玻纤增强PP
高材1班-张健-玻纤增强PP螺杆元件组合方法
玻纤增强PP螺杆元件组合方式班级:高材0911姓名:张健学号:2009119136前言:在聚合物材料加工中,有一种重要的混炼设备,那就是挤出机,挤出机的发展,大大提高了聚合物材料的加工水平和应用范围。
它分为单螺杆、双螺杆、多螺杆,但实际应用中,还是双螺杆应用最为广泛。
由于双螺杆挤出机要完成许多混合任务,因此目前关于双螺杆挤出机的混合机理研究也比较多。
将双螺杆挤出机用作连续混炼机时,可以对聚合物进行共混改性、填充改性和增强改性;另外,双螺杆挤出机还可以用来进行反应挤出。
双螺杆挤出机的种类很多,根据两根螺杆的位置,可以分为啮合型和非啮合型;根据螺杆旋转的方向不同,又可以分为同向旋转型和异向旋转型。
由此,我们将常见的双螺杆挤出机分为非啮合异向旋转的双螺杆挤出机、啮合同向双螺杆挤出机和啮合异向双螺杆挤出机啮合同向双螺杆挤出机简介啮合同向双螺杆挤出机真正应用于聚合物加工是在20世纪30年代,由意大利LMP公司Roberto Colombo 研制出来。
自从其诞生后,经过半个多世纪的不断改进和完善,它便以其积木式结构带来的多变性和适应性以及优异的混合性能,在成型、共混、改性、反应挤出等聚合物加工过程中得到了广泛应用一、双螺杆挤出机组合的一般原则为:(1)正确分析所要混合物料的形态、性能与配比;(2)必须了解螺杆元件及螺杆各区功能,工作原理及螺杆构型;(3)确定加料方式与位置;(4)选择适当几何参数的螺纹,捏合元件;(5)根据共混体系混合程度要求选择螺杆组合。
(6)加工工艺、设备各部分参数二、啮合同向双螺杆挤出机玻璃纤维增强塑料制备工艺流程玻璃纤维增强作用的好坏,与它在聚合物混合料或制品中的长度、分散状态或分布均匀性、取向以及被聚合物润湿性有关。
玻纤在制品或混合料中长度太短,只起填料作用,不起增强作用;太长,会影响玻纤在混合料或制品中的分散性、成型性能和制品的使用性能。
一般认为,增强热塑性塑料中玻纤的理想长度应为其临界长度的5倍。
长纤增强PP应用与性能
一:长玻纤PP具有以下几个比较典型的优势:
1、纤维长度长(在制品中纤维长度可达3mm以上)分布均匀,可形成三维网络结构,综合力学性能强。
1)弯曲和拉伸强度均提高30-100%;
2)抗冲击性提高2-3倍(表现为冲击强度提高2-3倍);
3)抗高温蠕变性优异,低温冲击强度高,适合使用于高低温交变频繁场合;
4)尺寸精准度高,纵横收缩率小且一致;
5)成型简单,可注塑或模压成型;
6)低翘曲,玻纤外露少,表面性能好
2、变形性小,有利于汽车零配件的设计与应用。
3、耐疲劳性能优良
4、流动性能小,模塑成型性能好
5、可循环回收重复使用,绿色环保
2、长玻璃纤维增强型复合材料的市场应用:
3、1,
大量用于汽车行业:前端支架,车门板集成模块,汽车仪表盘骨架,冷却风扇及柜架,车顶窗框架/压条、保险杠,自锁刹车系统,小轴和齿轮零件,汽车行李架与缓冲器,汽车蓄电池外壳/托架,轿车坐骑骨架,换挡器底座,齿轮箱外壳,汽车踏板,刹车踏板支撑,发动机风扇罩,汽车导流管扇叶等部件,均可用长玻纤增强聚丙烯材料代替短玻纤增强尼龙或金属材料。
2,家电行业:用于洗衣机三角支架,冰箱底端承重支架,空调风扇等。
怎样改性玻纤增强PP材料
汽车水室材料早期采用玻纤增强PA66方案。
有关不同材料(PA66/聚邻苯二甲酰胺/聚苯醚等)影响耐冷却液后力学性能和尺寸的研究较多,对玻纤增强聚丙烯的研究主要集中在材料的常规力学和结晶行为。
玻纤增强聚丙烯材料具有质轻、低碳环保的优势,具有较高的研究价值。
虽然玻纤增强聚丙烯材料在常温下具有较好耐冷却液性能,但是对耐高温冷却液性能的影响研究较少。
本文主要研究玻纤增强聚丙烯材料耐高温冷却液后拉伸强度保持率的影响因素,初步考察了不同组分对玻纤增强聚丙烯材料耐高温冷却液老化性能的影响。
聚丙烯基体树脂对耐冷却液性能的影响冷却液由水、防冻剂和各种添加剂组成。
水的比热容较大并且热传导系数高,被水吸收的热量容易散发,因此水作为冷却液使用具有很多优点。
实验中使用日产专用冷却液LLC,冰点温度为-35℃。
玻纤增强聚丙烯材料的主要成分为聚丙烯树脂和短切玻纤。
其中基体树脂的性能是玻纤增强聚丙烯材料性能的主要影响因素之一,所以实验中选择不同流动速率和结晶度的聚丙烯树脂。
由表2可以看出:虽然配方1#和配方2#的聚丙烯树脂MFR 相同,但是由于基体树脂聚丙烯2是高结晶聚丙烯,所以配方2#的常温拉伸强度由104MPa 提高至114MPa ,弯曲强度和模量由147MPa 和6450MPa 提升到157MPa 和7060MPa 。
在材料耐冷却液性能保持率方面,树脂流动性对耐冷却液老化性能的影响不明显。
由图1可以看出:高结晶树脂(配方2#)的耐冷却液老化后性能保持率较高,保持率为84%。
配方3#相比于配方1#的老化后性能保持率较高。
