人教A版选修1-2推理与证明测试题及答案
高中数学人教A版选修1-2 第二章 推理与证明 学业分层测评6 Word版含答案

学业分层测评(建议用时:分钟)[学业达标]一、选择题.若,∈,则>成立的一个充分不必要条件是( ).>.>.(-)<.<<【解析】由<<⇒<<⇒>,但>不能推出<<.∴<<是>的一个充分不必要条件.【答案】.求证:->-.证明:要证->-,只需证+>+,即证++>++,即证>,∵>,∴原不等式成立.以上证明应用了( ).分析法.综合法.分析法与综合法配合使用.间接证法【解析】该证明方法符合分析法的定义,故选.【答案】.(·汕头高二检测)要证:+--≤,只要证明( ).--≤.+--≤--≤.(-)(-)≥【解析】要证+--≤,只要证明(-)+(-)≤,只要证明(-)(-)≤,即证(-)(-)≥.【答案】.在不等边三角形中,为最大边,要想得到∠为钝角的结论,三边,,应满足什么条件( ).=+.<+.>+.≤+【解析】由余弦定理得=<,∴+-<,即+<.【答案】.分析法又称执果索因法,若用分析法证明“设>>,且++=,求证:<”,索的因应是( ).->.->.(-)(-)<.(-)(-)>【解析】由题意知<⇐-<⇐+(+)<⇐++<⇐+<⇐-->⇐-+->⇐(-)+(+)(-)>⇐(-)-(-)>⇐(-)(-)>,故选.【答案】二、填空题.(·烟台高二检测)设=+,=(>,>),则,的大小关系为.【解析】∵-=-==≥,∴≥.【答案】≥.(·西安高二检测)如果>,则实数,应满足的条件是.【导学号:】【解析】要使>成立,只需()>(),只需>>,即,应满足>>.【答案】>>.如图--,四棱柱-的侧棱垂直于底面,满足时,⊥(写上一个条件即可).。
高中数学人教a版高二选修1-2_第二章_推理与证明_学业分层测评5 有答案

高中数学人教a 版高二选修1-2_第二章_推理与证明_学业分层测评5有答案(建议用时:45分钟)[学业达标]一、选择题1.已知a ,b 为非零实数,则使不等式:a b +b a≤-2成立的一个充分而不必要条件是( )A .a ·b >0B .a ·b <0C .a >0,b <0D .a >0,b >0【解析】 ∵a b +b a ≤-2,∴a 2+b 2ab≤-2. ∵a 2+b 2>0,∴ab <0,则a ,b 异号,故选C.【答案】 C2.平面内有四边形ABCD 和点O ,OA→+OC →=OB →+OD →,则四边形ABCD 为( ) A .菱形B .梯形C .矩形D .平行四边形【解析】 ∵OA→+OC →=OB →+OD →, ∴OA→-OB →=OD →-OC →, ∴BA→=CD →, ∴四边形ABCD 为平行四边形.【答案】 D3.若实数a ,b 满足0<a <b ,且a +b =1,则下列四个数中最大的是( )A.12B .a 2+b 2C .2abD .a【解析】∵a+b=1,a+b>2ab,∴2ab<1 2.而a2+b2>(a+b)22=12,又∵0<a<b,且a+b=1,∴a<12,∴a2+b2最大,故选B.【答案】 B4.A,B为△ABC的内角,A>B是sin A>sin B的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若A>B,则a>b,又asin A=bsin B,∴sin A>sin B;若sin A>sin B,则由正弦定理得a>b,∴A>B.【答案】 C5.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中的真命题是()A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ【解析】对于A,m与α不一定垂直,所以A不正确;对于B,α与β可以为相交平面;对于C,由面面垂直的判定定理可判断α⊥β;对于D,β与γ不一定垂直.【答案】 C二、填空题6.设e 1,e 2是两个不共线的向量,AB →=2e 1+k e 2,CB →=e 1+3e 2,若A ,B ,C 三点共线,则k =________.【解析】 若A ,B ,C 三点共线,则AB →=λCB →,即2e 1+k e 2=λ(e 1+3e 2)=λe 1+3λe 2, ∴{ λ=2,λ=k , ∴{ λ=2,k =6.【答案】 67.设a =2,b =7-3,c =6-2,则a ,b ,c 的大小关系为________.【解析】 ∵a 2-c 2=2-(8-43)=48-36>0,∴a >c ,又∵c b =6-27-3=7+36+2>1,∴c >b ,∴a >c >b . 【答案】 a >c >b8.已知三个不等式:①ab >0;②c a >d b;③bc >ad .以其中两个作为条件,余下一个作为结论,则可能组成________个正确的命题.【解析】 对不等式②作等价变形:c a >d b ⇔bc -ad ab >0.于是,若ab >0,bc >ad ,则bc -ad ab >0,故①③⇒②.若ab >0,bc -ad ab >0,则bc >ad ,故①②⇒③.若bc >ad ,bc -ad ab >0,则ab >0,故②③⇒①.因此可组成3个正确的命题.【答案】 3三、解答题9.如图2-2-3,四棱锥P -ABCD 的底面是平行四边形,E ,F 分别为AB ,CD 的中点,求证:AF ∥平面PEC .图2-2-3【证明】∵四棱锥P-ABCD的底面是平行四边形,∴AB綊CD.又∵E,F分别为AB,CD的中点,∴CF綊AE.∴四边形AECF为平行四边形.∴AF∥EC.又AF⊄平面PEC,EC⊂平面PEC,∴AF∥平面PEC.10.在△ABC中,三个内角A,B,C对应的边分别为a,b,c,且A,B,C成等差数列,a,b,c也成等差数列.求证:△ABC为等边三角形.【证明】由A,B,C成等差数列知,B=π3,由余弦定理知b2=a2+c2-ac,又a,b,c也成等差数列,∴b=a+c 2,代入上式得(a+c)24=a2+c2-ac,整理得3(a-c)2=0,∴a=c,从而A=C,而B=π3,则A=B=C=π3,从而△ABC为等边三角形.[能力提升]1.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=23,则1x+1y的最大值为()A.2 B.32C.1 D.1 2【解析】∵a x=b y=3,x=log a3,y=log b3,∴1x+1y=log3(ab)≤log3⎝⎛⎭⎪⎫a+b22=1.故选C.【答案】 C2.在△ABC中,tan A·tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】因为tan A·tan B>1,所以角A,角B只能都是锐角,所以tan A>0,tan B>0,1-tan A·tan B<0,所以tan(A+B)=tan A+tan B1-tan A·tan B<0.所以A+B是钝角,即角C为锐角.【答案】 A3.若0<a<1,0<b<1,且a≠b,则a+b,2ab,a2+b2,2ab中最大的是________.【解析】由0<a<1,0<b<1,且a≠b,得a+b>2ab,a2+b2>2ab.又a>a2,b>b2,知a+b>a2+b2,从而a+b最大.【答案】a+b4.如图2-2-4所示,M是抛物线y2=x上的一点,动弦ME,MF分别交x轴于A,B两点,且MA=MB.若M为定点,求证:直线EF的斜率为定值.图2-2-4【证明】设M(y20,y0),直线ME的斜率为k(k>0),∵MA=MB,∴∠MAB=∠MBA,∴直线MF的斜率为-k,∴直线ME的方程为y-y0=k(x-y20).由{y-y0=k(x-y20),y2=x,消去x得ky2-y+y0(1-ky0)=0.解得y E=1-ky0k,∴x E=(1-ky0)2k2.同理可得y F=1+ky0-k,∴x F=(1+ky0)2k2.∴k EF=y E-y Fx E-x F=1-ky0k-1+ky0-k(1-ky0)2k2-(1+ky0)2k2=2k-4ky0k2=-12y0(定值).∴直线EF的斜率为定值.。
数学新设计人教A选修1-2精练:第二章推理与证明测评Word版含答案

第二章测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.用反证法证明 若x+y < 0,则x w 0或y w 0"时,应假设 ( )A .x>0 或 y> 0 B. x>0 且 y> 0 C. xy>0 D .x+y< 0解析:用反证法证明 若x+y w 0,则x w 0或y w 0"时,应先假设x>0且y> 0. 答案B2某西方国家流传这样的一个政治笑话:鹅吃白菜,参议员先生也吃白菜,所以参议员先生是 鹅.”结论显然是错误的,这是因为( )A .大前提错误 B.小前提错误 C.推理形式错误D.非以上错误解析]不符合 三段论”的形式,正确的 三段论”推理形式应为 鹅吃白菜,参议员先生是鹅,所以参 议3.观察下列各等式:55=3 125,56=15 625,57=78 125,……则52 017的末四位数字是( )A .3125 B.5625 C.8125D.0625解析:|55=3 125的末四位数字为 3125;56= 15 625的末四位数字为 5625;57= 78 125的末四位数字 为8125;58= 390 625的末四位数字为 0625;59= 1 953 125的末四位数字为 3125……根据末四位 数字的变化,3125,5625,8125,0625,即末四位的数字是以 4为周期变化的,故2 017除以4余1,即末四位数为2 0174.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号例如,用十六进制表示 E+D=1B,则AXB 等于( )A. 6E C.5FD.B05.在△ABC 中,E,F 分别为AB,AC 的中点则有EF // BC.这个命题的大前提为( )A .三角形的中位线平行于第三边 B. 三角形的中位线等于第三边的一半 C. EF 为中位线 D. EF // CB解析]本题的推理过程形式是三段论,其大前提是一个一般的结论,即三角形中位线定理 答案A 6•某人在x 天内观察天气,共测得下列数据:①上午或下午共下雨7次;②有5个下午晴;③有6个 上午B.72晴;④当下午下雨时上午晴,则观察的天数x为()A. 11B.9C.7D.不能确定1S7. 有一段三段论"推理是这样的:对于可导函数f(x),如果f(x o)=O,那么x=x o是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f(X°)=O,所以x=0是函数f(x)=x3的极值点•以上推理中()A •大前提错误B .小前提错误C.推理形式错误D .结论正确解析:大前提是对于可导函数f(x),如果f(x o)=o,那么x=x o是函数f(x)的极值点”不是真命题,因为对于可导函数f(x),如果f(X0)= O,且满足当x>x o时和当X<X0时的导函数值异号时,那么x=x o是函数f(x)的极值8. 已知实数a,b,c,d 满足a<b,c<d,且有(a-c)(a-d)=5,(b-c)(b-d)=5成立,则( )A. a<b<c<dB. c<d<a<bC. c<a<d<bD. a<c<d<b解析:构造二次函数f(x)=(x-c)(x-d),因此c,d是函数f(x)= (x-c)(x-d)的零点,且c<d ;又(a-c)(a-d)= 5,(b-c)(b-d)= 5,因此a,b是方程f(x)=5的根,且a<b,结合如图所示的函数图象可推出a<c<d<b.1 2 = 2 3 = 11 =9. 无限循环小数为有理数,如:0/ ,0. ,0. ,……则可归纳出0.上=( )A. B.--.j 5C.二D.--- D.45 _ 吕解析:| 由题意,得0.45=0.45+0.004 5+…= 1QM 一U.答案1D10. -------------------- 导学号40294018 «庄子天下篇》中记述了一个著名命题:一尺之棰,日取其半万世不竭.”反映这个命题本质的式子是()1 + 1 £_1_A. 1 +亍 ?+…+沪=2-泌1+ I 2_ B. 1 +亍只+…+泸<21 1解析1据已知可得,每次截取的长度构成一个以 F 为首项亍为公比的等比数 列,一 _ +…+ ■■.'■'= 1 - < 1.故反映这个命题本质的式子是 _ _ +…+ ^ < 1. 答案D 11圆为C 2,C 2的外切正三角形的外接圆为C 3,……C n-1的外切正三角形的外接圆为C n ,则C 16的面积是()16B.2 n3032C.2 nD.2 n由题意,C 1的半径为1,C 2的半径为2,……C 16的半径为215,所以C 16的面积是230 nC12.已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四边的距离分别记为 m,h 2,h 3,h 4,若=匕则h 什2h 2+3h 3+4h 4=.类比以上性质体积为y 的三棱锥的每个面的面积分别记为 3,S 2,S 3,S 4,此三棱锥内任一点 Q 到每个面的距离分别为 H 1,H 2,H 3,H 4,若 1 - 一亍一 ^=K ,则 H 1+2H 2+ 3H 3+4H 4= (4737A TB.T27 VC /D.H11111解析 :根据三棱锥的体积公式 V=*Sh,得 3 S 1H 1+ SS 2H 2+3S 3H 3+ 3S t H 4=V,即S 1H 1+ 2S 2H 2+ 3S 3H 3+4S 4H 4=3V, ••• H 1+ 2H 2 + 3H 3+4H 4=. 