二次函数的典型例题的解析
二次函数知识点与例题复习(含答案)
考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a,244ac b a-). 例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.分析:要求m 的值只要将点A (-1,m )的坐标代入y=5x即可.要求c 的值,则只要把点A 的坐标代入y=-x 2+2x+c 即可.求二次函数图象的对称轴和顶点坐标,可以直接代入计算公式,也可以利用配方法进行计算.解答:(1)把x=1,y=m 代入y=5x,得m=-5,所以点A 的坐标为(-1,-5).把x=-1,y=-5代入y=-x 2+2x+c ,得c=-2.(2)因为y=-x 2+2x-2=-(x-1)2-1,所以二次函数的对称轴是直线x=1,顶点坐标是(1,-1).点评:本题主要涉及二次函数图象的对称轴和顶点坐标的计算,解决问题的方法有两种,可根据表达式的特点灵活选择计算方法.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限分析:通过观察图象可以知道a 喝b 的符号,从而可以判断出y=ax-b 的图象一定过的象限.图1解:由图,可知a<0,又由对称轴,可知-2ba>0,∴b>0. ∴y=ax-b 的图象一定经过第二、三、四象限. ∴应选C.点评:求解本题时,一定要认真分析题目提供的图象,从图像中捕捉对求解有用的信息. 考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 分析:因为将抛物线向上平移,表明抛物线沿y 轴向上. 解:把抛物线y=3x 2向上平移2个单位, ∴平移后的抛物线的表达式应为y=3x 2+2. ∴应选C.点评:抛物线在左边平面内实施平移变换,其位置发生了改变,但其形状和开口不变,即a 不变.专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).分析:依题意利用图形的面积公式求解. 解:依题意AD=12(30-x ),所以由长方形的面积公式得y=x ×12(30-x )=-12x 2+15x. 点评:本题主要考查从实际问题中建立函数模型求二次函数表达式,这里应注意30米的篱笆只需围三个面,另一面靠墙,不需要篱笆.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0).例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.分析:可用顶点式求解.解:设抛物线的表达式为y=a (x+1)2+4,因为抛物线经过B (2,-5),所以-5=a (2+1)2+4,即a=-1.所以抛物线的表达式为y=-(x+1)2+4=-x 2-2x+3.图2ABCD图1菜园墙点评:求抛物线的表达式的常用方法是待定系数法.给定的条件不同,所设的表达式的形式也不一样.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.分析:由于该抛物线经过三点,故可用一般式求解,又该抛物线与x 轴的两个交点已知,所以也可以用交点式求解.解:(1)设这个抛物线的解析式为y=ax 2+bx+c (a ≠0). 由题意,得⎪⎩⎪⎨⎧=++=++=+-,824,0,024c b a c b a c b a 解得⎪⎩⎪⎨⎧-===.4,2,2c b a 所以抛物线的解析式为.4222-+=x x y(2)因为4222-+=x x y =229)21(2-+x , 所以抛物线的顶点坐标为).29,21(--点评:用“待定系数法”求抛物线的表达式是最基本、最重要的方法之一,同学们一定要牢固掌握,同时,要灵活运用二次函数的三种表达式,如本题选用交点式)(1x x a y -=)(2x x -也较方便.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 2.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 . 3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1,图2求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<分析:本题用表格的形式提供了部分信息,对函数、方程之间的关系进行针对性的考查,即方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的解就是函数y=ax 2+bx+c 值为零时对应的自变量x 的取值.解:由于x 轴上表示实数的点是连续的,因此,可以估计方程的解必然在某负数函数值与某正数函数值之间,故由表格提供的数据可选择C.点评:本题主要考查二次函数与一元二次方程的关系,解决问题的思路是通过表格观察函数值在什么范围内由负数变为正数,这个服务就是对应的方程的根的范围.考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.分析:二次函数y=-x 2+3x+m 的图象与x 轴的角度的横坐标即为方程-x 2+3x+m=0的根.观察图象,可知图象与x 轴的一个交点为(4,0),且对称轴为x=32,根据图象与x 轴两个交点关于对称轴x=32对称,所以另一个交点的坐标为(-1,0),由此可得到方程的两个根. 解:因为y=-x 2+3x+m 与x 轴的一个交点为(4,0),且图象的对称轴为x=32,所以图象与x 轴的另一个交点为(-1,0).所以方程-x 2+3x+m=0的两根为x 1=-1,x 2=32.点评:本题已知图象的一部分,求相应方程的根,解决问题的关键是根据图象与x 轴两个交点关于对称轴对称,求到图象与x 轴交点的坐标.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0分析:要求与x 轴的交点个数,可转化为一元二次方程根的情况来解决. 解:由题意得当y=0时,即为x 2-1=0,∵b 2-4ac=4>0,∴x 2-1=0有两个不相等的实数根, ∴抛物线与x 轴有两个交点. 故选B.点评:二次函数中,当涉及到图象与坐标轴的交点时,注意要考虑与一元二次方程的联系.专项练习三图2图11.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 分析:首先利用利润=(销售单价-成本)×销售量这个公式算术y 与x 的关系;再解一元二次方程;最后利用二次函数的性质求出最大值即可.解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭, 即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 解这个方程,得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元. 点评:本题是一道构建二次函数解决实际问题的决策题,是中考的重要考点.对于第(3)小题的最大利润问题,除了用顶点公式来确定答案外,也可以利用配方法将二次函数的表达式化成顶点式.专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?参考答案 专题练习一 1.A 解析:由y=13-x 2+103x 163-=13-(x-5)2+3,∵13-<0,∴开口向下,顶点坐标为(5,3)2.C 解析:因为a=1>0,所以开口向上,A 正确;把(0,-3)代入y=x 2-2x+c 中,解得c=-3,所以抛物线为y=x 2-2x-3=(x-1)2-4,所以抛物线的对称轴是直线x=1,B 正确;因为a=1>0,所以抛物线有最小值,且当x=1时,最小值为-4,故C 错误;由x 2-2x-3=0得x=1,x=3,所以抛物线与x 轴交点为(-1,0),(3,0),D 正确.3.y=(x+1)2-2 解析:二次函数y=x 2的图象向左平移1个单位长度所得图象的表达式为y=(x+1)2,再向下平移2个单位长度后,所得图象的表达式为y=(x+1)2-2.4.①②③⑤ 解析:因为抛物线开口向上,可知a>0.再由对称轴x=2ba-,所以b<0.又2ba-=3,得3b=-2a ,所以2a+3b=0,所以④错误;由抛物线与y 轴交于负半轴,可知c<0,所以abc>0,所以①、②均正确;观察图形可知x=-1时,y>0,即a-b+c>0,所以③正确;因为x=2时,y>0,即4a+2b+c>0,将3b=-2a 代入4a+2b+c>0,得-4b+c>0,即c-4b>0,所以⑤正确,所以①、②、③、⑤正确.专题练习二1.D 解析:第一次降价后的价格为a (1-x ),第二次降价后的价格为a (1-x )(1-x )=a (1-x )2,所以y=a (1-x )2.2.y=x 2-2x-2 解析:依题意,结合图象,当x=0时,y=c<0,即OC=|c|,又tan ∠ACO=12,CO=BO ,所以OB=OC=|c|,OA=12|c|,而AB=3,所以12|c|+|c|=3,所以c=-2,所以点A 的坐标为(-1,0),所以b=-1.使用这条抛物线的函数表达式为y=x 2-x-2.3.解析:设该抛物线表达式为y=ax 2+bx+c.把(0,-2)、(1,3),(-1,1)分别代入上式,并解得a=4,b=1,c=-2.所以该抛物线的表达式为y=4x 2+x-2.4.解析:(1)设23y ax bx =+-,把点(23)-,,(10)-,代入得423330.a b a b +-=-⎧⎨--=⎩, 解方程组得12.a b =⎧⎨=-⎩, 223y x x ∴=--; (2)2223(1)4y x x x =--=--.∴函数的顶点坐标为(14)-,.(3)要由(1,-4)变为(0,0),则应左移1个单位后,再上移4个单位,故应最少平移5个单位,才能使得该图象的顶点在原点.专项练习三1.k ≥74-且k ≠0 解析:抛物线与x 轴有交点,即kx 2-7x-7=0有实数根,所以(-7)2-4×(-7)×k ≥0,解得k ≥74-且k ≠0. 2.x 1=-1,x 2=3 解析:同例3.3.D 解析:因为抛物线y=ax 2+bx+c+2是由抛物线y=ax 2+bx+c 向上平移2个单位所得的图象,而抛物线y=ax 2+bx+c 的最低点的纵坐标为-3,所以抛物线y=ax 2+bx+c+2的最低点的纵坐标为-1,故抛物线y=ax 2+bx+c+2与x 轴有两个交点,且都在y 轴的右侧,所以方程ax 2+bx+c+2=0有两个同号不等实数根.4.解析:(1)因为二次函数y=ax 2+bx+c 的图象与x 轴的两个交点坐标是(1,0),(3,0),所以方程ax 2+bx+c=0的两个根为x 1=1,x 2=3;(2)因为抛物线的开口向下,所以x 轴的上方都满足ax 2+bx+c>0,即表达式ax 2+bx+c>0的解为1<x<3;(3)因为抛物线的对称轴方程是x=2,且a<0,所以当x>2时,y 随x 的增大而减小;(4)因为抛物线的顶点的纵坐标是2,所以要使方程ax 2+bx+c=k 有两个不相等的实数根,只要k<2.专题训练四1.解析:(1)根据题意,得S=x x ⋅-2260=-x 2+30x , 自变量x 的取值范围是0<x<30.(2)∵a=-1<0,∴S 有最大值.301522(1)b x a ∴=-=-=⨯-2243022544(1)ac b S a --===⨯-最大∴当x=15时,S 最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.2.解析:设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75(元),客房日租金总收入最。
二次函数经典测试题及答案解析
二次函数经典测试题及答案解析一、选择题1.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.4.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .32-B .3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8【答案】B【解析】【分析】B ,C 分别是顶点,A 是抛物线与x 轴的一个交点,连接OC ,AB ,阴影部分的面积就是平行四边形ABCO 的面积.【详解】抛物线y =x 2﹣4x +1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y 轴上,此时顶点B(0,-3),点A 是抛物线与x 轴的一个交点,连接OC ,AB ,如图,阴影部分的面积就是ABCO 的面积,S=2×3=6;故选:B .【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.7.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A(x1,m)在直线y=﹣12x上,∴m=﹣12x1,∴x1=﹣2m,∴x1+x2+x3=﹣2m+2m+2=2,故选:D.【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.8.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A5B 453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:DE=5.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,,即BF x CM2x2255-==,,解得:()52x5BF?x CM22-==,.∴BF+CM=5.故选A.9.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质10.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系11.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.12.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.13.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.14.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.15.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.16.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以vcm /s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sin B =13;③图象C 2段的函数表达式为y=﹣13x2+103x;④△APQ面积的最大值为8,其中正确有()A.①②B.①②④C.①③④D.①②③④【答案】A【解析】【分析】①根据题意列出y=12AP•AQ•sin A,即可解答②根据图像可知PQ同时到达B,则AB=5,AC+CB=10,再代入即可③把sin B=13,代入解析式即可④根据题意可知当x=﹣522ba时,y最大=2512【详解】①当点P在AC上运动时,y=12AP•AQ•sin A=12×2x•vx=vx2,当x=1,y=12时,得v=1,故此选项正确;②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,当P在BC上时y=12•x•(10﹣2x)•sin B,当x=4,y=43时,代入解得sin B=13,故此选项正确;③∵sin B=13,∴当P在BC上时y=12•x(10﹣2x)×13=﹣13x2+53x,∴图象C2段的函数表达式为y=﹣13x2+53x,故此选项不正确;④∵y=﹣13x2+53x,∴当x=﹣522ba时,y最大=2512,故此选项不正确;故选A.【点睛】此题考查了二次函数的运用,解题关键在于看图理解17.下面所示各图是在同一直角坐标系内,二次函数y=2ax+(a+c)x+c与一次函数y=ax+c的大致图象.正确的()A.B.C.D.【答案】D【解析】【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=-ca,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(−ca,0),选项A中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,故选项A不符题意,选项B中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a>0,c<0,两个函数的交点不符合求得的交点的特点,故选项B不符题意,选项C中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a<0,c>0,交点符合求得的交点的情况,故选项D符合题意,选项D中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,故选项C不符题意,故选:D.【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x=2时,y=3P到达点A的位置,即AB=2×3v=6v,BQ=3=3,y=12⨯AB×BQ=12⨯6v3v=3v=1,故点P、Q的速度分别为:33AB=6v=6=a,则AC=12,BC=3如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ3=3CQ=BC﹣BQ=33=3,过点P作PH⊥BC于点H,PC =6,则PH =PC sin C =6×12=3,同理CH =3,则HQ =CH ﹣CQ =333,PQ 22PH HQ +39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y 左侧,a ,b 同号,对称轴在y 轴右侧a ,b 异号,以及当a 大于0时开口向上,当a 小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y 轴于正半轴,常数项为负,交y 轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bx y bx a⎧=+⎨=-⎩得ax 2=−a , ∵a ≠0∴x 2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B .A :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;但是一次函数b 为一次项系数,图象显示从左向右上升,b >0,两者矛盾,故A 错;C :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;b 为一次函数的一次项系数,图象显示从左向右下降,b <0,两者相符,故C 正确;D :二次函数的图象应过原点,此选项不符,故D 错.故选C .【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。