不同接枝物含量对耐冷却液性能的影响玻纤增强聚丙烯材料中主要成分为聚丙烯树脂和短切玻纤,但玻纤和聚丙烯树脂间之间的界面必须使用马来酸酐接枝物作为相容剂提升材料的力学性能,所以接枝物也是性能影响的主要因素之一。
开展了不同接枝物含量对材料初始力学性能和冷却液老化后性能保持率实验,具体实验配方见表3。
表4是不同含量接枝聚丙烯下材料的力学性能的测试数据,图2是不同接枝物含量下材料的老化性能保持率。
高材1班 张健 玻纤增强PP螺杆元件组合方法
玻纤增强PP螺杆元件组合方式班级:高材0911姓名:张健学号: 2009119136前言:在聚合物材料加工中,有一种重要的混炼设备,那就是挤出机,挤出机的发展,大大提高了聚合物材料的加工水平和应用范围。
它分为单螺杆、双螺杆、多螺杆,但实际应用中,还是双螺杆应用最为广泛。
由于双螺杆挤出机要完成许多混合任务,因此目前关于双螺杆挤出机的混合机理研究也比较多。
将双螺杆挤出机用作连续混炼机时,可以对聚合物进行共混改性、填充改性和增强改性;另外,双螺杆挤出机还可以用来进行反应挤出。
双螺杆挤出机的种类很多,根据两根螺杆的位置,可以分为啮合型和非啮合型;根据螺杆旋转的方向不同,又可以分为同向旋转型和异向旋转型。
由此,我们将常见的双螺杆挤出机分为非啮合异向旋转的双螺杆挤出机、啮合同向双螺杆挤出机和啮合异向双螺杆挤出机啮合同向双螺杆挤出机简介啮合同向双螺杆挤出机真正应用于聚合物加工是在20世纪30年代,由意大利LMP公司Roberto Colombo研制出来。
自从其诞生后,经过半个多世纪的不断改进和完善,它便以其积木式结构带来的多变性和适应性以及优异的混合性能,在成型、共混、改性、反应挤出等聚合物加工过程中得到了广泛应用一、双螺杆挤出机组合的一般原则为:(1) 正确分析所要混合物料的形态、性能与配比;(2) 必须了解螺杆元件及螺杆各区功能,工作原理及螺杆构型;(3) 确定加料方式与位置;(4) 选择适当几何参数的螺纹,捏合元件;(5) 根据共混体系混合程度要求选择螺杆组合。
(6) 加工工艺、设备各部分参数二、啮合同向双螺杆挤出机玻璃纤维增强塑料制备工艺流程玻璃纤维增强作用的好坏,与它在聚合物混合料或制品中的长度、分散状态或分布均匀性、取向以及被聚合物润湿性有关。
玻纤在制品或混合料中长度太短,只起填料作用,不起增强作用;太长,会影响玻纤在混合料或制品中的分散性、成型性能和制品的使用性能。
一般认为,增强热塑性塑料中玻纤的理想长度应为其临界长度的5倍。
玻璃纤维增强聚丙烯复合材料
玻璃纤维增强聚丙烯复合材料的制备及性能研究一.原材料1.聚丙烯(polypropylene简称PP)PP是一种热塑性树脂基体,为白色蜡状材料。
聚丙烯的生产均采用齐格勒—纳塔催化剂,以Al(C2H5)3+TiCl4体系在烷烃(汽油)中的浆状液为催化剂,在压力为1.3MPa,温度为100℃的条件下按离子聚合机理反应制得。
聚丙烯的结晶度为70%以上,密度为0.98,透明度大,软化点在165℃左右,脆点—10~20℃,具有优异的介电性能。
热变形温度超过100℃,其强度及刚度均优于聚乙烯,具有突出的耐弯曲疲劳性能、耐化学药品性和力学性能都比较好,吸水率也很低。
因此应用十分广泛,主要用于制造薄膜,电绝缘体,容器等,还可用作机械零件如法兰,接头,汽车零部件等。
2.玻璃纤维(glass fiber简称GF)GF是一种性能优异的无机非金属材料。
成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。
它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺,最后形成各类产品。
玻璃纤维单丝的直径从几个微米到十几米个微米,相当于一根头发丝的1/20—1/5,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。
玻璃一般人的观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋予形状以后终于可以成为优良的结构用材。
玻璃纤维随其直径变小其强度高。
作为增强材料的玻璃纤维具有以下的特点,这些特点使玻璃纤维的使用远较其他种类纤维来得广泛,发展速度亦遥遥领先,其特性列举如下:1)拉伸强度高,伸长小(茎3%)。
2)弹性系数高,刚性佳。
3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。
4)为无机纤维,具不燃性,耐化学性佳。
5)吸水性小。
6)尺度安定性,耐热性均佳。
7)透明可透过光线。
8)与树脂接着性良好之表面处理剂之开发完成。
长玻纤增强聚丙烯
一、长玻纤增强聚丙烯(LFT-PP)及LFT塑料托盘长玻纤增强聚丙烯(LFT-PP)复合材料1.项目简介传统玻纤增强聚丙烯因其成本低廉和优异的机械性能,在材料领域得到大量的应用。