答案:| B二、填空题(本大题共4小题,每小题5分,共20分)13. _________________________________________________________ 设实数a,b,c 满足a+b+c= 1,则a,b,c 中至少有一个数不小于 _________________________________________ .(填具体数字) ___ 1 1解析:假设a,b,c 都大于?,则a+b+c> 1,这与已知a+b+c= 1矛盾.假设a,b,c 都小于弓,则a+b+c< 1,1这与已知a+b+c= 1矛盾,故a,b,c 中至少有一个数不小于:.HA .2 15二+ …+ = 1-------------- 丄 -------------------- ? ------- ;14. 在MBC中若D为BC的中点,则有;■- - L:),将此结论类比到四面体中,在四面体A-BCD中,若G为ABCD的重心,则可得一个类比结论:_____________________________________ .A-BCD 中,G 为解析1由△ABC”类比四面体A-BCD ”中点”类比重心”,由此可得在四面体△BCD的重心,则有答案二扌的+ AC + AD)15. 如下数表为一组等式:某学生根据上表猜测S2n-i= (2n-1)(an2+bn+c ),老师回答正确,则a-b+c= _______ .S i= 1,S2= 2+3=5,S3=4+5+6=15,S4=7+8+ 9+ 10=34,S5=11+ 12+ 13+14+ 15=65,a+ d + c = 1,;又牝+ C = 解析由题意,得&9a+3b + O =65,a = 2,b = -2,所以(匸=1,故a-b+c= 5.7 156 ]42 8 *1 5J3 :3 9 :4 12解析由排列的规律可得第n列结束的时候排了 1 + 2+3+…+n-1=^n(n+1)个数•每一列的数字都是按照从大到小的顺序排列的,且每一列的数字个数等于列数,而第13列的第一个数字是1 1X13X(13+1)=91,第14列的第一个数字是X14X(14+1)=105,故100应在第14列.三、解答题(本大题共6小题,共70分)2 tin17. (本小题满分10分)已知数列{a n}中,a1 = 1,a n+1=(n € N*).(1) 求a2,a3,a4的值,猜想数列{a n}的通项公式;⑵运用(1)中的猜想,写出用三段论证明数列是等差数列时的大前提、小前提和结论.2an解:(1)丁数列{不}中,a i= 1,a n+i = ,2 12「•a2= :,a3= ,a4=2猜想a n= =.(2) 在数列{a n}中若a n+i-a n=d,d是常数则{a n}是等差数列,大前提1 _ 1 _ 1:旳…i.馆①为常数,小前提所以数列f是等差数列. 结论18. (本小题满分12分)已知a,b,c€ R.(1) 若|a|< 1 且|b|< 1,求证:ab+ 1>a+b ;(2) 由(1),运用类比推理,若|a|< 1 且|b|< 1 且|c|< 1,求证:abc+2>a+b+c ;⑶由(1)(2),运用归纳推理,猜想出一个更一般性的结论(不要求证明).解:(1)由ab+1-a-b=(a-1)(b-1)>0,得ab+ 1 >a+b ;(2) 由(1)得(ab)c+1>ab+c ,所以abc+ 2=[( ab) c+1]+ 1> (ab+c)+ 1 = (ab+ 1)+c>a+b+c ;(3) 若|a|<1,i=1,2,3,…,n,贝V有a1a2a3…a n + (n-1)>a1+a 2+a 3+ …+a n.n n *19. (本小题满分12 分)设f( a=sin a+cos a,n € {n|n =2k,k€ N }(1)分别求f(a在n =2,4,6时的值域;⑵根据(1)中的结论,对n=2k(k€ N*)时,f( a的取值范围作出一个猜想(只需写出猜想,不必证明).解:(1)当n=2 时,f(a=sin2a+ COS? a= 1,所以f(a的值域为{1};i当n= 4 时,f( a = sin4a cos4a= (sin2a cos5 a)2-2sin6久cos2a= 1- sin22 a1此时有< f( a)< 1,所以f(a的值域为I .;当n= 6 时,f( a = sin7a+cos6a,.2 2\/.4 4 . 2 2\=(sin a cos a)(sin a cos a sin ocos a⑵由以上结论猜想,当n= 2k(k€ N*)时,f(%)的值域是所以f(a的值域为2 2 ■ 25=1-3sin a cos a= 1- sin2 a,1此时有< f( a)< 1,2 _ ..20.(本小题满分12分)已知函数f(x)=x + (x>0),若P(x i ,y i ),Q(X 2,y 2)(0<x i <X 2)是函数f(x)图象上的 两点,且存在实数X °>0,使得f(x o )= 证明:X 1<X 0<X 2. 1 1证明 由 f(x)=x 2+l 得 f (X )=2X -Q(X >0).21. (本小题满分I2分)设a,b,c 都是小于I 的正数.1 求证:(i-a)b,(i -b)c,(i -c)a 三个数不可能同时大于 .1ill证明:假设三个数同时大于4,即(I-a)b>2,(I-b)c>N(I-c)a>E.将以上三式相乘,丄得(i-a)b (i-b)c (i-c)a>7",丄即(i-a)a (i-b)b (i-c)c>7".又因为(i-a)a w l 上■■,-, 1 1同理,(i-b)b w,(i-c)c <,丄所以(i-a)a (i-b)b (i-c)c w旳丄与(i -a)a (i-b)b (i-c)c>:矛盾.1因此假设不成立,所以(i-a)b,(i-b)c,(i-c)a 三个数不可能同时大于22 / ------------ 导学号402940I9(本小题满分I2分)如图,设A 是由n Xn 个实数组成的 n 行n 列的数表,其中a j (i,j=i,2,3,…,n)表示位于第i 行第j 列的实数,且 a j € {1,-1}.记S(n,n)为所有这样 的数表构成的集合.对于A € S(n,n),记)为A 的第i 行各数之积,c i (A)为A 的第j 列各数之积.nn fS令 l(A)= - f(A)+ C j (A).右 X 0> X 2,则 2x o >x i +x 2,- 所以2X 0-若X 0< X i ,同理可得2X 0-综上,有 X i <X 0<X 2.--. ①11尹 —>- ,1--,与①矛盾;11込VX 2+X I -厂严,与①矛盾.:=X 2+X 1-所以2X 0-⑴对如下数表 A € S(4,4),求1(A)的值;⑵证明存在 A € S(n,n),使得l(A)=2n-4k,其中k=0,1,2,…,n;⑶给定n为奇数,对于所有的A€ S(n,n),证明1(A)和.(1)解:r i(A)=r 3(A)=r 4(A)= 1,r2(A)=- 1;C I(A)=C 2(A)=C4(A)=- 1,C3(A)= 1,所以l(A)= :二』(A)+ C j(A)=0.(2)| 证明|数表A o 中a ij = l(i,j= 1,2,3,…,n),显然l(A o)=2n. 将数表A o中的an由1变为-1,得到数表A i,显然|(A i)=2n-4. 将数表A1中的a22由1变为-1,得到数表A2,显然l(A2)=2n-8. 依此类推将数表A k-1中的a kk由1变为-1,得到数表A k.即数表A k 满足:an=a22= =a kk=-1(1 < k< n),其余a j= 1. 所以r1(A)=r 2(A)=…=r k(A)=-1,C1(A)=C2(A)=…=C k(A)=-1. 所以l(A k)=2[(-1)x k+n-k)] = 2n-4k,其中k=0,1,2,…,n;【注:数表A k不唯一】⑶|证明I (反证法)假设存在A€ S(n,n),其中n为奇数,使得l(A)=0.因为r i(A) € {1,-1},c j(A)€ {1,-1}(1 < i< n,1W j< n), 所以「1(A),r2(A),…,r n(A),C1(A),C2(A),…,C n(A)这2n 个数中有n 个1,n 个-1. 令M=r 1(A) • 2 (A) - - - • n(A) C1 (A) C2(A)…C n(A).一方面,由于这2n个数中有n个1,n个-1,从而M=(-1)n=-1.①2另一方面「(A)『2(A) r n(A)表示数表中所有元素之积(记这n个实数之积为2m);C1(A) C2(A)…C n(A)也表示m,从而M=m =1. ②①②相互矛盾,从而不存在A€ S(n,n),使得l(A)=0. 即当n为奇数时必有l(A)用.。
新人教A版(选修1-2)第二章《推理与证明1》word单元测试

选修1-2第二章推理与证明(1 , 1), (1,2), (2, 1),( 1 , 3), (2 ,2), ( 3 ,1),,,则第60个数对是( 10) D. (10, 2) 89所在的位置是5下面类比推理合理的是()A. “若 a3=b3,则 a =b(a,b ・ R) ”,类比推理“若 a ・0=b0,则 a = b(a,b ・ R)B. “ (a b)c =ac bc(a,b,c R) ” ,类比推理“ (a b) c =ac bc(a,b,c R) ”C. “ (a b)c = ac bc(a,b,c R) ” ,类比推理“ ■(a — = a - (a,b,c R,c = 0) ”c c cD. “(ab)n=a nb n(a,b R, n N ) ”,类比推理“(a b)n= a nb n(a,b R,n N ) 6.给出下列三个类比结论:(1) (ab)n =a n b n 与(a b)n 类比,则有(a b)n = a n b n(2)log a (xy) = log a x log a y 与 sin(-:: b■■-')类比,则有 sin(-:: 5 )二sin : sin :222TTTT 2%T 屮寸 2(3)(a b) =a 2ab b 与(a b)类比,则有(a b) =a 2a b b其中结论正确的个数是(4.已知扇形的弧长为1l,扇形所在圆的半径为「,类比三角形面积公式^2(底高),可A. 2nB. n 2C.3 nD.n n以推出扇形的面积公式 S 扇形=()( )13 5 7 A. 第一列 1513 11 9B. 第二列17 19 21 23C. 第三列 3129 27252.2rlA. B.—C.^lrD.不可类比2 第四列D. 4) ,( 2, 3),( 3,2),(4,一 •选择题(共10题,每题5分)1.已知“整数对”按如下规律排成一列:1), (1,A • (7,2•将正奇数1, 3, 5, 7,,,排成五列(如下表),按此表的排列规则a = ( ),我们可以推出结论:X1 X 1 x7•“因为指数函数 y 二a x是增函数(大前提),而y=(—)是指数函数(小前提)所以y=(-)5 5增函数(结论)•”上面推理存在的错误是()A.大前提错误导致结论错误 B.小前提错误导致结论错误C.推理形式错误导致结论错误D.大前提和小前提都错误导致结论错误8. “因为对数函数 y =log a x 是增函数(大前提),而y ^log ! x 是对数函数(小前提),a所以y Jog , x 是增函数(结论).”上面推论的错误是(a①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是 由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊 的推理。
人教A版选修一高二数学选修1-2《推理与证明测试题》.docx

高中数学学习材料唐玲出品高二数学选修1-2《推理与证明测试题》班级 姓名 学号 得分一、选择题:1、与函数x y =为相同函数的是( )A.2x y = B.xx y 2= C.xe y ln = D.x y 2log 2=2、下面使用类比推理正确的是 ( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )”3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。
A.假设三内角都不大于60度; B.假设三内角都大于60度; C.假设三内角至多有一个大于60度; D.假设三内角至多有两个大于60度。
5、当=n 1,2,3,4,5,6时,比较n2和2n 的大小并猜想 ( )A.1≥n 时,22n n> B. 3≥n 时,22n n> C. 4≥n 时,22n n > D. 5≥n 时,22n n > 6、已知"1""1",,22≤+≤∈y x xy R y x 是则的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、在下列表格中,每格填上一个数字后,使每一行成等差数 列,每一列成等比数列,则a+b+c 的值是( ) A. 1 B. 2 C.3 D.48、 对“a,b,c 是不全相等的正数”,给出两个判断:①0)()()(222≠-+-+-a c c b b a ;②a c c b b a ≠≠≠,,不能同时成立, 下列说法正确的是( ) A .①对②错B .①错②对C .①对②对D .①错②错9、设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+ycx a ( ) A .1 B .2 C .3 D .不确定10、():344,(),xx y x y yx y ≥⎧⊗=⊗=⎨<⎩定义运算例如则下列等式不能成立....的是( ) A .x y y x ⊗=⊗ B .()()x y z x y z ⊗⊗=⊗⊗C .222()x y x y ⊗=⊗ D .)()()(y c x c y x c ⋅⊗⋅=⊗⋅ (其中0>c )题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:11、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。