二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析
二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。
二次函数的三种表示方式(解析版)
二次函数的三种表示方式高中必备知识点1:一般式形如下面的二次函数的形式称为一般式:y =ax 2+bx +c (a ≠0);典型考题【典型例题】已知抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,﹣3). (1)求抛物线的表达式.(2)已知点(m ,k )和点(n ,k )在此抛物线上,其中m ≠n ,请判断关于t 的方程t 2+mt +n =0是否有实数根,并说明理由.【答案】(1)y =x 2+2x ﹣3;(2)方程有两个不相等的实数根. 【解析】(1)抛物线y =ax 2+bx +c 的对称轴为x =﹣1,且过点(﹣3,0),(0,3) 9a ﹣3b +c =0930312a b c c b a⎧⎪-+=⎪=-⎨⎪⎪-=-⎩ 解得a =1,b =2,c =﹣3 ∴抛物线y =x 2+2x ﹣3;(2)∵点(m ,k ),(n ,k )在此抛物线上, ∴(m ,k ),(n ,k )是关于直线x =﹣1的对称点, ∴+2m n=﹣1 即m =﹣n ﹣2 b 2﹣4ac =m 2﹣4n =(﹣n ﹣2)2﹣4n =n 2+4>0∴此方程有两个不相等的实数根.【变式训练】抛物线的图象如下,求这条抛物线的解析式。
(结果化成一般式)【答案】【解析】由图象可知抛物线的顶点坐标为(1,4),设此二次函数的解析式为y=a(x-1)2+4把点(3,0)代入解析式,得:4a+4,即a=-1所以此函数的解析式为y=-(x-1)2+4故答案是y=-x2+2x+3.【能力提升】如图,在平面直角坐标系中,抛物线先向右平移2个单位,再向下平移2个单位,得到抛物线. (1)求抛物线的解析式(化为一般式);(2)直接写出抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.【答案】(1) ;(2)4.【解析】 (1)抛物线的顶点坐标为,把点先向右平移2个单位,再向下平移2个单位后得到的点的坐标为,抛物线的解析式为;(2)顶点坐标为,且抛物线的对称轴与两段抛物线弧围成的阴影部分的面积,抛物线的对称轴与两段抛物线弧围成的阴影部分的面积.高中必备知识点2:顶点式形如下面的二次函数的形式称为顶点式:y =a (x -h )2+k (a ≠0),其中顶点坐标是(h ,k ).典型考题【典型例题】已知二次函数21322y x x =-++. ⑴用配方法将此二次函数化为顶点式; ⑵求出它的顶点坐标和对称轴方程.【答案】(1)()21122y x =--+;(2)(1,2),直线1x = 【解析】 (1)21322y x x =-++()21232y x x =--- ()2121132y x x =--+--()212142y x x ⎡⎤=--+-⎣⎦ ()21142y x ⎡⎤=---⎣⎦()21122y x =--+(2)∵()21122y x =--+∴顶点坐标为(1,2),对称轴方程为直线1x =.【变式训练】已知二次函数的图象的顶点是(﹣1,2),且经过(1,﹣6),求这个二次函数的解析式. 【答案】二次函数的解析式为y=﹣2(x+1)2+2. 【解析】∵二次函数的图象的顶点是(﹣1,2),∴设抛物线顶点式解析式y=a (x+1)2+2,将(1,﹣6)代入得,a (1+1)2+2=﹣6, 解得a=﹣2,所以,这个二次函数的解析式为y=﹣2(x+1)2+2.【能力提升】二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.【答案】(1)322--=x x y ;(2)(1,-4);(3)5【解析】(1)设c bx ax y ++=2,把点(03)A -,,(23)B -,,(10)C -,代入得 ⎪⎩⎪⎨⎧=---=++-=03343b a c b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y ;(2)∵4)1(3222--=--=x x x y∴函数的顶点坐标为(1,-4); (3)∵|1-0|+|-4-0|=5∴二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.高中必备知识点3:交点式形如下面的二次函数的形式称为交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.典型考题【典型例题】已知在平面直角坐标系中,二次函数 y =x 2+2x +2k ﹣2 的图象与 x 轴有两个交点. (1)求 k 的取值范围;(2)当 k 取正整数时,请你写出二次函数 y =x 2+2x +2k ﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.【答案】(1)k <;(2)(﹣2,0)和(0,0).【解析】(1)∵图象与x轴有两个交点,∴方程有两个不相等的实数根,∴解得(2)∵k 为正整数,∴k=1.∴令y=0,得解得∴交点为(﹣2,0)和(0,0).【变式训练】已知二次函数的图象经过点(3,-8),对称轴是直线x=-2,此时抛物线与x轴的两交点间距离为6.(1)求抛物线与x轴两交点坐标;(2)求抛物线的解析式.【答案】(1)(-5,0),(1,0);(2)y=-x2-2x+.【解析】(1) ∵因为抛物线对称轴为直线x=-2,且图象与x轴的两个交点的距离为6,∴点A、B到直线x=-2的距离为3,∴A为(-5,0),B为(1,0);(2)设y=a(x+5)(x-1).∵点(3,-8)在抛物线上,∴-8=a(3+5)(3-1),a=-,∴y=-x2-2x+.【能力提升】已知二次函数y=x2﹣4x+3.(1)求该二次函数与x轴的交点坐标和顶点;(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);(2)图见详解;当y<0时,1<x<3.【解析】(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,所以该二次函数与x轴的交点坐标为(1,0)(3,0);因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,所以抛物线的顶点坐标为(2,﹣1);(2)函数图象如图:由图象可知,当y<0时,1<x<3.专题验收测试题1.将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A.y=﹣2(x﹣1)2+1 B.y=﹣2(x+3)2﹣5C.y=﹣2(x﹣1)2﹣5 D.y=﹣2(x+3)2+1【答案】B【解析】解:将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为:y=﹣2(x+3)2﹣5.故选:B.2.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【答案】A【解析】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选:A.3.若二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,则k的值为()A.1 B.2 C.﹣1 D.﹣2【答案】D【解析】∵二次函数y=(k+1)x2﹣2x+k的最高点在x轴上,∴△=b2﹣4ac=0,即8﹣4k(k+1)=0,解得:k1=1,k2=﹣2,当k=1时,k+1>0,此时图象有最低点,不合题意舍去,则k的值为:﹣2.故选:D.4.已知二次函数为常数,且),()A.若,则的增大而增大;B.若,则的增大而减小;C.若,则的增大而增大;D.若,则的增大而减小;【答案】C【解析】解:∵y=ax2+(a+2)x-1对称轴直线为,x=-=-.由a<0得,->0.∴->-1.又∵a<0∴抛物线开口向下.故当x<-时,y随x增大而增大.又∵x<-1时,则一定有x<-.∴若a<0,则x<-1,y随x的增大而增大.故选:C.5.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)【答案】B【解析】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.6.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.7.把抛物线y=ax2+bx+c图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y=x2+5x+6,则a﹣b+c的值为()A.2 B.3 C.5 D.12【答案】B【解析】y=x2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣).故原抛物线的解析式是:y=(x+)2+=x2+x+3.所以a=b=1,c=3.所以a﹣b+c=1﹣1+3=3.故选B.8.已知二次函数y=﹣(x﹣k+2)(x+k)+m,其中k,m为常数.下列说法正确的是()A.若k≠1,m≠0,则二次函数y的最大值小于0B.若k<1,m>0,则二次函数y的最大值大于0C.若k=1,m≠0,则二次函数y的最大值小于0D.若k>1,m<0,则二次函数y的最大值大于0【答案】B【解析】∵y=﹣(x﹣k+2)(x+k)+m=﹣(x+1)2+(k﹣1)2+m,∴当x=﹣1时,函数最大值为y=(k﹣1)2+m,则当k<1,m>0时,则二次函数y的最大值大于0.故选:B.9.关于抛物线,下列说法错误..的是().A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,的增大而增大【答案】B【解析】解:A、,抛物线开口向上,所以A选项的说法正确;B、当时,即,此方程没有实数解,所以抛物线与x轴没有交点,所以B选项的说法错误;C、抛物线的对称轴为直线,所以C选项的说法正确;D、抛物线开口向上,抛物线的对称轴为直线,则当时,y随x的增大而增大,所以D选项的说法正确.故选:B.10.将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为()A.y=﹣3(x﹣2)2+4 B.y=﹣3(x﹣2)2﹣2C.y=﹣3(x+2)2+4 D.y=﹣3(x+2)2﹣2【答案】D【解析】将抛物线y=﹣3x2+1向左平移2个单位长度所得直线解析式为:y=﹣3(x+2)2+1;再向下平移3个单位为:y=﹣3(x+2)2+1﹣3,即y=﹣3(x+2)2﹣2.故选D.11.已知抛物线经过点,则该抛物线的解析式为__________.【答案】【解析】解:将A、O两点坐标代入解析式得:,解得:,∴该抛物线的解析式为:y=.12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.【答案】-1【解析】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=0,∴a=±1,∵a-1≠0,∴a≠1,∴a的值为-1.故答案为:-1.13.将二次函数y=x2的图象先向上平移1个单位,然后向右平移2个单位,得到新的二次函数的顶点式为______.【答案】y=(x-2)2+1【解析】解:将抛物线y=x2的图象先向上平移1个单位,然后向右平移2个单位后,得到的抛物线的表达式为y=(x-2)2+1,故答案为:y=(x-2)2+1.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+115.在平面直角坐标系xOy 中,函数y = x2的图象经过点M (x1 , y1 ) ,N (x2 , y2 ) 两点,若- 4< x1<-2,0< x2<2 ,则y1 ____ y2 . (用“ <”,“=”或“>”号连接)【答案】>【解析】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故答案为:>.16.小颖从如图所示的二次函数的图象中,观察得出了下列信息:;;;;.你认为其中正确信息的个数有______.【答案】【解析】解:抛物线的对称轴位于y轴左侧,则a、b同号,即,抛物线与y轴交于正半轴,则,所以,故错误;如图所示,当时,,所以,故正确;对称轴,,则如图所示,当时,,,,故正确;如图所示,当时,,故错误;综上所述,正确的结论是:.故答案是:.17.已知二次函数y=﹣x2+bx﹣c的图象与x轴的交点坐标为(m﹣2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y =1时,自变量x 有唯一的值,求二次函数的解析式. 【答案】(1)31=m (2)y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 【解析】解:(1)由题意可知,二次函数图象的对称轴为x =2213122m m m -++-=,∵a =﹣1<0,∴二次函数的图象开口向下, ∵x <0时,y 随x 的增大而增大,∴312m -≥0, 解得m ≥13,(2)由题意可知,二次函数的解析式为y =﹣(x ﹣312m -)2+1, ∵二次函数的图象经过点(m ﹣2,0), ∴0=﹣(m ﹣2﹣312m -)2+1, 解得m =﹣1和m =﹣5,∴二次函数的解析式为y =﹣x 2﹣4x ﹣3和y =﹣x 2﹣16x ﹣63. 18.设二次函数y 1=ax 2+bx +a ﹣5(a ,b 为常数,a ≠0),且2a +b =3. (1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;(2)y 1的图象始终经过一个定点,若一次函数y 2=kx +b (k 为常数,k ≠0)的图象也经过这个定点,探究实数k ,a 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )都在函数y 1的图象上,若x 0<1,且m >n ,求x 0的取值范围(用含a 的代数式表示).【答案】(1)y =3x 2﹣3x ﹣2;(2)k =2a ﹣5;(3)x 0<.【解析】解:(1)∵函数y 1=ax 2+bx +a ﹣5的图象经过点(﹣1,4),且2a +b =3 ∴,∴,∴函数y 1的表达式为y =3x 2﹣3x ﹣2; (2)∵2a +b =3∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2∴当x=1时,y1=﹣2,∴y1恒过点(1,﹣2)∴代入y2=kx+b得∴﹣2=k+3﹣2a得k=2a﹣5∴实数k,a满足的关系式:k=2a﹣5(3)∵y1=ax2+(3﹣2a)x+a﹣5∴对称轴为x=﹣,∵x0<1,且m>n∴当a>0时,对称轴x=﹣,解得,当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)故x0的取值范围为:19.已知二次函数y=x2+bx+c的图象经过点A和点B(1)求该二次函数的解析式;(2)写出该抛物线的对称轴及顶点坐标.【答案】(1) y=x2﹣4x﹣6;(2)对称轴为x=2;顶点坐标是(2,﹣10).【解析】(1)根据题意,得,解得,∴所求的二次函数的解析式为y=x2﹣4x﹣6.(2)又∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴函数图象的对称轴为x=2;顶点坐标是(2,﹣10).20.如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A、B两点,其中A点的坐标为(-3,0),C为抛物线与y轴的交点.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=2S△BOC,求点P的坐标.【答案】(1)y=x2+2x﹣3;(2)点P的坐标为(2,5)或(﹣2,﹣3)【解析】(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.(2)∵将x=0代y=x2+2x﹣3入,得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴12OC•|a|=12OC•OB,即12×3×|a|=2×12×3×1,解得a=±2.当a=2时,点P的坐标为(2,5);当a=﹣2时,点P的坐标为(﹣2,﹣3).∴点P的坐标为(2,5)或(﹣2,﹣3).21.已知抛物线y=ax2﹣3ax﹣4a(a≠0).(1)直接写出该抛物线的对称轴.(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.【答案】(1);(2)抛物线一定经过点.【解析】解:(1)该抛物线的对称轴为x=-;(2)可化为,当,即时,,抛物线一定经过点.22.如图,已知点A(-1,0),B(3,0),C(0,)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在第一象限的抛物线上求一点P,使△PBC的面积为.【答案】(1);(2)点P的坐标为(1,2)或(2,).【解析】(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,)代入,得-3a=,解得∴抛物线的解析式为(2)过点P作PD⊥x轴于D.设点,∴S四边形ACOB=S梯形PDOC+S△PBD =(=∴S△PBC=S四边形PCOB- S△BOC=整理得,解得x=1或x=2.∴点P的坐标为(1,2)或(2,)。