长玻纤增强聚丙烯(LFT-PP)复合材料与传统的短纤增强聚丙烯材料相比,由于生产工艺的改变,玻纤在粒子中的长度增加,即玻纤保持与粒子同样的长度,即使注塑成型后,纤维的最终长度也比短纤的高很多,在制品中的平均长度可达2毫米左右。
相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),LFT-PP材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能与热学性能,同时LFT-PP还具有比短纤增强PP更好的高温抗蠕变性能,这些优势使得LFT-PP的性能能够达到或接近增强工程塑料如PA或PPO的性能。
具体优势为:(1)刚度与质量比高,变形小,这特别有利于LFT在汽车中的应用;(2)韧性高;(3)抗蠕变性能好,尺寸稳定;(4)耐疲劳性能优良;(5)设计自由度比GMT更高,因为LFT可用于注塑和其他成型方法,而GMT只能压塑;(6)模塑成型性能比SFT更好,纤维以更长的形态在成型物件中移动,纤维损伤少。
由于LFT材料类似于增强工程塑料的卓越性能以及PP基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强PA材料而言,使用LFT-PP 可在材料成本上节约40-50%左右;相对于短纤增强PPO材料而言,使用LFT-PP可在材料成本上节约100%以上。
2.长玻纤增强PP市场应用及容量2.1汽车工业:保险杠骨架、座椅骨架、发动机罩壳、车身门板模块、仪表盘骨架、脚踏板、挡泥板、备用轮胎架、冷却风扇及框架、蓄电池托架等,用于替代增强尼龙(PA)或金属材料。
2.2通讯电子电器行业:通讯、电子行业高精度接插件/点火器零组件、继电器基座/微波炉变压器线圈架、框架/电气联结器、继电器、电磁阀封装件/扫描仪组件等,洗衣机滚筒、洗衣机三角支架、空调风扇等,用于替代短纤增强PA、ABS材料或金属材料。
长玻纤增强聚丙烯复合材料的力学性能研究
长玻纤增强聚丙烯复合材料的力学性能研究摘要:采用自行研制的熔体浸渍包覆长玻璃纤维装置,制备了长玻纤增强聚丙烯(LFT-PP)复合材料。
研究了玻纤含量、预浸料粒料长度及相容剂聚丙烯接枝马来酸酐(PP-g-MAH)含量对长玻纤增强聚丙烯(LFT-PP)复合材料力学性能的影响。
结果表明,长玻璃纤维增强聚丙烯(LFT-PP)的力学性能明显优于短玻璃纤维增强聚丙烯,当玻纤含量在30%时,拉伸强度达到50 MP左右,冲击强度达到6kJ/m2左右,相容剂PP-g-MAH的加入增强了界面粘接强度,大幅度地提高了长玻纤增强聚丙烯(LFT-PP)复合材料的力学性能,当相容剂PP-g-MAH含量达到3%左右,其综合力学性能达到最佳值,拉伸强度达到100 MP左右,冲击强度达到10 kJ/m2左右。
关键词:熔体浸渍长玻璃纤维聚丙烯接枝马来酸酐通过自制的熔体浸渍包覆装置,制备了长玻璃纤维增强聚丙烯(LFT-PP)复合材料,系统地研究了玻纤含量和长度对其力学性能的影响,研究了相容剂PP-G-MAH对PP/GF复合材料力学性能和断面形貌的影响。
熔体浸渍装置主要包括浸渍槽、分丝棍、牵引装置和切粒装置。
一、实验部分1.实验材料聚丙烯;玻璃纤维;PP-G-MAH。
2.实验工艺采用熔体浸渍包覆工艺制备3mm和18mm的LFT-PP粒料,挤出加工温度为150℃~225℃。
注塑压力:40Mpa~50Mpa;注射速度:40r/min;背压:3Mpa;冷却时间:40s。
二、结果与讨论1.成型过程中玻璃纤维长度及其分布数均长度(ln)和重均长度(lw)分别按照公式(1),(2)进行计算。
ln=∑nili/∑li(1)lw=∑nili2/∑nili(2)式中:li——样品中第i根纤维的长度;ni——长度在li与l +1之间的样品出现的频率。
玻纤在加工过程中因为断裂而影响其长度,纤维的断裂是由以下三方面的相互作用造成的:纤维/纤维、纤维/机械、纤维/聚合物。
长玻纤
长玻纤PP是什么材料?长玻纤PP、长玻纤增强PP、长玻纤增强聚丙烯(Long Glass Fiber Reinforced Polypropylene)是倍受人们关注的新品种之一。
长玻纤PP的比重比尼龙PA轻20%,比铝合金轻62%。
比重轻20%的优势在于是同样体积的长纤PP产品可以比尼龙轻20%,以同样重量的长玻纤PP原材料可以比尼龙多生产20%的产品。
长玻纤PP替代尼龙加玻纤优势最为明显。
作为汽车模块载体材料,该材料不仅能有效地提高制品的刚性、抗冲击强度、抗蠕变性能和尺寸稳定性,而且可以做出复杂的汽车模块制品。
由于强度的要求,以往的模块载体通常由以聚丙烯为基材的玻璃纤维毡增强热塑性塑料(GMT)或金属板材经冲压制得。
由于采用压制成型,很难对多种零件进行集成。