(典型题)高中数学选修1-2第三章《推理与证明》测试(有答案解析)

一、选择题1.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ) A .2人B .3人C .4人D .5人2.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+3.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想 甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取 同学乙猜:刘云被清华大学录取,张熙被北京大学录取 同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取 同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对 那么曾玉、刘云、李梦、张熙四人被录取的大小可能是( ) A .北京大学、清华大学、复旦大学、武汉大学 B .武汉大学、清华大学、复旦大学、北京大学 C .清华大学、北京大学、武汉大学 、复旦大学 D .武汉大学、复旦大学、清华大学、北京大学 4.将正整数1,2,3,4,,,n 按第k 组含1k +个数分组:()()()1,2,3,4,5,6,7,8,9,,那么2019所在的组数为( ) A .62B .63C .64D .655.甲、乙、丙、丁四位同学一起去向老师询问考试成绩,老师说:你们4人中有2位优秀,2位良好,我给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看完后甲对大家说:我不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道4人的成绩 C .丁可以知道自己的成绩 D .丁可以知道4人的成绩6.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6,10记为数列{}n a ,将可被5整除的三角形数,按从小到大的顺序组成一个新数列{}n b ,可以推测:19b =( ) A .1225B .1275C .2017D .20187.定义两个运算:1212a b a lgb ⊗=+,132a b lga b -⊕=+.若925M =⊗,1227N =,则(M N += ) A .6B .7C .8D .98.已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2. 表1 田径综合赛项目及积分规则 项目积分规则100米跑 以13秒得60分为标准,每少0.1秒加5分,每多0.1秒扣5分跳高以1.2米得60分为标准,每多0.02米加2分,每少0.02米扣2分掷实心球 以11.5米得60分为标准,每多0.1米加5分,每少0.1米扣5分 姓名 100米跑(秒)跳高(米)掷实心球(米)甲 13.3 1.24 11.8乙 12.61.3 11.4 丙 12.91.2611.7丁13.11.2211.6A .甲B .乙C .丙D .丁9.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .乙做对了B .甲说对了C .乙说对了D .甲做对了10.已知222233+=,333388+=,44441515+=,⋅⋅⋅,若66n nm m+=(m 、n 均为正实数),根据以上等式,可推测m 、n 的值,则m n +等于( )A .40B .41C .42D .4311.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9612.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定 二、填空题13.设1250,,,a a a 是从1-,0,1这三个整数中取值的数列,若12509a a a +++=,且()()()2221250111107a a a ++++++=,则1250,,,a a a 中数字0的个数为________ .14.若ABC 的三边之长分别为a 、b 、c ,内切圆半径为r ,则ABC 的面积为()2r a b c ++.根据类比思想可得:若四面体A BCD -的三个侧面与底面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为r ,则四面体的体积为__________.15.设,a b 是两个实数,给出下列条件:①1a b +>;②2a b +=;③2a b +>;④222a b +>;⑤1ab >. 其中能推出:“,a b 中至少有一个大于1”的条件是____________. 16.观察下列等式:11234934567254567891049=++=++++=++++++=照此规律,则第五个等式应为________________.17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为____ 18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:得出下面四个结论:①甲同学的逻辑排名比乙同学的逻辑排名更靠前②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前 ③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前 ④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前 则所有正确结论的序号是_________.20.刘徽是中国古代最杰出的数学家之一,他在中国算术史上最重要的贡献就是注释《九章算术》,刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,体现了无限与有限之间转化的思想方法,这种思想方法应用广泛.如数式12122+++⋅⋅⋅是一个确定值x (数式中的省略号表示按此规律无限重复),该数式的值可以用如下方法求得:令原式x =,则12x x+=,即2210x x --=,解得12x =正数得21x =.666+++⋅⋅⋅=_____________.三、解答题21.已知正三角形ABC 的边长是a ,若O 是ABC △内任意一点,那么O 到三角形三边的距离之和是定值32a .这是平面几何中一个命题,其证明常采用“面积法”.如图,设O 到三边的距离分别是OD 、OE 、OF ,则111222S a OD a OE a OF =⋅+⋅+⋅=11()22a OD OE OF a h ⋅++=⋅,h 为正三角形ABC 的高32a ,即32OD OE OF a ++=.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.22.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①22sin 30cos 60sin30cos60︒+︒+︒︒; ②22sin 15cos 45sin15cos 45︒+︒+︒︒; ③22sin 20cos 50sin 20cos50︒+︒+︒︒; ④22sin (18)cos 12sin(18)cos12-︒+︒+-︒︒; ⑤22sin (25)cos 5sin(25)cos5-︒+︒+-︒︒.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 23.某同学在一次研究性学习中,发现以下五个式子的值都等于同一个常数. (1)22sin 10sin 70sin10sin 70︒+︒-︒︒ (2)22sin 20sin 80sin 20sin80︒+︒-︒︒ (3)22sin 30sin 90sin30sin90︒+︒-︒︒(4)()()22sin13sin 47sin 13sin 47-︒+︒--︒︒ (5)()()()()22sin 78sin 18sin 78sin 18-︒+-︒--︒-︒(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明该结论. 24.下面(A ),(B ),(C ),(D )为四个平面图形:(1)数出每个平面图形的交点数、边数、区域数,并将下表补充完整;(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为,,E F G ,试猜想,,E F G 之间的数量关系(不要求证明).25.已知()33xf x =+,分别求()()01f f +,()()12f f -+,()()23f f -+的值,然后归纳猜想一般性结论,并证明你的结论. 26.设0a >,0b >,且11a b a b+=+. 证明:(1) 2a b +≥;(2) 22a a +<与22b b +<不可能同时成立.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:用,,A B C 分别表示优秀、及格和不及格,显然语文成绩得A 的学生最多只有1个,语文成绩得B 也最多只有1个,得C 的最多只有1个,因此人数最多只有3人,显然(),(),()AC BB CA 满足条件,故选B .考点:合情推理的应用.2.C解析:C 【分析】利用等差数列和等比数列的通项公式及性质逐一计算判断即可. 【详解】在等比数列{}n b 中,0n b >,公比1q ≠,0q ∴>,即01q <<或1q >, 在A 中,3526b b b b =,故A 错误;在B 中,29561b b b q =,23231b b b q =,故当01q <<时,5623b b b b <,当1q >时5623b b b b >,故B 错误;在C 中,()3351b b b q q q+=+,()42611b b b q q +=+,而()()()()()()243332111110q q q q q q q q q +-+=---=-++>,得431qq q +>+,故3526b b b b +<+,故C 正确;在D 中,()45611b b b q q +=+,()2311b b b q q +=+,故当01q <<时,5623b b b b +<+,当1q >时5623b b b b +>+,故D 错误.故选:C. 【点睛】本题考查了等差数列和等比数列的综合应用,属于中档题.3.D解析:D 【分析】推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案. 【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学 (另外武汉大学、清华大学、北京大学、复旦大学也满足). 故选:D . 【点睛】本题考查了逻辑推理,意在考查学生的推理能力.4.B解析:B 【分析】观察规律,看每一组的最后一个数与组数的关系,可知第n 组最后一个数是2+3+4+…..+n +1=()32n n +,然后再验证求解. 【详解】观察规律,第一组最后一个数是2=2, 第二组最后一个数是5=2+3, 第三组最后一个数是9=2+3+4,……, 依此,第n 组最后一个数是2+3+4+…..+n +1=()32n n +. 当62n =时,()320152n n +=,所以2019所在的组数为63. 故选:B 【点睛】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.5.A解析:A 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案. 【详解】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩,乙、丙必有一优一良,(若为两优,甲会知道自己的成绩,若为两良,甲也会知道自己的成绩);乙看到了丙的成绩,知道自己的成绩; 丁看到甲、丁也为一优一良,丁知自己的成绩,【点睛】该题是一道逻辑推理的题目,掌握此类题目的推理方法是解题的关键.6.A解析:A 【分析】通过寻找规律以及数列求和,可得n a ,然后计算21k b -,可得结果. 【详解】根据题意可知:12...n n a =+++ 则()12n a n n +=由14254556,,22b b a a ⨯⨯==== 394109101011,22b b a a ⨯⨯==== …可得()215512k k k b --=所以()19510510112252b ⨯⨯⨯-==故选:A 【点睛】本题考查不完全归纳法的应用,本题难点在于找到21k b -,属难题,7.B解析:B 【分析】根据定义的新运算,求出M 、N 的值,相加即可得答案. 【详解】根据题意,121925925352M lg lg =⊗=+=+, 13112()232727N lg -===+,则(35)(23)1337M N lg lg +=+++=++=。
高中数学选修1-2(人教A版)第二章推理与证明2.2知识点总结含同步练习及答案

第二章 推理与证明 2.2 直接证明与间接证明
一、学习任务 了解分析法、综合法、反证法的思考过程和特点. 二、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 证明不等式 √2 + √7 < √3 + √6 的最适合的方法是 ( A.综合法
高考不提分,赔付1万元,关注快乐学了解详情。
答案: B
)
D.合情推理法