(中考数学真题复习)第18讲 二次函数综合应用 基础例题 附答案解析
中考数学复习二次函数综合应用一、选择题1.(2012·济宁)一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A) A.5元B.10元C.0元D.3600元2.(2012·北海)为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是(B) A.600m2B.625m2C.650m2D.675m23.(2012·河北)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(C) A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒4.如图18-1所示,抛物线y =12(x-2)2-8与x轴交于A、B两点,顶点为C,为使△ABC成为直角三角形,必须将抛物线向上平移几个单位(D)A.7B.6C.5D.4二、填空题5.已知抛物线y=x2+x+b2经过点a,-14和(-a,y1),则y1的值是__34__.6.飞机着陆后滑行的距离s(单位:m)与滑行时间t(s)的函数关系式是s=60t-1.5t2,飞机着陆后滑行的最长时间是__20__s.7.如图18-2所示,已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P图18-1图18-2从A 点出发,沿A →B →C →E 运动,到达点E .若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y=13时,x 的值等于__23或53__.8.甲乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m)与其距地面高度h (m)之间的关系式为h =-112s 2+23s +32.如图18-3所示,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是__5<m <4+7__.三、解答题9.用长为12m 的篱笆,一边利用足够长的墙围出一块苗圃如图18-4所示,围出的苗圃是五边形ABCDE ,AE ⊥AB ,BC ⊥AB ,∠C =∠D =∠E .设CD =DE =x m ,五边形ABCDE 的面积为S m 2.问当x 取什么值时,S 最大?并求出S 的最大值.解:连接EC ,作DF ⊥EC ,垂足为F ,∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°,∴∠DCB =∠CDE =∠DEA =120°,∵DE =CD ∴∠DEC =∠DCE =30°,∴∠CEA =∠ECB =90°,∴四边形EABC 为矩形,∵DE =x m ,∴AE =6-x ,DF =12x ,EC =3x ,S =-334x 2+63x (0<x <6).当x =4m 时,S 最大=123m 2.10.(2011·成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图18-5所示的长方形ABCD .已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值图18-3图18-4图18-5时,S取得最值(请指出是最大值还是最小值)?并求出这个最值.解:∵AB=x,∴BC=120-2x,∴S=x(120-2x)=-2x2+120x;当x=120 2×2=30时,S有最大值为0-12024×(-2)=1800.(2)学校计划将苗圃内药材种植区域设计为如图18-5所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.解:设圆的半径为r,路面宽为a,根据题意得4r+2a=60,2r+2a=30,解得r=15,a=0.∵路面宽至少要留够0.5米宽,∴这个设计不可行.B组能力提升11.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是(B) A.第8秒B.第10秒C.第12秒D.第15秒12.(2013·兰州)如图18-6所示,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为(B) 13.(2011·泸州)如图18-7所示,半径为2的圆内接等腰梯形ABCD,图18-6图18-7它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是__10__.14.如图18-8所示,P 是边长为1的正三角形ABC 的BC 边上一点,从P 向AB 作垂线PQ ,Q 为垂足.图18-8延长QP 与AC 的延长线交于R ,设BP =x (0≤x ≤1),△BPQ 与△CPR 的面积之和为y ,把y 表示为x 的函数是__y =338x 2-32x +34__.15.(2013·滨州)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm ,高为20cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计).解:已知抽屉底面宽为x cm ,则底面长为180÷2-x =(90-x )cm.由题意得y =x (90-x )×20=-20(x 2-90x )=-20(x -45)2+40500当x =45时,y 有最大值,最大值为40500.答:当抽屉底面宽为45cm 时,抽屉的体积最大,最大体积为40500cm 3.16.(2013·潍坊)为了改善市民的生活环境,我市在某河滨空地处修建一个如图18-9所示的休闲文化广场.在Rt △ABC 内修建矩形水池DEFG ,使顶点D 、E 在斜边AB 上,F 、G 分别在直角边BC 、AC 上;又分别以AB 、BC 、AC 为直径作半圆,设计了两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中AB =243米,∠BAC =60°.设EF =x 米,DE =y 米.图18-9(1)求y 与x 之间的函数解析式;解:在Rt △ABC 中,由题意得AC =123米,BC =36米,∠ABC =30°,∴AD =DG tan60°=x 3=33x ,BE =EF tan30°=3x ,又AD +DE +BE =AB ,∴y =243-33x -3x =243-433x (0<x <8).(2)当x 为何值时,矩形DEFG 的面积最大?最大面积是多少?解:矩形DEFG 的面积S =xy =243-433x =-433x 2+243x =-433(x -9)2+108 3.所以当x =9时,矩形DEFG 的面积最大,最大面积为1083平方米.(3)求两弯新月(阴影部分)的面积,并求当x 为何值时,矩形DEFG 的面积等于两弯新月面积的13?解:记AC 为直径的半圆、BC 为直径的半圆、AB 为直径的半圆面积分别为S 1、S 2、S 3,两弯新月面积为S ,则S 1=18πAC 2,S 2=18πBC 2,S 3=18πAB 2,由AC 2+BC 2=AB 2可知S 1+S 2=S 3,∴S 1+S 2-S =S 3-S △ABC ,故S =S △ABC ,所以两弯新月的面积S =12×123×36=2163(平方米)由-433(x -9)+1083=13×2163,即(x -9)2=27,解得x =9±33,符合题意,所以当x =9±33米时,矩形DEFG 的面积等于两弯新月面积的13.。
中考二次函数经典例题
已知:抛物线y= -x^2 +2x +8交X轴于A、B两点(A在B左侧),O是坐标原点。
1、动点P在X轴上方的抛物线上(P不与A、B重合),D是OP中点,BD延长线交AP于E问:在P点运动过程中,PE:PA是否是定值?是,求出其值;不是,请说明理由。
2、在第1问的条件下,是否存在点P,使△PDE的面积等于1 ?若存在,求出P点的坐标;若不存在,请说明理由。
解:1.y= -x^2 +2x +8=-(x-4)(x+2)所以OA=2 OB=4自己画图,由△面积等于底*高/2.可以知道PE:EA=S△PDE:S△ADE由于PD=OD,那么S△PDE=S△ODE所以PE:EA=S△ODE:S△ADE由图可知△ODE和△ADE同底,则S△ODE:S△ADE=两三角形高之比OG:AH显然△BAH和△BOG相似,那么OG:AH=OB:AB=2:3所以PE:EA=2:3那么PE:PA=PE:PE+AE=2:5为定值2.设P点为(X,Y)PE:PA=2:5所以S△PDE=(2/5)*S△PDAS△AOP=Y*2/2=YS△AOD=Y/2(因为D是OP中点)所以S△ADP=S△AOP-S△AOD=Y/2则S△PDE=(2/5)*(Y/2)=Y/5当S△PDE=1时Y=5对应X=-1或2则P点坐标为(-1,5)或(2,5)2.一个横截面为抛物线的隧道底部宽12米,高6米,如图5车辆双向通行。
规定车辆必须在中心线右侧,距道路边缘2米这一范围内行驶,并保持车辆顶部与隧道有不少于米的空隙,你能否据这些要求,确定通过隧道车辆的高度限制?解:先建立直角坐标系设隧道横截面抛物线的解析式为y=ax平方+6当x=6时,y=0,a=1/6解析式是y=1/6 x的平方+6当x=6-2=4时,y=3/10因为顶部与。
有1/3的空隙所以只能达到3米(这题是要你看清题目中的条件,函数最重要的就是定义域,一定要准确把握定义域的范围)3.平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。
《二次函数》经典50题含解析
《二次函数》50题一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤26.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.27.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y28.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y29.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y012.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.413.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.1615.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.418.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.519.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣522.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<823.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.427.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣228.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.229.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为531.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.232.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.1133.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<334.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=235.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<036.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.740.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定44.若二次函数y=﹣x2+px+q的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1 45.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)46.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个47.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②b2﹣4ac≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个48.若二次函数y=|m|x2+nx+c的图象经过A(a,b)、B(0,y1)、C(5﹣a,b)、D(,y2)、E(3,y3),则y1、y2、y3的大小关系是()A.y2<y3<y1B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 49.如图,在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.50.如图,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴的负半轴交于点B,点M是对称轴上的一个动点.连接AM,BM,当|AM﹣BM|最大时,点M的坐标是()A.(1,4)B.(1,2)C.(1,﹣2)D.(1,﹣6)参考答案与试题解析一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)【解答】解:∵抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,∴(﹣+)=﹣1,∴m+n=﹣5,∴抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是(﹣2,y),∴2m﹣4=4+2(3m+n)+n,∴4m+3n=﹣8,解得m=7,∴y=2m﹣4=10,∴在抛物线W2上的对应点A′坐标是(﹣2,10),故选:B.2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【解答】解:抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,∴抛物线开口向上,对称轴为x==﹣1.∵|﹣1﹣(﹣2)|<|1+1|<|+1|∴y3>y2>y1,故选:D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵点B到直线x=﹣2的距离大于2,∴点A到直线x=﹣2的距离大于2,即点A在(﹣4,0)的左侧,∴当x=﹣4时,y>0,即16a﹣4b+c>0,∴a﹣b+c>0,所以②正确;∵C(0,c),OB=OC,∴B(c,0),∴ac2+bc+c=0,即ac+b+1=0,所以③错误;∵点A与点B关于直线x=1对称,∴A(﹣4﹣c,0),∴﹣4﹣c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:C.4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②正确;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,所以④正确;故选:D.5.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤2【解答】解:∵二次函数y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的对称轴为x=1,顶点(1,1),∴当y=1时,x=1,当y=2时,x2﹣2x+2=2,x=0或2,∵当0≤x≤a时,y的最大值为2,y的最小值为1,∴1≤a≤2,故选:D.6.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,可知函数的对称轴x=1,∴﹣=1,∴b=2;故选:D.7.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【解答】解:∵抛物线y=﹣2x2+4x+c的对称轴为直线x=1,且抛物线的开口向下,∴离抛物线对称轴的水平距离越远,对应函数值越小,∵点(4,y3)离对称轴的距离最远,点(,y2)离对称轴的距离最近,∴y2>y1>y3,故选:C.8.