而为了提高刚性和强度以及为了得到薄的成型厚度,还需要使用加强筋。
此外,还需要通过其他步骤来去除成型零件的飞边和毛刺。
上述所有因素都制约了汽车模块制品重量和成本的降低。
由于金属不适合成型复杂的形状,限制了它在很多零件中的应用,这也阻碍了成本的下降。
与此相反,采用长玻纤增强塑料注射成型则可以克服上述诸多弊病。
然而,玻璃纤维在注射成型的过程中可能被损坏而得不到所需的强度。
为了使玻璃纤维在塑料中很好地起到提高强度的作用,必须使玻璃纤维长度大于其临界长度Lo。
有关资料表明,当纤维长度小于此临界长度的纤维增强塑料受到一定载荷时,纤维就会被拔出,纤维的强度就不能得到充分发挥。
临界长度Lo与具体的塑料品种有关,就玻纤增强聚丙烯而言,其Lo为3.1mm,而普通短纤维增强塑料的玻纤长度一般只有0.2~0.6mm。
由此表明,破坏模式主要是纤维被拔出而无法满足模块载体材料的强度要求。
因此,开发应用长玻纤增强聚丙烯及其注射成型技术,就是要制备出增强玻纤长度在10mm左右的聚丙烯原料,并通过改进的注射成型工艺,保证制品中的玻纤长度在3.1mm以上。
2002年,国外开发成功长玻纤增强聚丙烯注射成型技术,并将这种技术成功地用于生产马自达6型汽车前端模块和车门模块载体。
玻纤增强PP复合材料的制备及其性能研究
c mp sts i c e s d w t e GF c n e to e c mp sts i c e sn , e e h e s e s e gh a d i a t o o i r a e i t o t n ft o o i n r a i g e n h h h e v n t e tn i t n t n mp c l r s e gh o e 1 t n t f h 2 mm R P c mp s e a ih rta o eo e6 mm RP o o i s T e b e k n r t GF P o o i sw sh g e n t s f h t h h t GF P c mp st . h ra i g e
eo g t n o e G R P c mp stsf s rs n e elwi n raig ga sf e o tn , teb e kn ln ai f h F P o o i rt oea d t n fl t ice sn ls b r c ne t h ra ig o t e i h h i s
加工参数对长玻纤增强PP注塑件纤维长度和性能的影响
加工参数对长玻纤增强PP注塑件纤维长度和性能的影响长纤维增强热塑性塑料是一个成熟的方法,用于汽车工业批量生产高质量的结构部件,无需进一步的外观加工,这种材料的性能强烈依赖于玻纤长度。
众所周知,加工参数必须仔细选择,因为它们直接影响最终纤维长度,因此对所得部件的力学性能有负面影响。
特别是在冲强度上,纤维长度被看作是一个关键因素。
本文的目的就是定量确定注塑参数对长纤维增强共混物冲击性能的影响。
首先,我们分析注塑玻纤增强聚丙烯的最终玻纤长度,将注塑速度、保压压力、螺杆转速和背压作为自变量。
按照可行性和精度,我们把玻纤长度分析作为单一目标进行仔细研究,以确保我们使用的是可以重复的和可靠的方法。
接着,我们采用落标冲击试验定量确定PP-GF共混物的冲击性能,并把所得结果与玻纤长度和加工参数关联起来,以建立一个基础的加工—结构—性能关系。
纤维长度分析的研究显示,高的灰化温度(pyrolysistemperature)导致玻纤的脆化和单根玻纤拉伸强度的减少。
这样会导致在破断过程中的纤维长度的表征不正确。
加工参数的统计研究结果表明,背压对冲击能和纤维长度都有显著影响。
由于具有杰出的性能等诸多优点,如刚性、强度、耐热性、耐翘曲、负荷下的力学性能、可回收性、低密度、低材料成本和高度的集成能力,开发这类材料在这些年速度加快了,增长率稳定达到8%(Schemme,2003)。
因此,基于这些材料的汽车应用,如前端、保险杠支架、车门模组和车体下部,目前在汽车市场上成为潮流(Buerkle et al.,2003,Martin,2005)。
注塑是一种已经牢固确立的在汽车行业批量生产高质量结构部件的经济方法,而且无需制件的表面处理。
对于加工玻纤增强热塑性塑料,可以获得不同等级的物料。
一方面,在共混中加入短纤维,可以获得300-1000μm范围的纤维长度。
在不同的工艺中,长纤维增强粒料(LGF)可以通过连续纤维的共挤出或者挤拉工艺制备(Buerkle et al.,2003),在这些工艺中,玻纤被包覆着聚合物基体树脂。
玻纤增强PP注塑工艺研究
玻纤增强PP注塑工艺研究(转载)纤维增强复合材料因其组成材料的种类、数量、纤维方向以及其他参数可以自由选择,因而重量轻,强度和刚度更高,且其性能优异且大范围可调,最近几十年来一直是科学研究和产业推广的重点课题。