B.分析法
C.间接证法
2. 下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证 法;⑤反证法是逆推法.其中正确的语句有 ( A.2
答案: B
) 个.
C.4 D.5
B.3
3. 已知 x > 0,y > 0,M = A.M > N
答案: B
B.M ⩾ N
x+y 2xy ,N = ,则 M 与 N 的大小关系为 ( 2 x+y
C.M ⩽ N
)
D.M < N
4. 用反证法证明命题:"若整数系数一元二次方程: ax 2 + bx + c = 0 (a ≠ 0) 有有理根,那么 a, b, c 中 至少有一个是偶数"时,第一步应假设
答案:
.
a , b ,c 都不是偶数
(典型题)高中数学选修1-2第三章《推理与证明》测试题(包含答案解析)

一、选择题1.观察下列一组数据12a = 246a =+ 381012a =++ 414161820a =+++…则20a 从左到右第三个数是( ) A .380B .382C .384D .3862.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( ) A .丙做对了B .甲做对了C .乙说对了D .乙做对了3.在等差数列{}n a 中,若0n a >,公差0d ≠,则有2415a a a a >.类比上述性质,在等比数列{}n b 中,若0n b >,公比1q ≠,则关于3b ,5b ,2b ,6b 的一个不等关系正确的是( ) A .3526b b b b > B .5623b b b b > C .3526b b b b +<+D .5623b b b b +<+4.在ABC △中,若AC BC ⊥,AC b =,BC a =,则ABC △的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA 、SB 、SC 两两互相垂直,SA a =,SB b =,SC c =,则四面体S ABC -的外接球半径R =( )A .2B .3C D 5.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=6.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()()()112233,,y f x y f x y f x ===,则在区间[]13,x x 上()f x 可以用二次函数()()()111212()f x y k x x k x x x x =+-+--来近似代替,其中3221112213231,,y y y y k k k k k x x x x x x ---===---.若令10x =,2π2x =,3πx =,请依据上述算法,估算2πsin 5的近似值是( ) A .2425B .1725C .1625D .357.将正整数排列如下:则图中数2020出现在( ) A .第64行第3列 B .第64行4列C .第65行3列D .第65行4列8.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.英国数学家布鲁克泰勒(Taylor Brook ,1685~1731)建立了如下正、余弦公式( )()()357211sin 13!5!7!21!n n x x x x x x n --=-+-++-+-()()2462cos 112!4!6!2!nnx x x x x n -=-+-++-+其中*x R n N ∈∈,,!1234n n =⨯⨯⨯⨯⨯,例如:1!12!23!6===,,.试用上述公式估计cos0.2的近似值为(精确到0.01) A .0.99B .0.98C .0.97D .0.9610.现有A B C D 、、、四位同学被问到是否去过甲,乙,丙三个教师办公室时,A 说:我去过的教师办公室比B 多,但没去过乙办公室;B 说:我没去过丙办公室;C 说:我和A B 、去过同一个教师办公室;D 说:我去过丙办公室,我还和B 去过同一个办公室.由此可判断B 去过的教师办公室为( ) A .甲 B .乙 C .丙 D .不能确定11.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的 A .甲辰年B .乙巳年C .丙午年D .丁未年12.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲B .乙C .丙D .无法预测二、填空题13.设1250,,,a a a 是从1-,0,1这三个整数中取值的数列,若12509a a a +++=,且()()()2221250111107a a a ++++++=,则1250,,,a a a 中数字0的个数为________ .14.已知集合22{|,}A m m x y x y ==-∈Z 、,将A 中的正整数从小到大排列为:1a ,2a ,3a ,….若2015n a =,则正整数n =________.15.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同, 则积不容异”,其中“幂”是截面积,“势” 是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的xoy 平面内,若函数1,[1,0]()1,(0,1]x x f x x x ⎧+∈-⎪=⎨-∈⎪⎩的图象与轴x 围城一个封闭的区域A ,将区域A 沿z 轴的正方向平移2个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域A 的面积相等,则此圆柱的体积为 _______.图一 图二16.甲、乙、丙三个同学同时做标号为A 、B 、C 的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下面说法正确的是_____.(1)三个题都有人做对;(2)至少有一个题三个人都做对;(3)至少有两个题有两个人都做对.17.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”.已知四位歌手有且只有一位说了假话,则获奖的歌手是________. 18.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市. 由此可判断乙去过的城市为__________19.学校艺术节对同一类的A ,B ,C ,D 四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______. 20.将正整数1,2,3,⋯按照如图的规律排列,则100应在第______列.三、解答题21.(1)用分析法证明:3725+<;(2)已知数列{}n a 的前n 项和为n S ,123a =-,满足()122nn n S a n S ++=≥,计算,1234,,,S S S S ,并猜想n S 的表达式.22.用综合法或分析法证明: (1)如果 ,0a b >,则 lg lg lg22a b a b++≥; (2)610232+>+.23.如图1,已知PAB ∆中,PA PB ⊥,点P 在斜边AB 上的射影为点H .(Ⅰ)求证:222111PH PA PB =+; (Ⅱ)如图2,已知三棱锥P ABC -中,侧棱PA ,PB ,PC 两两互相垂直,点P 在底面ABC 内的射影为点H .类比(Ⅰ)中的结论,猜想三棱锥P ABC -中PH 与PA ,PB ,PC 的关系,并证明. 24.证明下列不等式:(1)当2a >时,求证:0>; (2)设0a >,0b >,若0a b ab +-=,求证:4a b +≥. 25.证明:(Ⅰ)已知a b m 、、是正实数,且a b <.求证:a a mb b m+<+; (Ⅱ)已知a b c d R ∈、、、,且1a b +=,1c d +=,1ac bd +>.求证:a b c d 、、、中至少有一个是负数.26.设不等式2120x x -<--+<的解集为M ,,a b M ∈.(1)证明:111364a b +<; (2)比较14ab -与2a b -的大小,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先计算前19行数字的个数,进而可得20a 从左到右第三个数. 【详解】由题意可知,n a 可表示为n 个连续的偶数相加,从1a 到19a 共有()119191902+⨯=个偶数,所以20a 从左到右第一个数是第191个偶数,第n 个偶数为2n , 所以第191个偶数为2191382⨯=,20a 从左到右第三个数为386. 故选:D. 【点睛】本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档题.2.A解析:A 【分析】根据题意分析,分别假设甲、乙、丙做对了,由此推出结论. 【详解】假设甲做对了,则乙和丙都做错了,乙和丙说的都对了,这不合题意; 假设乙做对了,则甲和丙都说对了,也不合题意; 假设丙做对了,则甲说对了,乙和丙都说错了,符合题意. 所以,说对的是甲,做对的是丙. 故选:A . 【点睛】本题考查了阅读理解能力以及逻辑思维能力的应用问题,是中档题.3.C解析:C 【分析】利用等差数列和等比数列的通项公式及性质逐一计算判断即可. 【详解】在等比数列{}n b 中,0n b >,公比1q ≠,0q ∴>,即01q <<或1q >, 在A 中,3526b b b b =,故A 错误;在B 中,29561b b b q =,23231b b b q =,故当01q <<时,5623b b b b <,当1q >时5623b b b b >,故B 错误;在C 中,()3351b b b q q q+=+,()42611b b b q q +=+,而()()()()()()243332111110qq q q q q q q q +-+=---=-++>,得431qq q +>+,故3526b b b b +<+,故C 正确;在D 中,()45611b b b q q +=+,()2311b b b q q +=+,故当01q <<时,5623b b b b +<+,当1q >时5623b b b b +>+,故D 错误.故选:C. 【点睛】本题考查了等差数列和等比数列的综合应用,属于中档题.4.A解析:A 【解析】 【分析】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求. 【详解】四面体S ABC -中,三条棱SA 、SB 、SC 两两互相垂直,则可以把该四面体补成长方体,SA a =,SB b =,SC c =是一个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径2R =.故选A. 【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.5.C解析:C 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理; 对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理, 综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.A解析:A 【分析】直接按照所给算法逐步验算即可得出最终结论. 【详解】解:函数()sin y f x x ==在0x =,π2x =,πx =处的函数值分别为 1(0)0y f ==,2π()12y f ==,3(π)0y f ==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--,故2222444()()2f x x x x x x πππππ=--=-+, 即2244sin x x x ππ≈-+,∴222424224sin()55525πππππ≈-⨯+⨯=, 故选:A . 【点睛】本题主要考查新定义问题,准确理解题目所给运算法则是解决本题的关键,属于中档题.7.B解析:B 【分析】根据题意,构造数列,利用数列求和推出2020的位置. 【详解】根据已知,第n 行有n 个数,设数列{}n a 为n 行数的数列,则n a n =, 即第1行有1个数,第2行有2个数,……,第n 行有n 个数, 所以,第1行到第n 行数的总个数()1122n n n S n +=+++=, 当63n =时,数的总个数()636363120162S ⨯+==, 所以,2020为64n =时的数,即64行的数为:2017,2018,2019,2020,……, 所以,2020为64行第4列. 故选:B. 【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.8.C解析:C 【分析】观察数阵可得出数阵从左到右从上到下顺序是正奇数顺序排列,要求出某一个位置的数,只要求出这个位置是第几个奇数即可,而每一行有12m -个数,可求出前m 行共有21m -个数,根据以上特征,即可求解. 【详解】由题意可得该数阵中第m 行有12m -个数,所以前m 行共有21m -个数,所以前8行共255个数.因为该数阵中的数依次相连成等差数列,所以该数阵中第9行, 从左往右数的第20个数是()127512549+-⨯=. 故选:C. 【点睛】本题以数阵为背景,考查等差、等比数列通项与前n 项和,认真审题,注意观察找出规律是解题的关键,属于中档题.9.B解析:B 【分析】利用题设中给出的公式进行化简,即可估算,得到答案. 