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y2【解答】解:∵抛物线y=3x2﹣6x+m,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点(﹣4,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.9.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【解答】解:∵x0满足关于x的方程ax+2=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+4x+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以①正确;∵抛物线的顶点坐标为(,1),∴抛物线得对称轴为直线x=﹣=,∴b=﹣a,即a+b=0,所以②正确;∵抛物线与x轴的负半轴的交点到原点的距离小于1,∴x=﹣1时,y<0,∴a﹣b+c<0,即b>a+c,所以③错误;∵抛物线的顶点的纵坐标为1,∴=1,把b=﹣a代入得4c﹣a=4,所以④正确.故选:C.13.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④【解答】解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△P AB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.16【解答】解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20.故选:A.15.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,所以①正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∴当x=﹣3时,y>0,即9a﹣3b+c>0,所以②错误;∵抛物线开口向下,点(﹣2,y1)到直线x=﹣1的距离比点(,)到直线x=﹣1的距离小,∴y1>y2,所以③错误;∵x=2,y=0,∴4a+2b+c=0,把b=2a代入得4a+4a+c=0,解得c=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,所以④正确.故选:B.16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限【解答】解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.18.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.5【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.19.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.【解答】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣5【解答】解:∵抛物线y=﹣2x2﹣3向右平移2个单位长度,∴平移后解析式为:y=﹣2(x﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y=﹣2(x﹣2)2﹣3+1.即y=﹣2(x﹣2)2﹣2;故选:B.22.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<8【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=2.∴﹣=2,解得:b=﹣4,∴y=x2﹣4x+3,∴一元二次方程x2+bx+3﹣t=0有实数根可以看做y=x2﹣4x+3与函数y=t只有一个交点,∵方程x2﹣4x+3﹣t=0(t为实数)在1<x<5的范围内只有一个实数根,当x=1时,y=0;当x=5时,y=8;当x=2时,y=﹣1;∴t的取值范围是0≤t<8或t=﹣1.故选:A.23.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 【解答】解:∵抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),∴点A(﹣2,0),点B(2,0),该抛物线的顶点坐标为(0,4),∵将抛物线M绕点B旋转180°,得到新的抛物线M',∴新的抛物线M'的顶点坐标为(4,﹣4),点A关于点B的对称点为(6,0),∴新的抛物线M'的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,故选:D.24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+【解答】解:∵抛物线y=x2+2x﹣3=(x+3)(x﹣1),∴令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则(x+3)(x﹣1)=0,∴x=﹣3或1,∴B(1,0),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴对称轴为x=﹣1,∵CD∥AB,∴C、D两点关于x=﹣1对称,∴D(﹣2,﹣3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x﹣1,∴E(0,﹣1),令y=﹣1,则y=x2+2x﹣3=﹣1,解得,x=﹣1,∴F(﹣1﹣,﹣1),G(﹣1+,﹣1),∴FG=(﹣1+)﹣(﹣1﹣)=2,故选:C.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)当x=﹣2时,y>0,∴4a﹣2b+c>0,故本说法错误;(2)方程ax2+bx+c=0两根分别为1,3,都大于0,故本说法正确;(3)当x>2时,y随x的增大而增大,故本说法错误;(4)由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,一定不过第二象限,故本说法正确;故选:B.26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.27.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣2【解答】解:∵k<0,∴函数y=kx2+(4k+3)x+1的图象在对称轴直线x=﹣的左侧,y随x的增大而增大.∵当x<m时,y随着x的增大而增大∴m≤﹣,而当k<0时,﹣=﹣2﹣>﹣2,所以m≤﹣2,故选:D.28.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.2【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.29.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧【解答】解:∵二次函数y=ax2+(1﹣2a)x(a>0),∴当a=时,该函数的对称轴是y轴,故选项A正确;该函数的对称轴为直线x=﹣=1﹣<1,当x>2时,y随x的增大而增大,故选项B、C正确;∵该函数的对称轴为x=1﹣<1,∴当a=时,x=﹣1,则此时对称轴在y轴左侧,故选项D错误;故选:D.30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为5【解答】解:A、y=2(x﹣2)2+5=2x2﹣8x+13,则图象与y轴的交点坐标为(0,13),原题说法正确,故此选项不合题意;B、对称轴为x=2,图象的在y轴的右侧,原题说法正确,故此选项不合题意;C、a=2,开口向上,对称轴为x=2,则当x>2时,y的值随x值的增大而增大,原题说法错误,故此选项符合题意;D、顶点坐标为(2,5),开口向上,则当x=2时,函数有最小值为5,原题说法正确,故此选项不合题意;故选:C.31.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.2【解答】解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.32.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.11【解答】解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.33.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<3【解答】解:设y=ax2+b|x|+c,则函数y=ax2+b|x|+c的图象,如右图所示,∵抛物线y=ax2+bx+c的图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,∴ax2+b|x|+c=k有四个不相等的实数根时,k满足﹣3<k<﹣1,故选:C.34.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=2【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b),则斜边上的高为h,故h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴CD=,∴=,方程两边平方得b﹣a2=(a2﹣b)2,即h=(﹣h)2,因为h>0,所以h=1,是个定值.故选:B.35.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<0 【解答】解:由图象可知,函数函数y=ax2+bx图象的对称轴为直线x=﹣<1,∵a<0,∴2a+b<0,故C正确;∵当x=2时,函数y=ax2+bx中y<0,即4a+2b<0,当x=1时,y<1,即a+b<1∴5a+3b<1,故A正确;∵a+b<1,∴2a+2b<2∵2a+b<0,∴4a+3b<2故B正确;∵﹣>,a<0,∴b>﹣a,∴2b>﹣2a,∴a+2b>﹣a,∴a+2b>0,故D错误;故选:D.36.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.【解答】解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个【解答】解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b的图象在第一、二、三象限,二次函数y=ax2+bx的图象经过原点,顶点在y轴的左侧,故选项A、B错误;当a>0,b<0时,一次函数y=ax+b的图象在第一、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的右侧,函数图象开口向上,函数y=ax2+bx与y=ax+b 交点在x轴上,故选项C正确;当a<0,b<0时,一次函数y=ax+b的图象在第二、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的左侧,函数图象开口向下,故选项D错误;故选:C.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.7【解答】解:设各自抛出后1.2秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t﹣1.2)2+h,由题意a(t﹣1.2)2+h=a(t﹣2﹣1.2)2+h,解得t=2.2.故第一个小球抛出后2.2秒时在空中与第二个小球的离地高度相同.故选:A.40.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵﹣=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④【解答】解:由图象可知,抛物线开口向下,则a<0,∵对称轴为直线x=,∴x=0与x=3所对应的函数值相同,∵当x=0时y<0,∴x=3时y<0,∴x>3时,y<0,∴①正确;∵x==﹣,∴b=﹣3a,∴4a+b=4a﹣3a=a<0,∴②正确;∵抛物线经过点A(,0),∴a+b+c=0,∴c=a,∵B在(0,0)和(0,﹣1)之间,∴﹣1<c<0,∴﹣1<a<0,∴﹣<a<0,∴③正确;4ac+b2﹣4a=4a×a+(﹣3a)2﹣4a=5a2+9a2﹣4a=14a2﹣4a=2a(7a﹣2),∵a<0,∴2a(7a﹣2)>0,∴4ac+b2﹣4a>0,∴④不正确;故选:B.43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定【解答】解:y=(x﹣m)(x﹣n)与x轴的交点为(m,0),(n,0),由(x﹣m)(x﹣n)﹣x=0,则y=(x﹣m)(x﹣n)与y=x的两个交点为(a,a),(b,b),如图1:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴正半轴时,(m,0),(n,0)在(a,a),(b,b)点的下方,∴a<m<n<b,∴(a﹣m)(b﹣n)<0,不符合;如图2:当函数y=(x﹣m)(x﹣n)与x轴交点分别在x轴正半轴和负半轴时,此时m<a<n<b,∴(a﹣m)(b﹣n)>0,∴mn<0;如图3:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴负半轴时,此时m<a<b<n,∴(a﹣m)(b﹣n)<0,不符合题意;综上所述:当(a﹣m)(b﹣n)>0时,mn<0,。
二次函数经典测试题含答案解析
二次函数经典测试题含答案解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a =1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.3.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.4.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x -<<时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x -<<,故本选项正确;故选:C .【点睛】本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.5.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.6.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③ab c=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.7.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象. 【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确;③当x <2时,由图象知:y 随x 的增大而减小,故错误;④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0, ∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.9.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.10.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.已知二次函数223(0)y ax ax a a =--≠,关于此函数的图象及性质,下列结论中不一定成立的是( )A .该图象的顶点坐标为()1,4a -B .该图象与x 轴的交点为()()1,0,3,0-C .若该图象经过点()2,5-,则一定经过点()4,5D .当1x >时,y 随x 的增大而增大【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】解:y=a (x 2-2x-3)=a (x-3)(x+1)令y=0,∴x=3或x=-1,∴抛物线与x 轴的交点坐标为(3,0)与(-1,0),故B 成立;∴抛物线的对称轴为:x=1,令x=1代入y=ax 2-2ax-3a ,∴y=a-2a-3a=-4a ,∴顶点坐标为(1,-4a ),故A 成立;由于点(-2,5)与(4,5)关于直线x=1对称,∴若该图象经过点(-2,5),则一定经过点(4,5),故C 成立;当x >1,a >0时,y 随着x 的增大而增大,当x >1,a <0时,y 随着x 的增大而减少,故D 不一定成立;故选:D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.12.如图,四边形ABCD 是正方形,8AB =,AC 、BD 交于点O ,点P 、Q 分别是AB 、BD 上的动点,点P 的运动路径是AB BC →,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,PBQ △的面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】A【解析】【分析】 分点P 在AB 边和BC 边上两种情况画出图形,分别求出y 关于x 的函数关系式,再结合其取值范围和图象的性质判断即可.【详解】解:当点P 在AB 边上,即08x ≤≤时,如图1,由题意得:AP=BQ=x ,∠ABD =45°,∴ BP =8-x ,过点Q 作QF ⊥AB 于点F ,则QF =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-+,此段抛物线的开口向下;当点P 在BC 边上,即882x <≤时,如图2,由题意得:BQ=x ,BP=x -8,∠CBD =45°, 过点Q 作QE ⊥BC 于点E ,则QE =2222BQ x =, 则2122(8)22224y x x x x =-⋅=-,此段抛物线的开口向上. 