作为其中的重要一种,玻璃纤维/热固性树脂复合材料已经以玻璃钢的身份在汽车、船舶、建材等领域取得了广泛的应用。
但玻璃纤维/热塑性树脂复合材料的研究和应用还不是很普遍。
这里以热塑性树脂聚丙烯为基体,制备玻璃纤维/聚丙烯复合材料,通过控制复合材料中玻璃纤维的含量、长度、偶联剂类型与用量等因素,结合注塑次数等注塑工艺的调整,研究了上述材料对短玻璃纤维/聚丙烯复合材料性能的影响。
制备了拉伸模量为1.75GPa,拉伸强度为31.99MPa的短玻璃纤维/聚丙烯复合材料。
这一材料有望成为汽车、船舶、航空航天等工业领域广泛应用的新材料。
1 实验部分1.1 原料聚丙烯(PP)H-T-022,兰州石化公司;玻璃纤维CFN24,上海中实玻璃纤维有限公司。
1.2 主要仪器及设备流变仪:XLY-Ⅱ型,吉林大学科教仪器厂;拉伸机:上海华龙测试仪器有限公司;熔体流动速率仪:XNR-400Z型,长春市长城实验机厂;塑料注射成型机:HY-350-F1,宁波海鹰塑料机械制造有限公司。
1.3 玻璃纤维增强塑料的制备1.3.1 玻璃纤维的制备将玻璃纤维布用剪刀剪成线状纤维,用硝酸浸泡并真空干燥后剪成5~7毫米的短纤维。
1.3.2 基体的制备选择PP为基体,用1、2、3次成型分别获得试样,然后再进行对比实验,选择最佳成型次数。
1.3.3 复合材料注塑成型1.3.4 性能测试方法①拉伸试验:对弯曲试样进行三点弯曲试验,使用电子万能试验机,按照国家标准GB1040-92执行,加载速度为20mm/mi n±10%;②冲击试验:对拉伸试样进行冲击试验,使用材料冲击能量试验机,按照国家标准GB/T3808-1995执行;③熔融指数的测定:热塑性塑料的熔体流动速率是热塑性塑料在一定温度和负荷下,熔体每10min通过标准口模的质量。
玻纤增强PP的优缺点和工艺
玻纤增强PP的优缺点和工艺玻纤增强聚丙烯(Glass Fiber Reinforced Polypropylene,GFPP)是一种复合材料,由聚丙烯(PP)和玻璃纤维组成。
具有一系列优点和缺点,并且其制造工艺也有一定的特点。
以下将详细介绍GFPP的优缺点和工艺。
一、优点:1.强度高:GFPP的强度比普通聚丙烯高很多,主要是因为玻璃纤维的加入。
玻璃纤维具有优异的拉伸和弯曲强度,能够增加复合材料的整体强度。
2.刚性好:GFPP具有较高的刚性,玻璃纤维的加入提高了聚丙烯的刚性系数,使得材料更加坚硬和不易变形。
3.耐腐蚀性强:GFPP能够在酸、碱及其他化学介质中有很好的耐腐蚀性,这使得它广泛应用于化工、食品、医疗和环境保护等行业。
4.轻质:GFPP比金属材料轻很多,具有优良的比强度,可以减轻重量的负担并提高其他性能。
5.绝缘性好:玻璃纤维是一种非导电材料,因此GFPP具有良好的绝缘性能,适用于电子、电器等领域的应用。
6.耐疲劳性强:GFPP在长期受到重复载荷作用时,由于玻璃纤维的加入,可以大大提高材料的抗疲劳性能。
二、缺点:1.成本较高:由于玻璃纤维的加入,相对于普通聚丙烯来说,GFPP 的生产成本相对较高。
2.加工难度大:GFPP在加工过程中,由于玻璃纤维的切割、分散和表面改性等难度,导致其制造工艺较为复杂。
3.受热收缩:由于玻璃纤维的热膨胀系数较高,GFPP在受热时会产生明显的尺寸收缩,这就需要在设计和制造时加以考虑。
三、工艺:1.预处理:在GFPP的制造工艺中,首先需要对玻璃纤维进行预处理,包括切割、清洁以及表面处理等。
2.混炼:将预处理后的玻璃纤维与聚丙烯进行混炼,常见的方法有熔融混炼和干法混合。
3.挤出:将混炼后的材料通过挤出机进行挤出,形成所需的GFPP型材。
4.成型:挤出后的材料经过冷却,可以进行各种成型加工,如注塑成型、压力成型等。
5.后处理:GFPP成型件还需要进行一些后处理,如切割、去毛刺、抛光等工艺,以达到最终要求。
玻纤增强聚丙烯的工艺流程
玻纤增强聚丙烯的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!玻纤增强聚丙烯的工艺流程主要包括以下几个步骤:1. 配料:首先,将聚丙烯树脂与玻璃纤维进行混合。
玻纤增强聚丙烯(共10张PPT)
理的玻纤间界面粘结较差, 而与经偶联剂表面处理
二共、聚为 物什型么的使PP用材纤料维有增较强低的热变形温度(100℃)、低透明度、低光ห้องสมุดไป่ตู้泽度玻、低纤刚间性,能但是够有产更强生的抗化冲学击强作度,用PP,的形冲成击强良度好随着的乙界烯含面量粘的结增 ,
加而增大。
从而显著提高了CGFRPP 的拉伸、弯曲及层间剪切
其更对 好的改善作用。
由于均聚物型的PP温度高于0 ℃以上时非常脆,许多商业的PP材料是加入1~4%乙烯的无规共聚物或更高比率乙烯含量的嵌段共聚物。
9mm,而普通短纤维增强塑料的Lo则更小,玻纤长度一般只有0.
