答:解:∵ a <﹣ 4 ,∴2a <﹣ 8, a﹣ 4 < 0 ,∴2a+3 <﹣ 8+3 < 0原式 =|2a+3|+=|2a+3|+=﹣ 2a ﹣ 3+4 ﹣ a= ﹣ 3a .故选 D .点评:本题考查的是二次根式的化简和绝对值的化简,解此类题目时要充分考虑数的取值范围,再去绝对值,否则容易计算错误.4 .当 x< 2y 时,化简得()A. x( x﹣2y )B. C .( x﹣ 2y ) D.( 2y ﹣ x)错答: C考点:二次根式的性质与化简。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加减法解二元一次方程组典型错题
原题:解方程组
典型错误一: 错因分析:
学生进行方程组两边相减时,容易漏掉减号“-”,把减数的负号“-”当作减号而出错。这与教学过程中不重视两边相减的列式如(8x-3y)-(-7x-3y)=-2-13,,只写化简结果有关。
解决策略:
1、教学过程中重视保留两边相减的列式,如(8x-3y)-(-7x-3y)=-2-13,
解决策略:
在平常的教学中,应强调做题前分析题目结构,选择解题方法的重要性;同时设计相应的练习进行专门训练。
二次根式的加减运算错题
典型错误一:运算顺序不当
例:
正解:
错误分析:
该学生出错的原因是二次根式的加减运算顺序出错,进行加减运算首先要把各根式化最简,然后遵循同级运算应该从左到右的顺序进行。
典型错误二:加减运算没有进行到底
解决策略:
通过让学生写出两边相减的列式,如(8x-3y)-(-7x-3y)=-2-13,或两边相加的式子:(8x-3y)+(-7x-3y)=-2+13去发现问题,纠正错误认识,强化争取方法。
典型错误三: 错因分析:
学生解方程组时,没有养成认真审题,分析题意的习惯,拿起题目,就匆匆解题,容易造成方法不够优化,计算量大容易出错。
同学A:
同学B:
正解:
错误分析:
两位同学的共同错误都是解题过程中途而废,没有把运算进行到底。
所以在运算结束前一定要观察结果中是否还有同类二次根式没有化简,合并完毕。
典型错误二:受到有理数运算的负迁移,具有思维的随意性
例1:错解: 正确解法:
例2: 错解: 正确解法:
错解:
例3: 错解: 正确解法:
错误分析:上述三位同学的错误都是把二次根式的运算混同于有理数的运算,运算过程中没有严格遵循二次根式的运算公式进行加减运算而出错。
然后才化简,在熟练掌握的基础上,才引导学生如何简写步骤。
2、设计题组,进行针对性练学生对加减消元法解方程组理解不够深刻,只是关注了方程两边进行相加或相减后,会消去一个未知数,得到另一个未知数的一元一次方程。但没有从相加还是相减才能消元方面进行分析,认为无所谓。因为没有写出方程两边相加或相减的步骤,所以问题体会不深。
典型错误三:二次根式化简掌握不好
同学A: 同学B:
同学C: 同学D:
正确解法:
(1) (2)
(3)
错因分析:同学A、同学B的化简错误都是漏乘以根号外的系数,这种错误在刚学时容易发生。同学C的错误是计算不够严谨,没有考虑根号内的因数4的化简。同学D的错误在学生中普遍存在,学生对公式:
缺乏本质上的理解,思维缺乏严谨性,有较大的思维随意性。
相关文档
最新文档