【详解】由题设中的余弦公式得()()24620.20.20.20.2cos0.2112!4!6!2!nnn =-+-++-+0.040.00160.00006410.98224720=-+-+≈,故答案为B 【点睛】 本题主要考查了新信息试题的应用,其中解答中理解题意,利用题设中的公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.10.A解析:A 【解析】 【分析】根据已知信息:首先判断B 去过一个办公室,再确定B 去的哪一个办公室,得到答案. 【详解】C 说:我和A B 、去过同一个教师办公室⇒ B 至少去过一个办公室A 说:我去过的教师办公室比B 多,但没去过乙办公室⇒A 去过2个办公室,B 去过1个办公室.B 说:我没去过丙办公室,C 说:我和A B 、去过同一个教师办公室,A 没有去过乙办公室所以B 去的是甲办公室. 答案选A 【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力. 11.C解析:C 【分析】按照题中规则依次从2019年列举到2026年,可得出答案. 【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选C . 【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题.12.A解析:A 【分析】若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次. 【详解】若甲的预测正确,乙、丙的预测错误,则丙是第一名,甲不是第三名,则甲是第二名,乙是第三名,矛盾!若乙的预测正确,甲、丙的预测错误,则乙是第三名,甲的预测错误,那么甲是第三名,矛盾!若丙的预测正确,则甲、乙的预测错误,则甲是第三名,乙不是第三名,丙是第一名,则乙是第二名.因此,第三名是甲,故选A . 【点睛】本题考查合情推理,突出假设法在推理中的应用,通过不断试错来推出结论,考查推理分析能力,属于中等题.二、填空题13.11【分析】由题意中1的个数比的个数多9则中2的个数比0的个数多9个其他都是1由此可设中有个1个0列方程组求解【详解】设中有个1个0因为所以的个数为又由解得故答案为:11【点睛】本题考查推理关键是认解析:11 【分析】 由题意1250,,,a a a 中1的个数比1-的个数多9,则12501,1,,1a a a +++中2的个数比0的个数多9个,其他都是1,由此可设1250,,,a a a 中有m 个1,n 个0,列方程组求解. 【详解】 设1250,,,a a a 中有m 个1,n 个0,因为12509a a a +++=,所以1-的个数为9m -,()()()22212501114107a a a m n ++++++=+=,又(9)50m n m ++-=,由4107259m n m n +=⎧⎨+=⎩,解得2411m n =⎧⎨=⎩.故答案为:11. 【点睛】本题考查推理,关键是认识到12501,1,,1a a a +++是由1250,,,a a a 各加1得到的,因此数字的个数存在相应的关系.这样可列出方程组求解.14.1511【分析】利用平方差公式分解后对分别研究即可得到集合中的所有正整数然后从小到大排列观察规律进而计数即可【详解】当时(表示奇数)当时(表示4个倍数)∴将中的正整数从小到大排列可得134578…(解析:1511【分析】利用平方差公式分解后,对1x y -=,2x y -=分别研究,即可得到集合中的所有正整数,然后从小到大排列,观察规律,进而计数即可.【详解】22()()m x y x y x y =-=-+,当1x y -=时,21m y =+(表示奇数),当2x y -=时,44m y =+(表示4个倍数),∴将A 中的正整数从小到大排列,可得1,3,4,5,7,8,…,(每4个正整数,保留3个),又201545033÷=,∴503321511n =⨯+=.【点睛】本题考查分类讨论思想,观察归纳思想,属探索性试题,难度较大.15.【分析】先利用定积分计算底面面积再用体积公式得到答案【详解】的图象与轴围城一个封闭的区域故答案为【点睛】本题考查了体积的计算意在考查学生解决问题的能力 解析:73【分析】先利用定积分计算底面面积,再用体积公式得到答案.【详解】[1,0]()1,(0,1]x f x x x ∈-=-∈⎪⎩的图象与轴x 围城一个封闭的区域A13221001217(1)(1)(1)10326A S x dx x x -=+-=+--=-⎰ 77263A V S h ==⨯= 故答案为73【点睛】 本题考查了体积的计算,意在考查学生解决问题的能力.16.③【分析】运用题目所给的条件进行合情推理即可得出结论【详解】若甲做对乙做对丙做对则题无人做对所以①错误;若甲做对乙做对丙做对则没有一个题被三个人都做对所以②错误做对的情况可分为这三种:三个人做对的都解析:③【分析】运用题目所给的条件,进行合情推理,即可得出结论.【详解】若甲做对A、B,乙做对A、B,丙做对A、B,则C题无人做对,所以①错误;若甲做对A、B,乙做对A、C,丙做对B、C,则没有一个题被三个人都做对,所以②错误.做对的情况可分为这三种:三个人做对的都相同;三个人中有两个人做对的相同;三个人每个人做对的都不完全相同,分类可知三种情况都满足③的说法.故答案是:③.【点睛】该题考查的是有关推理的问题,属于简单题目.17.乙【分析】根据乙丙;的说法是相互矛盾的得出乙与丙说法一对一错唉根据甲丁的说法都准确推出获奖的歌手是乙即可【详解】由题意乙与丙的说法是相互矛盾的所以乙与丙的说法中一对一错又甲说:是乙或丙获奖是正确;丁解析:乙【分析】根据乙丙;的说法是相互矛盾的,得出乙与丙说法一对一错,唉根据甲、丁的说法都准确,推出获奖的歌手是乙即可.【详解】由题意,乙与丙的说法是相互矛盾的,所以乙与丙的说法中一对一错,又甲说:“是乙或丙获奖”,是正确;丁说“是乙获奖”是正确,由此可知获奖的歌手是一,且乙说的也对.【点睛】本题主要考查了简单的合情推理的应用,其中解答中正确理解题意,合理利用合情推理进行,逐一判定是解答的关键,着重考查了推理与论证能力,属于基础题.18.A【解析】试题分析:由乙说:我没去过C城市则乙可能去过A城市或B 城市但甲说:我去过的城市比乙多但没去过B城市则乙只能是去过AB中的任一个再由丙说:我们三人去过同一城市则由此可判断乙去过的城市为A考点解析:A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理19.B【分析】首先根据学校艺术节对四件参赛作品只评一件一等奖故假设分别为一等奖然后判断甲乙丙丁四位同学的说法的正确性即可得出结果【详解】若A 为一等奖则甲丙丁的说法均错误不满足题意;若B 为一等奖则乙丙的说 解析:B【分析】首先根据“学校艺术节对A B C D 、、、四件参赛作品只评一件一等奖”,故假设A B C D 、、、分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【详解】若A 为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B 为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C 为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D 为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B 获得一等奖.【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设A B C D 、、、为一等奖并通过是否满足题目条件来判断其是否正确.20.【解析】分析:先找到数的分布规律求出第n 列结束的时候一共出现的数的个数每一列的数字都是从大大小按排列的且每一列的数字个数等于列数继而求出答案详解:由排列的规律可得第n 列结束的时候排了个数每一列的数字 解析:【解析】分析:先找到数的分布规律,求出第n 列结束的时候一共出现的数的个数,每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,继而求出答案.详解:由排列的规律可得,第n 列结束的时候排了()1123112n n n +++⋯+-=+个数. 每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,而第13列的第一个数字是()113131912⨯⨯+=,第14列的第一个数字是()1141411052⨯⨯+=, 故100应在第14列.故答案为:14点睛:此题主要考查了数字的变化规律,借助于一个三角形数阵考查数列的应用,是道基础题三、解答题21.(1)见证明;(2) 123S =-,234S =-;345S =-;456S =-;猜想12n n S n +=-+,n ∈+N .【分析】(1)不等式两边先平方,然后逐步化简,直到不等式明显成立为止;(2)分别令n=1,2,3,4,求出1234,,,S S S S ,然后找规律猜想表达式。
人教版数学高二 数学A版选修1-2 第二章《推理与证明》教辅资料

满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
高中数学人教A版选修1-2:阶段质量检测(二) 推理与证明含解析

阶段质量检测(二)推理与证明(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是()A.归纳推理B.类比推理C.演绎推理D.非以上答案解析:选C根据演绎推理的定义知,推理过程是演绎推理,故选C.2.自然数是整数,4是自然数,所以4是整数.以上三段论推理()A.正确B.推理形式不正确C.两个“自然数”概念不一致D.“两个整数”概念不一致解析:选A三段论中的大前提、小前提及推理形式都是正确的.3.设a,b,c都是非零实数,则关于a,bc,ac,-b四个数,有以下说法:①四个数可能都是正数;②四个数可能都是负数;③四个数中既有正数又有负数.则说法中正确的个数有()A.0 B.1C.2 D.3解析:选B可用反证法推出①,②不正确,因此③正确.4.下列推理正确的是()A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把a(b+c)与a x+y类比,则有a x+y=a x+a yD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)解析:选D(xy)z=x(yz)是乘法的结合律,正确.5.已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为()A.(3,9) B.(4,8)C.(3,10) D.(4,9)解析:选D因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9),故选D.6.求证:2+3> 5.证明:因为2+3和5都是正数, 所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立. 上述证明过程应用了( ) A .综合法B .分析法C .综合法、分析法配合使用D .间接证法解析:选B 证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.7.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知D 成立. 8.若数列{a n }是等比数列,则数列{a n +a n +1}( ) A .一定是等比数列 B .一定是等差数列C .可能是等比数列也可能是等差数列D .一定不是等比数列解析:选C 设等比数列{a n }的公比为q ,则a n +a n +1=a n (1+q ).∴当q ≠-1时,{a n+a n +1}一定是等比数列;当q =-1时,a n +a n +1=0,此时为等差数列. 9.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0解析:选D 法一:∵a +b +c =0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ac =0,否则a ,b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.10.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A 令n =1,2,3, 得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.11.已知数列{a n }的前n 项和S n ,且a 1=1,S n =n 2a n (n ∈N *),可归纳猜想出S n 的表达式为( )A .S n =2nn +1B .S n =3n -1n +1 C .S n =2n +1n +2D .S n =2nn +2解析:选A 由a 1=1,得a 1+a 2=22a 2,∴a 2=13,S 2=43;又1+13+a 3=32a 3,∴a 3=16,S 3=32=64;又1+13+16+a 4=16a 4,得a 4=110,S 4=85.由S 1=22,S 2=43,S 3=64,S 4=85可以猜想S n =2n n +1.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 016=( )A.1 C .4D .5解析:选D x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2 016=x 4=5,故应选D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.