故选A. 【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.13.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m 【答案】D 【解析】 【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D . 【详解】解:214212y xxy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得,11xy=⎧⎨=⎩,22772xy=⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A正确;小球落地点距O点水平距离为7米,C正确;2142y x x=-21(4)82x=--+,则抛物线的对称轴为4x=,∴当4x>时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,当7.5y=时,217.542x x=-,整理得28150x x-+=,解得,13x=,25x=,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5m,D错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.如图,已知将抛物线21y x=-沿x轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M满足横、纵坐标都为整数,则把点M叫做“整点”).现将抛物线()()2120y a x a=++<沿x轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a的取值范围是()A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<-【答案】D 【解析】 【分析】画出图象,利用图象可得m 的取值范围 【详解】 解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1. 将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意.综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D. 【点睛】本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.15.二次函数y =ax 2+bx +c (a ≠0)中的x 与y 的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1,y2,y3满足的关系式为()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2【答案】C【解析】【分析】首先求出抛物线y=x2+2x的对称轴,对称轴为直线x=-1;然后根据A、B、C的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B离对称轴最近,A次之,C最远,则对应y的值大小可确定.【详解】∵抛物线y=x2+2x,∴x=-1,而A(-5,y1),B(2.5,y2),C(12,y3),∴B离对称轴最近,A次之,C最远,∴y2<y1<y3.故选:C.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.17.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x﹣1是一次函数,符合题意;(3)y=1x是反比例函数,不符合题意;(4)y=2﹣3x是一次函数,符合题意;(5)y=x2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B.【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】试题解析:①由开口向下,可得0,a < 又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc , 故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ……(1) 当1x =时,0y <,即0a b c ++< ……(2) (1)+(2)×2得,630a c +<, 即20a c +<, 又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +< 故④正确,综上可知,正确的结论有2个. 故选B .20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( )A.B.C.D.【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。
二次函数经典例题及答案
例1 如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB =20米,顶点M 距水面6米(即MO =6米),小孔顶点N 距水面4.5米(NC =4.5米).当水位上涨刚好淹没小孔时,借助图2中的直角坐标系,求此时大孔的水面宽度EF .分析:如图2,由这个实际问题抽象出的数学模型题目已经给出,观察图象可知抛物线的对称轴为y 轴,顶点为(0,6),故可设函数关系式为y =ax 2+6.又因为AB =20,所以OB =10,故B (10,0)又在抛物线上,可代入求值.解:设抛物线所对应的函数关系式为y =ax 2+6. 依题意,得B (10,0). 所以a ×102+6=0.解得a =-0.06.即y =-0.06x 2+6.当y =4.5时,-0.06x 2+6=4.5,解得x =±5. 所以DF =5,EF =10. 即水面宽度为10米.例2 如图3所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的关系式. 分析:函数图象的对称轴为y 轴,故设篮球运行的路线所对应的函数关系式为y =ax 2+k (a ≠0,k ≠0). 解:设函数关系式为y =ax 2+k (a ≠0),由题意可知,A 、B 两点坐标为(1.5,3.05),(0,3.5). 则 1.52a+k=3.05,k=3.5.⎧⎨⎩解得a =-0.2,所以抛物线对应的函数关系式为y =-0.2x 2+3.5.二、在几何图形中,利用图形的面积、相似三角形等有关知识获得y 与x 的关系式例3 如图4,在矩形ABCD 中,AD =12,AB =8,在线段BC 上任取一点P ,连接DP ,作射线PE ⊥DP ,PE 与直线AB 交于点E .(1)设CP =x ,BE =y ,试写出y 关于x 的函数关系式. (2)当点P 在什么位置时,线段BE 最长?析解:在几何图形中,求函数关系式时,通常把两个变量放入两个图形,利用两个图形相似,或者在一个图形中利用面积建立它们之间的数量关系.本题要求y 与x 之间的关系式,通过观察可以发现y 、x 分别是△BPE 、△CDP 的边,而且由∠EPB +∠DPC =90°,∠DPC +∠PDC =90°,可得∠EPB =∠PDC ,又由∠B =∠C =90°,容易得到△BPE ∽△CDP .所以有BP BE CD CP =.即128x yx-=. 故y 关于x 的函数关系式为21382y x x =-+.当62bx a=-=时,y 有最大值,y 最大24942ac b y a -==最大. 即当点P 距点C 为6时,线段BE 最长.例4 某班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们设计了三种铝合金框架,图案如图5(1)、5(2)、5(3),请你根据以下图案回答下列问题:(题中的铝合金材料总长度均各指图11中所有黑线的长度和)(1)在图案(1)中,如果铝合金材料总长度为6m ,当AB 为1m 时,长方形框架ABCD 的面积是_____m 2;(2)图案(2)中,如果铝合金总长度为6m ,设AB 为x m ,长方形框架ABCD 的面积为S m 2,那么S =_______(用含x 的代数式表示);当AB =______m 时,长方形框架ABCD 的面积S 最大,在图案(3)中,如果铝合金材料总长度为lm ,当AB =______m 时,长方形框架ABCD 的面积S 最大.(3)在经过这三种情况的试验后,他们发现对于图案(4)这样的情形也存在着一定的规律.探索:如图(4),如果铝合金材料长度为lm ,共有n 条竖档,那么当竖档AB 长为多少时,长方形框架ABCD 的面积S 最大.分析:解此类问题通常是建立面积与线段长的函数关系式,然后利用二次函数的图象或性质求最大值(或最小值),在这类问题中常用到下列图形的面积公式:三角形、矩形、正方形、平行四边形、梯形和圆等. 解:(1)43; (2)22x x -+,1,8l ; (3)设AB 长为x cm ,那么AD 为3l nx-, 2333l nx n l S x x x -==-+.当2lx n =时,S 最大. 注:关于二次函数的实际应用,体现在生活中的方方面面,在此我们不再一一列举,关键是同学们掌握这种处理实际问题的思路,达到举一反三的效果,不管题目背景如何变化,但它万变不离其宗,只要我们有了这种方法,任何问题都可以迎刃而解. 25.(1)当0x =时,6y =,C ∴点坐标为(06),当0y =时,60x +=,6x ∴=- , A ∴点坐标为(60)-,………………………… 1分 (2)抛物线2(0)y ax bx a =+<经过(60)A -,,(00)O ,, ∴对称轴32bx a=-=-, ∴6b a =.① 当3x =-时,代入6y x =+得363y =-+=,∴B 点坐标为(33)-,. 点B 在抛物线2y ax bx =+上,∴393a b =-.②联立①、②解得1,23a b =-=-.∴该抛物线的函数关系式为2123y x x =--.……………………………………………3分(3)AC 与D 相切,理由如下:联结AD , AO OC =, 45ACO CAO ∴∠=∠=︒.B D x 与关于轴对称,∴45BAO DAO ==∠∠ .90BAD ∴=∠.又AD D 是的半径,AC ∴与D相切。
二次函数的简单应用- 初升高数学衔接(解析版)
二次函数的简单应用- 初升高数学衔接(解析版)高中必备知识点1:平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.典型考题【典型例题】如图,抛物线经过两点,顶点为D.求a和b的值;将抛物线沿y轴方向上下平移,使顶点D落在x轴上.求平移后所得图象的函数解析式;若将平移后的抛物线,再沿x轴方向左右平移得到新抛物线,若时,新抛物线对应的函数有最小值2,求平移的方向和单位长度.【答案】将抛物线向左平移个单位长度或向右平移个单位长度.【解析】代入,得:,解得:.,抛物线顶点D的坐标为.将抛物线沿y轴平移后,顶点D落在x轴上,平移后的抛物线的顶点坐标为,平移后的抛物线为,即.若将抛物线向左平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点,,解得:舍去;若将抛物线向右平移个单位长度,则新抛物线的解析式为,时,新抛物线对应的函数有最小值2,新抛物线必过点.,解得:舍去.将抛物线向左平移个单位长度或向右平移个单位长度.【变式训练】已知抛物线,把它向上平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若是直角三角形,那么原抛物线应向上平移几个单位?【答案】向上平移3个单位.【解析】由题意知,必为等腰直角三角形,设平移后的抛物线为,则,代入抛物线方程得:,舍去.所以向上平移3个单位.【能力提升】已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的项点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.【答案】(1)y=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)图象向下平移1个单位得到:y=(x﹣1)2.【解析】(1)y=x(x﹣2)+2=x2﹣2x+2=(x﹣1)2+1,它的顶点坐标为:(1,1);(2)∵将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,∴图象向下平移1个单位得到:y=(x﹣1)2.高中必备知识点2:对称变换在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题.典型考题【典型例题】如图,抛物线y=ax²-2x+c(a≠0)与x轴,y轴分别交于点A,B,C三点,已知点(-2,0),C(0,-8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EB直线EP折叠,使点B 的对应点B'落在抛物线的对称轴上,求点P的坐标;【答案】(1)y=x2﹣2x﹣8;D(1,﹣9);(2)P().【解析】(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.∵点P在第四象限,∴x=.∴y=.∴P().【变式训练】已知二次函数的图象的顶点坐标为(3,-2),且与y轴交于(0,).(1)求函数的解析式;(2)若点(p,m)和点(q,n)都在该抛物线上,若p>q>5,判断m和n的大小.【答案】(1)y=(x-3)2-2.(2)m>n.【解析】(1)由题意设函数的解析式为y=a(x-3)2-2,根据题意得9a-2=解得a=,所以函数解析式是y=(x-3)2-2.(2)因为a=>0,所以抛物线开口向上,又因为二次函数的对称轴是直线x=3.所以当x>3时,y随x增大而增大,因为p>q>5>3,所以m>n.【能力提升】已知抛物线经过点(1,-2).(1)求的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【答案】(1)a=-1;(2)y1<y2.【解析】(1)、∵抛物线经过点(1,-2),∴,解得a=-1;(2)、∵函数的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.高中必备知识点3:分段函数一般地,如果自变量在不同取值范围内时,函数由不同的解析式给出,这种函数,叫作分段函数.典型考题【典型例题】函数1()01xf xx-⎧⎪=⎨⎪+⎩)0()0()0(<=>xxx,则))1((ff的值是___.【答案】0 【解析】∵函数f(x)100010x xxx x-⎧⎪==⎨⎪+⎩,>,,<,∴f (1)=1﹣1=0, f (f (1))=f (0)=0. 故答案为:0.【变式训练】已知函数,若,则_________.【答案】【解析】,故,填.【能力提升】函数__________.【答案】1. 【解析】 由题意得.故答案为:1.专题验收测试题1.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B 【解析】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2, 解得,AB=5cm . 下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=;当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B . 故选:B .2.如图,在四边形ABCD 中,AD ∥BC ,DC ⊥BC ,DC =4cm ,BC =6cm ,AD =3cm ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA ﹣AD ﹣DC 运动到点C ,点Q 以1cm /s 的速度沿BC 运动到点C ,设P ,Q 同时出发xs 时,△BPQ 的面积为ycm 2.则y 与x 的函数图象大致是( )A.B.C.D.【答案】B【解析】作AE⊥BC于E,根据已知可得,AB2=42+(6﹣3)2,解得,AB=5cm.当0≤x≤2.5时:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积=12×2.5×4=5cm2.当2.5≤x≤4时,即P点在AD上时,1422y x x=⨯=,且增大值为:21448cm2⨯⨯=;当4≤x≤6时,即P点从D到C时,y=1(122)2x x⋅-=﹣x2+6x.故符合y与x的函数图象大致是B.故选B.3.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.【答案】D【解析】解:如图,连接DE ,∵△PC′D 是△PCD 沿PD 折叠得到, ∴∠CPD =∠C′PD , ∵PE 平分∠BPC′, ∴∠BPE =∠C′PE , ∴∠EPC′+∠DPC′=12×180°=90°, ∴△DPE 是直角三角形,∵BP =x ,BE =y ,AB =3,BC =5,∴AE =AB ﹣BE =3﹣y ,CP =BC ﹣BP =5﹣x , 在Rt △BEP 中,PE 2=BP 2+BE 2=x 2+y 2,在Rt △ADE 中,DE 2=AE 2+AD 2=(3﹣y )2+52, 在Rt △PCD 中,PD 2=PC 2+CD 2=(5﹣x )2+32, 在Rt △PDE 中,DE 2=PE 2+PD 2, 则(3﹣y )2+52=x 2+y 2+(5﹣x )2+32, 整理得,﹣6y =2x 2﹣10x , 所以y =21533x x -+(0<x <5), 纵观各选项,只有D 选项符合. 故选:D .4.