通常,采用加入玻璃纤维、金属添加剂或热塑橡胶的方法对PP进行改性。
2、对注射成型工艺的改进
四、时事行情
2002年,国外开发成功长玻纤增强聚丙烯注 射成型技术,并将这种技术成功地用于生产马 自达6型汽车前端模块和车门模块载体。该项 技术包括两个方面: 一是对玻纤增强聚丙烯的材料改性 二是对注射成型工艺的改进
1、对玻纤增强聚丙烯的材料改性
(1) 马来酸酐接枝改性的PP 基体与未经偶联剂表面处
玻纤增强聚丙烯
530宿舍
一、什么是玻纤增强聚丙烯
主要的两种类型
1、短纤增强聚丙烯(0.2~0.6)
2、长纤增强聚丙烯(3~6)
二、为什么使用纤维增强
PP是一种半结晶性材料,它比PE要更坚硬并 且有更高的熔点。由于均聚物型的PP温度高 于0 ℃以上时非常脆,许多商业的PP材料是 加入1~4%乙烯的无规共聚物或更高比率乙烯 含量的嵌段共聚物。共聚物型的PP材料有较 低的热变形温度(100℃)、低透明度、低光 泽度、低刚性,但是有更强的抗冲击强度, PP的冲击强度随着乙烯含量的增加而增大。 PP的维卡软化温度为150C。由于结晶度较高, 这种材料的表面刚度和抗划痕特性很好。PP 不存在环境应力开裂问题。通常,采用加入 玻璃纤维、金属添加剂或热塑橡胶的方法对
玻纤增强PP
郑州大学毕业设计(论文)题目:玻纤增强聚丙烯成型工艺的研究The Research of molding process of Glass MatReinforced Polypropylene指导教师:陈金周职称:教授牛明军职称:高级工程师学生姓名:曹黎明学号:20072630101专业:包装工程院(系):材料科学与工程学院完成时间:2011年6月1日2011年6 月1 日摘要玻璃纤维毡增强聚丙烯复合纤维材料剪裁性好,可用低压力模塑迅速成型为均质的结构,热塑性纤维分布紧密且均匀,玻璃纤维能得到非常迅速的浸渍和浸透,用它制作的产品的玻纤含量可达20%-45%(质量分数)之间,可采用各种成型工艺,例如模压、拉挤、真空模压等。
本文采用模压成型工艺,主要是探索玻纤毡和聚丙烯片材的成型工艺。
将聚丙烯片材和玻璃纤维毡交替叠合在一起,然后在一适当的压力下将其成型为玻纤毡增强聚丙烯复合板材,这种板材具有韧性高、使用温度高、可回收利用、质轻、力学性能优异等特点,具有较好的社会效益和经济效益。
最后制得的板材其玻纤含量大约为30%左右,其拉伸强度、弯曲强度、冲击强度相对聚丙烯均有一定程度的增强。
关键词:玻璃纤维毡;聚丙烯;复合材料;增强材料;模压成型IAbstractThe cut of glass mat reinforced polypropylene composite fiber is good and can be quickly formed into a homogeneous structure by molding at a low-pressure. The glass fiber can be impregnated and saturated very quickly, the distribution of the thermoplastic fiber is compact and uniform. The glass fiber content of the products can be up to 20%~45%. The products can be made by a variety of molding processes, such as molding, pultrusion, vacuum molding and so on.We used compression molding in this paper, and mainly explore the glass fiber mat and polypropylene sheets molding process. The polypropylene sheets and glass mat were laminated alternately, and then compress them into a board at a suitable pressure. The boards have high toughness, can be used at high temperature, recyclable, light weight, excellent mechanical properties and other characteristics. So the boards have better social and economic benefits. In this paper, the glass fiber content of the board is about 30%, and it show more excellent mechanical properties and other characterstics.Key words: Glass mat; Polypropylene; Composite materials; Reinforcements; Molding;II目录摘要 (I)Abstract (II)1.