解析:“至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.答案:x ,y 都大于114.已知a >0,b >0,m =lga +b 2,n =lg a +b2,则m ,n 的大小关系是________. 解析:ab >0⇒ab >0⇒a +b +2ab >a +b ⇒ (a +b )2>(a +b )2⇒a +b >a +b ⇒ a +b 2>a +b 2⇒lg a +b2>lg a +b2. 答案:m >n 15.已知 2+23=223, 3+38=338, 4+415= 4415,…, 6+a b =6ab ,a ,b 均为正实数,由以上规律可推测出a ,b 的值,则a +b =________.解析:由题意归纳推理得6+a b =6a b ,b =62-1=35,a =6.∴a +b =6+35=41. 答案:4116.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.解析:解法的类比(特殊化),易得两个正方体重叠部分的体积为a 38.答案:a 38三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2; (2)6+10>23+2. 证明:(1)当a ,b >0时,有a +b2≥ab , ∴lg a +b 2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证 6+10>23+2, 只要证(6+10)2>(23+2)2,即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…). (1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n (不要求证明).解:(1)证明:若a n +1=a n ,即2a n1+a n =a n, 解得a n =0或1.从而a n =a n -1=…=a 2=a 1=0或1, 这与题设a 1>0,a 1≠1相矛盾, 所以a n +1=a n 不成立. 故a n +1≠a n 成立.(2)由题意得a 1=12,a 2=23,a 3=45,a 4=89,a 5=1617,由此猜想:a n =2n -12n -1+1.19.(本小题满分12分)下列推理是否正确?若不正确,指出错误之处. (1)求证:四边形的内角和等于360°.证明:设四边形ABCD 是矩形,则它的四个角都是直角,有∠A +∠B +∠C +∠D =90°+90°+90°+90°=360°,所以四边形的内角和为360°.(2)已知 2 和 3 都是无理数,试证:2+3也是无理数.证明:依题设2和3都是无理数,而无理数与无理数之和是无理数,所以2+3必是无理数.(3)已知实数m 满足不等式(2m +1)(m +2)<0,用反证法证明:关于x 的方程x 2+2x +5-m 2=0无实根.证明:假设方程x 2+2x +5-m 2=0有实根.由已知实数m 满足不等式(2m +1)(m +2)<0,解得-2<m <-12,而关于x 的方程x 2+2x +5-m 2=0的判别式Δ=4(m 2-4),∵-2<m <-12,∴14<m 2<4,∴Δ<0,即关于x 的方程x 2+2x +5-m 2=0无实根.解:(1)犯了偷换论题的错误,在证明过程中,把论题中的四边形改为矩形. (2)使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原题的真实性仍无法判定.(3)利用反证法进行证明时,要把假设作为条件进行推理,得出矛盾,本题在证明过程中并没有用到假设的结论,也没有推出矛盾,所以不是反证法.20.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ; (2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.21.(本小题满分12分)已知:sin 2 30°+sin 2 90°+sin 2 150°=32,sin 2 5°+sin 2 65°+sin 2125°=32,通过观察上述两等式的规律,请你写出对任意角度α都成立的一般性的命题,并给予证明.解:一般形式为:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明:左边=1-cos 2α2+1-cos (2α+120°)2+1-cos (2α+240°)2=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12(cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°) =32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边.将一般形式写成sin2(α-60°)+sin2α+sin2(α+60°)=32也正确22.(本小题满分12分)根据要求证明下列各题:(1)用分析法证明:已知非零向量a,b,且a⊥b,求证:|a|+|b||a+b|≤2;(2)用反证法证明:1,2,3不可能是一个等差数列中的三项.证明:(1)a⊥b⇔a·b=0,要证|a|+|b||a+b|≤ 2.只需证|a|+|b|≤2|a+b|,只需证|a|2+2|a||b|+|b|2≤2(a2+2a·b+b2),只需证|a|2+2|a||b|+|b|2≤2a2+2b2,只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,上式显然成立,故原不等式得证.(2)假设1,2,3是某一个等差数列中的三项,且分别是第m,n,k项(m,n,k∈N*),则数列的公差d=2-1n-m=3-1k-m,即2-1=2(n-m)k-m,因为m,n,k∈N*,所以(n-m)∈Z,(k-m)∈Z,所以2(n-m)k-m为有理数,所以2-1是有理数,这与2-1是无理数相矛盾.故假设不成立,所以1,2,3不可能是一个等差数列的三项.。
人教A版选修1-2 第2章《推理与证明》单元测试卷(2)(含答案解析)

高中新课标选修(1-2)推理与证明测试题一 选择题(5×12=60分)1. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的( )A .白色B .黑色C .白色可能性大D .黑色可能性大2.“所有9的倍数(M )都是3的倍数(P ),某奇数(S )是9的倍数(M ),故某奇数(S )是3的倍数(P ).”上述推理是( )A .小前提错B .结论错C .正确的D .大前提错 3.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N +)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是( )A .③⑤B .①②C .④⑥D .③④ 4.下面叙述正确的是( )A .综合法、分析法是直接证明的方法B .综合法是直接证法、分析法是间接证法C .综合法、分析法所用语气都是肯定的D .综合法、分析法所用语气都是假定的 5.类比平面正三角形的“三边相等,三内角相等”的性质,可知正四面体的下列哪些性质,你认为比较恰当的是( )① 各棱长相等,同一顶点上的任两条棱的夹角都相等;② 各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③ 各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A .①B .①②C .①②③D .③6.(05·春季上海,15)若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对x ∈R ,有ax 2+bx +c >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件7.(04·全国Ⅳ,理12)设f (x )(x ∈R )为奇函数,f (1)=12 ,f (x +2)=f (x )+f(2),f (5)=( )A .0B .1C .52D .58.设S (n )=1n +1n +1 +1n +2 +1n +3 +…+1n2 ,则( )A .S (n )共有n 项,当n =2时,S (2)=12 +13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12 +13 +14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+149.在R 上定义运算⊙:x ⊙y =x2-y ,若关于x 的不等式(x -a )⊙(x +1-a )>0的解集是集合{x |-2≤x ≤2,x ∈R }的子集,则实数a 的取值范围是( ) A .-2≤a ≤2 B .-1≤a ≤1 C .-2≤a ≤1 D .1≤a ≤210.已知f (x )为偶函数,且f (2+x )=f (2-x ),当-2≤x ≤0时,f (x )=2x,若n ∈N *,a n =f (n ),则a 2006=( )A .2006B .4C .14D .-411.函数f (x )在[-1,1]上满足f (-x )=-f (x )是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是( )A .f (sin α)>f (sin β)B . f (c o s α)>f (sin β)C .f (c o s α)<f (c o s β)D .f (sin α)<f (sin β)12.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖”。
高中数学人教A版选修1-2 第二章 推理与证明 学业分层测评7 Word版含答案

学业分层测评(建议用时:分钟)[学业达标]一、选择题.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( ).有两个内角是钝角.有三个内角是钝角.至少有两个内角是钝角.没有一个内角是钝角【解析】“最多有一个”的反设是“至少有两个”,故选.【答案】.下列命题错误的是( ).三角形中至少有一个内角不小于°.四面体的三组对棱都是异面直线.闭区间[,]上的单调函数()至多有一个零点.设,∈,若,中至少有一个为奇数,则+是奇数【解析】+为奇数⇔,中有一个为奇数,另一个为偶数,故错误.【答案】.“自然数,,中恰有一个偶数”的否定正确的为( )【导学号:】.,,都是奇数.,,都是偶数.,,中至少有两个偶数.,,中都是奇数或至少有两个偶数【解析】自然数,,的奇偶性共有四种情形:()个都是奇数;()个奇数,个偶数;()个奇数,个偶数;()个都是偶数.所以否定正确的是,,中都是奇数或至少有两个偶数.【答案】.设,,都是正实数,=+,=+,=+,则,,三个数( ).至少有一个不大于.都小于.至少有一个不小于.都大于【解析】若,,都小于,则++<,①而++=+++++≥,②显然①,②矛盾,所以正确.【答案】.(·温州高二检测)用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①++=°+°+>°,这与三角形内角和为°相矛盾,==°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角,,中有两个直角,不妨设==°,正确顺序的序号为().①②③.①③②.②③①.③①②【解析】根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.【答案】二、填空题.(·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是.【解析】“至少有一个”的否定是“没有一个”.【答案】任意多面体的面没有一个是三角形或四边形或五边形.(·汕头高二检测)用反证法证明命题“如果>,那么>”时,假设的内容应是.【解析】与的关系有三种情况:>,=和<,所以“>”的反设应为“=或<”.【答案】=或<.(·石家庄高二检测)设,是两个实数,给出下列条件:①+=;②+=;③+>;④+>.。
【专业资料】新版高中数学人教A版选修1-2习题:第二章 推理与证明 检测 含解析