某种圆形合金板材的成本y (元)与它的面积(cm 2)成正比,设半径为xcm ,当x =3时,y =18,那么当半径为6cm 时,成本为( ) A .18元 B .36元C .54元D .72元【答案】D 【解析】解:根据题意设y =k πx 2, ∵当x =3时,y =18, ∴18=k π•9,则k=2π,∴y=kπx2=2π•π•x2=2x2,当x=6时,y=2×36=72,故选:D.5.把一个足球垂直于水平地面向上踢,该足球距离地面的高度(米)与所经过的时间(秒)之间的关系为. 若存在两个不同的的值,使足球离地面的高度均为(米),则的取值范围()A.B.C.D.【答案】C【解析】∵a≥0,由题意得方程10t-t2=a有两个不相等的实根∴△=b2-4ac=102+4××a>0得0≤a<50又∵0≤t≤14∴当t=14时,a=h=10×14-×142=42所以a的取值范围为:42≤a<50故选:C.6.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=-6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米【答案】C【解析】解:把t=,s=6代入s=-6t2+bt得,6=-6×+b×,解得,b=15∴函数解析式为s=-6t2+15t=-6(t-)2+,∴当t=时,s取得最大值,此时s=,故选:C.7.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为()A.1 B.C.2﹣D.2+【答案】A【解析】设B(x1,n)、C(x2,n),作AD⊥BC,垂足为D连接AB,AC,∵y=(x﹣2)2﹣1,∴顶点A(2,﹣1),AD=n﹣(﹣1)=n+1∵直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B、C,∴(x﹣2)2﹣1=n,化简,得x2﹣4x+2﹣2n=0,x1+x2=4,x1x2=2﹣2n,∴BC=|x1﹣x2|=,∵点B、C关于对称轴直线AD对称,∴D为线段BC的中点,∵△ABC是等腰直角三角形,∴AD=BC,即BC=2AD=2(n+1),∴(2+2n)=(n+1)2,化简,得n2=1,∴n=1或﹣1,n=﹣1时直线y=n经过点A,不符合题意舍去,所以n=1.故选:A.8.如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.20m C.15m D.22.5m【答案】C【解析】根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则,解得:,所以x=-=15(m).故选C.9.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】解:由题意,抛物线的解析式为y=at(t-9),把(1,8)代入可得a=-1,∴y=-t2+9t=-(t-4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③.故选B.10.某一型号飞机着陆后滑行的距离S(单位:米)关于滑行的时间t(单位:秒)之间的函数解析式是S =﹣1.5t2+60t,则该型号飞机着陆后滑行()秒才能停下来.A.600 B.300 C.40 D.20【答案】D【解析】解:由题意,s=﹣1.5t2+60t,=﹣1.5(t2﹣40t+400﹣400)=﹣1.5(t﹣20)2+600,即当t=20秒时,飞机才能停下来.故选:D.11.如图是抛物线形拱桥,P处有一照明灯,水面OA宽4m,从O、A两处双测P处,仰角分别为α、β,且tanα=12,tanβ=23,以O为原点,OA所在直线为x轴建立直角坐标系.P点坐标为_____;若水面上升1m,水面宽为_____m.【答案】33,2⎛⎫⎪⎝⎭; 22 【解析】解:(1)过点P 作PH ⊥OA 于H ,如图. 设PH =3x , 在Rt △OHP 中, ∵tanα=PH 1OH 2=, ∴OH =6x . 在Rt △AHP 中, ∵tanβ=32PH AH =, ∴AH =2x ,∴OA =OH +AH =8x =4, ∴x =12, ∴OH =3,PH =23, ∴点P 的坐标为(3,23); 故答案是:(3,23); (2)若水面上升1m 后到达BC 位置,如图,过点O (0,0),A (4,0)的抛物线的解析式可设为y =ax (x ﹣4),∵P (3,23)在抛物线y =ax (x ﹣4)上, ∴3a (3﹣4)=23,解得a =﹣12,∴抛物线的解析式为y =﹣12x (x ﹣4).当y =1时,﹣12x (x ﹣4)=1,解得x 1=2+2,x 2=2﹣2,∴BC =(2+2)﹣(2﹣2)=22. 故答案是:22.12.某一房间内A 、B 两点之间设有探测报警装置,小车(不计大小)在房间内运动,当小车从AB 之间经过时,将触发报警.现将A 、B 两点放置于平面直角坐标系xOy 中(如图)已知点A ,B 的坐标分别为(0,4),(5,4),小车沿抛物线y =ax 2-2ax -3a 运动.若小车在运动过程中只触发一次报警,则a 的取值范围是______【答案】a <-43或a >13【解析】解:抛物线y=ax 2-2ax-3a=a (x+1)(x-3),∴其对称轴为:x=1,且图象与x 轴交于(-1,0),(3,0). 当抛物线过点(0,4)时,代入解析式得4=-3a , ∴a=43-,由对称轴为x=1及图象与x 轴交于(-1,0),(3,0)可知,当a <43-时,抛物线与线段AB 只有一个交点;当抛物线过点(5,4)时,代入解析式得25a-10a-3a=4,∴a=13,同理可知当a >13时,抛物线与线段AB 只有一个交点. 故答案为:a <43-或a >13.13.为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是___m2.【答案】300.【解析】如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴矩形区域ABCD的面积S=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则S=﹣x2+30x(0<x<40);∵S=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,S有最大值,最大值为300m2.故答案为:300.14.某民房发生火灾.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D处喷出,水流正好经过E,F.若点B和点E、点C和点F的离地高度分别相同,现消防员将水流抛物线向上平移5m,再向左后退_____m,恰好把水喷到F处进行灭火.【答案】5【解析】由图可知:A(0,21.2),B(0,9.2),C(0,6.2),D(0,1.2),∵点B和点E、点C和点F的离地高度分别相同,∴E(20,9.2),设AE的直线解析式为y=kx+b,,∴,∴y=﹣x+21.2,∵A,E,F在同一直线上.∴F(25,6.2),设过D,E,F三点的抛物线为y=ax2+bx+c,∴,∴,水流抛物线向上平移5m,设向左退了m米,∴D(0,6.2),设平移后的抛物线为,经过点F,∴m=5或m=﹣25(舍),∴向后退了5米.故答案为5.15.某网店销售某种商品,成本为30元/件,当销售价格为60元件/时,每天可售出100件,经市场调查发现,销售单价每降1元,每天销量增加10件.当销售单价为__________元时,每天获取的利润最大.【答案】50【解析】解:设当销售单价为x元时,每天获取的利润为y元,则y=(x-30)[100+10(60-x)]=-10x2+1000x-21000=-10(x-50)2+4000,∴当x=50时,y有最大值,且为4000,故答案为:50.16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为.由此可知,铅球推出的距离是__________m.【答案】10【解析】在中,当,解得(舍去).即铅球推出的距离是10m.故答案为:1017.已知某种水果的批发单价与批发量的函数关系如图1所示.(1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在图2的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图3所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【答案】(1)详见解析;(2)详见解析;(3)经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.【解析】解:(1)图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发,图②表示批发量高于60kg的该种水果,可按4元/kg批发;(2)由题意得:5(2060)4(60)m mwm m≤≤⎛=<⎝,函数图象如图所示.由图可知批发量超过60时,价格在4元中,所以资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果;(3)设日最高销售量为xkg(x>60),日零售价为p,设x=pk+b,则由图②该函数过点(6,80),(7,40),代入可得:x=320﹣40p,于是p=32040x-,销售利润y=x(32040x-﹣4)=﹣140(x﹣80)2+160当x=80时,y最大值=160,此时p=6,即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.18.某商品现在的售价为每件30元,每星期可卖出160件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出2件.已知商品的进价为每件10元.(1)在顾客得到实惠的情况下,如何定价商家才能获得4200元的利润?(2)如何定价才能使利润最大?【答案】(1)在顾客得到实惠的情况下,售价为40(80舍)元时商家才能获得4200元的利润;(2)售价为60元时利润最大为5000元.【解析】(1)设商品的涨价x元,由题意得:(30+x-10)(160-2x)=4200,整理得:x2-60x+500=0,解得:x=10或50,故为尽可能让利于顾客并使每周利润为4200元,取x的值为10,所以,在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)由题意得:y=(30+x-10)(160-2x)=-2x2+120x+3200,=-2(x-30)2+5000∵-2<0,∴当x=30时,y取得最大值,此时y=5000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为5000元.19.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【答案】(1)花园的面积为192m 2,x 的值为12m 或16m ;(2)x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)当x =28﹣a 时,函数有最大值,y=﹣(14﹣a )2+196.【解析】解:(1)依题意得 S =x (28﹣x ),当S =192时,有S =x (28﹣x )=192,即x 2﹣28x +192=0,解得:x 1=12,x 2=16,答:花园的面积为192m 2,x 的值为12m 或16m ;(2)由题意可得出:S =x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196,答:x 为14m 时,花园面积S 有最大值,最大值为196m 2;(3)依题意得:286x a x -≥⎧⎨≥⎩, 解得:6≤x ≤28﹣a ,S =x (28﹣x )=﹣x 2+28x =﹣(x ﹣14)2+196,∵a =﹣1<0,当x ≤14,y 随x 的增大而增大,又6≤x ≤28﹣a ,∴当x =28﹣a 时,函数有最大值,∴y =﹣(28﹣a ﹣14)2+196=﹣(14﹣a )2+196.20.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)求出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】试题分析:(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.试题解析:(1)设y与x的函数关系式为y=kx+b.把(22,36)与(24,32)代入,得解得∴y=-2x+80.(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.21.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系;(2)写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?【答案】(1)y=﹣3x+240;(2)w=﹣3x2+360﹣9600;(3)50;(4)不是,理由见解析.【解析】(1)y=30+3(70﹣x)=﹣3x+240;(2)w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600;(3)当w=900时,(x﹣40)(﹣3x+240)=900整理得:x2﹣120x+3500=0∴x1=50,x2=70,∵要使顾客得到实惠,∴x=70舍去∴每箱价格定为50元;(4)由w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600得w=﹣3(x﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.22.(本题满分10分)我市某高科技公司生产一种矩形新型材料板,其长宽之比为3∶2,每张材料板的成本c与它的面积成正比例。
二次函数经典例题
二次函数经典例题以下是几个经典的二次函数例题:1.已知二次函数f(x)的图像顶点坐标为(2, 3),过点(-1, 7),求该二次函数的解析式。
解答:设二次函数的解析式为f(x) = ax^2 + bx + c。
由已知条件可得到以下方程: f(-1) = 7,即 a(-1)^2 + b(-1) + c = 7 f(2) = 3,即a(2)^2 + b(2) + c = 3联立这两个方程,可以得到以下方程组: a - b + c = 7 -- 方程(1) 4a + 2b + c = 3 -- 方程(2)解方程组得到 a = -2,b = 7,c = -2。
所以该二次函数的解析式为f(x) = -2x^2 + 7x - 2。
2.求二次函数y = x^2 + 4x - 5的图像的对称轴和顶点。
解答:二次函数的对称轴公式为x = -b/2a。
将函数中的系数带入公式计算,即 -4 / (2*1) = -2。
所以对称轴的方程为 x = -2。
对称轴上的点的横坐标就是对称轴的x 值,所以顶点的横坐标为 -2。
将 -2 代入原函数,即可求得纵坐标: y = (-2)^2 + 4*(-2) - 5 = 4 - 8 - 5 = -9所以顶点坐标为 (-2, -9)。
3.已知二次函数图像经过点(1, 0),且在x轴上有两个零点,求该二次函数的解析式。
解答:因为在x轴上存在两个零点,即函数图像与x轴相交处,所以函数必然可以因式分解为二次多项式的形式。
设二次函数的解析式为 f(x) = a(x - r)(x - s),其中 r 和 s 分别是函数的两个零点。
由已知条件,可以得到以下方程:f(1) = 0,代入解析式可得如下方程: a(1 - r)(1 - s) = 0联立这个方程和已知条件,我们可以解出两个零点 r 和 s。
由于函数经过点 (1, 0),所以 1 是其中一个零点,可得 a(1 - s) = 0。
根据题目要求,另一个零点不等于 1,所以 a = 0。
二次函数经典例题及解答
⎧⎪⎨⎪⎩二次函数一、中考导航图1.二次函数的意义;2.二次函数的图象;3.二次函数的性质⎧⎪⎪⎨⎪⎪⎩顶点对称轴开口方向增减性顶点式:y=a(x-h)2+k(a ≠0)4.二次函数 待定系数法确定函数解析式一般式:y=ax 2+bx+c(a ≠0) 两根式:y=a(x-x 1)(x-x 2)(a ≠0)5.二次函数与一元二次方程的关系。
6.抛物线y=ax 2+bx+c 的图象与a 、b 、c 之间的关系。