前言 (1)1.1 国内外研究现状 (1)1.2 GMT材料的性能特点 (3)1.2.1 比强度高 (3)1.2.2 可回收利用 (3)1.2.3 成型加工简单,生产效率高 (3)1.2.4 成本低 (3)1.2.5 抗冲击性能好 (4)1.2.6 贮存周期长 (4)1.3 GMT材料的市场需求及应用 (4)1.3.1 GMT材料在汽车工业中的应用 (4)1.3.2 GMT材料在其包装上的应用 (5)1.3.3 GMT材料在其他工业的应用 (6)1.4 GMT材料的发展趋势 (6)2.实验过程 (7)2.1 实验原料和设备 (7)2.2 实验步骤 (7)2.2.1 聚丙烯片材的制备 (7)2.2.2 玻纤增强聚丙烯板材的制备 (8)2.2.3 片材的预热 (8)2.2.4 模具温度控制系统 (8)2.2.5 保压时间 (9)2.2.6 合模压力 (9)2.3 性能测试 (9)3.实验结果与讨论 (10)3.1 制备复合板材的一些方法探索和讨论 (10)3.1.1从市场上购买的聚丙烯片材和玻纤毡的复合 (10)3.1.2自制聚丙烯片材和玻纤毡的复合 (10)3.1.3利用钢板来压制玻纤增强聚丙烯复合板材 (10)3.1.4利用热炼机来制备玻纤增强聚丙烯复合板材 (11)3.2 结果与讨论 (11)4.实验结论 (13)III参考文献 (14)附件1:.......................................................................................................错误!未定义书签。
玻璃纤维增强聚丙烯复合材料
论文结论:
一定范围内,长玻纤的含量越高,其作为骨架也就越 牢 固,复合材料的力学性能就越高;当含量过高时,玻纤相互作 用增加,纤维的断裂程度增加,同时含量过高也会使部分纤维 得不到充分浸润, 和PP树脂基体结合力变差,成为裂纹增长 点,LGFPP长玻纤增强聚丙烯复合材料的力学性能下降。
长玻纤增强PP的实验计划
长玻纤增加 PP 的原料、成型及分析测试方案1试验测试表征1.1纤维长度及纤维分布测定将复合材料样本置于微波辐射炉中或马福炉中高温裂解,550℃下进展裂解,在裂解物中将玻璃纤维剥离出来,然后将其分散于水中,然后用光学纤维镜进展观看和测定,可以得到纤维长度和也可以通过软件进展半自动地纤维分布的计算。
1.2形貌分析用 SEM 观看断口形貌及 GF 在基体 PP 中的分布及断面形貌1.3力学分析主要承受万能材料试验机测试拉伸强度,断裂伸长、弯曲性能〔强度、模量等〕等承受冲击试验机测定材料缺口悬臂梁冲击强度1.4热分析1.4.1承受 DMA 动态力学进展分析得到 Tg 和 tgδ1.4.2承受 DSC 争论 GF/PP 复合材料的结晶动力学1.5广角 X 射线衍射扫描分析用WAXD 争论GF/PP 的结晶度。
2成型及试验方案2.1主要成型加工条件多复合材料基体中纤维长度及纤维均匀性〔分布〕及复合材料力学性能的影响2.1.1成型加工温度(喂料螺杆各区温度,主要是其次组螺杆)●加料段180℃~190℃●压缩段、计量段渐次上升温度可在210℃~240℃之间进展调解●机头口模温度略低于计量段温度。
2.1.2两组螺杆转速调整,主要是其次组双螺杆的转速调整2.1.3浸渍与否、浓度、时间2.1.3 其次组双螺杆不同组合元件的搭配,考虑增加或削减混合原件〔更换螺杆元件较繁琐,可最终考虑〕2.2不同填加组份及纤维量等对复合材料力学性能、热性能、断面形貌、结晶性等的影响2.2.1偶联剂的参与否,参与种类〔KH-550、A-151,A-172,A-174〕对纤维在PP 基体中分散性的影响2.2.2纤维的参与量〔10%~40%〕对复合材料力学性能、热性能、结晶度的影响2.2.3纤维的长度〔一样纤维参与量,不同剪切状况下〕对复合材料力学性能、热性能、结晶度的影响2.2.4不同填加组份〔填充体系、润滑体系等〕对复合材料力学性能、热性能、形貌的影响2.3GF/PP 复合材料结晶动力学争论〔等温、非等温〕2.4GF/PP 复合材料中纤维长度、分布、纤维取向等数学计算模型的建立及争论2.5GF/PP 复合材料的应用争论3原料3.1PP选用PP原料主要依据两条原则,一是依据增加和改性PP产品性能对PP的要求,从而确定选用的是均聚PP、共聚PP还是化学处理PP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能;填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶体,从而提高透明性和冲击强度。
因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。
玻纤增强改性PP,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa
玻纤增强PP的特性
PP加玻纤,通常,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。
如果要想把PP
用在工程结构件上,就必须使用玻璃纤维进行增强。
PP加玻纤,通过玻璃纤维增强的PP产品的机械性能能够得到成
倍甚至数倍的提高。
具体来说,拉伸强度达到了65MPa~90MPa,弯曲强度达到了70MPa~120MPa,弯曲模量达到了3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美,并且更耐热。
PP加玻纤,一般ABS和增强ABS的耐热温度在80℃~98℃之间,
而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。