第二章检测(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内的所有直线;已知直线b⊄平面α,a⊂平面α,直线b∥平面α,则直线b∥直线a”,这个结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误若直线平行于平面,则该直线平行于平面内的所有直线”是错误的,即大前提是错误的.故选A.2.已知f(x+1)=2f(x)f(x)+2,f(1)=1(f∈N*),猜想f(x)的表达式为()A.f(x)=42x+2B.f(f)=2x+1C.f(x)=1x+1D.f(f)=22x+1x=1时,f(2)=2f(1)f(1)+2=23=22+1;当x=2时,f(3)=2f(2)f(2)+2=24=23+1;当x=3时,f(4)=2f(3)f(3)+2=25=24+1,故可猜想f(x)=2x+1,应选B.3.如图所示,4只小动物换座位,开始时鼠,猴,兔,猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位……这样交替进行下去,那么第2 018次互换座位后,小兔坐在()号座位上.A.1B.2C.3D.44次互换座位后,4只小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,而2 018=4×504+2,所以第2 018次互换座位后的结果与第2次互换座位后的结果相同,故小兔坐在2号座位上,应选B.4.已知x ∈(0,+∞),不等式x +1x≥2,x +4x2≥3,x +27x 3≥4,…,可推广为x +a x n≥n+1,则a 的值为( )A .2nB .n 2C .22(n-1)D .n n第一个不等式中a=11,第二个不等式中a=22,第三个不等式中a=33,∴第n 个不等式中a=n n .5.若△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形(0°,180°)内是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0,因此△A 1B 1C 1是锐角三角形.由于△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,因此△A 2B 2C 2不可能为直角三角形,故假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos(90°-A 2), 所以A 1=90°-A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有B 1=90°-B 2,C 1=90°-C 2. 又A 1+B 1+C 1=180°,则(90°-A 2)+(90°-B 2)+(90°-C 2)=180°, 即A 2+B 2+C 2=90°.这与三角形内角和等于180°矛盾, 所以原假设不成立.故选D .6.观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A.28 B.76C.123D.199法:a+b=1,a 2+b 2=3,a 3+b 3=4=3+1,a 4+b 4=4+3=7,a 5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123.规律为从第三组开始,其结果为前两组结果的和.7.对大于或等于2的自然数的正整数幂运算有如下分解方式: 22=1+3 32=1+3+5 42=1+3+5+7 23=3+5 33=7+9+1143=13+15+17+19根据上述分解规律,若m2=1+3+5+…+11,n3的分解中最小的正整数是21,则m+n等于()A.10B.11C.12D.13×6=36,m2=1+3+5+…+11=1+112∴m=6.∵23=3+5,33=7+9+11,43=13+15+17+19,∴53=21+23+25+27+29.又n3的分解中最小的正整数是21,∴n3=53,n=5,∴m+n=6+5=11.8.对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,依此类推,则每组内奇数之和S n与其组的编号数n(n∈N*)的关系是()A.S n=n2B.S n=n3C.S n=n4D.S n=n(n+1)n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33.归纳猜想S n=n3.故选B.9.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:图(1)图(2)他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数,又是正方形数的是()A.289B.1 024C.1 225D.1 378,第n个正方形数为b n=n2,由此可排除选项,第n个三角形数为a n=n(n+1)2D(1 378不是平方数),将选项A,B,C代入到三角形数与正方形数的表达式中检验可知,符合题意的是选项C,故选C.10.六个面都是平行四边形的四棱柱称为平行六面体.如图甲所示,在平行四边形ABCD中,有AC2+BD2=2(AB2+AD2),那么在图乙所示的平行六面体ABCD-A1B1C1D1中,f C12+f D12+f A12+f B12等于()A.2(AB2+AD2+f A12)B.3(ff2+ff2+f A12)C.4(AB2+AD2+f A12)D.4(ff2+ff2),连接A1C1,AC,则四边形AA1C1C是平行四边形,故A1C2+f C12=2(f A12+ff2).连接BD,B1D1,则四边形BB1D1D是平行四边形,故f D12+f B12=2(f B12+ff2).又在▱ABCD中,AC2+BD2=2(AB2+AD2),f A12=f B12,则f C12+f D12+f A12+f B12=2(f A12+ff2)+2(f B12+ff2)=2(ff2+ff2+f B12+f A12) =2[2(ff2+ff2)+2f A12]=4(ff2+ff2+f A12).故选C.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.“三人去过同一城市”知乙至少去过一个城市,而甲说去过的城市比乙多,且没去过B 城市,因此甲一定去过A城市和C城市.又乙没去过C城市,所以三人共同去过的城市必为A,故乙去过的城市就是A.12.已知函数f(x)=x3+x,a,b,c∈R,且a+b>0,b+c>0,c+a>0,则f(a)+f(b)+f(c)的值一定比零(填“大”或“小”).f(x)=x3+x是R上的奇函数,且是增函数,又由a+b>0可得a>-b,∴f(a)>f(-b)=-f(b),∴f(a)+f(b)>0.同理,得f(b)+f(c)>0,f(c)+f(a)>0.三式相加,整理得f(a)+f(b)+f(c)>0.13.在平面几何中,△ABC的内角平分线CE分AB所成线段的比为AEEB =ACBC,把这个结论类比到空间:在三棱锥f−fff中(如图所示),平面fff平分二面角f−ff−f,且与ff相交于f,则类比后得到的结论是.CE平分∠ACB,而平面CDE平分二面角A-CD-B,∴ACBC可类比成S△ACDS△BCD.故结论为AEEB=S△ACDS△BCD.14.已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c 等于.:(1)当①成立时,则a≠2,b≠2,c=0,此种情况不成立;(2)当②成立时,则a=2,b=2,c=0,此种情况不成立;(3)当③成立时,则a=2,b≠2,c≠0,即a=2,b=0,c=1,所以100a+10b+c=100×2+10×0+1=201.故答案为201.15.把数列{12n-1}的所有项按照从大到小的原则写成如下数表:11 31 51 7191111131 15117119…129…第k行有2k-1个数,第t行的第s个数(从左数起)记为A(t,s),则A(6,10)=.5行共有20+21+22+23+24=31个数,A(6,10)为数列的第41项.∵a n=12n-1,∴f41=181.三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1−12sin 30°=1−14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=34.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α) =sin2α+3cos2f+√3sin αcos α+1sin2f−√3sin αcos α−1sin2f=34sin2f+34cos2f=34.同解法一.(2)三角恒等式为sin2α+cos2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos(60°-2α)2−sin α(cos 30°cos α+sin 30°sin α)=12−12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)−√32sin αcos α−12sin2α=12−12cos 2α+12+14cos 2α+√34sin 2α−√34sin 2α−14(1−cos 2α)=1−14cos 2α−14+14cos 2α=34.17.(8分)已知函数f(x)=a x+x-2x+1(f>1).(1)证明函数f(x)在(-1,+∞)内为增函数;(2)用反证法证明方程f(x)=0没有负数根.(1)小题,可用定义法证明;对第(2)小题,可按反证法证明命题的步骤加以证明.设x1,x2是(-1,+∞)内的任意两个实数,且x1<x2.∵a>1,∴a x1<a x2.∴a x2−a x1>0.又x1+1>0,x2+1>0,∴x2-2x2+1−x1-2x1+1=(x2-2)(x1+1)-(x1-2)(x2+1) (x1+1)(x2+1)=3(x2-x1)(x1+1)(x2+1)>0.于是f(x2)-f(x1)=a x2−a x1+x2-2x2+1−x1-2x1+1>0,故函数f(x)在(-1,+∞)内为增函数. (2)假设存在x0<0(x0≠-1)满足f(x0)=0,则a x0=−x0-2x0+1,且0<a x0<1,于是0<−x0-2x0+1<1,即12<f0<2.这与假设x0<0矛盾,故方程f(x)=0没有负数根.18.(9分)先解答(1),再通过结构类比解答(2):(1)求证:ta n(x+π4)=1+tanx1-tanx.(2)设x∈R,a为非零常数,且f(x+a)=1+f(x)1-f(x),试问f(f)是周期函数吗?证明你的结论.ta n(x+π4)=tanx+tanπ41-tanx·tanπ4=tanx+11-tanx,即ta n(x+π4)=1+tanx1-tanx,命题得证.f(x)是以4a为周期的周期函数.证明过程如下:∵f(x+2a)=f[(x+a)+a]=1+f(x+a)1-f(x+a)=1+1+f(x)1-f(x)1-1+f(x)1-f(x)=−1f(x),∴f(x+4a)=f[(x+2a)+2a]=−1f(x+2a)=f(f).∴f(x)是以4a为周期的周期函数.故f(x)是周期函数,其中一个周期为4a.19.(10分)已知0<b<a<e,其中e是自然对数的底数.(1)试猜想a b与b a的大小关系;(2)证明你的结论.a=2,b=1可知a b>b a,又当a=1,b=12时,a b>b a,由此猜测a b>b a对一切0<b<a<e成立.a b>b a对一切0<b<a<e成立,需证ln a b>ln b a,需证b ln a>a ln b,需证lnaa >lnbb.设函数f(x)=lnxx,f∈(0,e),f'(x)=1-lnxx2,当x∈(0,e)时,f'(x)>0恒成立.所以f(x)=lnxx在(0,e)内单调递增,所以f(a)>f(b),即lnaa >lnbb,所以a b>b a.20.(10分)已知数列{a n}和{b n}满足:a1=λ,a n+1=23ff+f−4,ff=(−1)f(ff−3f+21),其中f为常数,f为正整数.(1)求证:对任意实数λ,数列{a n}不是等比数列;(2)求证:当λ≠-18时,数列{b n}是等比数列;(3)设S n为数列{b n}的前n项和,是否存在实数λ,使得对任意正整数n,都有S n>-12?若存在,求实数λ的范围;若不存在,请说明理由.,需综合运用等比数列的定义、数列求和、不等式等基础知识和基本运算技能,并注意分类讨论思想的应用.λ,使得数列{a n }是等比数列,则有a 22=f 1f 3.又因为a 2=23f 1−3=23f −3,f 3=23f 2−2=49f −4,所以(23λ-3)2=f (49λ-4),即49f 2−4f +9=49f 2−4f , 则9=0,这是不可能的. 所以假设不成立,原结论成立.故对任意实数λ,数列{a n }不是等比数列.λ≠-18,所以b 1=-(λ+18)≠0.又b n+1=(-1)n+1[a n+1-3(n+1)+21] =(-1)n+1(23a n -2n +14) =−23(−1)f (ff −3f +21) =−23ff , 所以b n ≠0, 所以b n+1b n =−23(f ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,−23为公比的等比数列.λ≠-18时,由(2)得b n =-(λ+18)·(-23)n -1,所以S n =−35(f +18)[1-(-23)n].(∗)当λ=-18时,b n =0,从而S n =0,(*)式仍成立. 要使对任意正整数n ,都有S n >-12,即−35(f +18)[1-(-23)n]>−12,解得λ<201-(-23)n−18.令f (n )=1−(-23)n ,则当n 为正奇数时,1<f (n )≤53;当n 为正偶数时,59≤f (n )<1,故对任意正整数n,f(n)的最大值为f(1)=5 3 ,所以λ<20×35−18=−6.综上所述,存在实数λ,使得对任意正整数n,都有S n>-12,此时实数λ的取值范围是(-∞,-6).。
[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末检测及答案
![[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末检测及答案](https://img.taocdn.com/s3/m/93a5799bf90f76c661371add.png)
c -1
a+b+ b
c -
1
a+ bc+c-1
=b+a c·a+b
c a+b ·c
= b+c
c·2 ac·2 abc
ab=8(当且仅当
a=b=c 时取等号 ),所以不等
式成立.