三、中考知识梳理 1.二次函数的图象在画二次函数y=ax 2+bx+c(a ≠0)的图象时通常先通过配方配成y=a(x+b 2a)2+ 4a 24ac-b 的形式,先确定顶点(-b 2a,4a 24ac-b ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标. 2.理解二次函数的性质抛物线的开口方向由a 的符号来确定,当a>0时,在对称轴左侧y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大;简记左减右增,这时当x=-b 2a 时,y 最小值=4a24ac-b ;反之当a<•0时,简记左增右减,当x=-b2a时y 最大值=4a 24ac-b .3.待定系数法是确定二次函数解析式的常用方法一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax 2+bx+c,然后组成三元一次方程组来求解;在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x 轴一交点坐标和对称轴,则可设解析式为y=a(x-x 1)(x-x 2)来求解. 4.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 当y=0时抛物线便转化为一元二次方程ax 2+bx+c=0,即抛物线与x 轴有两个交点时,方程ax 2+bx+c=0有两个不相等实根;当抛物线y=ax 2+bx+c 与x 轴有一个交点,方程ax 2+bx+c=0有两个相等实根;当抛物线y=ax 2+bx+c 与x 轴无交点,•方程ax 2+bx+c=0无实根.5.抛物线y=ax 2+bx+c 中a 、b 、c 符号的确定a 的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,•抛物线开口向下;c 的符号由抛物线与y 轴交点的纵坐标决定.当c>0时,抛物线交y 轴于正半轴;当c<0时,抛物线交y 轴于负半轴;b 的符号由对称轴来决定.当对称轴在y•轴左侧时,b 的符号与a 的符号相同;当对称轴在y 轴右侧时,b 的符号与a 的符号相反;•简记左同右异. 6.会构建二次函数模型解决一类与函数有关的应用性问题,•应用数形结合思想来解决有关的综合性问题. 四、中考题型例析 1. 二次函数解析式的确定例1 求满足下列条件的二次函数的解析式 (1)图象经过A(-1,3)、B(1,3)、C(2,6); (2)图象经过A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为y=ax 2+bx+c,把A(-1,3)、B(1,3)、C(2,6)各点代入上式得3,3,642.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩ 解得1,0,2.a b c =⎧⎪=⎨⎪=⎩∴解析式为y=x 2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为x=1,所以顶点为(1,-8).• 设解析式为y=a(x-h)2+k,即y=a(x-1)2-8. 把x=-1,y=0代入上式得0=a(-2)2-8,∴a=2. 即解析式为y=2(x-1)2-8,即y=2x 2-4x-6.解法2:设解析式为y=a(x+1)(x-3),确定顶点为(1,-8)同上, 把x=1,y=-8•代入上式得-8=a(1+1)(1-3).解得a=2, ∴解析式为y=2x 2-4x-6.解法3:∵图象过A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴24(3)(2)4a a a a---=-8.又∵a ≠0,∴a=2.∴解析式为y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是x=-1,xyO又∵图象与x 轴两交点的距离为6,即AB=6.由抛物线的对称性可得A 、B 两点坐标分别为A(-4,0),B(2,0), 设出两根式y=a(x-x 1)·(x-x 2),将A(-4,0),B(2,0)代入上式求得函数解析式为y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意3对x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解;•如果三个已知条件中有顶点坐标或对称轴或最值,可选用y=a(x-h)2+k 来求解;若三个条件中已知抛物线与x 轴两交点坐标,则一般设解析式为y=a(x-x 1)(x-x 2). 2. 二次函数的图象例2 (2003·孝感)y=ax 2+bx+c(a ≠0)的图象如图所示,则点M(a,bc)在( • ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 分析:由图可知: 抛物线开口向上⇒a>0.002y c bx y b a ⇒<=-⇒<⎫⎪⎬⎪⎭抛物线与轴负半轴相交对称轴在轴右侧⇒bc>0.∴点M(a,bc)在第一象限. 答案:A.点评:本题主要考查由抛物线图象会确定a 、b 、c 的符号.例3 (2003·岳阳)已知一次函数y=ax+c 二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系中的大致图象是( ).分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、•四象限;c>0时,直线交y 轴于正半轴;当c<0时,直线交y 轴于负半轴;•对于二次函数y=•ax 2+bx+c(a ≠0)来讲:⎧⎪⎪⎪⎨⎪⎪⎪⎩开口上下决定a的正负左同右异(即对称轴在y轴左侧,b的符号与a的符号相同;)来判别b的符号抛物线与y轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当a>0时,二次函数y=ax 2+bx+c 的开口向上,而一次函数y=•ax+c 应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c 决定直线与y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B.答案:D.3. 二次函数的性质例4 (2002·杭州)对于反比例函数y=-2x与二次函数y=-x 2+3,•请说出他们的两个相同点:①_________,•②_________;•再说出它们的两个不同点:••①________,••②_________.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命题的热点.4. 二次函数的应用例5 (2003·厦门)已知抛物线y=x 2+(2k+1)x-k 2+k, (1)求证:此抛物线与x 轴总有两个不同的交点.(2)设x 1、x 2是此抛物线与x 轴两个交点的横坐标,且满足x 12+x 22=-2k 2+2k+1. ①求抛物线的解析式.②设点P (m 1,n 1)、Q(m 2,n 2)是抛物线上两个不同的点,•且关于此抛物线的对称轴对称. 求m+m 的值.分析:(1)欲证抛物线与x 轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令y=0,证△>0即可.(2)①根据二次函数的图象与x 轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出k 的值,可确定抛物线解析式;•②由P 、Q 关于此抛物线的对称轴对称得n 1=n 2,由n 1=m 12+m 1,n 2=m 22+m 2得m 12+m 1=m 22+m 2,即(m 1-m 2)(m 1+m 2+1)=0可求得m 1+m 2=-1. 解:(1)证明:△=(2k+1)2-4(-k 2+k) =4k 2+4k+1+4k 2-4k=8k 2+1. ∵8k 2+1>0,即△>0,∴抛物线与x 轴总有两个不同的交点.(2)①由题意得x1+x2=-(2k+1), x1· x2=-k2+k.∵x12+x22=-2k2+2k+1,∴(x1+x2)2-2x1x2=-2k2+2k+1,即(2k+1)2-2(-k2+k)=-2k2+k+1,4k2+4k+1+2k2-2k=-2k2+2k+1.∴8k2=0,∴k=0,∴抛物线的解析式是y=x2+x.②∵点P、Q关于此抛物线的对称轴对称,∴n1=n2.又n1=m12+m1,n2=m22+m2.∴m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0.∵P、Q是抛物上不同的点,∴m1≠m2,即m1-m2≠0.∴m1+m2+1=0即m1+m2=-1.点评:本题考查二次函数的图象(即抛物线)与x轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.基础达标验收卷一、选择题:1.(2003·大连)抛物线y=(x-2)2+3的对称轴是( ).A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004·重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,ca)在( ).A.第一象限;B.第二象限;C.第三象限;D.第四象限3.(2004·天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ).A.b2-4ac>0B.b2-4ac=0C.b2-4ac<0D.b2-4ac≤04.(2003·杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( ).A.b=3,c=7B.b=-9,c=-15C.b=3,c=3D.b=-9,c=215.(2004·河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ).6.(2004·昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ).A.4+mB.mC.2m-8D.8-2m二、填空题1.(2004·河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=_______.2.(2003·新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003·天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004·武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003·黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002·北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:三、解答题1.已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.2.已知抛物线y=- 12x2+(6- 2m)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.(1)求m的值;(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.一、学科内综合题1.如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题3.某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?4.如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?答案:基础达标验收卷一、1.D 2.D 3.A 4.A 5.B 6.C二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-12x 2+2x+52 4.如y=-x 2+1 5.1 6.y=15x 2-85x+3或y=-15x 2+85x-3或y=-17x 2-87x+1或y=-17x 2+87x-1三、1.解:(1)∵函数y=x 2+bx-1的图象经过点(3,2), ∴9+3b-1=2,解得b=-2. ∴函数解析式为y=x 2-2x-1. (2)y=x 2-2x-1=(x-1)2-2. 图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x ≥3时,y ≥2. ∴当x>0时,使y ≥2的x 的取值范围是x ≥3. 2.(1)设A(x 1,0) B(x 2,0). ∵A 、B 两点关于y 轴对称.∴12120,0.x x x x +=⎧⎨≤⎩∴2(60,2(3)0.m ⎧⎪=⎨--≤⎪⎩解得m=6. (2)求得y=-12x 2+3.顶点坐标是(0,3) (3)方程-12x 2)x+m-3=0的两根互为相反数(或两根之和为零等). 3.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC; ②抛物线CBE; ③抛物线DEB; ④抛物线DEC; ⑤抛物线DBC. (2)在(1)中存在抛物线DBC,它与直线AE 不相交. 设抛物线DBC 的解析式为y=ax 2+bx+c.将D(-2, 92),B(1,0),C(4,0)三点坐标分别代入,得942,20,164.a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得a=14,b=-54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2, 92),得a=14也可.】 又将直线AE 的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得20,6.m n n -+=⎧⎨=-⎩解这个方程组,得m=-3,n=-6. ∴直线AE 的解析式为y=-3x-6. 能力提高练习 一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y 轴的左侧, ∴-2ba<0,∴b>0. 又∵抛物线交于y 轴的负半轴. ∴c<0.(2)如图,连结AB 、AC.∵在Rt △AOB 中,∠ABO=45°, ∴∠OAB=45°.∴OB=OA.∴B(-3,0). 又∵在Rt △ACO 中,∠ACO=60°, ∴OC=OA ·cot60°3∴3 设二次函数的解析式为 y=ax 2+bx+c(a ≠0).由题意930,330,3.a b ca b cc-+=⎧⎪++=⎨⎪=-⎩3,31,3.abc⎧=⎪⎪⎪⇒=-⎨⎪=-⎪⎪⎩∴所求二次函数的解析式为y=33x2+ (3-1)x-3.3.解:(1)设s与t的函数关系式为s=at2+bt+c由题意得1.5,422,255 2.5;a b ca b ca b c++=-⎧⎪++=-⎨⎪++=⎩或1.5,422,0.a b ca b cc++=-⎧⎪++=-⎨⎪=⎩解得1,22,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴s=12t2-2t.(2)把s=30代入s=12t2-2t, 得30=12t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s=12×72-2×7=212=10.5;把t=8代入,得s=12×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴25,100 3.a ha h=-⎧⎨=--⎩解得1,251.ah⎧=-⎪⎨⎪=⎩抛物线的解析式为y=-125x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时).货车按原来速度行驶的路程为:40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.。
九下数学-二次函数(超经典例题讲解,习题含答案)
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,
二次函数经典测试题附答案解析
二次函数经典测试题附答案解析一、选择题1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc 的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x轴的交点为x=1.x=3,都大于0,故(2)正确,由图像知(3)错误,由图象开口向上,a>0,与y轴交于正半轴,c>0,对称轴x=﹣=1,故b<0,bc<0,即可判断一次函数y=x+bc的图象.【详解】①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确;②方程ax2+bx+c=0两根分别为1,3,都大于0,故正确;③当x<2时,由图象知:y随x的增大而减小,故错误;④由图象开口向上,a>0,与y轴交于正半轴,c>0,x=﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.4.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.7.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.8.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x 轴围成的图形的面积S (图中阴影部分)是( )A .5B .6C .7D .8【答案】B【解析】【分析】 B ,C 分别是顶点,A 是抛物线与x 轴的一个交点,连接OC ,AB ,阴影部分的面积就是平行四边形ABCO 的面积.【详解】抛物线y =x 2﹣4x +1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y 轴上,此时顶点B(0,-3),点A 是抛物线与x 轴的一个交点,连接OC ,AB ,如图,阴影部分的面积就是ABCO 的面积,S=2×3=6;故选:B .【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.9.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.10.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.12.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质13.如图,抛物线y =ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A ,顶点为B ,若△AOB 为等边三角形,则b 的值为( )A 3B .﹣3C .﹣3D .﹣3【答案】B 【解析】 【分析】根据已知求出B (﹣2,24b b a a-),由△AOB 为等边三角形,得到2b 4a =tan60°×(﹣2b a ),即可求解; 【详解】解:抛物线y =ax 2+bx+c (a >0)过原点O ,B(﹣2,24b ba a),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣23;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c 之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.