增强改性PP所用的玻璃纤维,要求长度为0.4~0.6ram,若长度小于0.04mm,玻璃纤维只起填充作用而无增强效果,发达国家都在开发长丝增强注射材料。
玻璃纤维含量在40%(质量分数)含量内,玻璃纤
维含量越高,PPR弹性模量、抗张、抗弯强度也越高。
但一般不能超过40%,否则流动量下降,失去补强作用,一般在10%~30%。
PP填充改性,在PP中加入一定量的无机矿物,如滑石粉、碳酸
钙、二氧化钛、云母等,可提高刚性,改善耐热性与光泽性;填加碳纤维、硼纤维、玻璃纤维等可提高抗张强度;填加阻燃剂可提高阻燃性能;填加抗静电剂、着色剂、分散剂等可分别提高抗静电性、着色性及流动性等;
填加成核剂,可加快结晶速度,提高结晶温度,形成更多更小的球晶体,从而提高透明性和冲击强度。
因此,填充剂对提高塑料制品的性能、改善塑料的成型加工性、降低成本有显著的效果。
玻纤增强PP的应用
PP作为四大通用塑料材料之一,具有优良的综合性能、良好的
化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存在着强
度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。
因
此,必须对其进行改性,以使其能够适应产品的需求。
对PP材料的改性
一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量应用。
PP加玻纤材料,可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇。
此外,它也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。
PP加玻纤材料。
普通的短玻纤增强PP,由于含有的玻纤短,易翘曲,冲击强度低,受热容易变形,长玻纤能够克服短玻纤的上述缺陷,且制品具有较好的表面、较高的使用温度、较高的冲击强度,可应用于冰箱以及耐热性比较高的厨用电器等。
优缺点及生产工艺
玻纤增强PP是在原有纯PP的基础上,加入玻璃纤维和其它助剂,从而提高材料的使用范围。
一般的来说,大部分的玻纤增强材料多用在产品的结构零件上,是一种结构工程材料。
优点
1. 玻纤增强以后,玻纤是耐高温材料,因此,增强塑料的耐热温
度比不加玻纤以前提高很多。
2. 玻纤增强以后,由于玻纤的加入,限制了塑料的高分子链间的
相互移动,因此,增强塑料的收缩率下降很多,刚性也大大提高。
3. 玻纤增强以后,PP塑料不会应力开裂,同时,PP的抗冲性能
提高很多。
4. 玻纤增强以后,玻纤是高强度材料,从而也大提了PP的强度,
如:拉伸强度,压缩强度,弯曲强度,提高很多。
5.玻纤增强以后,由于玻纤和其它助剂的加入,PP塑料的燃烧性
能下降很多,阻燃变得困难。
缺点
1. 玻纤增强以后,由于玻纤的加入,PP不加玻纤前是透明,都
会变成不透明的。
2 .玻纤增强以后,PP的韧性降低,而脆性增加。
3 .玻纤增强以后,由于玻纤的加入,PP的熔融粘度增大,流动
性变差,注塑压力比不加玻纤的要增加很多。
4 .玻纤增强以后,由于玻纤的加入,PP材料流动性差,增强塑
料的注塑温度要比不加玻纤以前提高10℃-30℃。
5 .玻纤增强以后,由于玻纤和助剂的加入,PP的吸湿性能大加
强,原来纯塑料不吸水的也会变得吸水,因此,注塑时都要进烘干。
6. 玻纤增强以后,在注塑过程中,玻纤能进入塑料制品的表面,
使得制品表面变得很粗糙,斑斑点点。
为了取得较高的表面质量,最好注塑时使用模温机加热模具,使得塑料高分子进入制品表面,但不能达到纯塑料的外观质量。
7 .玻纤增强以后,玻纤是硬度很高的材料,助剂高温挥发后是腐
蚀性很大的气体,对注塑机的螺杆和注塑模具的磨损和腐蚀很大,因此,生产使用这类材料[1]的模具和注塑机时,要注意设备的表面防腐处理和
表面硬度处理。
产品工艺
1. 从产品性能方面考虑,所有的玻纤增强产品均要求剪碎后的玻
纤有一定的长度,一般在0.4-0.8mm之间,才能起到增强作用:玻纤过短,只有填充的作用,而浪费其增强性能;玻纤过长,玻纤与物料之间的界面结合不好,会影响其增强效果,会导致产品的表面过于粗糙,不够光滑,表面性能不好。
2. 影响玻纤剪切的条件:物料在玻纤口处必须熔化了85%以
上,否则将因玻纤与物料之间严重的摩檫使玻纤被剪切得过碎;玻纤口处温度不能过低,必须在所生产物料的熔点以上,否则将因料过冷,摩擦过大使玻纤剪切过碎。
一般工艺表上已经考虑到这问题,生产时需要注意是保证温度波动不大即可。
3. 玻纤增强PP常见问题:生产增强PP产品时,玻纤很难剪断,
并且与所用的玻纤有关。
生产不顺时会出现这样的现象:因玻纤过长,常把模头模孔堵住,引起断条,判断方法:在模头模孔处可看到一团团的玻纤,成品的截面处可明显看到成团的玻纤或在粒子的表层有切不断的玻
纤,料条软而不脆,料条不能完全拗断,拗后将有一层连皮。
或从拗断的声音可判断出来:增强效果差的料条拗断时的声音较沉,增强效果好的料条拗断时的声音较脆。
俗称“玻纤不熔”。
若生产时断条严重,并且料条较软,则成品的性能一定会降低。
根据PP材料的上述特点,生产增强PP时从玻纤口后到机头段的螺杆剪切很强。
要避免“玻纤不熔”的现象除了保证螺杆玻纤口后面剪切
强之外,螺筒磨损大小对其也影响很大。
当机台磨损过大时常常以降低玻纤口后温度,特别时玻纤口至真空口之间的温度,提高熔体粘度来提高剪切,避免“玻纤不熔”。
但玻纤口后温度不可降低过大以免玻纤剪切过碎,性能降低。