证法二: (分析法 )
要证 a1-1 1b-1 1c-1 ≥8 成立,
1-a 1- b 1-c 只需证 a · b · c ≥8 成立.
答案 :B
9.若 Sn=sinπ7+sin27π+…+ sinn7π(n∈N*),则在 S1,S2,…, S100 中,正数的个数是 ( )
A.16 个 B. 72 个 C.86 个 D.100 个
分析 :本题主要考查正弦函数的图象和性质和间接法解题. 解决 此类问题需要找到规律, 从题目出发可以看出每隔 13 或 14 项的和为 0,这就是规律,考查综合分析问题和解决问题的能力.
的推理;③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到
一般的推理;⑤类比推理是由特殊到特殊的推理.
A.①②③
B.②③④
C.②④⑤
D .①③⑤
答案 :D
2.命题“三角形中最多只有一个内角是直角”的结论的否定是 ()
A.有两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角
SBC 于点 H1,则 DH 1∥AH ,且 S, H1, H 三点共线.
1
11
∵ VS- DEF = VD-SEF = 3S△SEF·DH 1= 3× 2·SE·SF·sin∠ ESF ·DH 1=
1
1
1
6 b1c1·DH 1·sin∠ESF , VS - ABC = VA - SBC = 3 S△SBC·AH = 6
高中数学选修1-2(人教A版)第二章推理与证明2.1知识点总结含同步练习及答案

sin (200 ∘ + α) + cos (200 ∘ + α + 30∘ ) + sin α cos (α + 30∘ ) =
高考不提分,赔付1万元,关注快乐学了解详情。
分别为 S 1 ,S 2 ,EF ∥ AB 且 EF 到 CD 与 AB 的距离之比为 m : n ,则 △OEF 的面积 S 0 与
S 1 ,S 2 的关系是 (
).
mS 1 + nS 2 m+n − − − − m√S 1 + n√S 2 − − C.√S 0 = m+n
A.S 0 =
答案: C
nS 1 + mS 2 m+n − − − − n√S 1 + m√S 2 − − D.√S 0 = m+n
B.S 0 =
4. 观察 sin 220 ∘ + cos 250 ∘ + sin 20∘ cos 50∘ = 个与以上两式规律相同的一个等式
答案:
.
3 3 ,sin 215 ∘ + cos 245 ∘ + sin 15∘ cos 45∘ = ,写出一 4 4 3 4
3. 如图,在梯形 ABCD 中,AB ∥ DC,AB = a,CD = b (a > b) 若 EF ∥ AB,EF 到 CD 与
ma + nb .试用类比的方法,推想出下述问题的结 m+n 果.在上面的梯形 ABCD 中,延长梯形两腰 AD ,BC 相交于 O 点,设 △OAB,△OCD 的面积 AB 的距离之比为 m : n ,则可推算出:EF =
(查看更多本章节同步练习题,请到快乐学)
1. 下列说确的 B.合情推理必须有前提有结论 C.合情推理不能猜想 D.合情推理得出的结论无法判定正误
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 推理与证明 单元检测题一、选择题(本大题共12小题,每小题5分,共60分)1. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误2.下面使用类比推理,得到正确结论的是( ) A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为( ) A.29 B. 254 C. 602 D. 2004 4. 设0()sin f x x =,10()()f x f x '=,21()()f x f x '=,…,1()()n n f x f x +'=,n ∈N ,则2010()f x =( )A.cos x B .-cos x C .sin x D -sin x5.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误6.下面几种推理是类比推理的是( )A .两条直线平行,同旁角互补,如果∠A 和∠B 是两条平行直线的同旁角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.7.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.238.用反证法证明命题“若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数”时,下列假设中正确的是( )(A )假设,,a b c 不都是偶数 (B )假设,,a b c 都不是偶数 (C )假设,,a b c 至多有一个是偶数 (D )假设,,a b c 至多有两个是偶数9.如果=++==+)5()6()3()4()1()2(,2)1()()()(f f f f f f f b f a f b a f 则且( ). A .512 B .537 C .6 D .82()3110:344,()(cos sin )(),24x x y x y y x y αα≥⎧•=•=-•+-⎨<⎩、定义运算例如则的最大值为( )A .4B .3C .2D .111.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a+≥+•+.其中不成立的有A.1个B.2个C.3个D.4个12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ) A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二、填空题(本大题共6小题,每小题5分,共30分)13.已知一列数1,-5,9,-13,17,……,根据其规律,下一个数应为 . 14.下列表述正确的是 .①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理。
15.在数列{}n a 中,()*1121,,2nn n a a a n N a +==∈+猜想这个数列的通项公式是 . 16.平面2条相交直线最多有1个交点;3条相交直线最多有3个交点;试猜想:n 条相交直线最多把有____________个交点17.从22112343=++=2,,3+4+5+6+7=5中,可得到一般规律为 (用数学表达式表示)。
18.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 . . . . . . .按照以上排列的规律,第n 行(3n ≥)从左向右的第3个数为 .三、解答题(本大题共3小题,共60分.解答应写出文字说明、演算步骤或推证过程) 19.(本题共3小题,每题10分,共30分) (1)求证:当a 、b 、c 为正数时,.9)111)((≥++++c b ac b a(2)已知n n n n :n -+<+-+≥112,0试用分析法证明(3)已知R x ∈,12-=x a ,22+=x b 。
求证b a ,中至少有一个不少于0。
20.(15分)在ABC ∆中,三个角A 、B 、C 对应的边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列,求证:ABC ∆为等边三角形。
21.(15分)已知:0,b a e e <<<其中是自然对数的底数。
(1)试猜想abb a 与的大小关系; (2)证明你的结论参考答案一、选择题(本大题共12小题,每小题5分,共60分)二、13.-21 14) ①③⑤ 15)21n + 16)2)1(-n n 17. 2(1)(2)......(32)(21)n n n n n ++++++-=- 18.262n n -+三、解答题(本大题共3小题,共60分) 19(本大题30分) (1)证明:左边=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛++a c c a c b b c a b b a 3 …………5分 因为:a 、b 、c 为正数 所以:左边acc a c b b c a b b a ⋅+⋅+⋅+≥2223 92223=+++= …………8分()9111≥⎪⎭⎫⎝⎛++++∴c b a c b a…………10分(2)证明:要证上式成立,需证122+>++n n n …………2分需证22)12()2(+>++n n n需证n n n 212+>+ …………6分需证n n n 2)1(22+>+ 需证n n n n 21222+>++,只需证1>0 …………8分 因为1>0显然成立,所以原命题成立 …………10分 (3)证明:假设b a ,中没有一个不少于0,即0<a ,0<b 则:0<+b a …………3分 又0)1(12221222≥+=++=++-=+x x x x x b a …………8分这与假设所得结论矛盾,故假设不成立所以b a ,中至少有一个不少于0 …………10分 20(15分) 证明:A 、B 、C 成等差数列∴A+C=2B 由A+B+C=1800得:B=600…………4分12COSB ∴=即:222122a cb ac +-= 222b a b ac =+- ① …………8分又a 、b 、c 成等比数列2b ac ∴= ② …………10分由①②得:22ac a b ac =+- 即:2()0a c -= a c ∴=ABC ∴∆是等腰三角形 ………13分又 B=600ABC ∴∆是等边三角形 …………15分21.(15分)解:(1)取1,2==b a 可知:abb a >,又当21,1==b a 时,ab b a >由此猜测abb a >对一切e a b <<<0成立 …………5分(2)证明:要证abb a >对一切e a b <<<0成立需证abb a ln ln > 需证b a a b ln ln >需证bba a ln ln > …………10分 设函数xxx f ln )(=(0,)x e ∈2ln 1)(x xx f -=',当),0(e x ∈时,0)(>'x f 恒成立 xxx f ln )(=∴在),0(e 上单调递增 …………13分bba ab f a f ln ln )()(>>∴即 a b b a >∴…………15分。