【详解】①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴abc >0, 故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1, ∴图象与x 轴的另一个交点为(3,0), ∴当x=2时,y <0, ∴4a+2b+c <0, 故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间, ∴-2<c <-1∵-12ba , ∴b=-2a ,∵函数图象经过(-1,0), ∴a-b+c=0, ∴c=-3a , ∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0), ∴a-b+c=0, ∴b-c=a , ∵a >0,∴b-c >0,即b >c ; 故④正确; 故选B . 【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.二次函数y =ax 2+bx +c (a ≠0)中的x 与y 的部分对应值如下表:给出以下结论:(1)二次函数y =ax 2+bx +c 有最小值,最小值为﹣3;(2)当﹣12<x <2时,y <0;(3)已知点A (x 1,y 1)、B (x 2,y 2)在函数的图象上,则当﹣1<x 1<0,3<x 2<4时,y 1>y 2.上述结论中正确的结论个数为( ) A .0B .1C .2D .3【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.17.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】A.由图象可知:a <0,c >0, ∴ac <0,故A 错误;B.由对称轴可知:x =2ba-<0, ∴b <0,故B 错误; C.由对称轴可知:x =2ba-=﹣1, ∴b =2a , ∵x =1时,y =0, ∴a +b +c =0, ∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误; 故选D . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18.若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx +c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( ) A .①③④ B .①②④C .①②③D .②③【答案】B 【解析】 【分析】①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确. 【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确; ②∵图象上有一点M (x 0,y 0), ∴a+bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确; ③当a >0时,∵M (x 0,y 0)在x 轴下方, ∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方, ∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2), ∵图象上有一点M (x 0,y 0)在x 轴下方, ∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确; 故选B . 【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.19.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】根据一次函数及二次函数的图像性质,逐一进行判断. 【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a-<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴32a->在y轴右侧,故此选项正确;D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;故选:C.【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.20.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.。
2023年中考数学--- a,b,c和二次函数图像的九种考法例题解析
2023年中考数学--- a ,b ,c 和二次函数图像的九种考法例题解析如图,二次函数的图像关于直线对称,与x 轴交于,两点,若考法解决方法本题结果①a,b,ca:二次函数图像开口向上时,a >0;开口向下,则a <0;b :和a 共同决定了函数对称轴的位置,“左同右异”,当对称轴在y 轴左侧时,a ,b 同号,当对称轴在y 轴右侧时,a ,b 异号。
c :c 为图像和y 轴交点的纵坐标。
a >0b <0c <0②b 2−4ac当图像和x 轴有两个交点时,b 2−4ac >0; 当图像和x 轴有一个交点时,b 2−4ac =0; 当图像和x 轴没有交点时,b 2−4ac <0。
b 2−4ac <0 ③a+b+c a-b+c 4a+2b+c 4a-2b+c 9a+3b+c 9a-3b+c 用特殊值进行判断:a+b+c 即为当x=1时的函数值; 4a-2b+c 即为当x=-2时的函数值。
a+b+c <0 a-b+c <0④3a+2b只有a ,b 时,用对称轴代换,消去一个未知数进行判断∵−b2a = 1,∴b=- 2а,∴3a +2b= 3a-4a= -a ,∵a >0,∴3a+2b<0⑤c+a 只有a ,c 或只有b ,c 时,先用对称轴代换,消去一个未知数,然后利用④中的结果判断结果∵a -b +c<0,∴a +c<b ,∵a >0, ∴b=-2a<0,∴a +c<0, ⑥b+2c若c 的系数不是1,可以先化成1再进行上述计算,或这把③中的某个式子中的c 的系数变成题里的形式。
∵−b 2a=1,∴2a =−b , ∵a+b +c<0,∴2a+2b +2c<0,-b+2b +2c<0,b +2c<0 ⑦am 2+bm 和a +b 的小小关系同时加上c ,am 2+bm+c ,a +b+c第一个式子是当x=m 时的函数值,第二个am 2+bm ≥a+b式子是当x=1时的函数值;由图可知,x=1时函数取最小值。
二次函数经典测试题及解析
二次函数经典测试题及解析一、选择题1.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大∵103132-<-<点13,2y ⎛⎫-⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B .【点睛】 本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.2.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0. ∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0. ∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】 由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c, 故可得4,0a b c -==①因为0c ,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.5.方程2x 3x 10+-=的根可视为函数3y x 的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4 B .011<x <43 C .011<x <32 D .01<x <12 【答案】C【解析】【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围.【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x ==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C .【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.6.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意.故选:B .【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.7.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[2m ,1-m ,-1-m]的函数的一些结论,其中不正确的是( )A .当m=-3时,函数图象的顶点坐标是(13,83) B .当m>0时,函数图象截x 轴所得的线段长度大于32 C .当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象. 【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确;③当x <2时,由图象知:y 随x 的增大而减小,故错误;④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0, ∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确.当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A .向左平移2个单位长度B .向右平移2个单位长度C .向左平移10个单位长度D .向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.故选:D .【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.11.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.12.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣23;故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c 之间的关系,从而对④作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出③的正误.【详解】①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a=, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.14.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.15.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ 底边AP 上的高保持不变1422APQ St t =⋅⋅=,函数图象为一次函数; 故选:D .【点睛】 本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a-=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.18.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.19.如图1,在△ABC 中,∠B =90°,∠C =30°,动点P 从点B 开始沿边BA 、AC 向点C 以恒定的速度移动,动点Q 从点B 开始沿边BC 向点C 以恒定的速度移动,两点同时到达点C ,设△BPQ 的面积为y (cm 2).运动时间为x (s ),y 与x 之间关系如图2所示,当点P 恰好为AC 的中点时,PQ 的长为( )A.2 B.4 C.23D.43【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A.B.C.D.【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a>0,c<0,b>0,∴, 故③错误;∵.∴B(-c,0)∴抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点,∴, ac2-bc+c=0∴,ac-b+1=0,∴,故②正确;∴,b=ac+1∴,∴2b-c=2,故①正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.。
二次函数动点经典例题+练习(附解析)
二次函数中的动点问题动点问题题型方法归纳总结:几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,在解题方法给以点拨。
例:如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。
第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。
二次函数的动点问题1.如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,.(1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.[解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,.设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,. 解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-. (2)由(1)可计算得点(31)(31)M N --,,,.过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+. 根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形. 所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤).所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形.由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得1222t t ==,(舍). 所以在运动过程中四边形MDNA可以形成矩形,此时2t =.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研学稿
一、互助释疑,典例分析例:(2014年・齐齐哈尔市)如图,二次函数
2 . _
y=ax+bx+c(0)图象的一部分,对称轴为直线
x = *,且经过点(2,0 ),下列说法:
① abc<0 :② a+b=0 ;③ 4a+2b+c<0 ;
④若(-2 , y i),(- ,y J是抛物线上的两点,
2
法正确的是()
A.①②④
B. ③④
C.①③④
D. ①②
下列说法正确吗?
、、1
变式一:(1) b-?c=0 ;(2) 3a+c<0;
变式二:(1) 9a-3b+c<0; (2) a ?b c:0 ; ( 3) 5a+b+2c<0;
(4) a:b: c=1:2:1 ; (5) (a c)2 < b2; (6) a-b-
2c<0.
若(X1, yj,(X2, y2)是抛物线上的两点,且X1>X2>1 ,则y1<y2.
变式四:若y > 0,则x的取值范围-1<x<2.
变式五:(1)ax2b^1 a 1 b :
4 2
(2)若顶点坐标为(m n),则ax2+bx兰am2+ bm (x工m)
变式六:一元二次方程的ax2+bx+c=0的解为X1=2, X2=-1; 变式七:若抛物线与y轴的交点在(0,2 )和(0, 3)之
间,则1<b<1.
二、直击中考原题重现
1、( 2016 ♦齐齐哈尔)如图,抛物线 y=ax 2+bx+c (a z 0)的对称轴为x=1,与x 轴的一个交点坐标 为(-1,0 ),其部分图象如图所示。
下列结论:① 4ac<b ;②方程 ax +bx+c=0 的两个根是 x i =-1,x 2=3; ③3a+c>0;④当y>0时,x 的取值范围是-1 < x<3;
⑤当x<0时,y 随x 的增大而增大。
其中结论正确的个数是(
)
A 4 个;
B 、3 个;
C 、2 个;
D 1 个
2、(2017♦齐齐哈尔)如图,抛物线 y=ax 2+bx+c (a z 0)的对称轴
①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at 2+bt
(t 为实数);⑤(
-2, yj ,(-号,y 2),(冷,丫」 是该抛物线上的点,则y 1<y 2<y 3.其中结论正确的个数是(
A 4 个;
B 、3 个;
C 、2 个;
D 1 个
(2018 ♦齐齐哈尔)抛物线 C:y 1二mx-4mx+2 n-
1
直线交于A 、B 两点,且点A 的坐标为(-1,2 ), 请结合图象分析以下结论:①对称轴为 x=2; ②抛物线与y 轴交点坐标为(0, -1 );3 m 2
5
④若抛物线G:y 2二ax 2(a z 0)与线段AB 恰有一个公共
为x=-2,与x 轴的一个交点在(-3,0 )和(
之间,其部分图象如图所示,则下列结论:
3、
点,则a的取值范围是2曲:::2 ;⑤不等式mx-
4mx+2n>0的解作为函数G的自变量
25
取值时,对应的函数值均为正数。
其中正确结论的个数有(
A 2 个;B、3 个;C、4 个;D 5 个。